Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas
2012-10-11
Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.
Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz
NASA Astrophysics Data System (ADS)
Kadve, A. M.; Vankar, H. P.; Rana, V. A.
2017-05-01
Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.
Electrophotolysis oxidation system for measurement of organic concentration in water
NASA Technical Reports Server (NTRS)
Winkler, H. E. (Inventor)
1981-01-01
Methods and apparatus for determining organic carbon in aqueous solution are described. The method comprises subjecting the aqueous solution to electrolysis, for generating oxygen from water, and simultaneously to ultraviolet radiation, for oxidation of substantially all organic carbon to carbon dioxide. The carbon dioxide is measured and the value is related to the concentration of organic carbon in the aqueous solution.
NASA Astrophysics Data System (ADS)
Khan, Ezaz Hasan; Thota, Sammaiah; Wang, Yiwen; Li, Lian; Wilusz, Eugene; Osgood, Richard; Kumar, Jayant
2018-04-01
Aqueous vitamin C solution has been used as an environment-friendly reducing agent for tuning the thermoelectric properties of p-toluenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Tos) films. The de-doping of the PEDOT-Tos films by aqueous vitamin C solutions led to a decrease in the electrical conductivity of the films. The measured ultraviolet-visible-near-infrared and x-ray photoelectron spectra clearly indicated the reduction in the oxidation level from 37 to 23% when the PEDOT-Tos films were treated with 5% (w/v) aqueous vitamin C solutions. An increase in the Seebeck coefficient was measured, resulting in an increase in the figure-of-merit (ZT). A 42% increase in ZT was determined for the 5% aqueous vitamin C solution-treated PEDOT-Tos films with respect to that of the untreated films.
Heat capacity of alkanolamine aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, L.F.; Li, M.H.
1999-12-01
Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to representmore » the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.« less
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions
NASA Technical Reports Server (NTRS)
Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)
2016-01-01
A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.
Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions
NASA Astrophysics Data System (ADS)
Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome
1986-08-01
It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.
1983-07-19
Pruppacher and Klett, 1978) 2(rl ’. r R 1 F5S = a,, e (5) where a. is the water activity of the aqueous solution , (r is the surface tension of the droplet...desorption) of ions by the insoluble portion of the particle, which is assumed to be totally submerged in the aqueous solution . We denote the coefficient ...between the saturation ratio S (relative humidity/100) of the air and the equili- brium radius r of an aqueous solution droplet may be expressed as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinker, E.B.; Oelschlager, D.W.; Colussi, A.T.
1994-04-01
Aqueous solutions of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) are widely used in the industrial treatment of acid gas streams containing H[sub 2]S and CO[sub 2]. The density and viscosity of aqueous solutions of N-methyldiethanolamine were measured over the temperature range 60--100 C. The density and viscosity of aqueous solutions of diethanolamine and diethanolamine + N-methyldiethanolamine were measured over the temperature range 20--100 C. The surface tension of aqueous solutions of the above mixtures was measured over the temperature range 20--80 C. The concentration ranges were 10--50 mass % N-methyldiethanolamine, 10--30 mass % diethanolamine, and 50 mass % total amine concentrationmore » with mass ratios of 0.0441--0.5883 (diethanolamine to N-methyldiethanolamine). The measured quantities were found to be in agreement with the literature where data were available.« less
Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating
2004-01-01
fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of
1990-11-16
creating an electrical double-layer whenever a bare mica surface is in contact with an aqueous solution . The mica/electrolyte double-layer...between mica in aqueous solutions containing 10-5 to I M KNO 3 (From Reference 44. Copyright 0 1985 Royal Swedish Academy. Reprinted with permission of...can be observed in aqueous KNO 3 solutions at close separations and at high ion concentrations. For example, if the force curves in Figure 8 (top) for
Kim, Dianne H; Stark, Walter J; O'Brien, Terrence P; Dick, James D
2005-11-01
To measure the achievable perioperative aqueous concentration of the commercially available topically administered fourth generation fluoroquinolones, moxifloxacin 0.5% ophthalmic solution, and gatifloxacin 0.3% ophthalmic solution, and to correlate this concentration with the agents' biological efficacy in the aqueous humor of patients undergoing routine cataract surgery. Prospective, randomized, parallel, double-masked, clinical trial. Fifty patients undergoing cataract extraction. Patients (n = 25) were given perioperative topical moxifloxacin 0.5% or topical gatifloxacin 0.3% (n = 25). One drop of antibiotic was administered every 10 minutes for 4 doses beginning 1 hour prior to surgery. Aqueous humor was sampled via paracentesis and antibiotic concentrations were determined using validated high performance liquid chromatography (HPLC) procedures. Dilution analyses were performed to determine the biological efficacy of the agents in the aqueous against Staphylococcus epidermidis, the most common cause of postcataract endophthalmitis. Aqueous humor antibiotic concentrations were measured using HPLC and microdilution bioassay techniques. Biological activity was measured as minimal inhibitory dilution and minimal bactericidal dilution. Aqueous humor concentrations for moxifloxacin via HPLC analysis were 1.80 (+/-1.21) microg/ml, whereas those for gatifloxacin were 0.48 (+/-0.34) microg/ml. This 3.8-fold difference in aqueous humor antibiotic concentrations was statistically significant (P = 0.00003). Similarly, the biological dilution analysis of the aqueous humor samples showed that moxifloxacin attained an estimated activity of 2.1 microg/ml, whereas the gatifloxacin activity was approximately 0.4 mug/ml, which represented a 4.9-fold difference. This study demonstrated that after topically administered perioperative antibiotics with cataract surgery, moxifloxacin 0.5% ophthalmic solution achieved a statistically significantly higher concentration in aqueous humor compared with gatifloxacin (P = 0.00003). Results from the broth dilution analysis showed that moxifloxacin 0.5% was biologically more active against S. epidermidis than gatifloxacin 0.3% in aqueous humor after topical application. There were no adverse events reported, and incision wounds healed quickly and as expected.
Method and apparatus for measuring volatile compounds in an aqueous solution
Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA
2002-07-16
The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.
Electrophoretic mobility (EPM) of endospores of Bacillus anthracis and surrogates were measured in aqueous solution across a broad pH range and several ionic strengths. EPM values trended around phylogenetic clustering based on the 16S rRNA gene. Measurements reported here prov...
NASA Astrophysics Data System (ADS)
Li, Zhenxiang; Zhao, Jianxi
2013-03-01
Wettability of aluminum substrate by the aqueous solutions containing ethoxylated alcohol nonionic surfactants C12En- or Triton X-series was studied using dynamic contact angle measurements. The efficiency of wetting was found to strongly depend on the length of polyoxyethylene (POE) chain of C12En- or Triton X surfactants. For C12E4 that has a very short POE chain, it hardly made the aqueous solution spreading over aluminum. The others with a long POE chain were indeed very efficient in promoting the solution spreading. Moreover, all the spreading process could be completed within 10 s. The single-layer Nisbnd Al2O3 coatings were fabricated from the precursor solutions containing C12En- or Triton X surfactants and the reflectance spectra were measured by a UV/vis spectrophotometer equipped with an integrating sphere. The results indicated that the precursor solution with a long POE chain surfactant as wetting agent favored to fabricate a uniform film on the aluminum substrate and therefore to get a high solar absorptance.
NASA Astrophysics Data System (ADS)
Brandt, Nikolai N.; Chikishev, Andrey Y.
2002-05-01
Kinetics of background decay in Raman spectra of aqueous solutions of ricin agglutinin in the presence of guanidine chloride were measured. The differences in the kinetics of photobleaching are discussed.
NASA Astrophysics Data System (ADS)
Wiśniewski, Marek; Werengowska-Ciećwierz, Karolina; Terzyk, Artur P.
2015-01-01
Immersional measurements of benzene adsorption form dilute aqueous solutions are reported for the first time together with the measurements of the enthalpy of benzene adsorption. Benzene adsorption from aqueous solution is an exothermic process. Our results show that with the decrease in carbon nanotube diameter the process becomes more exothermic, and the enthalpy of benzene adsorption correlates with the BET surface area and the electrostatic field strength of the tubes. Possible explanations of the results are proposed, and the most probable is that the change in carbon hybridisation with curvature leads to creation of stronger energetically adsorption sites than observed for graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownlee, R.T.; Shehan, B.P.; Wedd, A.G.
1987-07-01
Variable-temperature NMR line width measurements of ZVMo and UN in aqueous solutions of K4(Mo(CN)8) x 2H2O indicate that the stereochemistry of the (Mo(CN)8)U ion in solution is dodecahedral. A value for the ZVMo quadrupole coupling constant of 3.61 MHz is obtained. 27 references, 1 figure, 1 table.
NASA Astrophysics Data System (ADS)
Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji
2018-04-01
Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.
Responsive Copolymers for Enhanced Petroleum Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.
Process for measuring low cadmium levels in blood and other biological specimens
Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.
1994-01-01
A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.
Process for measuring low cadmium levels in blood and other biological specimens
Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.
1994-05-03
A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2015-12-01
Integral enthalpies of solution Δsol H m of diglycylglycine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol are measured via solution calorimetry. The experimental data are used to calculate the standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the tripeptide from water to aqueous solutions of polyatomic alcohols. The enthalpic pairwise coefficients h xy of interactions between the tripeptide and polyatomic alcohol molecules are calculated using the McMillan-Mayer solution theory and are found to have positive values. The findings are discussed using the theory of estimating various types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical parameters of diglycylglycine dissolution.
NASA Astrophysics Data System (ADS)
Ali, A.; Bidhuri, P.; Uzair, S.
2014-07-01
Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.
Study on viscosity of MDEA-MeOH aqueous solutions
NASA Astrophysics Data System (ADS)
Wang, F.; Wang, L. M.; Wang, S. Q.; Fu, D.
2017-03-01
The viscosities of the N-methyldiethanolamine (MDEA)-methanol (MeOH) aqueous solutions were measured at temperatures ranging from (303.2 to 323.2) K. The mass fraction of MDEA and MeOH respectively ranged from 0.2 to 0.4 and 0 to 0.15. On the basis of experimental measurement, the effects of temperature, mass fraction of MDEA and MeOH on viscosities were demonstrated.
Select physicochemical properties of aqueous solutions composed of surfactants, dye, and
perchloroethylene (PCE) were evaluated through a response surface quadratic design
model of experiment. Nine surfactants, which are conventionally used in the
remediation...
Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions
NASA Astrophysics Data System (ADS)
Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.
2011-05-01
The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.
NASA Astrophysics Data System (ADS)
Cheng, Kuok Kong; Park, Chanwoo
2017-07-01
Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.
In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.
Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng
2018-06-01
Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.
Options for refractive index and viscosity matching to study variable density flows
NASA Astrophysics Data System (ADS)
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.
Sinfield, Joseph V; Monwuba, Chike K
2014-01-01
Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements, yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 μm were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution.
Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Št'avíková, Lenka; Roth, Michal
2013-02-01
Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2×10(-11) g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Exploratory studies on some electrochemical cell systems
NASA Astrophysics Data System (ADS)
Chaudhuri, Srikumar; Guha, D.
Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.
Spectroelectrochemical Instrument Measures TOC
NASA Technical Reports Server (NTRS)
Kounaves, Sam
2011-01-01
A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.
Reversible Condensation of DNA using a Redox-Active Surfactant
Hays, Melissa E.; Jewell, Christopher M.; Lynn, David M.; Abbott, Nicholas L.
2008-01-01
We report characterization of aqueous solutions of dilute Lambda phage DNA containing the redox-active surfactant (11-ferrocenylundecyl)trimethylammonium bromide (FTMA) as a function of the oxidation state of the FTMA. FTMA undergoes a reversible one-electron oxidation from a reduced state that forms micelles in aqueous solution to an oxidized state (containing the ferrocenium cation) that does not selfassociate in solution. This investigation sought to test the hypothesis that FTMA can be used to achieve reversible control over the conformation of DNA-surfactant complexes in solution. Whereas DNA adopts extended coil conformations in aqueous solutions, our measurements revealed that addition of reduced FTMA (2–5μM) to aqueous solutions of DNA (5 μM in nucleotide units) resulted in coexistence of extended coils and compact globules in solution. At higher concentrations of reduced FTMA (up to 30μM), the DNA was present as compact globules only. In contrast, oxidized FTMA had no measurable effect on the conformation of DNA, allowing DNA to maintain an extended coil state up to a concentration of 75μM oxidized FTMA. We further demonstrate that it is possible to chemically or electrochemically transform the oxidation state of FTMA in preformed complexes of FTMA and DNA, thus achieving in situ control over the conformations of the DNA in solution. These results provide guidance for the design of surfactant systems that permit active control of DNA-surfactant interactions. PMID:17428073
Sucrose diffusion in aqueous solution
Murray, Benjamin J.
2016-01-01
The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512
Jung, Youngeui; Hwang, Jungseek
2013-02-01
We used near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in aqueous solutions in the near-infrared range (3800-7500 cm(-1)). Here we introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we were able to extract the water displacement coefficients of glucose, and this may offer a new general method using spectroscopy techniques applicable to other water-soluble materials. We also observed red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from the contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift gets larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compared.
NASA Astrophysics Data System (ADS)
Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Volkov, A. V.; Skvortsov, I. A.
2018-03-01
The enthalpies of dissolution of crystalline naproxen sodium in water and aqueous solutions of KOH at 298.15 K are measured by direct calorimetric means in a wide range of concentrations. The acid-base properties of naproxen sodium at ionic strength I 0 and I = 0.1 (KNO3) and a temperature of 298.15 K are studied by spectrophotometric means. The concentration and thermodynamic dissociation constants are determined. The standard enthalpies of the formation of naproxen sodium and the products of its dissociation in aqueous solution are calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.
1993-01-01
Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.
Ultrasensitive molecular detection using thermal conductance of a hydrophobic gold-water interface.
Green, Andrew J; Alaulamie, Arwa A; Baral, Susil; Richardson, Hugh H
2013-09-11
The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.
Superlubricity of a Mixed Aqueous Solution
NASA Astrophysics Data System (ADS)
Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu
2011-05-01
A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
2018-05-09
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
NASA Astrophysics Data System (ADS)
Bordui, P. F.; Loiacono, G. M.
1984-07-01
A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).
NASA Astrophysics Data System (ADS)
Alam, Md. Sayem; Mohammed Siddiq, A.; Mandal, Asit Baran
2017-12-01
By the conductivity measurements the effects of fructose and temperature (293-308 K) on the micellization of a cationic gemini surfactant (GS), pentanediyl-1,5-bis(dimethylcetylammonium) bromide in aqueous solutions have been investigated. The critical micelle concentration (CMC) of GS was measured at the different temperatures and fructose concentrations. An increasing trend of the CMC values is with addition of fructose. With increasing temperature, the CMC values are in a similar increasing trend. The CMC of GS by dye solubilization method at room temperature have been determined. The standard Gibbs energy, enthalpy and entropy of GS micellization have been evaluated. From these thermodynamic parameters, it was found that in presence of fructose, the stability of the GS aqueous solutions decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silkenbaeumer, D.; Lichtenthaler, R.N.; Rumpf, B.
1998-08-01
The solubility of carbon dioxide in aqueous solutions containing 2-amino-2-methyl-1-propanol (AMP) was measured in the temperature range from 313 to 353 K at total pressures up to 2.7 MPa using an analytical method. A model taking into account chemical reactions in the liquid phase as well as physical interactions is used to correlate the new data. To test the predictive capability of the model, the solubility of carbon dioxide in an aqueous solution containing AMP and N-methyldiethanolamine (MDEA) was measured at 313 K. Experimental results are reported and compared to literature data and calculations.
Hydration and dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions
NASA Astrophysics Data System (ADS)
Lyashchenko, A. K.; Balakaeva, I. V.; Simonova, Yu. A.; Timofeeva, L. M.
2017-10-01
Results from microwave measurements of the dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions at maximum water dispersion frequencies (13-25 GHz) and temperatures of 288, 298, and 308 K are given. The static dielectrical constants, times, and activation parameters of the dielectrical relaxation of solutions are calculated. The enthalpy and time of dielectrical relaxation activation are increased by deceleration of the motion of water molecules in the hydrate shells of ions. The changes in dielectrical parameters are in this case minimal in a series of aqueous solutions of diallylammonium salts with cations of different structures and degrees of substitution. It is shown that pyrrolidinium ions are characterized by weak hydrophobic hydration.
Empirical correlation between hydrophobic free energy and aqueous cavity surface area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, J.A.; Gilbert, D.B.; Tanford, C.
1974-08-01
The unitary free energy of transfer of a hydrocarbon molecule from a hydrocarbon solvent to an aqueous medium is a measure of the hydrophobic interaction in the aqueous medium. We have reexamined available data on this phenomenon and have confirmed that the free energy for saturated hydrocarbons is proportional to the surface area of the cavity created by the solute in the aqueous solution, with the same proportionality constant for linear, branched, and cyclic hydrocarbon molecules. The numerical value of the proportionality constant is uncertain because absolute and self-consistent area measurements are not available. We estimate that it falls betweenmore » 20 and 25 cal/mole per Angstrom/sup 2/ at 25/sup 0/ (for areas measured at the distance of closest approach of water molecules), which is significantly less than the figure of 33 cal/mole per Angstrom/sup 2/ that has been assigned to the same parameter by Hermann.« less
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2009-01-01
X-ray absorption spectroscopy (XAS) measurements were made at the Nd L3-edge on neodymium(III) aqua and chloroaqua complexes in low pH aqueous solutions from 25 to 500????C and up to 520??MPa. Analysis of the extended X-ray absorption fine structure of the XAS spectra measured from a 0.07??m Nd/0.16??m HNO3 aqueous solution reveals a contraction of the Nd-O distance of the Nd3+ aqua ion at a uniform rate of ~ 0.013????/100????C and a uniform reduction of the number of coordinated H2O molecules from 10.0 ?? 0.9 to 7.4 ?? 0.9 over the range from 25 to 500????C and up to 370??MPa. The rate of reduction of the first-shell water molecules with temperature for Nd3+ (26%) is intermediate between the rate for the Gd3+ aqua ion (22% from 25 to 500????C) and the rates for the Eu3+ (29% from 25 to 400????C) and the Yb3+ aqua ions (42% from 25 to 500????C) indicating an intermediate stability of the Nd3+ aqua ion consistent with the tetrad effect. Nd L3-edge XAS measurements of 0.05??m NdCl3 aqueous solution at 25 to 500????C and up to 520??MPa show that stepwise inner-sphere complexes most likely of the type Nd(H2O)?? - nCln+3 - n occur in the solution at elevated temperatures, where ?? ??? 9 at 150????C decreasing to ~ 6 at 500????C and the number of chloride ions (n) of the chloroaqua complexes increases uniformly with temperature from 1.2 ?? 0.2 to 2.0 ?? 0.2 in the solution upon increase of temperature from 150 to 500????C. Conversely, the number of H2O ligands of Nd(H2O)?? - nCln+3 - n complexes is uniformly reduced with temperature from 7.5 ?? 0.8 to 3.7 ?? 0.3 in the aqueous solution, in the same temperature range. These data show greater stability of neodymium(III) than gadolinium(III) and ytterbium(III) chloride complexes in low pH aqueous solutions at elevated temperatures. Our data suggest a greater stability of aqueous light REE than that of heavy REE chloride complexes in low pH fluids at elevated temperatures consistent with REE analysis of fluids from deep-sea hydrothermal vents. ?? 2008 Elsevier B.V.
Select physicochemical properties of nine surfactants which are conventionally used in the remediation of perchloroethylene (PCE, a.k.a. tetrachloroethene) were evaluated with varying concentrations of PCE and indicator dyes in aqueous solutions using a response surface quadrati...
Background photobleaching in raman spectra of aqueous solutions of plant toxins
NASA Astrophysics Data System (ADS)
Brandt, Nikolai N.; Chikishev, Andrey Y.; Tonevitsky, Alexander G.
2002-05-01
Kinetics of background photobleaching in Raman spectra of aqueous solutions of ricin, ricin agglutinin and ricin binding subunit were measured. It was found that the spectrum of Raman background changes upon laser irradiation. Background intensity is lower for the samples with lower molecular weight. Photobleaching is characterized by oscillations in the multi exponentially decaying intensity.
NASA Astrophysics Data System (ADS)
Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao
2018-04-01
Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.
Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J
2013-12-19
The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.
NASA Astrophysics Data System (ADS)
Kloxin, Christopher J.; van Zanten, John H.
2009-10-01
DWS-based tracer particle microrheology is demonstrated to be a useful way to study the dynamics of aqueous Pluronic L64 solutions, which is viewed as a model adhesive hard sphere (AHS) system. The short-time dynamics of aqueous Pluronic L64 solutions indicate a purely hydrodynamic high frequency microviscosity as predicted by Batchelor for colloidal dispersions. The evolution of the micellar dynamics reveals a zero shear microviscosity in good agreement with steady shear viscosity measurements. As the temperature is increased, the dynamics become dominated by an apparent attractive intermicellar potential observed in microscopic creep measurements. While Pluronic L64 solutions have been reported to form a percolated micellar network, DWS-based microviscoelasticity measurements do not detect the previously observed G'˜G″˜ωΔ scaling expected for a static percolated network at low frequencies. This most likely owes to the fact that tracer particle microrheology is dominated by local Pluronic L64 micelle dynamics in the near sphere region and not the bulk mechanical properties as measured by traditional rheometry. The sensitivity of tracer particle microrheological measurements to the true dynamic nature of the percolated network in weak physical gels highlights the distinct differences between these micro- and macrorheology measurement techniques. Such discrepancies should be most evident in systems that are dominated by association processes such as those occurring in AHS solutions or polymer solutions approaching a phase boundary. Despite this, the AHS potential is qualitatively consistent with the results found here.
Kloxin, Christopher J; van Zanten, John H
2009-10-07
DWS-based tracer particle microrheology is demonstrated to be a useful way to study the dynamics of aqueous Pluronic L64 solutions, which is viewed as a model adhesive hard sphere (AHS) system. The short-time dynamics of aqueous Pluronic L64 solutions indicate a purely hydrodynamic high frequency microviscosity as predicted by Batchelor for colloidal dispersions. The evolution of the micellar dynamics reveals a zero shear microviscosity in good agreement with steady shear viscosity measurements. As the temperature is increased, the dynamics become dominated by an apparent attractive intermicellar potential observed in microscopic creep measurements. While Pluronic L64 solutions have been reported to form a percolated micellar network, DWS-based microviscoelasticity measurements do not detect the previously observed G(') approximately G(") approximately omega(Delta) scaling expected for a static percolated network at low frequencies. This most likely owes to the fact that tracer particle microrheology is dominated by local Pluronic L64 micelle dynamics in the near sphere region and not the bulk mechanical properties as measured by traditional rheometry. The sensitivity of tracer particle microrheological measurements to the true dynamic nature of the percolated network in weak physical gels highlights the distinct differences between these micro- and macrorheology measurement techniques. Such discrepancies should be most evident in systems that are dominated by association processes such as those occurring in AHS solutions or polymer solutions approaching a phase boundary. Despite this, the AHS potential is qualitatively consistent with the results found here.
Viscosity of aqueous solutions of n-methyldiethanolamine and of diethanolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, T.T.; Maham, Y.; Hepler, L.G.
1994-04-01
Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), di-2-propanolamine (DIPA), and bis[2-(hydroxyamino)ethyl] ether (DGA) are good solvents for the removal of acid gases such as CO[sub 2] and H[sub 2]S from the gas streams of many processes in the natural gas, petroleum, ammonia synthesis, and some chemical industries. The viscosity of aqueous solutions of methyldiethanolamine (MDEA) and of diethanolamine (DEA) have been measured at five temperatures in the range 25--80 C throughout the whole concentration range. The viscosity has been correlated as a function of composition for use in industrial calculations.
Applicability of refractometry for fast routine checking of hospital preparations.
Hendrickx, Stijn; Verón, Aurora Monteagudo; Van Schepdael, Ann; Adams, Erwin
2016-04-30
Quality control of hospital pharmacy formulations is of the utmost importance to ensure constant quality and to avoid potential mistakes before administration to the patient. In this study we investigated the applicability of refractometry as a fast, inexpensive and easy-to-use quality control measurement. Refractive indices (RI) of a multitude of different hospital formulations with varying concentrations of active compound were measured. The samples consisted of a number of binary aqueous solutions (one compound in water), complex aqueous solutions (multiple compounds in water or in a constant matrix), two suspensions and one emulsion. For all these formulations, linear regression analysis was performed, quality control limits determined and accuracy and repeatability were checked. Subsequently, actual hospital pharmacy samples were analyzed to check whether they were within the specified limits. For both binary and complex aqueous formulations, repeatability was good and a linear correlation for all samples could be observed on condition that the concentration of the active compound was sufficiently high. The refractometer was not sensitive enough for solutions of folic acid and levothyroxine, which had too low a concentration of active compound. Due to lack of homogeneity and light scattering, emulsions and suspensions do not seem suitable for quality control by refractometry. A mathematical equation was generated to predict the refractive index of an aqueous solution containing clonidine HCl as active compound. Values calculated from the equation were compared with measured values and deviations of all samples were found to be lower than 1.3%. In order to use refractometry in a hospital pharmacy for quality control of multicomponent samples, additional intermediate measurements would be required, to overcome the fact that refractometry is not compound specific. In conclusion, we found that refractometry could potentially be useful for daily, fast quality measurements of relatively concentrated binary and more complex aqueous solutions in the hospital pharmacy. Copyright © 2016 Elsevier B.V. All rights reserved.
Long-term results of treatment with diquafosol ophthalmic solution for aqueous-deficient dry eye.
Koh, Shizuka; Ikeda, Chikako; Takai, Yoshihiro; Watanabe, Hitoshi; Maeda, Naoyuki; Nishida, Kohji
2013-09-01
To evaluate the preliminary long-term efficacy of diquafosol ophthalmic solution for aqueous-deficient dry eye. Fifteen patients with mild-to-moderate aqueous-deficient dry eye were enrolled. After a washout period, the patients were treated with 3 % diquafosol ophthalmic solution for 6 months. We assessed 12 subjective dry eye symptoms, corneal and conjunctival staining with fluorescein, tear film break-up time (BUT), lower tear meniscus height measured with anterior-segment optical coherence tomography, Schirmer's testing, and adverse reactions at baseline and 1, 3, and 6 months after the start of treatment. Treatment with diquafosol ophthalmic solution significantly improved dry eye symptoms, corneal staining, BUT, and tear meniscus height at 1 month and maintained the effectiveness for 6 months. Conjunctival staining significantly improved 3 and 6 months after treatment. No significant adverse reactions developed. Prolonged use of diquafosol ophthalmic solution for 6 months produced significant improvement both subjectively (dry eye symptom score) and objectively (ocular staining score and tear function tests) for aqueous-deficient dry eye.
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments.
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E; Schwegler, Eric; Galli, Giulia
2017-06-01
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecularmore » dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.« less
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2017-05-01
The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan-Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.
Geoelectrical Response of Surfactant Solutions in a Quartzitic Sand Analog Aquifer
In this project, the resistivity and phase shift of ten surfactant aqueous solutions in a sand matrix were measured using spectral induced polarization (SIP). In addition, specific conductivity, pH, dissolved oxygen, and dielectric constant measurements of the solutions were also...
Ahn, Dayoung; Choi, Jae-Kyeong; Kim, Heonki
2017-06-07
This study examines the effect of controlled groundwater flow paths induced by hydraulic barriers on the removal of NAPL constituent. An aqueous solution of thickener [0.05% (w/v) sodium carboxymethyl cellulose, SCMC] was continuously injected into a horizontally set two-dimensional physical model (sand-packed), forming aqueous plume(s) of high viscosity. The water flux at the down gradient of the model was measured using a flux tracer (n-octanol) and passive flux meter (PFM, packs of granular activated carbon). A non-reactive tracer (pentafluorobenzoic acid, PFBA) was used to identify the plume of high viscosity (hydraulic barrier) and ambient groundwater. When the barrier of high viscosity was formed, the plume was separated from the background water with little mixing, which was confirmed by the concentration profile of PFBA; whereas, the measured flux of ambient groundwater showed a distinctive distribution, due to the hydraulic barrier. When two barriers were set, the ambient water flux was enhanced in the middle, and the removal rate of PCE from the non-aqueous phase liquid (NAPL), measured by PFM, was found to improve by 26% during three hours of water flushing. When an aqueous solution of surfactant [0.37% (w/v), sodium dodecyl sulfate, SDS] was applied instead of water into the domain with two barriers set around the NAPL-contaminated spot, the removal of PCE from the NAPL increased by 101% for a three-hour time period. Based on the observations made in this study, hydraulic barriers formed by continuous injection of thickener solution change the flow direction of groundwater, and may increase the flux of groundwater (or aqueous solution of remediation agent) through a NAPL-contaminated region, improving the removal of NAPL.
Study on the surface tensions of MDEA-methanol aqueous solutions
NASA Astrophysics Data System (ADS)
Wang, S. Q.; Wang, L. M.; Wang, F.; Fu, D.
2017-03-01
The surface tensions (γ) of N-methyldiethanolamine (MDEA)-methanol (MeOH) aqueous solutions were measured by using an automatic surface tension-meter (BZY-1). The temperature ranged from 303.2K to 323.2K. The mass fractions of MeOH and MDEA respectively ranged from 0.05 to 0.15 and 0.2 to 0.4. On the basis of the experimental measurement, the effects of temperature and mass fraction of MDEA and MeOH on surface tensions were analyzed.
NASA Astrophysics Data System (ADS)
Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing
2018-06-01
The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).
DYNAMIC CONDUCTIVITY MEASUREMENTS IN HUMIC AND FULVIC ACID SOLUTIONS. (R828158)
Conductivity changes of dilute aqueous humic and fulvic acids solutions were monitored after the addition of small quantities of Cu, Cd, Pb, and Zn. The solutions were stirred at a constant and reproducible rate, and measurements proceeded until stable conductivities were atta...
ELECTROLYTIC SOLUTIONS. Annual Progress Report, May 1, 1962-June 1, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunstein, J.
Results of investigations of the thermodynamics of association in molten salts and in concentrated aqueous electrolyte solutions are reported. Association constants of Pb(II) with chloride or bromide and of Cd(II) with chloride or bromide in molten mixtures of LiNC/sub 3/ and KNO/sub 3/ were measured potentiometrically at several temperatures and compared with previous results in mixtures of NaNO/sub 3/ and KNO/sub 3/. The anomalous'' solvent effect of lithium ion, reported previously for the association of Cd(II) with bromide was observed aiso for the other associations and a tentative explanation is suggested. The temperature dependence of the association constants was foundmore » to be in agreement with the quasi-lattice model. The association constant of Ag(I) with iodide in molten mixtures of NaNO/sub 3/ and KNO/sub 3/ was measured and compared with previous results in pure KNO/sub 3/. The solvent effect was consistent with the reciprocal coulomb effect.'' Techniques were developed, and preliminary results obtained for measuring association constants in the solvent system KNO/sub 3/--Ca(NO/sub 3/)/sub 2/ in order to investigate the effect of charge as well as size of solvent cation on association constants in molten salt solutions. The measurement of association constants in concentrated aqueous electrolyte solutions was continued. The association of Cd(II) with bromide in aqueous LiNC/sub 3/ was measured as part of a program to find a system that would lend itself to investigation over the range between anhydrous molten salt and aqueous electrolyte solution. Cells and electrodes were developed for investigating association constants in equimolar LiNO/sub 3/ -KNO/sub 3/ with controlled small water contents, and preliminary results are reported. (auth)« less
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Kalyankar, T. M.
2013-06-01
Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.
Monte Carlo track-structure calculations for aqueous solutions containing biomolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.E.; Hamm, R.N.; Ritchie, R.H.
1993-10-01
Detailed Monte Carlo calculations provide a powerful tool for understanding mechanisms of radiation damage to biological molecules irradiated in aqueous solution. This paper describes the computer codes, OREC and RADLYS, which have been developed for this purpose over a number of years. Some results are given for calculations of the irradiation of pure water. comparisons are presented between computations for liquid water and water vapor. Detailed calculations of the chemical yields of several products from X-irradiated, oxygen-free glycylglycine solutions have been performed as a function of solute concentration. Excellent agreement is obtained between calculated and measured yields. The Monte Carlomore » analysis provides a complete mechanistic picture of pathways to observed radiolytic products. This approach, successful with glycylglycine, will be extended to study the irradiation of oligonucleotides in aqueous solution.« less
Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru
2011-04-19
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society
Terahertz microfluidic chips for detection of amino acids in aqueous solutions
NASA Astrophysics Data System (ADS)
Su, Bo; Zhang, Cong; Fan, Ning; Zhang, Cunlin
2016-11-01
Microfluidic technology can control the fluidic thickness accurately in less than 100 micrometers. So the combination of terahertz (THz) and microfluidic technology becomes one of the most interesting directions towards biological detection. We designed microfluidic chips for terahertz spectroscopy of biological samples in aqueous solutions. Using the terahertz time-domain spectroscopy (THz-TDS) system, we experimentally measured the transmittance of the chips and the THz absorption spectra of L-threonine and L-arginine, respectively. The results indicated the feasibility of performing high sensitivity THz spectroscopy of amino acids solutions. Therefore, the microfluidic chips can realize real-time and label-free measurement for biochemistry samples in THz-TDS system.
The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds
NASA Astrophysics Data System (ADS)
Tuckermann, Rudolf; Cammenga, Heiko K.
The surface tensions of aqueous solutions of levoglucosan, 3-hydroxybutanoic acid, 3-hydroxybenzoic acid, azelaic acid, pinonic acid, and humic acid have been measured. These compounds are suggested as model substances for the water-soluble organic compounds (WSOC) in atmospheric aerosols and droplets which may play an important role in the aerosol cycle because of their surface-active potentials. The reductions in surface tension induced by single and mixed WSOC in aqueous solution of pure water is remarkable. However, the results of this investigation cannot explain the strong reduction in surface tension in real cloud and fog water samples at concentrations of WSOC below 1 mg/mL.
Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 C to 50 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, G.; Alvarez, E.; Rendo, R.
1996-07-01
Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) are good solvents for the removal of acid gases such CO{sub 2} and H{sub 2}S from the gas streams of many processes in the natural gas, ammonia synthesis, and some chemical industries. The surface tension of aqueous solutions of diethanolamine and triethanolamine was measured over the entire concentration range at temperatures of 25 C to 50 C. The experimental values were correlated with temperature and with mole fraction. The maximum deviation was in both cases always less than 0.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, K.; Cullen, T. D.; Mezyk, S. P.
The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.
Solubility of NaCl and KCl in aqueous HCl from 20 to 85°C
Potter, Robert W.; Clynne, Michael A.
1980-01-01
The solubilities of NaCl and KCl in aqueous HCl solutions were determined from 20 to 85°C at concentrations ranging from 0 to 20 g of HCl/100 g of solution. Equations are given that describe the solubilities over the range of conditions studied. For NaCl and KCl respectively measured solubilities show an average deviation from these equations of ??0.10 and ??0.08 g/100 g of saturated solution.
Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...
2017-05-17
The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.
Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.
Enoki, Masami; Katoh, Ryuzi
2018-05-17
We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.
2017-03-01
Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.
Aqueous electrolytes for redox flow battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianbiao; Li, Bin; Wei, Xiaoliang
An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.
Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng Hui Li; Keh Perng Shen
1993-01-01
Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57more » kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.« less
Predicting the electronic properties of aqueous solutions from first-principles
NASA Astrophysics Data System (ADS)
Schwegler, Eric; Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen; Galli, Giulia
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum-mechanical methods. Yet it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. Here we propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, based on the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results for the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of their electronic properties, including excitation energies, of the solvent and solutes. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies. Part of this work was performed under the auspices of the U.S. Department of Energy at LLNL under Contract DE-AC52-07A27344.
NASA Astrophysics Data System (ADS)
Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami
1995-02-01
When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.
Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi
2004-07-01
Schizophyllan (SPG) with a molecular weight of 2.6x10(6), designated SPG-1, is denatured and then renatured at a concentration of 1.8 wt % by alkalization-neutralization. The prepared denatured-renatured samples (DRSPG-1) are diluted to various concentrations and equilibrated for 10 days before rheological and intrinsic viscosity measurements. When concentration (C(p)) is above 0.75 wt %, DRSPG-1 aqueous systems have weak gel-type rheological properties. However, for 0.28 wt %
Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; ...
2017-09-05
For this research, in situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10more » $$\\bar{1}$$4) surface of calcite (CaCO 3) single crystals following reaction with Mn2 +-bearing aqueous solutions. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces. In situ time-sequenced measurements demonstrated that the growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2 +-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO 3) and calcite display a 10% lattice mismatch, based on the area of their (10$$\\bar{1}$$4) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO 3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals in calcite-equilibrated aqueous solutions with up to 250 μM MnCl 2. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO 3 solid solution. The epitaxial solid solution had a spatially complex composition, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO 3 for the thickest coatings. The effective lattice mismatch was therefore much smaller than the nominal mismatch thus explaining the measured growth rates. Lastly, these findings highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.« less
Maquille, Aubert; Jiwan, Jean-Louis Habib; Tilquin, Bernard
2008-02-12
The aim of this study was to assess the feasibility of radiosterilization of drugs aqueous solutions and to evaluate the effects of some additives, such as mannitol, nicotinamide and pyridoxine, which might protect the drug from degradation. Metoclopramide was selected as a model drug. The structures of the degradation products were determined to gain insight on the radiolysis mechanisms in aqueous solution in order to design strategies to lower the drug degradation. Metoclopramide hydrochloride aqueous solutions with and without excipients were irradiated either with gamma rays or high-energy electrons. HPLC-DAD was used to measure the loss of chemical potency and to quantify the degradation products which were also characterized by LC-APCI-MS-MS. Metoclopramide recovery for gamma and electron beam-irradiated solutions containing either mannitol, pyridoxine or nicotinamide meets the pharmacopoeial specifications for metoclopramide content up to a 15 kGy irradiation so that metoclopramide solutions containing these excipients might be radiosterilized at 15 kGy either with gamma rays or high-energy electrons. Structures are proposed for the majority of radiolysis products. Similar radiolysis products were detected for gamma and electron beam irradiations but the chromatographic profiles were different (differences in the distribution of radiolysis products).
Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus
2013-05-01
The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2007-01-01
Synchrotron X-ray spectroscopy experiments were made on the Gd(III) aqua and chloro complexes in low pH aqueous solutions at temperatures ranging from 25 to 500????C and at pressures up to 480??MPa using a hydrothermal diamond anvil cell. Analysis of fluorescence Gd L3-edge X-ray absorption fine structure (XAFS) spectra measured from a 0.006m Gd/0.16m HNO3 aqueous solution at temperatures up to 500????C and at pressures up to 260??MPa shows that the Gd-O distance of the Gd3+ aqua ion decreases steadily at a rate of ??? 0.007??A??/100????C whereas the number of coordinated H2O molecules decreases from 9.0 ?? 0.5 to 7.0 ?? 0.4. The loss of water molecules in the Gd3+ aqua ion inner hydration shell over this temperature range (a 22% reduction) is smaller than exhibited by the Yb3+ aqua ion (42% reduction) indicating that the former is significantly more stable than the later. We conjecture that the anomalous enrichment of Gd reported from measurement of REE concentrations in ocean waters may be attributed to the enhanced stability of the Gd3+ aqua ion relative to other REEs. Gd L3-edge XAFS measurements of 0.006m and 0.1m GdCl3 aqueous solutions at temperatures up to 500????C and pressures up to 480??MPa reveal that the onset of significant Gd3+-Cl- association occurs around 300????C. Partially-hydrated stepwise inner-sphere complexes most likely of the type Gd(H2O)??-nCln+3-n occur in the chloride solutions at higher temperatures, where ?? ??? 8 at 300????C decreasing slightly to an intermediate value between 7 and 8 upon approaching 500????C. This is the first direct evidence for the occurrence of partially-hydrated REE Gd (this study) and Yb [Mayanovic, R.A., Jayanetti, S., Anderson, A.J., Bassett, W.A., Chou, I-M., 2002a. The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 ??C and 270 MPa. J. Phys. Chem. A 106, 6591-6599.] chloro complexes in hydrothermal solutions. The number of chlorides (n) of the partially-hydrated Gd(III) chloro complexes increases steadily with temperature from 0.4 ?? 0.2 to 1.7 ?? 0.3 in the 0.006m chloride solution and from 0.9 ?? 0.7 to 1.8 ?? 0.7 in the 0.1m GdCl3 aqueous solution in the 300-500????C range. Conversely, the number of H2O ligands of Gd(H2O)??-nCln+3-n complexes decreases steadily from 8.9 ?? 0.4 to 5.8 ?? 0.7 in the 0.006m GdCl3 aqueous solution and from 9.0 ?? 0.5 to 5.3 ?? 1.0 in the 0.1m GdCl3 aqueous solution at temperatures from 25 to 500????C. Analysis of our results shows that the chloride ions partially displace the inner-shell water molecules during Gd(III) complex formation under hydrothermal conditions. The Gd-OH2 bond of the partially-hydrated Gd(III) chloro complexes exhibits slightly smaller rates of length contraction (??? 0.005??A??/100????C) for both solutions. The structural aspects of chloride speciation of Gd(III) as measured from this study and of Yb(III) as measured from our previous experiments are consistent with the solubility of these and other REE in deep-sea hydrothermal fluids. ?? 2006 Elsevier B.V. All rights reserved.
High throughput screening of CO2 solubility in aqueous monoamine solutions.
Porcheron, Fabien; Gibert, Alexandre; Mougin, Pascal; Wender, Aurélie
2011-03-15
Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.
Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air
NASA Technical Reports Server (NTRS)
Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.
1989-01-01
Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.
Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.
2017-01-01
Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time. PMID:28345664
SnS2 Thin Film Deposition by Spray Pyrolysis
NASA Astrophysics Data System (ADS)
Jaber, Abdallah Yahia; Alamri, Saleh Noaiman; Aida, Mohammed Salah
2012-06-01
Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.
Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J
2010-10-01
Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.
Molecular species forming at the α-Fe2O3 nanoparticle-aqueous solution interface.
Ali, Hebatallah; Seidel, Robert; Pohl, Marvin N; Winter, Bernd
2018-05-21
We report on electronic structure measurements of the interface between hematite nanoparticles (6 nm diameter) and aqueous solutions. Using soft X-ray photoelectron spectroscopy from a liquid microjet we detect valence and core-level photoelectrons as well as Auger electrons from liquid water, from the nanoparticle-water interface, and from the interior of the aqueous-phase nanoparticles. Most noteworthy, the method is shown to be sufficiently sensitive for the detection of adsorbed hydroxyl species, resulting from H 2 O dissociation at the nanoparticle surface in aqueous solution. We obtain signal from surface OH from resonant, non-resonant, and from so-called partial-electron-yield X-ray absorption (PEY-XA) spectra. In addition, we report resonant photoelectron measurements at the iron 2p excitation. The respective Fe iron 2p 3/2 edge (L 3 -edge) PEY-XA spectra exhibit two main absorption peaks with their energies being sensitive to the chemical environment of the Fe 3+ ions at the nanoparticle-solution interface. This manifests in the 10 D q value which is a measure of the ligand-field strength. Furthermore, an observed intensity variation of the pre-peak, when comparing the PEY-XA spectra for different iron Auger-decay channels, can be assigned to different extents of electron delocalization. From the experimental fraction of local versus non-local autoionization signals we then find a very fast, approximately 1 fs, charge transfer time from interfacial Fe 3+ into the environment. The present study, which is complementary to ambient-pressure photoemission studies on solid-electrolyte systems, also highlights the multiple aspects of photoemission that need to be explored for a full characterization of the transition-metal-oxide nanoparticle surface in aqueous phase.
Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.
Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse
2017-06-15
The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter R. Zalupski; Rocklan McDowell; Simon L. Clegg
Isopiestic vapor pressures were measured at 298.15 K for aqueous NaNO3 + Eu(NO3)3 solutions, using NaCl(aq) as the reference standard. Measurements were made for both binary (single salt) solutions and for ternary solutions of the following NaNO3 ionic strength fractions: 0.05995, 0.08749, 0.16084, 0.27709, and 0.36313 over the water activity range 0.8951 = aw = 0.9832. (These ionic strength fractions correspond to NaNO3 molality fractions 0.27675, 0.36519, 0.53489, 0.69695, and 0.77381, respectively.) The results, and those of other studies for the two pure aqueous solutions, were used to determine the Pitzer model parameters for aqueous Eu(NO3)3 for molalities up tomore » 3 mol kg–1 and the two ternary (mixture) parameters ?Eu,Na = 0.367 ± 0.0035 and ?Eu,Na,NO3 = -0.0743 ± 0.0014. Some deviations of the measurements from the fitted model, of the order of +0.0075 in the osmotic coefficient, were noted for mixtures containing less than about 1 mol kg–1 total NO3–. The use of the mixture parameters in the Pitzer model yields predicted trace activity coefficients of Eu3+ in 1 mol kg–1 aqueous NaNO3 almost a factor of 2 greater than if they are omitted.« less
Jonke, A.A.
1957-10-01
In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
NASA Astrophysics Data System (ADS)
Ershov, Boris G.; Panich, Nadezhda M.
2018-01-01
The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).
Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S
2002-11-01
Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.
Control and measurement of the phase behavior of aqueous solutions using microfluidics
Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth
2008-01-01
A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868
Fadda, Hala M; Chen, Xin; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo
2014-07-01
To explore the application of solution calorimetry for measuring drug solubility in experimentally challenging situations while providing additional information on the physical properties of the solute material. A semi-adiabatic solution calorimeter was used to measure the heat of dissolution of prednisolone and chlorpropamide in aqueous solvents and of griseofulvin and ritonavir in viscous solutions containing polyvinylpyrrolidone and N-ethylpyrrolidone. Dissolution end point was clearly ascertained when heat generation stopped. The heat of solution was a linear function of dissolved mass for all drugs (<10% RSD, except for chlorpropamide). Heats of solution of 9.8 ± 0.8, 28.8 ± 0.6, 45.7 ± 1.6 and 159.8 ± 20.1 J/g were obtained for griseofulvin, ritonavir, prednisolone and chlorpropamide, respectively. Saturation was identifiable by a plateau in the heat signal and the crossing of the two linear segments corresponds to the solubility limit. The solubilities of prednisolone and chlopropamide in water by the calorimetric method were 0.23 and 0.158 mg/mL, respectively, in agreement with the shake-flask/HPLC-UV determined values of 0.212 ± 0.013 and 0.169 ± 0.015 mg/mL, respectively. For the higher solubility and high viscosity systems of griseofulvin and ritonavir in NEP/PVP mixtures, respectively, solubility values of 65 and 594 mg/g, respectively, were obtained. Solution calorimetry offers a reliable method for measuring drug solubility in organic and aqueous solvents. The approach is complementary to the traditional shake-flask method, providing information on the solid properties of the solute. For highly viscous solutions, the calorimetric approach is advantageous.
Nagamine, Kanetada; Shimomura, Koichiro; Miyadera, Haruo; Kim, Yong-Jae; Scheicher, Ralph Hendrik; Das, Tara Prasad; Schultz, Jerome Samson
2007-01-01
A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ+) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was observed in nonmagnetic oxyhemoglobin. Combined with our previous measurements on hemoglobin in human blood, application of this type of measurement to the studies of the level of oxygenation in various regions of the human brain is suggested. PMID:24019590
Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang
2016-08-26
A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.
Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M
2015-03-17
With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.
ERIC Educational Resources Information Center
Wiseman, Floyd L.
2005-01-01
A lab rotary experiment using the pH measurements of an aqueous solution to monitor the course of a solvolytic reaction was conducted. This experiment allowed the students to gain experience in taking precise pH measurement, to use nonlinear analysis techniques for analyzing kinetic data and to use the Arrhenius equation for determination of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahaj, A.E.; Bailey, A.G.
1985-09-01
Dielectrophoretic force measurements on isolated 50-..mu..m diameter particles of divinylbenzene (DVB) suspended in aqueous solutions show that force is dependent on relaxation mechanisms present at the particle-liquid interface. Measurements on single particles have been extended to measurements on populations of particles. The impedance of aqueous suspensions of particles contained in a gold-plated electrode test cell has been measured over a range of frequency. Data are presented in the form of Cole-Cole plots. It is shown that the dielectrophoretic response of single particles can be related to the frequency-dependent impedance behavior of suspensions of similar particles.
Stark, Peter C.; Kuske, Cheryl R.; Mullen, Kenneth I.
2002-01-01
A method for quantitating dsDNA in an aqueous sample solution containing an unknown amount of dsDNA. A first aqueous test solution containing a known amount of a fluorescent dye-dsDNA complex and at least one fluorescence-attenutating contaminant is prepared. The fluorescence intensity of the test solution is measured. The first test solution is diluted by a known amount to provide a second test solution having a known concentration of dsDNA. The fluorescence intensity of the second test solution is measured. Additional diluted test solutions are similarly prepared until a sufficiently dilute test solution having a known amount of dsDNA is prepared that has a fluorescence intensity that is not attenuated upon further dilution. The value of the maximum absorbance of this solution between 200-900 nanometers (nm), referred to herein as the threshold absorbance, is measured. A sample solution having an unknown amount of dsDNA and an absorbance identical to that of the sufficiently dilute test solution at the same chosen wavelength is prepared. Dye is then added to the sample solution to form the fluorescent dye-dsDNA-complex, after which the fluorescence intensity of the sample solution is measured and the quantity of dsDNA in the sample solution is determined. Once the threshold absorbance of a sample solution obtained from a particular environment has been determined, any similarly prepared sample solution taken from a similar environment and having the same value for the threshold absorbance can be quantified for dsDNA by adding a large excess of dye to the sample solution and measuring its fluorescence intensity.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2015-03-01
Integral enthalpies of dissolution Δsol H m of L-cysteine, L-serine, and L-asparagine in aqueous solutions of 1,3-propylene glycol at organic solvent concentrations of up to 0.26 mole fraction are measured via the thermochemistry of dissolution. Standard enthalpies of dissolution (Δsol H ○) and transfer (Δtr H ○) of amino acids from water to a mixed solvent are calculated. It is found that the calculated enthalpy coefficients of pair interactions of the amino acids with polyhydric alcohol molecules have positive values. The effect the arrangement of the hydroxyl group in the structure of polyhydric alcohols has on the enthalpy of interaction of amino acids in aqueous solutions is revealed. The effect of different types of interactions in solutions and the structural features of biomolecules and cosolvents on the enthalpy of dissolution of amino acids is analyzed.
Methanol sensor operated in a passive mode
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.
METHOD AND APPARATUS FOR DETERMINING AMALGAM DECOMPOSITION RATE
Johnson, R.W.; Wright, C.C.
1962-04-24
A method and apparatus for measuring the rate at which an amalgam decomposes in contact with aqueous solutions are described. The amalgam and an aqueous hydroxide solution are disposed in an electrolytic cell. The amalgam is used as the cathode of the cell, and an electrode and anode are disposed in the aqueous solution. A variable source of plating potential is connected across the cell. The difference in voltage between the amalgam cathode and a calibrated source of reference potential is used to control the variable source to null the difference in voltage and at the same time to maintain the concentration of the amalgam at some predetermined constant value. The value of the current required to maintain this concentration constant is indicative of the decomposition rate of the amalgam. (AEC)
Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.
1957-10-29
A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.
Balcerzyk, Anna; Schmidhammer, Uli; El Omar, Abdel Karim; Jeunesse, Pierre; Larbre, Jean-Philippe; Mostafavi, Mehran
2011-08-25
Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-•) and BrOH(-•), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-•) and Br(2)(-•) are formed within the electron pulse without formation of ClOH(-•) and BrOH(-•). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(•) and Cl(•) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+•), generated in the coordination sphere of the anion. © 2011 American Chemical Society
Shock wave emission from laser-induced cavitation bubbles in polymer solutions.
Brujan, Emil-Alexandru
2008-09-01
The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.
The response characteristics of tetrazolium violet solutions to gamma irradiation
NASA Astrophysics Data System (ADS)
Emi-Reynolds, G.; Kovács, András; Fletcher, J. J.
2007-08-01
The dosimetry characteristics of various solutions of tetrazolium violet, TV, (2,5-diphenyl-3-(1-naphthyl)-2H-tetrazolium chloride) to gamma irradiation are reported. The optical absorption spectra of these solutions show peaks between 400 and 600 nm with a shoulder at around 550 nm. The dose response of the optical absorbance values of aqueous and aqueous-alcoholic solutions containing different concentrations of TV was measured in the 250 Gy up to 75 kGy dose range. The formation of formazan product was observed due to radiolytic reduction in both solutions. Its formation was found more pronounced in N 2-saturated as well as in alkaline solutions. The results indicate that the 1 mM TV solution can be used for food irradiation and medical sterilization dosimetry at gamma irradiation facilities.
Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick
2005-08-01
The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).
Absorption performance for CO2 capture process using MDEA-AMP aqueous solution
NASA Astrophysics Data System (ADS)
Liu, Gang; Kou, Liqing; Li, Chao
2017-03-01
The absorption capacity and the absorption rate of CO2 in 2-amino-2-methyl-1-propanol (AMP)-N-methyldiethanolamine (MDEA) aqueous solution were measured. The temperatures ranged from 303.2K to 323.2K. The mass fractions of AMP and MDEA respectively ranged from 0 to 0.03 and 0.2 to 0.3. The influence of temperature and w AMP on the absorption capacity and absorption rate of CO2 was illustrated.
Rapid measurement of 89,90Sr radioactivity in rinse water.
Masashi, Takada; Hiroko, Enomoto; Toshikazu, Suzuki
2013-03-01
Rapid measurement of radioactivity from Sr in aqueous solutions is performed using a technique combining a strontium rad disk and a picobeta spectrometer. Identification of Sr radionuclides is accomplished in as little as 90 min in a radiation-tainted solution that contains more highly radioactive cesium. It is possible to perform triage by assessing skin exposure doses in this short time. This simple technique could be used in mobile laboratories. Sr having 1 Bq radioactivities are measured in 10 kBq Cs in aqueous solution. The radioactivity contained in rinse water used to decontaminate the feet of workers who stepped into highly contaminated water in the basement of the turbine building of Unit 3 at the Fukushima Daiichi nuclear power station was measured. The amount of Sr radioactivity in rinse water using the authors' rapid measurement technique (0.29 Bq mL) and a traditional method agree well, with 3.6% difference. Based on this agreement, this technique is confirmed to be useful for rapid measurement of Sr radioactivities.
Wilde, Franceska D.; Busenberg, Eurybiades; Radtke, Dean B.
2006-01-01
Measurement of pH is critical to the understanding of the viability and vulnerability of environmental waters and is considered a master variable in determining the aqueous geochemistry of an aqueous system. pH is a measure that represents the hydrogen-ion concentration (activity) of a solution. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of pH in ground and surface waters.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh
2017-12-01
Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.
Closed-Cycle Nutrient Supply For Hydroponics
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.
1991-01-01
Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.
Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2004-11-17
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less
Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S
2015-11-01
Highly supersaturated aqueous solutions of poorly soluble compounds can undergo liquid-liquid phase separation (LLPS) when the concentration exceeds the "amorphous solubility". This phenomenon has been widely observed during high throughput screening of new molecular entities as well as during the dissolution of amorphous solid dispersions. In this study, we have evaluated the use of environment-sensitive fluorescence probes to investigate the formation and properties of the non-crystalline drug-rich aggregates formed in aqueous solutions as a result of LLPS. Six different environment-sensitive fluorophores were employed to study LLPS in highly supersaturated solutions of several model compounds, all dihydropyridine derivatives. Each fluoroprobe exhibited a large hypsochromic shift with decreasing environment polarity. Upon drug aggregate formation, the probes partitioned into the drug-rich phase and exhibited changes in emission wavelength and intensity consistent with sensing a lower polarity environment. The LLPS onset concentrations determined using the fluorescence measurements were in good agreement with light scattering measurements as well as theoretically estimated amorphous solubility values. Environment-sensitive fluorescence probes are useful to help understand the phase behavior of highly supersaturated aqueous solutions, which in turn is important in the context of developing enabling formulations for poorly soluble compounds.
Guo, Zheng; Chen, Alvin; Nassar, Roger A; Helk, Bernhard; Mueller, Claudia; Tang, Yu; Gupta, Kapil; Klibanov, Alexander M
2012-11-01
To discover, elucidate the structure-activity relationship (SAR), and explore the mechanism of action of excipients able to drastically lower the viscosities of concentrated aqueous solutions of humanized monoclonal antibodies (MAbs). Salts prepared from hydrophobic cations and anions were dissolved into humanized MAbs solutions. Viscosities of the resulting solutions were measured as a function of the nature and concentration of the salts and MAbs. Even at moderate concentrations, some of the salts prepared herein were found to reduce over 10-fold the viscosities of concentrated aqueous solutions of several MAbs at room temperature. To be potent viscosity-lowering excipients, the ionic constituents of the salts must be hydrophobic, bulky, and aliphatic. A mechanistic hypothesis explaining the observed salt effects on MAb solutions' viscosities was proposed and verified.
Gohain, Biren; Dutta, Robin K
2008-07-15
The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.
RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS
The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...
Thermodynamic model of Ak-Tuz deposit surface water formation
NASA Astrophysics Data System (ADS)
Alekhina, V. M.; Tokaver, I. V.; Ryzhenko, B. N.; Cherkasova, E. V.
2016-03-01
In Ak-Tuz deposit surface water macro and micro components concentrations are measured. Thermodynamic model is developed for aqueous composition prognosis at variation of water exchange. The concentration of n×10-8 mg Th / kg H2O and more testifies about Th containing colloid species in aqueous solution.
The use of synthesized aqueous solutions for determining strontium sorption isotherms
Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.
1998-01-01
The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.
Activity of water in aqueous systems; a frequently neglected property.
Blandamer, Mike J; Engberts, Jan B F N; Gleeson, Peter T; Reis, Joao Carlos R
2005-05-01
In this critical review, the significance of the term 'activity' is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(l) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(l) always lowers its thermodynamic activity. For some solutes the stabilisation of water(l) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute-solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye-Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.
Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces
Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...
2018-02-09
Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less
Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish
Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less
Zhao, Binyu; Wang, Xingya; Wang, Shuo; Tai, Renzhong; Zhang, Lijuan; Hu, Jun
2016-04-14
The astonishing long lifetime and large contact angles of interfacial nanobubbles are still in hot debate despite numerous experimental and theoretical studies. One hypothesis to reconcile the two abnormalities of interfacial nanobubbles is that they have low surface tensions. However, few studies have been reported to measure the surface tensions of nanobubbles due to the lack of effective measurements. Herein, we investigate the in situ contact angles and surface tensions of individual interfacial nanobubbles immersed in different ethanol aqueous solutions using quantitative nanomechanical atomic force microscopy (AFM). The results showed that the contact angles of nanobubbles in the studied ethanol solutions were also much larger than the corresponding macroscopic counterparts on the same substrate, and they decreased with increasing ethanol concentrations. More significantly, the surface tensions calculated were much lower than those of the gas-liquid interfaces of the solutions at the macroscopic scale but have similar tendencies with increasing ethanol concentrations. Those results are expected to be helpful in further understanding the stability of interfacial nanobubbles in complex solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurahashi, Naoya; Horio, Takuya; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp
2014-05-07
The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I{sup −},more » Br{sup −}, and Cl{sup −} anions are revisited and determined more accurately than in previous studies.« less
Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.
NASA Astrophysics Data System (ADS)
Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.
2015-04-01
The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The rates of crystal growth were measured as a function of the solution supersaturation using the highly accurate and reproducible methodology of constant supersaturation. The dependence of the rates of crystal growth on supersaturation suggested surface diffusion controlled mechanism. At constant supersaturation it was possible to extend the time period for the growth of the initially forming polymorph, in a way that sufficient amount is precipitated for characterization with X-ray diffraction (XRD). Moreover, scanning electron microscopy (SEM) was used for the characterization of the morphology of the precipitated solid. In all cases and depending on the solution supersaturation vaterite formed first from solutions of high supersaturation while at low supersaturations calcite formed exclusively. The presence of dodecane reduced the stability of the supersaturated solutions with the crystals forming at the oil-water interface. The presence of ethylene glycol (concentrations between 10-80%) also affected the stability and the kinetics of calcium carbonate precipitation. The morphology of the formed crystals showed habit modifications: Spherical formations consisting of aggregated nanocrystals and calcite crystals with profound pits on the faces were the characteristic feature in the presence of dodecane. ACKNOWLEDGMENT This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program Education and Lifelong Learning under the action Aristeia II( Code No 4420).
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan
2011-10-01
Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.
NASA Astrophysics Data System (ADS)
Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.
2016-09-01
The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.
Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions
NASA Technical Reports Server (NTRS)
Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.
Membrane separation for non-aqueous solution
NASA Astrophysics Data System (ADS)
Widodo, S.; Khoiruddin; Ariono, D.; Subagjo; Wenten, I. G.
2018-01-01
Membrane technology has been widely used in a number of applications competing with conventional technologies in various ways. Despite the enormous applications, they are mainly used for the aqueous system. The use of membrane-based processes in a non-aqueous system is an emerging area. This is because developed membranes are still limited in separations involving aqueous solution which show several drawbacks when implemented in a non-aqueous system. The purpose of this paper is to provide a review of the current application of membrane processes in non-aqueous solutions, such as mineral oil treatment, vegetable oil processing, and organic solvent recovery. Developments of advanced membrane materials for the non-aqueous solutions such as super-hydrophobic and organic solvent resistant membranes are reviewed. In addition, challenges and future outlook of membrane separation for the non-aqueous solution are discussed.
Szymański, Krzysztof; Petrache, Horia I
2011-04-14
Re-examination of dynamical ionic polarizabilities in water solutions leads to the formulation of a solution function r(c), which combines the indices of refraction and mass densities of solutions. We show that this function should be independent of ionic concentration if the composite polarizabilities of hydrated solute clusters are constant. Using existing experimental data for a number of aqueous salt and organic solutions, we find that the r(c) function is either constant or varies linearly with concentration, in most cases with negligible slope. We use this function to compare ionic polarizabilities of crystals and aqueous solutions and to highlight how solute polarizabilities at infinite dilution scale with the electronic valence shell of cations and anions. The proposed r(c) function can be used generally to verify the consistency of experimental measurements and of simulation results, and it provides a test of assumptions in current theories of ionic polarizabilities.
Water-soluble polymers for recovery of metal ions from aqueous streams
Smith, Barbara F.; Robison, Thomas W.
1998-01-01
A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.
Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.
Combe, Nicole A; Donaldson, D James
2017-09-28
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.
The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 °C and 270 MPa
Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2002-01-01
We report here on X-ray absorption fine structure (XAFS) measurements used to determine the structure of the Yb3+ ion in aqueous solutions over a range of temperatures from 25 to 500 °C and pressures up to 270 MPa. Fluorescence Yb L3-edge spectra were collected separately from nitrate (0.006m Yb/0.16m HNO3) and chloride (0.006 m YbCl3/0.017 m HCl) aqueous solutions within a hydrothermal diamond anvil cell. The Yb−O distance of the Yb3+aquo ion in the nitrate solution exhibits a uniform reduction at a rate of 0.02 Å/100 °C, whereas the number of oxygens decreases from 8.3 ± 0.6 to 4.8 ± 0.7, in going from 25 to 500 °C. No evidence for nitrate complexes was found from measurements made on this solution. The Yb3+ is found to persist as an aquo ion up to 150 °C in the chloride aqueous solution. In the 300−500 °C range, chloro complexes are found to occur in the solution, most likely of the type Yb(H2O)δ-nCln+3-n (δ ≈ 7). The Yb−Cl distance of the chloro ytterbium(III) complexes is found to decrease uniformly at a rate of about 0.02 Å/100 °C, whereas the number of chlorines increases from 0.5 ± 0.3 to 1.8 ± 0.2 in the 300−500 °C temperature range. Conversely, the Yb−O distance undergoes a lower uniform reduction at a rate of 0.007 Å/100 °C, whereas the number of oxygens decreases from 8.3 ± 0.5 to 5.1 ± 0.3 in going from 25 to 500 °C in the same solution.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1998-01-01
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.
NASA Astrophysics Data System (ADS)
Shirayama, Sakae; Uda, Tetsuya
2016-04-01
This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.
Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...
Hinoue, Teruo; Ikeda, Eiji; Watariguchi, Shigeru; Kibune, Yasuyuki
2007-01-01
Thermal modulation voltammetry (TMV) with laser heating was successfully performed at an aqueous|nitrobenzene (NB) solution microinterface, by taking advantage of the fact that laser light with a wavelength of 325.0 nm is optically transparent to the aqueous solution but opaque to the NB solution. When the laser beam impinges upon the interface from the aqueous solution side, a temperature is raised around the interface through the thermal diffusion subsequent to the light-to-heat conversion following the optical absorption by the NB solution near the interface. Based on such a principle, we achieved a fluctuating temperature perturbation around the interface for TMV by periodically irradiating the interface with the laser beam. On the other hand, the fluctuating temperature perturbation has influence on currents for transfer of an ion across the interface to produce fluctuating currents synchronized with the perturbation through temperature coefficients of several variables concerning the transfer, such as the standard transfer potential and the diffusion coefficient of the ion. Consequently, TMV has the possibility of providing information about the standard entropy change of transfer corresponding to a temperature coefficient of the standard transfer potential and a temperature coefficient of the diffusion coefficient. In this work, the aqueous|NB solution interface of 30 microm in diameter was irradiated with the laser beam at 10 Hz, and the currents synchronized with the periodical irradiation were recorded as a function of the potential difference across the interface in order to construct a TM voltammogram. TM voltammograms were measured for transfer of tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetra-n-butylammonium ions from the aqueous solution to the NB solution, and the standard entropy change of transfer was determined for each ion, according to an analytical procedure based on a mathematical expression of the TM voltammogram. Comparison of the values obtained in this work with the literature values has proved that TMV with laser heating is available for the determination of the standard entropy change of transfer for an ion.
Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects.
Yu, Ge; Bayer, Amanda R; Galloway, Melissa M; Korshavn, Kyle J; Fry, Charles G; Keutsch, Frank N
2011-08-01
Reactions and interactions between glyoxal and salts in aqueous solution were studied. Glyoxal was found to react with ammonium to form imidazole, imidazole-2-carboxaldehyde, formic acid, N-glyoxal substituted imidazole, and minor products at very low concentrations. Overall reaction orders and rates for each major product were measured. Sulfate ions have a strong and specific interaction with glyoxal in aqueous solution, which shifts the hydration equilibria of glyoxal from the unhydrated carbonyl form to the hydrated form. This ion-specific effect contributes to the observed enhancement of the effective Henry's law coefficient for glyoxal in sulfate-containing solutions. The results of UV-vis absorption and NMR spectroscopy studies of solutions of glyoxal with ammonium, methylamine, and dimethylamine salts reveal that light absorbing compounds require the formation of nitrogen containing molecules. These findings have implications on the role of glyoxal in the atmosphere, both in models of the contribution of glyoxal to form secondary organic aerosol (SOA), the role of nitrogen containing species for aerosol optical properties and in predictions of the behavior of other carbonyls or dicarbonyls in the atmosphere.
NASA Astrophysics Data System (ADS)
Ali, Anwar; Patel, Rajan; Shahjahan; Ansari, Nizamul Haque
2010-03-01
The apparent molar volumes {(overline{V_2})} for glycine (Gly), l-alanine (Ala), phenylalanine (Phe), and glycylglycine (Gly-Gly) in 0.10 m aqueous d-galactose solutions have been determined from density measurements at (298.15, 303.15, 308.15, and 313.15) K. The data for {(overline{V_2})} were utilized to estimate the partial molar volume at infinite dilution {(overline{V_2^0})} , and experimental slope {(S_v^ast)} . The transfer volume, {(overline{V2^0}_(tr))} , and hydration number, ( n H) were also evaluated. The viscosity data were used to evaluate A- and B-coefficients of the Jones-Dole equation, the free energy of activation of viscous flow per mole of the solvent {left(Δ μ1^{0ast} right)} and the solute {left(Δ μ 2^{0ast} right)} . The molar refractivity ( R D) was calculated from refractive index data. The results were discussed in terms of hydrophilic-ionic, hydrophilic-hydrophobic, and hydrophobic-hydrophobic interactions, and structure-making/-breaking ability of the solute (AAs/peptide) in aqueous d-galactose solutions.
REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS
Schulz, W.W.
1959-08-01
The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.
Djamali, Essmaiil; Chen, Keith; Cobble, James W
2009-08-27
Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0
Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos
2010-02-08
We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy.
Solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae K40.
Flaibani, A; Leonhartsberger, S; Navarini, L; Cescutti, P; Paoletti, S
1994-04-01
This paper reports some physicochemical properties of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40 (K40-CPS) in aqueous solution. The polymer has a linear hexasaccharide repeating unit containing one glucuronic acid residue as the only ionizable group. Potentiometric, viscometric, chiro-optical and rheological measurements have been carried out over a range of ionic strength, pH and temperature, with the aim of characterizing the conformational state of the polysaccharide in aqueous solution. All the data reported indicate that the K40-CPS does not undergo a cooperative conformational transition under the investigated experimental conditions. Furthermore, the viscosity data and the viscoelastic spectra suggest that the K40-CPS is rather flexible and adopts a random coil conformation in solution.
NASA Astrophysics Data System (ADS)
Riyazuddeen, Imran Khan; Afrin, Sadaf
2012-12-01
Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1998-01-13
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.
Phase-separable aqueous amide solutions as a thermal history indicator.
Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro
2008-12-01
Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.
Liquid Viscosity and Density Measurement with Flexural-Plate-Wave Sensors
1996-04-01
capillary-viscometer-measured viscosity in Fig. 4. "The data from solutions of poly(ethylene glycol), having average molecular weights 3350 and 15,000...have seen similar results for the FPW-measured viscosity of salmon-sperm DNA solutions. 25 glycerol WA " PEG 3,350 H-4 . e! 2 PEG 15,000 IK- ,,,," HEC...number of aqueous solutions of the polymers poly(ethylene glycol) ( PEG ) and hydroxyethyl cellulose (HEC). The response of the FPW sensor (vertical axis
Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures.
Ukpai, Gideon; Năstase, Gabriel; Șerban, Alexandru; Rubinsky, Boris
2017-01-01
Preservation of biological materials at subzero Centigrade temperatures, cryopreservation, is important for the field of tissue engineering and organ transplantation. Our group is studying the use of isochoric (constant volume) systems of aqueous solution for cryopreservation. Previous studies measured the pressure-temperature relations in aqueous isochoric systems in the temperature range from 0°C to - 20°C. The goal of this study is to expand the pressure-temperature measurement beyond the range reported in previous publications. To expand the pressure-temperature measurements beyond the previous range, we have developed a new isochoric device capable of withstanding liquid nitrogen temperatures and pressures of up to 413 MPa. The device is instrumented with a pressure transducer than can monitor and record the pressures in the isochoric chamber in real time. Measurements were made in a temperature range from - 5°C to liquid nitrogen temperatures for various solutions of pure water and Me2SO (a chemical additive used for protection of biological materials in a frozen state and for vitrification (glass formation) of biological matter). Undissolved gaseous are is carefully removed from the system. Temperature-pressure data from - 5°C to liquid nitrogen temperature for pure water and other solutions are presented in this study. Following are examples of some, temperature-pressure values, that were measured in an isochoric system containing pure water: (- 20°C, 187 MPa); (-25°C, 216 MPa); (- 30°C, 242.3 MPa); (-180°C, 124 MPa). The data is consistent with the literature, which reports that the pressure and temperature at the triple point, between ice I, ice III and water is, - 21.993°C and 209.9 MPa, respectively. It was surprising to find that the pressure in the isochoric system increases at temperatures below the triple point and remains high to liquid nitrogen temperatures. Measurements of pressure-temperature relations in solutions of pure water and Me2SO in different concentrations show that, for concentrations in which vitrification is predicted, no increase in pressure was measured during rapid cooling to liquid nitrogen temperatures. However, ice formation either during cooling or warming to and from liquid nitrogen temperatures produced an increase in pressure. The data obtained in this study can be used to aid in the design of isochoric cryopreservation protocols. The results suggest that the pressure measurement is important in the design of "constant volume" systems and can provide a simple means to gain information on the occurrence of vitrification and devitrification during cryopreservation processes of aqueous solutions in an isochoric system.
LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium
NASA Astrophysics Data System (ADS)
Akimov, A. I.; Saletskii, A. M.
2000-11-01
The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.
Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu
2015-11-21
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less
Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes
NASA Technical Reports Server (NTRS)
Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.
2003-01-01
While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.
Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe
2005-12-08
This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).
NASA Astrophysics Data System (ADS)
Polenov, Yu. V.; Egorova, E. V.; Shestakov, G. A.
2018-01-01
The kinetics of the decomposition of thiourea dioxide and the reduction of cadmium cations by thiourea dioxide in an aqueous ammonia solution are studied. The kinetic parameters of these reactions are calculated using experimental data, allowing us to adjust conditions for the synthesis of cadmium coatings on carbon fiber of grade UKN-M-12K. The presence of the metal crystalline phase on the fiber is confirmed by means of X-ray diffraction, and its amount is measured via atomic absorption spectroscopy.
Li, Keyan; Li, Min; Xue, Dongfeng
2012-04-26
By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors compared to those in the gas phase. This solution-phase electronegativity scale shows its efficiency in predicting some important properties of metal ions in aqueous solution such as the aqueous acidities of the metal ions, the stability constants of metal complexes, and the solubility product constants of the metal hydroxides. We have elaborated that the standard reduction potential and the solution-phase electronegativity are two different quantities for describing the processes of metal ions in aqueous solution to soak up electrons with different final states. This work provides a new insight into the chemical behaviors of the metal ions in aqueous solution, indicating a potential application of this electronegativity scale to the design of solution reactions.
NASA Astrophysics Data System (ADS)
Hatzipanayioti, Despina; Veneris, Antonis
2009-10-01
The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates ( R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)- L1 reaction solutions, in H 2O/D 2O 5/1 mixtures. Two Gd(III) complexes [Gd(III)( L1)(NH 3)(H 2O) 4](CH 3COO) 3·2H 2O ( 1) and [Gd(III)( L1)(NH 3)(H 2O) 2]Cl 3·EtOH ( 2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)-DTPA and Gd(III)-DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number ( q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)-2,2,3-tet, and of the aqueous solutions of 2.
Method of precipitating uranium from an aqueous solution and/or sediment
Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin
2013-08-20
A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.
Phase stability of Keplerate-type polyoxomolybdates controlled by added cationic surfactant.
Fan, Dawei; Hao, Jingcheng
2009-05-15
Phase stability of two nanometer-scale Keplerate-type polyoxomolybdates, (NH(4))(42)[Mo(VI)(72)Mo(V)(60)O(372)(CH(3)COO)(30)(H(2)O)(72)]300H(2)O10CH(3)COONH(4) ({Mo(132)}) and Mo(VI)(72)Fe(III)(30)O(252)L(102)ca. 180H(2)O with L=H(2)O/CH(3)COO(-)/Mo(2)O(n-)(8/9) ({Mo(72)Fe(30)}), can be easily achieved by controlling the concentration of a cationic surfactant, tetradecyltrimethylammonium bromide (TTABr), in aqueous solution. Precipitates and floccules were observed when the stoichiometric ratios of rTTA+/{Mo132} and rTTA+/{Mo72Fe30} were 40:1 and 90:1, respectively, which were determined by zeta potential measurements. The surface charge properties and structure morphologies of {Mo(132)} and {Mo(72)Fe(30)} induced by controlling cationic TTABr in aqueous solution were determined by zeta potential measurements and transmission electron microscopy (TEM) observations. {Mo(132)} and {Mo(72)Fe(30)} can self-assemble into supramolecular "Blackberry" structures and exist at compositions less than the stoichiometric ratios of rTTA+/{Mo132} and rTTA+/{Mo72Fe30} in aqueous solution. Above the 1:1 stoichiometric ratio of TTABr/{Mo(132)} or TTABr/{Mo(72)Fe(30)}, the precipitates and floccules dissolve. Dynamic laser light scattering (DLS) measurements clearly demonstrated that the R(h) values have essentially no angular dependence at excess amounts of TTABr, suggesting the presence of spherically symmetric aggregates of {Mo(132)} and {Mo(72)Fe(30)}. Bilayer-like structures in aqueous solution were also demonstrated by TEM images. The interesting phase transition observed in our model systems of {Mo(132)} and {Mo(72)Fe(30)} macroanions with high chemical stability, similar shape, and masses could provide models for the understanding of more complex polyelectrolyte solutions and self-assembled soft magnetic materials and in bioapplications for highly selective adsorbents of proteins with different molecular sizes and charges.
Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides
NASA Technical Reports Server (NTRS)
Lopez, Gabriel P.; Niemczyk, Thomas
1999-01-01
Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.
SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION
Kuhlman, C.W. Jr.; Lang, G.P.
1961-12-19
A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)
Evolution of Spatial pH Distribution in Aqueous Solution induced by Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Takahashi, Shigenori; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu
2016-09-01
Discharge plasma at gas-liquid interface produces some active species, and then they affect chemical reactions in aqueous solution, where pH of aqueous solution is changed due to redox species. The pH change of aqueous solution is an important factor for chemical reactions. However, spatial pH distribution in a reactor during the discharge has not been clarified yet. Thus, this work focused on spatial pH distribution of aqueous solution when pulsed discharge plasma was generated from a copper electrode in gas phase to aqueous solution in a reactor. Experiments were conducted using positive unipolar pulsed power. The unipolar pulsed voltage at +8.0 kV was applied to the copper electrode and the bottom of the reactor was grounded. The size of the reactor was 80 mm wide, 10 mm deep, and 40 mm high. The electrode was set at distance of 2 mm from the solution surface. Anthocyanins were contained in the aqueous solution as a pH indicator. The change pH solution spread horizontally, and low pH region of 10 mm in depth was formed. After discharge for 10 minutes, the low pH region was diffused toward the bottom of the reactor. After discharge for 60 minutes, the pH of the whole solution decreased.
Hydrogen production by sodium borohydride in NaOH aqueous solution
NASA Astrophysics Data System (ADS)
Wang, Q.; Zhang, L. F.; Zhao, Z. G.
2018-01-01
The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.
Plasticizing aqueous suspensions of concentrated alumina with maltodextrin sugar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilling, C.H.; Bellman, R.A.; Smith, R.M.
1999-01-01
Aqueous suspensions of submicrometer, 20 vol% Al{sub 2}O{sub 3} powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al{sub 2}O{sub 3})). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. The authors analyzed the interaction of maltodextrin with Al{sub 2}O{sub 3} powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%.more » In contrast, Al{sub 2}O{sub 3} filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin-Al{sub 2}O{sub 3} suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.« less
A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution
2011-01-01
The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M–O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 Å, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 Å, respectively. The ionic radii for six- and seven-coordinate K+, 1.38 and 1.46 Å, respectively, and eight-coordinate Rb+ and Cs+, 1.64 and 1.73 Å, respectively, are confirmed from previous studies. The M–O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution. PMID:22168370
Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M
2011-02-28
The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.
Cochrane, T T; Cochrane, T A
2016-01-01
To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.
COBALT-60 Gamma Irradiation of Shrimp.
NASA Astrophysics Data System (ADS)
Sullivan, Nancy L. B.
Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.
Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian
2016-01-01
It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427
Cryo-irradiation as a terminal method for the sterilization of drug aqueous solutions.
Maquille, Aubert; Habib Jiwan, Jean-Louis; Tilquin, Bernard
2008-05-01
The aim of this study is to evaluate the specificities of the irradiation of drugs in frozen aqueous solution. The structures of the degradation products were determined to gain insight into the radiolysis mechanisms occurring in frozen aqueous solutions. Metoclopramide hydrochloride and metoprolol tartrate were chosen as models. The frozen solutions were irradiated at dry ice temperature by high energy electrons at various doses. The drug purity (chemical potency) and the radiolysis products were quantified by HPLC-DAD. Characterization of the degradation products was performed by LC-APCI-MS-MS. The structures of the radiolysis products detected in irradiated frozen aqueous solutions were compared to those detected in solid-state and aqueous solutions (previous studies). For both metoclopramide and metoprolol, solute loss upon irradiation of frozen aqueous solutions was negligible. Five radiolysis products present in traces were identified in irradiated metoclopramide frozen solutions. Three of them were previously identified in solid-state irradiated metoclopramide crystals. The two others were formed following reactions with the hydroxyl radical (indirect effect). Only one fragmentation product was observed in irradiated metoprolol frozen solutions. For both drugs, radiosterilization of frozen solutions, even at high doses (25 kGy), was found to be possible.
NASA Astrophysics Data System (ADS)
Putschögl, M.; Zirak, P.; Penzkofer, A.
2008-01-01
The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
1999-01-01
The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.
2017-10-01
In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display amore » 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.« less
Thermal analysis of a growing crystal in an aqueous solution
NASA Astrophysics Data System (ADS)
Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya
1980-10-01
The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.
Fournier, Robert O.; Williams, Marshall L.
1983-01-01
The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model
Noble metal superparticles and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Hu, Yongxing
A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.A.; Pogainis, B.J.
1995-11-01
Aqueous solutions of alkanolamines have applications in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1 propanol was measured over the temperature range 10--60 C. The total composition of the alkanolamines in water ranged from 30 to 50 mass %. The experimental results were interpreted in terms of Henry`s constants.
NASA Astrophysics Data System (ADS)
Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.
2012-06-01
In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that Au reduction occurs most rapidly and extensively upon interaction with cell wall functional groups.
An aqueous electrolyte of the widest potential window and its superior capability for capacitors.
Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul
2017-03-21
A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO 2 and Fe 3 O 4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg -1 , which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts.
An aqueous electrolyte of the widest potential window and its superior capability for capacitors
Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul
2017-01-01
A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO2 and Fe3O4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg−1, which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts. PMID:28322349
ERIC Educational Resources Information Center
Robertson, C. T.
1973-01-01
Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)
Equilibrium water and solute uptake in silicone hydrogels.
Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J
2015-05-01
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.
2011-01-01
This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...
2015-12-15
Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less
Noli, Fotini; Kapnisti, Maria; Buema, Gabriela; Harja, Maria
2016-10-01
New materials were synthesized for application in sorption of radionuclides from aqueous solutions. The elaboration was performed by conversion of power plant ash using the hydrothermal method under optimum experimental conditions. Sodalite, Na-Y, and analcime were formed from ash precursor during the treatment, exhibiting thermal stability as revealed by the characterization by X-ray diffraction (XRD) and thermogravimetric differential thermal analysis (TG-DTA). The Brunauer-Emmett-Teller (BET) surface area and pore volume were determined and they presented higher values than plant ash. The ability of the new products to retain Ba and Eu radionuclides was studied in aqueous solutions using (133)Ba and (152)Eu as tracers and γ-ray spectroscopy under batch experiments. The experimental data were modeled by the Langmuir and Freundlich equations, whereas sorption kinetics measurements were performed at 293, 308, and 323K and thermodynamic parameters were calculated. The release of the sorbed ions into the environment was also tested by leaching experiments. The results of these tests indicated that the synthesized materials are very efficient in removing the aforementioned metals from aqueous solutions and can be considered as potential low-cost sorbents in nuclear waste management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Towards ultrasound enhanced mid-IR spectroscopy for sensing bacteria in aqueous solutions
NASA Astrophysics Data System (ADS)
Freitag, Stephan; Schwaighofer, Andreas; Radel, Stefan; Lendl, Bernhard
2018-02-01
We employ attenuated total reflection (ATR) mid-IR technology for sensing of bacteria present in aqueous solution. In ATR spectroscopy, the penetration depth of the evanescent field extends to approx. 1-2 micrometers into the aqueous solution depending on the refractive index of the employed materials (Si, ZnS, Ge) used as attenuated total reflection (ATR) element and the geometry of the optical set-up. Due to the flow profile in the microfluidic cell, an additional force is required to bring particles into the evanescent field for measurement. For that purpose, we employ standing ultrasound waves produced between a sound source vibrating at approx. 2 MHz and the ATR crystal acting as a reflector. This ultrasonic trap is integrated into the microfluidic channel. As aqueous solution is passing through that acoustofluidic cell, particles are concentrated in the nodal plane of the standing ultrasound wave, forming particle conglomerates. By selecting appropriate experimental conditions, it is then possible to press bacteria against the crystal surface for interaction with the evanescent wave (as well as to keep them away from the ATR element). Our current work aims at establishing a custommade US-ATR-IR setup for signal enhancement of bacteria (e.g. E. coli, P. aeruginosa as well as Salmonella) in drinking water.
Liyun, Yang; Ping, Xu; Maomao, Yang; Hao, Bai
2017-02-01
This study examined the characteristics of nitrate removal from aqueous solution by steel slag and the feasibility of using steel slag as a soil additive to remove nitrate. Steel slag adsorbents were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectrum (IR spectrum). Adsorption isotherms and kinetics were also analysed. Various parameters were measured in a series of batch experiments, including the sorbent dose, grain size of steel slag, reaction time, initial concentration of nitrate nitrogen, relationship between Al, Fe and Si ions leached from the steel slag and residual nitrate in the aqueous solution. The nitrate adsorbing capacity increased with increasing amounts of steel slag. In addition, decreasing the grain diameter of steel slag also enhanced the adsorption efficiency. Nitrate removal from the aqueous solution was primarily related to Al, Fe, Si and Mn leached from the steel slag. The experimental data conformed to second-order kinetics and the Freundlich isothermal adsorption equation, indicating that the adsorption of nitrate by steel slag is chemisorption under the action of monolayer adsorption. Finally, it was determined that using steel slag as a soil additive to remove nitrate is a feasible strategy.
Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin
2010-07-22
Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Beederman, M.; Vogler, S.; Hyman, H.H.
1959-07-14
The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.
Van Winkle, Q.; Kraus, K.A.
1959-10-27
A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.
Liu, Jingjing; Liu, Dian; Yokoyama, Yuuichi; Yusa, Shin-Ichi; Nakashima, Kenichi
2009-01-20
Polymeric micelles from a new triblock copolymer, polystyrene-block-poly[(3-(methacryloylamino)propyl)trimethylammonium chloride]-block-poly(ethylene oxide) (PS-b-PMAPTAC-b-PEO), were prepared in aqueous solutions and characterized by various techniques including dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The micelle consists of a PS core, PMAPTAC shell, and PEO corona. It was revealed by SEM and DLS measurements that the micelles have a spherical structure with a hydrodynamic diameter about 75 nm. The addition of tungstate to the micellar solution caused a morphological change in the micelles from extended to shrunken spheres, which can be attributed to the fact that electrostatic repulsion among the cationic PMAPTAC blocks is canceled by the negative charge of the bound tungstate ions. Effective incorporation of tungstate ions into the micelles were confirmed by TEM and zeta-potential measurements.
Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.
Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe
2012-02-07
Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.
Heterogeneous nucleation of aspartame from aqueous solutions
NASA Astrophysics Data System (ADS)
Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji
1990-03-01
Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.
NASA Astrophysics Data System (ADS)
Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won
2012-10-01
The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.
RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS
Ader, M.
1963-11-19
A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)
Nafion as Cosurfactant: Solubilization of Nafion in Water in the Presence of Pluronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelarakis, Antonios; Giannelis, Emmanuel P.
2011-01-18
Incorporation of Nafion to aqueous solutions of Pluronics adversely impacts micellization due to extensive Nafion/copolymer interactions. Light scattering and zeta potential measurements provide evidence for the formation of sizable and stable Nafion/copolymer complexes, in expense of the neat copolymer micelles. At high copolymer concentrations, the overall interaction diagram of Nafion/copolymer reflects the competitive action of the release of packing constraints due to micellar destabilization induced by Nafion on one hand and the gelator nature of the Nafion on the other. Measurements using a quartz crystal microbalance (QCM-D) show that aqueous solutions of Pluronics (even at very low concentration) can dissolvemore » the Nafion coating on the crystal resonator, while typical low molecular weight ionic surfactants fail to induce similar effects. These studies demonstrate that complexation with this class of copolymers is a facile route to impart dispersibility to Nafion in aqueous environments that otherwise can be achieved through tedious and harsh treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Evan G.; Xu, Jide; Dodani, Sheel
2009-11-10
The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a modelmore » Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.« less
VOC REMOVAL FROM WATER AND SURFACTANT SOLUTIONS BY PERVAPORATION: A PILOT STUDY
The removal of VOCs from aqueous solutions via pervaporation is an established technology that has been successfully demonstrated at the full scale. The purpose of this research was to measure the effect of DOWFAX 8390 surfactant addition on pervaporation system performance and ...
Ekechukwu, Amy A.
1994-01-01
A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.
ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS
Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...
Mukai, Kazuo; Ouchi, Aya; Azuma, Nagao; Takahashi, Shingo; Aizawa, Koichi; Nagaoka, Shin-Ichi
2017-02-01
Recently, a new assay method for the quantification of the singlet oxygen absorption capacity (SOAC) of antioxidants (AOs) and food extracts in homogeneous organic solvents was proposed. In this study, second-order rate constants (k Q ) for the reaction of singlet oxygen ( 1 O 2 ) with eight different carotenoids (Cars) and α-tocopherol (α-Toc) were measured in an aqueous Triton X-100 (5.0 wt %) micellar solution (pH 7.4, 35 °C), which was used as a simple model of biomembranes. The k Q and relative SOAC values were measured using ultraviolet-visible (UV-vis) spectroscopy. The UV-vis absorption spectra of Cars and α-Toc were measured in both a micellar solution and chloroform, to investigate the effect of solvent on the k Q and SOAC values. Furthermore, decay rates (k d ) of 1 O 2 were measured in 0.0, 1.0, 3.0, and 5.0 wt % micellar solutions (pH 7.4), using time-resolved near-infrared fluorescence spectroscopy, to determine the absolute k Q values of the AOs. The results obtained demonstrate that the k Q values of AOs in homogeneous and heterogeneous solutions vary notably depending on (i) the polarity [dielectric constant (ε)] of the reaction field between AOs and 1 O 2 , (ii) the local concentration of AOs, and (iii) the mobility of AOs in solution. In addition, the k Q and relative SOAC values obtained for the Cars in a heterogeneous micellar solution differ remarkably from those in homogeneous organic solvents. Measurements of k Q and SOAC values in a micellar solution may be useful for evaluating the 1 O 2 quenching activity of AOs in biological systems.
NASA Astrophysics Data System (ADS)
Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald
2009-03-01
Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.
Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions
Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.
2010-01-01
Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.
Metal separations using aqueous biphasic partitioning systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.
1996-05-01
Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less
Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M
2016-08-16
Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.
Frequency-Dependent Capacitance of Hydrophobic Membranes Containing Fixed Negative Charges
Ilani, Asher
1968-01-01
Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed. PMID:5699796
Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases
NASA Astrophysics Data System (ADS)
Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.
2016-03-01
Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.
Chapter A6. Section 6.5. Reduction-Oxidation Potential (Electrode Method)
Nordstrom, D. Kirk; Wilde, Franceska D.
2005-01-01
Reduction-oxidation (redox) potential--also referred to as Eh--is a measure of the equilibrium potential, relative to the standard hydrogen electrode, developed at the interface between a noble metal electrode and an aqueous solution containing electroactive chemical species. Measurements of Eh are used to evaluate geochemical speciation models, and Eh data can provide insights on the evolution and status of water chemistry in an aqueous system. Nevertheless, the measurement is fraught with inherent interferences and limitations that must be understood and considered to determine applicability to the aqueous system being studied. For this reason, Eh determination is not one of the field parameters routinely measured by the U.S. Geological Survey (USGS). This section of the National Field Manual (NFM) describes the equipment and procedures needed to measure Eh in water using a platinum electrode. Guidance as to the limitations and interpretation of Eh measurement also is included.
Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems
NASA Astrophysics Data System (ADS)
Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.
2018-05-01
An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.
SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES
Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.
1962-08-14
A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)
Tsai, Hung-Sheng; Tsai, Teh-Hua
2012-01-04
The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.
Shi, Huilin; Pierson, Nicholas A.; Valentine, Stephen J.; Clemmer, David E.
2012-01-01
Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H]8+ ubiquitin ions formed upon electrospraying 20 different solutions: from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena. PMID:22315998
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Wanshu; Zhang, Ting; Yang, Bo; Zheng, Qinghong; Xu, Jiwen; Wang, Hua; Wang, Lihui; Zhang, Xiaowen; Wei, Bin
2018-01-01
Low-cost and scalable manufacturing boosts organic electronic devices with all solution process. La2O3 powders and corresponding aqueous solutions are facilely synthesized. Atomic force microscopy and scanning electron microscopy measurements show that solution-processed La2O3 behaves superior film morphology. X-ray diffraction and X-ray photoelectron spectroscopy measurements verify crystal phase and typical La signals. In comparison with the most widely-used hole injection layers (HILs) of MoOx and poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), enhanced luminous efficiency is observed in organic light-emitting diode (OLED) using solution-processed La2O3 HIL. Current-voltage, impedance-voltage and phase angle-voltage transition curves clarify that solution-processed La2O3 behaves nearly comparable hole injection capacity to MoOx and PEDOT:PSS, and favorably tailors carrier balance. Moreover, the hole injection mechanism of solution-processed La2O3 is proven to be predominantly controlled by Fowler-Nordheim tunneling process and the hole injection barrier height between ITO and NPB via La2O3 interlayer is estimated to be 0.098 eV. Our experiments provide a feasible application of La2O3 in organic electronic devices with solution process.
Yan, Chih-Hao; Wu, Hui-Fen
2004-01-01
A liquid-phase microextraction (LPME) method has been demonstrated for the extraction and determination of organochlorine pesticides (OCPs) in aqueous solution. The method combines a dual gauge microsyringe with a hollow fiber membrane (LPME/DGM-HF) followed by detection by gas chromatography/ion trap mass spectrometry (GC/ITMS). The advantages include speed, low solvent and sample consumption, simplicity and ease of use. The extraction time, solvent selection, salt concentration and sample stirring rate have been investigated in order to optimize extraction efficiency. The viability is evaluated by measuring the linearity and detection limit of the five OCPs in aqueous solution. Detection linearity for the OCPs has been achieved over a range of concentrations between 1 and 500 microg/L (r2 > 0.930), with a detection limit of 0.1 microg/L for each OCP. Copyright 2004 John Wiley & Sons, Ltd.
Polymer-based adsorbent for heavy metals removal from aqueous solution
NASA Astrophysics Data System (ADS)
Mahmud, H. N. M. E.; Huq, A. K. O.; Yahya, R.
2017-06-01
A novel conducting polymer-based adsorbent, polypyrrole (PPy) fine powder has successfully been prepared as a new adsorbent and utilized in the adsorption of heavy metal ions like arsenic, zinc and cadmium ions from aqueous solution. PPy was chemically synthesized by using FeCl3.6H2O as an oxidant. The prepared PPy adsorbent was characterized by Brunauer-Emmet-Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM) and attenuated total reflectance fourier transform infrared ATR-(FTIR) spectroscopy. The adsorption was conducted by varying different parameters such as, contact time, pH and adsorbent dosage. The concentrations of metal ions were measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that PPy acts as an effective sorbent for the removal of arsenic, zinc and cadmium ions from aqueous solution. The as-prepared PPy fine powder is easy to prepare and appeared as an effective adsorbent for heavy metal ions particularly arsenic in wastewater treatment.
NASA Astrophysics Data System (ADS)
Dong, L.; Zheng, D. X.; Wei, Z.; Wu, X. H.
2009-10-01
By investigating the vapor pressure of the solvent and the affinity between ionic liquids (ILs) and the solvent, it is proposed that 1,3-dimethylimidazolium chloride ([Mmim]Cl) has the potential to be used as a novel absorbent species with the absorption cycle working fluid. Adopting a high-pressure reaction kettle, the method of gas-liquid phase reaction was used to synthesize [Mmim]Cl under the conditions of 348.15 K and 0.7 MPa. The densities of [Mmim]Cl aqueous solutions were measured for mass fractions in the range from 20% to 90% at 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K with a digital vibrating-tube densimeter. The excess volume, the apparent molar volume, the partial molar volume, and the apparent molar expansibility of this system were investigated, and the influences of variations of the cation and anion on the density of several IL aqueous solutions are discussed.
Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj
2003-04-01
Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.
Sulfuric Acid and Water: Paradoxes of Dilution
ERIC Educational Resources Information Center
Leenson, I. A.
2004-01-01
On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…
CHLORINE ABSORPTION IN S(IV) SOLUTIONS
The report gives results of measurements of the rate of Chlorine (Cl2) absorption into aqueous sulfite/bisulfite -- S(IV) -- solutions at ambient temperature using a highly characterized stirred-cell reactor. The reactor media were 0 to 10 mM S(IV) with pHs of 3.5-8.5. Experiment...
Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications
Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.
2017-01-01
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835
Liu, Xianli; Wu, Feng; Deng, Nansheng
2004-01-01
Photoproduction of hydroxyl radicals (*OH) could be induced in aqueous solution with algae (Nitzschia hantzschiana, etc.) and (or not) Fe3+ under high-pressure mercury lamp with an exposure time of 4 h. *OH was determined by HPLC using benzene as a probe. The photoproduction of *OH increased with increasing algae concentration. Fe3+ could enhance the photoproduction of *OH in aqueous solution with algae. The results showed that the photoproduction of *OH in algal solution with Fe3+ was greater than that in algal solution without Fe3+. The light intensity and pH affected the photoproduction of *OH in aqueous solution with algae with/without Fe3+. The photoproduction of *OH in aqueous solution with algae and Fe3+ under 250 W was greater than that under 125 W HPML. The photoproduction of *OH in algal solution (pH ranged from 4.0 to 7.0) with (or not) Fe3+ at pH 4 was the greatest.
Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures
Șerban, Alexandru; Rubinsky, Boris
2017-01-01
Objective Preservation of biological materials at subzero Centigrade temperatures, cryopreservation, is important for the field of tissue engineering and organ transplantation. Our group is studying the use of isochoric (constant volume) systems of aqueous solution for cryopreservation. Previous studies measured the pressure-temperature relations in aqueous isochoric systems in the temperature range from 0°C to – 20°C. The goal of this study is to expand the pressure-temperature measurement beyond the range reported in previous publications. Materials and methods To expand the pressure-temperature measurements beyond the previous range, we have developed a new isochoric device capable of withstanding liquid nitrogen temperatures and pressures of up to 413 MPa. The device is instrumented with a pressure transducer than can monitor and record the pressures in the isochoric chamber in real time. Measurements were made in a temperature range from – 5°C to liquid nitrogen temperatures for various solutions of pure water and Me2SO (a chemical additive used for protection of biological materials in a frozen state and for vitrification (glass formation) of biological matter). Undissolved gaseous are is carefully removed from the system. Results Temperature-pressure data from – 5°C to liquid nitrogen temperature for pure water and other solutions are presented in this study. Following are examples of some, temperature-pressure values, that were measured in an isochoric system containing pure water: (- 20°C, 187 MPa); (-25°C, 216 MPa); (- 30°C, 242.3 MPa); (-180°C, 124 MPa). The data is consistent with the literature, which reports that the pressure and temperature at the triple point, between ice I, ice III and water is, - 21.993°C and 209.9 MPa, respectively. It was surprising to find that the pressure in the isochoric system increases at temperatures below the triple point and remains high to liquid nitrogen temperatures. Measurements of pressure-temperature relations in solutions of pure water and Me2SO in different concentrations show that, for concentrations in which vitrification is predicted, no increase in pressure was measured during rapid cooling to liquid nitrogen temperatures. However, ice formation either during cooling or warming to and from liquid nitrogen temperatures produced an increase in pressure. Conclusions The data obtained in this study can be used to aid in the design of isochoric cryopreservation protocols. The results suggest that the pressure measurement is important in the design of “constant volume” systems and can provide a simple means to gain information on the occurrence of vitrification and devitrification during cryopreservation processes of aqueous solutions in an isochoric system. PMID:28817681
NASA Astrophysics Data System (ADS)
Karakthala, J. B.; Vankar, H. P.; Rana, V. A.
2018-05-01
The complex relative dielectric function ɛ*(ω) = ɛ' - jɛ″ of aqueous solutions of diclofenac potassium (DK) in the frequency range 20 Hz to 2 MHz at 303.15 K was measured using a precision LCR meter. The electrical/dielectric properties of the solutions samples were represented in terms of complex relative dielectric function ɛ*(ω) real part σ'(ω) of complex ac conductivity and dc conductivity. These types of studies can be used to explore various mechanism contributed in the absorption, transportation of drug through tissues and membranes of body as well as interactions of drug with body fluid and blood plasma.
Kobayashi, Kazuo; Seike, Yumiko; Saeki, Akinori; Kozawa, Takahiro; Takeuchi, Fusako; Tsubaki, Motonari
2014-10-06
The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Mendkudle, M. S.
2014-09-01
Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f} using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.« less
Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio
2018-01-01
This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4 L mol -1 cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3 mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Germanium films by polymer-assisted deposition
Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu
2013-01-15
Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.
Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions
NASA Technical Reports Server (NTRS)
Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.
Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds
NASA Astrophysics Data System (ADS)
Klunder, Gregory L.; Russo, Richard E.
1995-03-01
A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.
NASA Astrophysics Data System (ADS)
Wu, Xiao Chu; Qing Wu, Dong; Sammynaiken, R.; Yang, Wei; Wang, Rui; Zhang, W. J.
2008-11-01
Endogenously generated hydrogen sulfide (H2S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H2S is toxic. However, whether H2S plays a positive or negative role is dependent on the H2S concentration levels in mammals. This further puts a high demand on the accurate measurement of H2S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H2S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H2S is, however, a great challenge. In the present study, we proposed and examined five potential H2S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H2S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H2S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H2S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust.
Ekechukwu, A.A.
1994-07-05
A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.; And Others
1980-01-01
Presents three different procedures in which reagents are added in a specified order to a large beaker containing an aqueous solution of nickel sulfate. Complex ions of nickel (II) are prepared by using aqueous solutions of ammonia, ethylenediamine, dimethylglyoxime, and cyanide ion. (CS)
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita
To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of themore » Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.« less
Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou
2017-08-10
Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.
Dutta, Rupam; Ghosh, Surajit; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni
2017-03-15
The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (C n mimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, C n mimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C 16 mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of C n mimCl in SDBS-C n mimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-C n mimCl solution mixtures in presence of different mole fractions of C n mimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G. Copyright © 2016 Elsevier Inc. All rights reserved.
Stark, Austin C.; Andrews, Casey T.
2013-01-01
Coarse-grained (CG) simulation methods are now widely used to model the structure and dynamics of large biomolecular systems. One important issue for using such methods – especially with regard to using them to model, for example, intracellular environments – is to demonstrate that they can reproduce experimental data on the thermodynamics of protein-protein interactions in aqueous solutions. To examine this issue, we describe here simulations performed using the popular coarse-grained MARTINI force field, aimed at computing the thermodynamics of lysozyme and chymotrypsinogen self-interactions in aqueous solution. Using molecular dynamics simulations to compute potentials of mean force between a pair of protein molecules, we show that the original parameterization of the MARTINI force field is likely to significantly overestimate the strength of protein-protein interactions to the extent that the computed osmotic second virial coefficients are orders of magnitude more negative than experimental estimates. We then show that a simple down-scaling of the van der Waals parameters that describe the interactions between protein pseudo-atoms can bring the simulated thermodynamics into much closer agreement with experiment. Overall, the work shows that it is feasible to test explicit-solvent CG force fields directly against thermodynamic data for proteins in aqueous solutions, and highlights the potential usefulness of osmotic second virial coefficient measurements for fully parameterizing such force fields. PMID:24223529
Stark, Austin C; Andrews, Casey T; Elcock, Adrian H
2013-09-10
Coarse-grained (CG) simulation methods are now widely used to model the structure and dynamics of large biomolecular systems. One important issue for using such methods - especially with regard to using them to model, for example, intracellular environments - is to demonstrate that they can reproduce experimental data on the thermodynamics of protein-protein interactions in aqueous solutions. To examine this issue, we describe here simulations performed using the popular coarse-grained MARTINI force field, aimed at computing the thermodynamics of lysozyme and chymotrypsinogen self-interactions in aqueous solution. Using molecular dynamics simulations to compute potentials of mean force between a pair of protein molecules, we show that the original parameterization of the MARTINI force field is likely to significantly overestimate the strength of protein-protein interactions to the extent that the computed osmotic second virial coefficients are orders of magnitude more negative than experimental estimates. We then show that a simple down-scaling of the van der Waals parameters that describe the interactions between protein pseudo-atoms can bring the simulated thermodynamics into much closer agreement with experiment. Overall, the work shows that it is feasible to test explicit-solvent CG force fields directly against thermodynamic data for proteins in aqueous solutions, and highlights the potential usefulness of osmotic second virial coefficient measurements for fully parameterizing such force fields.
Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Watanabe, Hitoshi; Nishida, Kohji
2014-12-01
To investigate the short- and long-term effects of diquafosol ophthalmic solution on the optical quality of the eyes in patients with aqueous-deficient dry eye. Sixteen eyes in 16 patients with mild or moderate aqueous-deficient dry eye were treated with 3% diquafosol ophthalmic solution. Ocular higher-order aberrations (HOAs) were measured with a wavefront sensor before and at 15 min after diquafosol instillation at the baseline visit and at 4 weeks after treatment initiation. Dry eye symptoms, tear break-up time (BUT), corneal/conjunctival fluorescein staining and Schirmer's test were also evaluated before and after treatment with diquafosol. Treatment with diquafosol ophthalmic solution significantly improved dry eye symptoms, corneal staining and BUT. Compared with mean total HOAs at baseline (0.180 ± 0.06 μm), those at 4 weeks after treatment significantly decreased (0.148 ± 0.039 μm; p = 0.035), whereas those 15 min after diquafosol instillation at the baseline visit did not change significantly (0.170 ± 0.049 μm; p = 0.279). Although no significant change in HOAs was observed as a short-term effect of a single-drop instillation of diquafosol, long-term use of diquafosol to treat aqueous-deficient dry eye reduced HOAs as well as improved corneal epithelial damage and tear film stability. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Smith, Douglas D.; Hiller, John M.
1998-01-01
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.« less
The effect of plasma on shear bond strength between resin cement and colored zirconia
2017-01-01
PURPOSE To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring. PMID:28435621
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.
Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation
NASA Astrophysics Data System (ADS)
Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert
2006-03-01
In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.
Yuan, Zhuang; Chen, Zhen-hua; Chen, Ding; Kang, Zhi-tao
2015-01-01
Ball milling experiments were conducted with and without ultrasound wave assistance in deionized water using NiCO3·2Ni(OH)2·4H2O as raw materials. In the reaction process of NiFe2O4 prepared by ultrasound-assisted aqueous solution ball milling, some influencing factors including raw materials, ultrasonic frequency, ball to powder ratio and liquid level were changed. Samples were characterized by X-ray diffraction, fluorescence measurements and electroconductivity detections. The results indicate that more hydroxyl radicals and ions can be generated under the coupling effect of ultrasonic and ball milling. The fluorescence measurements and electroconductivity detections also reflect the reaction speed, allowing for optimal parameters to be determined. Copyright © 2014 Elsevier B.V. All rights reserved.
de La Harpe, Kimberly; Kohl, Forrest R; Zhang, Yuyuan; Kohler, Bern
2018-03-08
To better understand how the solvent influences excited-state deactivation in DNA strands, femtosecond time-resolved IR (fs-TRIR) pump-probe measurements were performed on a d(AT) 9 ·d(AT) 9 duplex dissolved in a deep eutectic solvent (DES) made from choline chloride and ethylene glycol in a 1:2 mol ratio. This solvent, known as ethaline, is a member of a class of ionic liquids capable of solubilizing DNA with minimal disruption to its secondary structure. UV melting analysis reveals that the duplex studied here melts at 18 °C in ethaline compared to 50 °C in aqueous solution. Ethaline has an excellent transparency window that facilitates TRIR measurements in the double-bond stretching region. Transient spectra recorded in deuterated ethaline at room temperature indicate that photoinduced intrastrand charge transfer occurs from A to T, yielding the same exciplex state previously detected in aqueous solution. This state decays via charge recombination with a lifetime of 380 ± 10 ps compared to the 300 ± 10 ps lifetime measured earlier in D 2 O solution. The TRIR data strongly suggest that the long-lived exciplex forms exclusively in the solvated duplex, and not in the denatured single strands, which appear to have little, if any, base stacking. The longer lifetime of the exciplex state in the DES compared to aqueous solution is suggested to arise from reduced stabilization of the charge transfer state, resulting in slower charge recombination on account of Marcus inverted behavior.
Janczak, Colleen M; Calderon, Isen A C; Mokhtari, Zeinab; Aspinwall, Craig A
2018-02-07
β-particle emitting radionuclides are useful molecular labels due to their abundance in biomolecules. Detection of β-emission from 3 H, 35 S, and 33 P, important biological isotopes, is challenging due to the low energies (E max ≤ 300 keV) and short penetration depths (≤0.6 mm) in aqueous media. The activity of biologically relevant β-emitters is usually measured in liquid scintillation cocktail (LSC), a mixture of energy-absorbing organic solvents, surfactants, and scintillant fluorophores, which places significant limitations on the ability to acquire time-resolved measurements directly in aqueous biological systems. As an alternative to LSC, we developed polystyrene-core, silica-shell nanoparticle scintillators (referred to as nanoSCINT) for quantification of low-energy β-particle emitting radionuclides directly in aqueous solutions. The polystyrene acts as an absorber for energy from emitted β-particles and can be loaded with a range of hydrophobic scintillant fluorophores, leading to photon emission at visible wavelengths. The silica shell serves as a hydrophilic shield for the polystyrene core, enabling dispersion in aqueous media and providing better compatibility with water-soluble analytes. While polymer and inorganic scintillating microparticles are commercially available, their large size and/or high density complicates effective dispersion throughout the sample volume. In this work, nanoSCINT nanoparticles were prepared and characterized. nanoSCINT responds to 3 H, 35 S, and 33 P directly in aqueous solutions, does not exhibit a change in scintillation response between pH 3.0 and 9.5 or with 100 mM NaCl, and can be recovered and reused for activity measurements in bulk aqueous samples, demonstrating the potential for reduced production of LSC waste and reduced total waste volume during radionuclide quantification. The limits of detection for 1 mg/mL nanoSCINT are 130 nCi/mL for 3 H, 8 nCi/mL for 35 S, and <1 nCi/mL for 33 P.
NASA Astrophysics Data System (ADS)
Monnin, Christophe
1990-12-01
A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.
NASA Astrophysics Data System (ADS)
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed. PMID:26318000
Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng
2013-10-08
Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree of counterion binding (β = 0.854), indicating the importance of the counterions.
Sangyeob Lee; Hui Pan; Chung Y. Hse; Alfred R. Gunasekaran; Todd F. Shupe
2014-01-01
The effects of aqueous solutions were evaluated on the properties of regenerated cellulosic nanofibers prepared from pure cellulose fibers in various formulations of aqueous solutions. Thermoplastic composites were prepared with reinforcement of the regenerated cellulosic nanofibers. The regenerated cellulosic fibers from cellulosic woody biomass were obtained from...
McVey, W.H.; Reas, W.H.
1959-03-10
The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.
Electronic Structure and Reactivity of TM-Doped La1-xSrxCoO3 (TM = Ni, Fe) Catalysts
NASA Astrophysics Data System (ADS)
Grice, S. C.; Flavell, W. R.; Thomas, A. G.; Warren, S.; Marr, P. G.; Jewitt, D. E.; Khan, N.; Dunwoody, P. M.; Jones, S. A.
The catalytic properties of LaCoO3 in the oxidation of organic molecules in aqueous solution are explored as a function of doping with both Sr substitution for La and Fe and Ni substitution for Co. VUV photoemission is used to explore the surface reactivity of the ceramic catalysts in aqueous solution, using H2O as a probe molecule. These measurements are complemented by EXAFS and XANES measurements designed to probe the local defect structure and by GC measurements of catalytic activity in the aqueous epoxidation of crotyl alcohol. We relate the observed catalytic activity to the defect structure of the doped materials. In Ni-doped materials, oxygen vacancies appear to be the predominant defect, whereas in Fe-doped samples, electron holes are stabilised on Fe, leading to very different behaviour in oxidation. The surface reactivity to water is also influenced by the TM d electron count, with water binding more strongly to Fe-doped materials than to those containing Ni. The influence of these factors on the rate of the unwanted hydrogen peroxide decomposition reaction and hence on activity in epoxidation is discussed.
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Callis, C.F.; Moore, R.L.
1959-09-01
>The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.
SE-72/AS-72 generator system based on Se extraction/ As reextraction
Fassbender, Michael Ernst; Ballard, Beau D
2013-09-10
The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.
Index of refraction, density, and solubility of ammonium iodide solutions at high pressure.
Lamelas, F J
2013-03-07
An asymmetric moissanite anvil cell is used to study aqueous solutions of ammonium iodide at pressures up to 10 kbar. The index of refraction is measured using the rotating Fabry-Perot technique, with an accuracy of approximately 1%. The mass density and molar volume of the solutions are estimated using the measured index values, and the molar volume is used to predict the pressure dependence of the solubility. The solubility derived from the index of refraction measurements is shown to agree with that which is determined by direct observation of the onset of crystallization.
Electrospray Ionization-Induced Protein Unfolding
NASA Astrophysics Data System (ADS)
Lin, Hong; Kitova, Elena N.; Johnson, Margaret A.; Eugenio, Luiz; Ng, Kenneth K. S.; Klassen, John S.
2012-12-01
Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength ( I < 80 mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I > 10 mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.
Jamal, Muhammad Asghar; Rashad, Muhammad; Khosa, Muhammad Kaleem; Bhatti, Haq Nawaz
2015-04-15
Densities and ultrasonic velocity values for aqueous solutions of sodium saccharin (SS) has been measured as a function of concentration at 20.0-45.0 °C and atmospheric pressure using DSA-5000 M. The density and ultrasonic velocity values have been further used to calculate apparent molar volume, apparent specific volume, isentropic apparent molar compressibility and compressibility hydration numbers and reported. The values for apparent molar volume obtained at given temperatures showed negative deviations from Debye-Hückel limiting law and used as a direct measure of the ion-ion and ion-solvent interactions. The apparent specific volumes of the solute were calculated and it was found that these values of the investigated solutions lie on the borderline between the values reported for sweet substances. The sweetness response of the sweeteners is then explained in terms of their solution behaviours. Furthermore, the partial molar expansibility, its second derivative, (∂(2)V°/∂T(2)) as Hepler's constant and thermal expansion coefficient have been estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methods and systems for utilizing carbide lime or slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devenney, Martin; Fernandez, Miguel; Chen, Irvin
Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less
Absorption of Carbon Dioxide in Aqueous Solutions of N-methyldiethanolamine Mixtures
NASA Astrophysics Data System (ADS)
Ma’mun, S.; Svendsen, H. F.
2018-05-01
Carbon dioxide (CO2) is one of the greenhouse gases (GHG) that has contributed to the global warming problem. Carbon dioxide is produced in large quantity from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical industries, natural gas purification, and transportation. Some efforts to reduce the CO2 emissions to the atmosphere are then required. Amine-based absorption may be an option for post-combustion capture. The objective of this study is to measure the effect of promoter addition as well as MDEA concentration for the CO2 absorption into the aqueous solutions of MDEA to improve its performances, i.e. increasing the absorption rate and the absorption capacity. Absorption of CO2 in aqueous solutions of MDEA mixtures were measured at 40 °C in a bubble tank reactor. The systems tested were the mixtures of 30 wt% MDEA with 5 and 10 wt% BEA and the mixtures of 40 and 50 wt% MDEA with 6 wt% AEEA. It was found that for MDEA-BEA-H2O mixtures, the higher the promoter concentraation the higher the CO2 absorption rate, while for the MDEA-AEEA-H2O mixtures, the higher the MDEA concentration the lower the CO2 absorption rate.
Li, Xue; Salzano, Giuseppina; Zhang, Jiwen; Gref, Ruxandra
2017-01-01
Supramolecular cyclodextrin-based nanoparticles (CD-NPs) mediated by host-guest interactions have gained increased popularity because of their "green" and simple preparation procedure, as well as their versatility in terms of inclusion of active molecules. Herein, we showed that original CD-NPs of around 100 nm are spontaneously formed in water, by mixing 2 aqueous solutions of (1) a CD polymer and (2) dextran grafted with benzophenone moieties. For the first time, CD-NPs were instantaneously produced in a microfluidic interaction chamber by mixing 2 aqueous solutions of neutral polymers, in the absence of organic solvents. Whatever the mixing conditions, CD-NPs with narrow size distributions were immediately formed upon contact of the 2 polymeric solutions. In situ size measurements showed that the CD-NPs were spontaneously formed. Nanoparticle tracking analysis was used to individually follow the CD-NPs in their Brownian motions, to gain insights on their size distribution, concentration, and stability on extreme dilution. Nanoparticle tracking analysis allowed to establish that despite their non-covalent nature, and the CD-NPs were remarkably stable in terms of concentration and size distribution, even on extreme dilution (concentrations as low as 100 ng/mL). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patra, Digambara; Barakat, Christelle
2011-09-01
Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.
Experimental measurements of U60 nanocluster stability in aqueous solution
NASA Astrophysics Data System (ADS)
Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.
2015-05-01
In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the dissociation behavior of nanoclusters under a range of aqueous conditions.
NASA Astrophysics Data System (ADS)
Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji
2013-02-01
Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Puyad, A. L.; Shaikh, U. B.; Solanke, S. S.
2014-04-01
Densities, viscosities, and refractive indices of aqueous solutions of hydroxylamine hydrochloride containing 0.05, 0.10, and 0.15 mol/dm3 NaCl, KCl, and NH4Cl were measured at different concentrations of hydroxylamine hydrochloride at 30°C. Viscosity coefficients A and B representing ion-ion and ion-solvent interactions were determined from Jones-Dole equation. Experimental properties and viscosity coefficients have been interpreted in terms of ion-ion and ion-solvent interactions. Ion-solvent interactions were found to be dominating over the ion-ion interactions in studied systems.
Effects of environment on microhardness of magnesium oxide
NASA Technical Reports Server (NTRS)
Ishigaki, H.; Buckley, D. H.
1982-01-01
Micro-Vickers hardness measurements of magnesium oxide single crystals were conducted in various environments. These environments included air, nitrogen gas, water, mineral oil with or without various additives, and aqueous solutions with various pH values. Indentations were made on the (100) plane with the diagonals of the indentation in the (100) direction. The results indicate that a sulfur containing additve in mineral oil increased hardness, a chlorine containing additive in mineral oil decreased hardness, and aqueous solutions of hydrogen chloride decreased hardness. Other environments were found to have little effect on hardness. Mechanically polished surfaces showed larger indentation creep than did as-cleaved surfaces.
Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.
Sekiya, S; Ohmori, K; Harii, K
1997-01-01
A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.
NASA Astrophysics Data System (ADS)
Werkema, D. D.
2007-12-01
Select physicochemical properties of aqueous solutions composed of surfactants, dye, and perchloroethylene (PCE) were evaluated through a response surface quadratic design model of experiment. Nine surfactants, which are conventionally used in the remediation of PCE, were evaluated with varying concentrations of PCE and indicator dyes in aqueous solutions. Two hundred forty experiments were performed using PCE as a numerical factor (coded A) from 0 to 200 parts per million (ppm), dye type (coded B) as a 3-level categorical factor, and surfactant type (coded C) as a 10-level categorical factor. Five responses were measured: temperature (°C), pH, conductivity (μS/cm), dissolved oxygen (DO, mg/L), and density (g/mL). Diagnostics proved a normally distributed predictable response for all measured responses except pH. The Box-Cox plot for transforms recommended a power transform for the conductivity response with lambda (λ) = 0.50, and for the DO response, λ =2.2. The overall mean of the temperature response proved to be a better predictor than the linear model. The conductivity response is best fitted with a linear model using significant coded terms B and C. Both DO and density also showed a linear model with coded terms A, B, and C for DO; and terms A and C for density. Some of the surfactant treatments of PCE significantly alter the conductivity, DO, and density of the aqueous solution. However, the magnitude of the density response is so small that it does not exceed the instrument tolerance. Results for the conductivity and DO responses provide predictive models for the surfactant treatment of PCE and may be useful in determining the potential for geophysically monitoring surfactant enhanced aquifer remediation (SEAR) of PCE. As the aqueous physicochemical properties change due to surfactant remediation efforts, so will the properties of the subsurface pore water which are influential factors in geophysical measurements. Geoelectrical methods are potentially the best suited to measure SEAR alterations in the subsurface because the conductivity of the pore fluid has the largest relative change. This research has provided predictive models for alterations in the physicochemical properties of the pore fluid to SEAR of PCE. Future investigations should address the contribution of the solid matrix in the subsurface and the solid-fluid interaction during SEAR of PCE contamination. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.
Preparing polymeric matrix composites using an aqueous slurry technique
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)
1993-01-01
An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.
2006-01-01
A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.
Use of magnetic polyaniline/maghemite nanocomposite for DNA retrieval from aqueous solutions.
Medina-Llamas, Juan Carlos; Chávez-Guajardo, Alicia Elizabeth; Andrade, Cesar Augusto Souza; Alves, Kleber Gonçalves Bezerra; de Melo, Celso Pinto
2014-11-15
We demonstrated that the magnetic polyaniline/maghemite nanocomposite (Pani/γ-Fe2O3 MNC) is an efficient agent for retrieval of pure double stranded deoxyribonucleic acid (dsDNA) chains from aqueous solutions. The dsDNA chains used in the retrieval experiments were of sodium salt of Salmon Sperm DNA. Based on λ=260 nm absorption measurements, we have employed UV-Vis spectroscopy to estimate the concentration of DNA present in solutions, before and after the interaction with the MNC. The best results corresponded to a maximum amount of 75.2 mg of DNA absorbed per gram of MNC reached within only 10 min of joint exposure into the aqueous solution. After magnetic separation of the fully DNA-loaded Pani/γ-Fe2O3 MNC, we achieved essentially complete DNA desorption by appropriate changes in the pH of the solution. We have shown that it is possible to recycle the use of these MNC in several adsorption-desorption cycles. By comparing the present results to those of other DNA retrieval systems reported in the literature, we argued that the Pani/γ-Fe2O3 MNC here described represent a promising low-cost material for use as a fast, simple and efficient method of DNA separation and concentration. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lian, Xiao-Jie; Wang, Song; Zhu, He-Sun
2010-03-01
Silk fibroin film (SFF) has been widely used in biomaterials. SFF is usually prepared from a regenerated silk aqueous solution and its properties depend remarkably on the preparation conditions. However, the effect of the silk fibroin concentration ( C 0) on the SFF surface properties as well as the cytocompatibility has rarely been investigated. In this work we prepared a series of Bombyx mori SFFs by casting SF aqueous solutions with the concentration from 10° to 102 mg/mL on TCPS substrate at 60°C. The test results of atomic force microscopy, attenuated total reflection Fourier transform infrared and contact angles analysis showed that the film surface roughness and β-sheet structure increased with the increase of C 0, whereas the surface hydrophilicity increased with the decrease of C 0. The in vitro clotting time measurement results revealed that the SFFs prepared from the thinner solution showed a longer APTT (activated partial thromboplastin time) and TT (thrombin time). The results of microscopy and MTT assay also revealed that cell adhesion and growth were enhanced on the SFF cast from lower C 0 for fibroblasts. In contrast, endothelial cells showed a similar behavior on all those films that were prepared from the solution in different concentrations.
Structure of Aqueous Trehalose Solution by Neutron Diffraction and Structural Modeling.
Olsson, Christoffer; Jansson, Helén; Youngs, Tristan; Swenson, Jan
2016-12-15
The molecular structure of an aqueous solution of the disaccharide trehalose (C 12 H 22 O 11 ) has been studied by neutron diffraction and empirical potential structure refinement modeling. Six different isotope compositions with 33 wt % trehalose (corresponding to 38 water molecules per trehalose molecule) were measured to ensure that water-water, trehalose-water, and trehalose-trehalose correlations were accurately determined. In fact, this is the first neutron diffraction study of an aqueous trehalose solution in which also the nonexchangeable hydrogen atoms in trehalose are deuterated. With this approach, it was possible to determine that (1) there is a substantial hydrogen bonding between trehalose and water (∼11 hydrogen bonds per trehalose molecule), which is in contrast to previous neutron diffraction studies, and (2) there is no tendency of clustering of trehalose, in contrast to what is generally observed by molecular dynamics simulations and experimentally found for other disaccharides. Thus, the results give the structural picture that trehalose prefers to interact with water and participate in a hydrogen-bonded network. This strong network character of the solution might be one of the key reasons for its extraordinary stabilization effect on biological materials.
Yamada, Kazunori; Inoue, Tomoaki; Akiba, Yuji; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo
2006-10-01
Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.
Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei
2017-05-10
The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.
Zha, Lin; Zhao, Yan; Zhu, Hong-Yan; Cai, En-Bo; Liu, Shuang-Li; Yang, He; Zhao, Ying; Gao, Yu-Gang; Zhang, Lian-Xue
2017-05-01
The experiment was aimed to investigate the difference of plasma concentration and pharmacokinetic parameters between liposome and aqueous solution of toatal ginsenoside of ginseng stems and leaves in rats, such as ginsenosides Rg₁, Re, Rf, Rb₁, Rg₂, Rc, Rb₂, Rb₃, Rd. After intravenous injection of liposome and aqueous solution in rats, the blood was taken from the femoral vein to detect the plasma concentration of the above 9 ginsenoside monomers in different time points by using HPLC. The concentration-time curve was obtained and 3p97 pharmacokinetic software was used to get the pharmacokinetic parameters. After the intravenous injection of ginsenosides to rats, nine ginsenosides were detected in plasma. In general, among these ginsenosides, the peak time of the aqueous solution was between 0.05 to 0.083 3 h, and the serum concentration peak of liposome usually appeared after 0.5 h. After software fitting, the aqueous solution of ginsenoside monomers Rg₁, Re, Rf, Rg₂, Rc, Rd, Rb₃ was two-compartment model, and the liposomes were one-compartment model; aqueous solution and liposome of ginsenoside monomers Rb₁ were three-compartment model; aqueous solution of ginsenoside monomers Rb₂ was three-compartment model, and its liposome was one-compartment model. Area under the drug time curve (AUC) of these 9 kinds of saponin liposomes was larger than that of aqueous solution, and the retention time of the liposomes was longer than that of the aqueous solution; the removal rate was slower than that of the aqueous solution, and the half-life was longer than that of the water solution. The results from the experiment showed that by intravenous administration, the pharmacokinetic parameters of two formulations were significantly different from each other; the liposomes could not only remain the drug for a longer time in vivo, but also reduce the elimination rate and increase the treatment efficacy. As compared with the traditional dosage forms, the total ginsenoside of ginseng stems and leaves can improve the sustained release of the drug, which is of great significance for the research and development of new dosage forms of ginsenosides in the future. Copyright© by the Chinese Pharmaceutical Association.
The solubility of quartz in aqueous sodium chloride solution at 350°C and 180 to 500 bars
Fournier, Robert O.; Rosenbauer, Robert J.; Bischoff, James L.
1982-01-01
The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.
Hydration Dynamics of Hyaluronan and Dextran
Hunger, Johannes; Bernecker, Anja; Bakker, Huib J.; Bonn, Mischa; Richter, Ralf P.
2012-01-01
Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. PMID:22828349
Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide
Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.
2001-01-01
A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.
NASA Astrophysics Data System (ADS)
Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.
2017-04-01
Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.
NASA Astrophysics Data System (ADS)
Pandit, T. R.; Rana, V. A.
2018-05-01
Frequency domain dielectric relaxation spectroscopy plays an important role in the study of pharmaceutical drug molecules. The complex relative dielectric permittivity ɛ*(ω) = ɛ' - j ɛ" of aqueous solutions of paracetamol in the frequency range of 20 Hz to 2 MHz at a temperature range of 293.15 K are measured with the help of Agilent precision LCR meter E4980A along with four terminal liquid test fixture Agilent 16452A. Data of complex relative permittivity are used to calculate loss tangent for all concentrations of paracetamol in distilled water. Electrode polarization relaxation time has been calculated for all solutions. Effect of variation of concentrations of paracetamol in distilled water on these dielectric parameters is discussed.
NASA Astrophysics Data System (ADS)
Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour
2008-09-01
The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.
Thermodynamic properties of potassium chloride aqueous solutions
NASA Astrophysics Data System (ADS)
Zezin, Denis; Driesner, Thomas
2017-04-01
Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.
NOTE: The effects of paramagnetic contrast agents on metabolite protons in aqueous solution
NASA Astrophysics Data System (ADS)
Murphy, Philip S.; Leach, Martin O.; Rowland, Ian J.
2002-03-01
The longitudinal (R1) and transverse (R2) relaxivities of the clinically used contrast agents Gd(DTPA)2-, Gd(DOTA)- and Gd(DTPA-BMA) have been determined in mixed aqueous metabolite solutions for choline, creatine and N-acetylaspartate. Measurements were performed at 1.5 T using a STEAM sequence on 25 mM metabolite solutions at pH = 7.4 and 22 °C. The data showed that for all the contrast agents and metabolites, R1 ~ R2. The largest range of relaxivity values was found for Gd(DTPA)2-, where R2 = 6.8 +/- 0.3 mM-1 s-1 for choline and 1.5 +/- 0.4 mM-1 s-1 for N-acetylaspartate. Variation in relaxivity values was attributed primarily to differences between the charges of the paramagnetic agent and metabolite. The maximum potential influence of the contrast agents on in vivo metabolite signals was calculated using the measured relaxivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagewiesche, D.P.; Ashour, S.S.; Sandall, O.C.
1995-05-01
Recently, several researchers have suggested using aqueous mixtures of small amounts of monoethanolamine and much larger amounts of N-methyldiethanolamine for the absorption of CO{sub 2} and for the selective removal of H{sub 2}S from gas streams of mixtures of CO{sub 2} and H{sub 2}S. The densities and viscosities of aqueous N-methyldiethanolamine/monoethanolamine (MDEA/MEA) blends containing 30 and 40 mass % total amine with MEA concentrations of 5, 10, and 15 mass % of the total amine concentration were measured at temperatures of 303, 313, and 323 K. The diffusion coefficients and Henry`s law constants of N{sub 2}O in these solutions weremore » also measured and were used to estimate the diffusion coefficients and Henry`s law constants of CO{sub 2} in these solutions according to the N{sub 2}O/CO{sub 2} analogy technique.« less
The effect of gamma irradiation on rice protein aqueous solution
NASA Astrophysics Data System (ADS)
Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria
2018-05-01
The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.
NASA Astrophysics Data System (ADS)
Zhang, Shujuan; Ding, Liping; Lü, Fengting; Liu, Taihong; Fang, Yu
2012-11-01
The detection of nitroaromatics in aqueous solutions by a novel pyrene-functionalized film has been investigated in the present study. The pyrene moieties were attached on the glass surface via a long flexible spacer based on self-assembled monolayer technique. Steady-state fluorescence measurements revealed that these surface-attached pyrene moieties exhibited both monomer and excimer emission. Nitroaromatics such as 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,4,6-trinitrophenol (picric acid) were found to efficiently quench the fluorescence emission of this film. The quenching results demonstrated that the excimer emission of these surface-confined pyrene moieties is more sensitive to the presence of nitroaromatics than the monomer emission. The quenching mechanism was examined through fluorescence lifetime measurement and it revealed that the quenching is static in nature and may be caused by electron transfer from the polycyclic aromatics to the nitroaromatics. Furthermore, the response of the film to nitroaromatics is fast and reversible, and the obtained film shows promising potentials in detecting explosives in aqueous environment.
Extracting alcohols from aqueous solutions. [USDOE patent application
Compere, A.L.; Googin, J.M.; Griffith, W.L.
1981-12-02
The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.
Dielectric relaxation measurement and analysis of restricted water structure in rice kernels
NASA Astrophysics Data System (ADS)
Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki
2007-04-01
Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
Measurement of the Water Relaxation Time of ɛ-Polylysine Aqueous Solutions
NASA Astrophysics Data System (ADS)
Shirakashi, Ryo; Amano, Yuki; Yamada, Jun
2017-05-01
ɛ-Polylysine is an effective food preservative. In this paper, the β-relaxation time of ɛ-polylysine aqueous solutions, which represents the rotational speed of a single water molecule, was measured by broadband dielectric spectroscopy at various temperatures and concentrations. The broadband dielectric spectrum of each sample containing water ranging from 35 wt% to 75 wt% at temperatures ranging from 0°C to 25°C was measured using a co-axial semirigid cable probe. The measured dielectric spectra of the samples were composed of several Debye relaxation peaks, including a shortest single molecular rotational relaxation time of water, the β-relaxation time, longer than that of pure water. This result represents that ɛ-polylysine suppresses the molecular kinetics of water. It is also found that the β-relaxation time of an ɛ-polylysine solution that contained more than 35 wt% water showed a typical Arrhenius plot in the temperature range from 0°C to 25°C. The activation energy of each sample depends on the water content ratio of the sample. As indicated by its long β-relaxation time, ɛ-polylysine is expected to possess high abilities of suppressing freezing and ice coarsening.
SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE
Schubert, J.
1958-06-01
A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.
NASA Astrophysics Data System (ADS)
Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel
The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.
Werlen, Christoph; Jaspers, Marco C. M.; van der Meer, Jan Roelof
2004-01-01
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 μM). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices. PMID:14711624
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-08-11
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
Wang, Junmei; Hou, Tingjun
2011-01-01
In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689
Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2018-03-01
In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a Low-Cost Spectrophotometric Sensor for ClO2 Gas
NASA Astrophysics Data System (ADS)
Conry, Jessica; Scott, Dane; Apblett, Allen; Materer, Nicholas
2006-04-01
ClO2 is of interest because of it's capability to kill biological hazards such as E. coli and mold. However, ClO2 is a toxic, reactive gas that must be generated at the point-of-use. Gas storage is not possible due to the possibility of an explosion. The need to detect the amount of ClO2 at the point-of-use necessitates a low cost sensor. A low-cost spectrophotometric sensor based on a broad-band light source, a photodiode detector and a band-pass filter is proposed. To verify the design, precise determinations of the gas-phase cross-section and characterization of the optical components are necessary. Known concentrations of ClO2(g) are prepared using the equilibrium relationship between an aqueous solution and the gas phase. The aqueous solutions are obtained by generating the gas via a chemical reaction and passing it through water. The concentrations of the aqueous solutions are then determined by chemical titration and UV-visible absorption measurements. For the solutions, a maximum absorption is observed at 359 nm, and the cross section at this wavelength is determined to be 4.79x10-18cm^2, in agreement with previous observations. Using a broad-band source, the absorption of ClO2 gas is successfully analyzed and concentrations are determined as low as 100 ppm. A more recent prototype based on an UV LED can measure down to concentrations as low as one ppm.
Feigenbrugel, Valérie; Le Calvé, Stéphane; Mirabel, Philippe
2006-01-01
The absorption spectra of five pesticides, namely 2,4-dichloro-phenoxy acetic acid (2,4-D), cymoxanil, fenpropidin, isoproturon and pyrimethanil, have been measured in aqueous solution using a set-up consisting of two parallel absorption cells coupled to a CCD detector. The absolute values of their molar absorptivity coefficients epsilon were determined in the wavelength-range 240-344 nm with a deuterium-lamp at room temperature (298+/-2 K). Using the Beer-Lambert law, values of epsilon were also determined at 253.7 nm with a Hg-Lamp: epsilon = 145+/-14 for 2,4-D, epsilon = 7940+/-920 for cymoxanil, epsilon = 196+/-14 for fenpropidin, epsilon = 7330+/-880 for isoproturon, epsilon = 13200+/-1400 for pyrimethanil (in units of M(-1) cm(-1)). The quoted errors correspond to 2 sigma obtained from the least square fit analysis and the estimated systematic error of 5% due to the uncertainties in aqueous concentrations. For all the studied compounds, the absorbances measured were lower than 2.3 and did not exhibit any deviation from the Beer-Lambert's law. Our experimental data are discussed and compared to UV spectra of similar molecules when such data were available in the literature. Based on their UV spectra and the calculated fractions of these pesticides in the aqueous phase, their direct photolysis under sunlight environment could occur, except may be for fenpropidin, either in water surfaces or in aqueous droplets contained in the atmospheric clouds.
NASA Astrophysics Data System (ADS)
Feigenbrugel, Valérie; Le Calvé, Stéphane; Mirabel, Philippe
2006-01-01
The absorption spectra of five pesticides, namely 2,4-dichloro-phenoxy acetic acid (2,4-D), cymoxanil, fenpropidin, isoproturon and pyrimethanil, have been measured in aqueous solution using a set-up consisting of two parallel absorption cells coupled to a CCD detector. The absolute values of their molar absorptivity coefficients ɛ were determined in the wavelength-range 240-344 nm with a deuterium-lamp at room temperature (298 ± 2 K). Using the Beer-Lambert law, values of ɛ were also determined at 253.7 nm with a Hg-Lamp: ɛ = 145 ± 14 for 2,4-D, ɛ = 7940 ± 920 for cymoxanil, ɛ = 196 ± 14 for fenpropidin, ɛ = 7330 ± 880 for isoproturon, ɛ = 13200 ± 1400 for pyrimethanil (in units of M-1 cm-1). The quoted errors correspond to 2σ obtained from the least square fit analysis and the estimated systematic error of 5% due to the uncertainties in aqueous concentrations. For all the studied compounds, the absorbances measured were lower than 2.3 and did not exhibit any deviation from the Beer-Lambert's law. Our experimental data are discussed and compared to UV spectra of similar molecules when such data were available in the literature. Based on their UV spectra and the calculated fractions of these pesticides in the aqueous phase, their direct photolysis under sunlight environment could occur, except may be for fenpropidin, either in water surfaces or in aqueous droplets contained in the atmospheric clouds.
CIDEP study on the flash photolysis of benzoin included in β-cyclodextrin
NASA Astrophysics Data System (ADS)
Kitahama, Yasutaka; Murai, Hisao
1996-10-01
The photodissociation reaction of benzoin (Norrish type I) included in a β-cyclodextrin (CD) cavity in the aqueous phase was studied by using time-resolved ESR and Fourier transform ESR methods. The CIDEP (chemically induced dynamic electron polarization) spectra of α-hydroxybenzyl radical and benzoyl radical were carefully investigated in β-CD, in ethanol, in an ethanol/water mixture, and in saturated aqueous solutions. According to these data and the calculations due to an extended Bloch equation, the spin-lattice relaxation time observed in the β-CD system was compared to those in homogeneous solutions. It is concluded that dissociation takes place from the excited triplet state of benzoin and the fragment radicals are easily ejected from the cavity of β-CD to the aqueous phase much faster than the time-resolution (˜ 20 ns) of the present FT-ESR measurement.
Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki
2016-11-01
In order to elucidate an electroacoustic phenomenon of mixed micelles in an aqueous solution, we measured the colloid vibration current (CVI) in aqueous solutions of binary surfactant mixtures. Based on the thermodynamic treatment of critical micelle concentration (cmc) values determined by conductivity measurements, it was expected that dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) molecules would mix ideally in the micelle. However, the micelle composition as evaluated from the CVI measurement, based on the linear dependence of the CVI value on the micelle composition, differed from the aforementioned ideality. Considering these observations, we concluded that the CVI measurement was more sensitive to the counterion distribution near the micelle surface, whereas the thermodynamically determined micelle composition included the counterions more loosely bound in the diffuse double layer due to the electroneutrality condition included in its assumption. On the other hand, the phase diagram illustrating micelle formation in the lithium dodecyl sulfate (LiDS) - lithium perfluorooctane sulfonate (LiFOS) mixture system showed a heteroazeotropic point arising from the stronger interactions between homologous surfactants than between heterologous ones. Although the concentration dependence of CVI values was expected to drastically change at a heteroazeotropic point due to the enormous variation in the density of the micelle core, the results showed a monotonous change, which suggests that the density of the micelle core varies continuously. By taking the partial molar volume of fluorocarbon compounds in the hydrocarbon compounds into account, the density of the micelle core was affected by the size of the micelle as well as its constituents.
Dielectric spectroscopy in aqueous solutions of oligosaccharides: Experiment meets simulation
NASA Astrophysics Data System (ADS)
Weingärtner, Hermann; Knocks, Andrea; Boresch, Stefan; Höchtl, Peter; Steinhauser, Othmar
2001-07-01
We report the frequency-dependent complex dielectric permittivity of aqueous solutions of the homologous saccharides D(+)-glucose, maltose, and maltotriose in the frequency range 200 MHz⩽ν⩽20 GHz. For each solute, solutions having concentrations between 0.01 and 1 mol dm-3 were studied. In all measured spectra two dispersion/loss regions could be discerned. With the exception of the two most concentrated maltotriose solutions, a good description of the spectra by the superposition of two Debye processes was possible. The amplitudes and correlation times of the glucose and maltose solutions determined from fits of the experimental data were compared to those obtained in an earlier molecular dynamics study of such systems; the overall agreement between experiment and simulation is quite satisfactory. A dielectric component analysis of the simulation results permitted a more detailed assignment of the relaxation processes occurring on the molecular level. The physical picture emerging from this analysis is compared with traditional hydration models used in the interpretation of measured dielectric data. It is shown that the usual standard models do not capture an important contribution arising from cross terms due to dipolar interactions between solute and water, as well as between hydration water and bulk water. This finding suggests that conventional approaches to determine molecular dipole moments of the solutes may be problematic. This is certainly the case for solutes with small molecular dipole moments, but strong solute-solvent interactions, such as the saccharides studied here.
Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids
NASA Astrophysics Data System (ADS)
Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.
1988-05-01
Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.
NASA Astrophysics Data System (ADS)
Buczkowski, Adam; Urbaniak, Pawel; Piekarski, Henryk; Palecz, Bartlomiej
2017-01-01
The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG < 0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n = 8 ± 1 molecules of the drug with an equilibrium constant of K = 70 ± 10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH < 0) and is accompanied by an advantageous change in entropy (ΔS > 0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.
Partial molar volume of anionic polyelectrolytes in aqueous solution.
Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo
2007-05-15
In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.
RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS
Hansford, D.L.; Raabe, E.W.
1963-08-20
Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)
NASA Astrophysics Data System (ADS)
Kreck, Cara A.; Mandumpal, Jestin B.; Mancera, Ricardo L.
2011-01-01
Some simple amides in aqueous solution are used in the cryopreservation of biological tissues as they are believed to promote the vitrification of water, inhibiting its crystallisation and the ensuing damage from ice formation. Molecular dynamics annealing simulations reveal a broadening in the glass transition of aqueous acetamide and N-methylacetamide solutions, suggesting a thermodynamic stabilisation of the glassy state, which may be responsible for their increased tendency of vitrification and their cryoprotective ability. By contrast, aqueous formamide solutions do not exhibit broadening of the glass transition; instead, it is shifted to lower temperatures, which explains their lack of vitrification properties.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.
2017-07-01
In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.
Zhang, Ying; Yuan, Shuwei; Lu, Rong; Yu, Anchi
2013-06-20
We studied the ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine (AcTyr) and N-acetyltryptophan (AcTrp) in aqueous solution with femtosecond transient absorption spectroscopy. We found that the charge-transfer rate between Atto655 and AcTyr is about 240 times smaller than that between Atto655 and AcTrp. The pH value and D2O dependences of the excited-state decay kinetics of Atto655 in the presence of AcTyr and AcTrp reveal that the quenching of Atto655 fluorescence by AcTyr in aqueous solution is via a proton-coupled electron-transfer (PCET) process and that the quenching of Atto655 fluorescence by AcTrp in aqueous solution is via an electron-transfer process. With the version of the semiclassical Marcus ET theory, we derived that the electronic coupling constant for the PCET reaction between Atto655 and AcTyr in aqueous solution is 8.3 cm(-1), indicating that the PCET reaction between Atto655 and AcTyr in aqueous solution is nonadiabatic.
Method and apparatus for synthesizing anhydrous HNO.sub.3
Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.; McGuire, Raymond R.
1984-01-01
A method and apparatus for electrochemically synthesizing anhydrous HNO.sub.3 from an aqueous solution of HNO.sub.3 includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /aqueous HNO.sub.3 solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO.sub.3 may be disposed at the cathode within the electrochemical cell. Aqueous HNO.sub.3 having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO.sub.3.
Method and apparatus for synthesizing anhydrous HNO/sub 3/. [Patent application
Coon, C.L.; Harrar, J.E.; Pearson, R.K.; McGuire, R.R.
1982-07-20
A method and apparatus for electrochemically synthesizing anhydrous HNO/sub 3/ from an aqueous solution of HNO/sub 3/- includes oxidizing a solution of N/sub 2/O/sub 4//aqueous HNO/sub 3/ at an anode, while maintaining a controlled potential between the N/sub 2/O/sub 4//aqueous HNO/sub 3/ solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO/sub 3/ may be disposed at the cathode within the electrochemical cell. Aqueous HNO/sub 3/ having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO/sub 3/.
Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt.
Katsumoto, Yoichi; Omori, Shinji; Yamamoto, Daisuke; Yasuda, Akio; Asami, Koji
2007-01-01
Dielectric spectroscopy measurements were performed for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine over a frequency range of 10;{5} to 10;{8}Hz . Dielectric dispersion was found to include two relaxation processes in the ranges from 10;{5} to 10;{6} and from 10;{6} to 10;{8}Hz , respectively, with the latter mainly discussed in this study. The dielectric increment and the relaxation time of the high-frequency relaxation of DNA in solutions without added salt exhibited concentration and polymer-length dependences eventually identical to those for dilute polyion solutions described in previous studies. For solutions with added salt, on the other hand, those dielectric parameters were independent of salt concentration up to a certain critical value and started to decrease with further increasing salt concentration. This critical behavior is well explained by our newly extended cell model that takes into account the spatial distribution of loosely bound counterions around DNA molecules as a function of salt concentration.
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2018-05-01
Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0-0.07 mol kg-1 and temperature T = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (Δsol H m ) and the transfer of dipeptides (Δtr H m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of Δsol H m and Δtr H m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion-ion, ion-polar, and hydrophobic-hydrophobic interactions between SDS and dipeptide molecules.
Chain Conformation of Phosphorycholine-based Zwitterionic Polymer Brushes in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Mao, Jun; Yu, Jing; Lee, Sungsik; Yuan, Guangcui; Satija, Sushil; Chen, Wei; Tirrell, Matthew
Polyzwitterionic brushes are resistant to nonspecific accumulation of proteins and microorganisms, making them excellent candidates for antifouling applications. It is well-known that polyzwitterions exhibit the so-called antipolyelectrolyte effect: Polyzwitterionic brushes would adopt a collapsed conformation at a low ionic strength due to the electrostatic inter/intra-chain association; whereas at a high ionic strength, they would exhibit an extended conformation because the electrostatic inter/intra-chain dipole-dipole interaction is weakened. However, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is a unique member in polyzwitterionic families. Its ultrahigh affinity to water leads to no detectable shrinks in aqueous solutions even at low ionic strengths. In this study, we synthesized highly dense PMPC brushes via surface initiated radical polymerization and systematically investigate their conformational behaviors at solid-liquid interfaces in the presence of multivalent counterions, combining X-ray and neutron scattering and force measurements. We have demonstrated that despite no obvious changes of the entire lengths of extended PMPC brushes in aqueous solutions, the chain conformations including, but not limited to, polyzwitterion distribution and charge correlation, varied, dependent on salt types, ionic strengths and ion valences.
Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.
Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de
2008-10-13
The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.
ERIC Educational Resources Information Center
Nyasulu, Frazier; Stevanov, Kelly; Barlag, Rebecca
2010-01-01
Using a conductivity sensor, a temperature sensor, and a datalogger, fundamental factors that affect conductivity are explored. These factors are (i) concentration, (ii) temperature, (iii) ion charge, and (iv) size and or mass of anion. In addition, the conductivities of a number of other solutions are measured. This lab has been designed to…
Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang
2015-01-01
Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911
Bellich, Barbara; Gamini, Amelia; Brady, John W; Cesàro, Attilio
2018-04-05
The physical chemical properties of aqueous solutions of model compounds are illustrated in relation to hydration and solubility issues by using three perspectives: thermodynamic, spectroscopic and molecular dynamics simulations. The thermodynamic survey of the fundamental backgrounds of concentration dependence and experimental solubility results show some peculiar behavior of aqueous solutions with several types of similar solutes. Secondly, the use of a variety of experimental spectroscopic devices, operating under different experimental conditions of dimension and frequency, has produced a large amount of structural and dynamic data on aqueous solutions showing the richness of the information produced, depending on where and how the experiment is carried out. Finally, the use of molecular dynamics computational work is presented to highlight how the different types of solute functional groups and surface topologies organize adjacent water molecules differently. The highly valuable contribution of computer simulation studies in providing molecular explanations for experimental deductions, either of a thermodynamic or spectroscopic nature, is shown to have changed the current knowledge of many aqueous solution processes. While this paper is intended to provide a collective view on the latest literature results, still the presentation aims at a tutorial explanation of the potentials of the three methodologies in the field of aqueous solutions of pharmaceutical molecules. Copyright © 2018. Published by Elsevier B.V.
Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
Huang, T M; Hung, H C; Chang, T C; Chang, G G
1998-01-01
Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when the pH of the solution was raised. At pL 11.0, the piT was 1.07 in reverse micelles, which corresponds to the inverse-isotope effect of the reaction in this solvent system. Normal viscosity effects on kcat and kcat/Km were observed in aqueous solution, corresponding to a diffusional controlled physical step as the rate-limiting step. We propose that the rate-limiting step of the hydrolytic reaction changes from phosphate releasing in aqueous solution to a covalent phosphorylation or dephosphorylation step in reverse micelles. PMID:9461520
Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
Huang, T M; Hung, H C; Chang, T C; Chang, G G
1998-02-15
Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when the pH of the solution was raised. At pL 11.0, the piT was 1.07 in reverse micelles, which corresponds to the inverse-isotope effect of the reaction in this solvent system. Normal viscosity effects on kcat and kcat/Km were observed in aqueous solution, corresponding to a diffusional controlled physical step as the rate-limiting step. We propose that the rate-limiting step of the hydrolytic reaction changes from phosphate releasing in aqueous solution to a covalent phosphorylation or dephosphorylation step in reverse micelles.
Alcaráz, Mirta R; Schwaighofer, Andreas; Kristament, Christian; Ramer, Georg; Brandstetter, Markus; Goicoechea, Héctor; Lendl, Bernhard
2015-07-07
In this work, we report mid-IR transmission measurements of the protein amide I band in aqueous solution at large optical paths. A tunable external-cavity quantum cascade laser (EC-QCL) operated in pulsed mode at room temperature allowed one to apply a path length of up to 38 μm, which is four times larger than that applicable with conventional FT-IR spectrometers. To minimize temperature-induced variations caused by background absorption of the ν2-vibration of water (HOH-bending) overlapping with the amide I region, a highly stable temperature control unit with relative temperature stability within 0.005 °C was developed. An advanced data processing protocol was established to overcome fluctuations in the fine structure of the emission curve that are inherent to the employed EC-QCL due to its mechanical instabilities. To allow for wavenumber accuracy, a spectral calibration method has been elaborated to reference the acquired IR spectra to the absolute positions of the water vapor absorption bands. Employing this setup, characteristic spectral features of five well-studied proteins exhibiting different secondary structures could be measured at concentrations as low as 2.5 mg mL(-1). This concentration range could previously only be accessed by IR measurements in D2O. Mathematical evaluation of the spectral overlap and comparison of second derivative spectra confirm excellent agreement of the QCL transmission measurements with protein spectra acquired by FT-IR spectroscopy. This proves the potential of the applied setup to monitor secondary structure changes of proteins in aqueous solution at extended optical path lengths, which allow experiments in flow through configuration.
NASA Astrophysics Data System (ADS)
Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath
2017-11-01
Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.
Translational and rotational dynamics of monosaccharide solutions.
Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise
2009-10-01
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Zhu, Zihua; Yu, Xiao-Ying
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique surface analysis technique because it can provide molecular recognition for organic and biological molecules. However, analyzing aqueous solution surfaces by ToF-SIMS is difficult, because ToF-SIMS is a high-vacuum technique, while the vapor pressure of water is about 2.3 kPa at room temperature (20 C). We designed and fabricated a self-contained microfluidic device, enabling in situ analysis of aqueous surfaces by scanning electron microscope (SEM) and ToF-SIMS, which has been briefly reported.1,2 In this study, we report more performance data, focusing on the performance of this device for in situ analysis ofmore » organic molecules at aqueous surfaces using ToF-SIMS. Three representative organic compounds (formic acid, glycerol, and glutamic acid) were tested, and their molecular signals were successfully observed. The device can be self-running in vacuum for 8 hours, and SIMS measurements are feasible at any time in this time range. The stability of this device under primary ion beam bombardment is also impressive. High fluence (6 × 1012 ions cm-2 s-1) measurements can be operated continuously for up to 30 minutes without any significant damage to the aperture. However, extra-high fluence measurements (>1 × 1014 ions cm-2 s-1) may lead to liquid bumping in the aperture, and the aqueous solutions may spread out quickly. Signal reproducibility is reasonably good, and relative standard deviation (RSD) for molecular ion signals can be controlled to be smaller than ±15% for consecutive measurements. Measurements at long time intervals (e.g., 60 min) show RSDs of ±40-50%. In addition, the detection limits of formic acid, glycerol, and glutamic acid are estimated to be 0.04%, 0.008%, and 0.002% (weight ratio), respectively.« less
URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM
Vogler, S.; Beederman, M.
1961-05-01
A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.
Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.
2008-01-01
In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
In Situ Cross-Linking of Polyvinyl Alcohol Films
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Shu, L. C.; May, C. E.
1984-01-01
Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.
2011-01-01
polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions ...involved 96 h exposures in aqueous solutions , followed by a 1-2 hour (depending on size) feeding period on Artemia (brine shrimp) nauplii in clean seawater...EC50) based on post- exposure feeding of the polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions . Metric (µg/L) Worm age
SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS
Warf, J.C.
1959-04-21
The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.
Balakrishnan, T; Ramamurthi, K
2007-10-01
Glycine zinc sulphate salt was synthesized and the solubility and metastable zonewidth were estimated from the aqueous solution. Single crystals of glycine zinc sulphate were grown by solvent evaporation method from aqueous solution. Grown crystals were characterized by X-ray diffraction and FT-IR spectral analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties of the crystal were investigated by thermogravimetric analysis. Microhardness study was carried out on (01-1) face of the grown crystal. Its powder second harmonic generation efficiency was measured using Nd:YAG laser and the value was observed to be 0.7 times that of potassium dihydrogen orthophosphate.
Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy
Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.; ...
2017-09-13
In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less
Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.
In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less
The presence of polymeric material in radiolysed aqueous solutions of ammonium bicarbonate
NASA Astrophysics Data System (ADS)
Draganic, Z. D.; Negron-Mendoza, A.; Navarro-Gonzalez, R.; Vujosevic, S. I.
A polymeric material is present in radiolysed aqueous solutions (O 2-free) of ammonium bicarbonate (0.05 mol dm -3) at large doses of cobalt-60 gamma rays (0.15-1.7 MGy). Polymer is a secondary radiolytic product: its measurable amounts appear after about 0.15 MGy and increase with dose to become about 0.1 g dm -3 at 1.7 MGy. Throughout the dose range studied, the HPLC gives for molecular weight 16,000-14,000 dalton, and the i.r. spectra show the presence of characteristic functional groups of CH 2, CH, CO -3, COO - and NH +4. Possible chemical nature of polymeric material and its origin are considered.
Thermal degradation of (6R,S)-5,10-methenyltetrahydrofolate in aqueous solution at pH 8
NASA Astrophysics Data System (ADS)
Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.
2009-03-01
The degradation of the folate (6R,S)-5,10-methenyltetrahydrofolate chloride (MTHF-Cl) in aqueous solution at pH 8 at room temperature is studied by absorption spectra measurements. Samples with and without the reducing agent β-mercaptoethanol (β-ME) both under aerobic and anaerobic conditions are investigated. MTHF-Cl hydrolyses to (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate) in all four cases. 10-HCO-H4folate oxidizes to 10-formyldihydrofolate (10-HCO-H2folate) under aerobic conditions in the absence of β-ME. The degradation dynamics is analysed theoretically and conversion rate constants of hydrolysis and oxidation are determined.
Kameda, Tsunenori
2015-01-01
We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.
Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries
2015-01-01
Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232
Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries
2015-12-17
Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.
Solution In-Line Alpha Counter (SILAC) Instruction Manual-Version 4.00
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven M. Alferink; Joel E. Farnham; Malcolm M. Fowler
2002-06-01
The Solution In-Line Alpha Counter (SILAC) provides near real-time alpha activity measurements of aqueous solutions in gloveboxes located in the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The SILAC detector and its interface software were first developed by Joel Farnham at LANL [1]. This instruction manual describes the features of the SILAC interface software and contains the schematic and fabrication instructions for the detector.
Modified resins for solid-phase extraction
Fritz, James S.; Sun, Jeffrey J.
1993-07-27
A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.
Modified resins for solid-phase extraction
Fritz, James S.; Sun, Jeffrey J.
1991-12-10
A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.
Hyman, H.H.; Dreher, J.L.
1959-07-01
The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.
Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes
NASA Astrophysics Data System (ADS)
Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2018-06-01
The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.
Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio
2007-10-11
We performed dielectric spectroscopy measurements on aqueous solutions of glycine betaine (N,N,N-trimethylglycine), which is known to be a strong stabilizer of globular proteins, over a wide concentration range (3-62 wt %) and compared the results with our previously published data for aqueous solutions of urea, a representative protein denaturant. The hydration number of betaine (9), calculated on the basis of the reduction in the dielectric relaxation strength of bulk water with addition of betaine, is significantly larger than that of urea (2). Furthermore, the dielectric relaxation time increased with betaine concentration, while that remained nearly constant for the urea-water system over a wide concentration range. This difference between urea and betaine is probably related to their opposite effects on the protein stabilization.
Experimental evidence for excess entropy discontinuities in glass-forming solutions.
Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas
2012-02-21
Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2013-04-01
Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.
Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3
NASA Astrophysics Data System (ADS)
Kumar, R.; Saunders, R. W.; Mahajan, A. S.; Plane, J. M. C.; Murray, B. J.
2010-12-01
Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2O5, or its hydrated form HIO3, formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2O5 at 273-303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3, a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2O5. The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (ΔHsol) for HIO3 and I2O5. A ΔHsol value of 8.3±0.7 kJ mol-1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol-1. For I2O5, we report for the first time its solubility at various temperatures and ΔHsol = 12.4±0.6 kJ mol-1. The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.
Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3
NASA Astrophysics Data System (ADS)
Kumar, R.; Saunders, R. W.; Mahajan, A. S.; Plane, J. M. C.; Murray, B. J.
2010-09-01
Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2O5, or its hydrated form HIO3, formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2O5 at 273-303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3, a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2O5. The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (ΔHsol) for HIO3 and I2O5. A (ΔHsol value of 8.3±0.7 kJ mol-1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol-1. For I2O5, we report for the first time its solubility at various temperatures and (ΔHsol=12.4±.6 kJ mol-1. The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.
Czajkowska-Kośnik, Anna; Wolska, Eliza; Chorążewicz, Juliusz; Sznitowska, Małgorzata
2015-01-01
The in vivo model on rabbit eyes and the in vitro cytotoxicity on fibroblasts were used to compare irritation effect of aqueous and oily (Miglyol 812) solutions of surfactants. Tween 20, Tween 80 and Cremophor EL were tested in different concentrations (0.1, 1 or 5%) and the in vitro test demonstrated that surfactants in oil are less cytotoxic than in aqueous solutions. In the in vivo study, the aqueous solutions of surfactants were characterized as non-irritant while small changes in conjunctiva were observed after application the oily solutions of surfactants and the preparations were classified as slightly irritant, however this effect was similar when Miglyol was applied alone. In conclusion, it is reported that the MTT assay does not correlate well with the Draize scores.
RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS
Elson, R.E.
1959-07-14
The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.
Process for recovering pertechnetate ions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1997-01-01
A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
NASA Astrophysics Data System (ADS)
Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.
2016-11-01
Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.
Method for selectively reducing plutonium values by a photochemical process
Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.
1978-01-01
The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.
Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K
2016-02-01
Treatment and reuse of brines, produced from energy extraction activities, requires aqueous solubility data for organic compounds in saline solutions. The presence of salts decreases the aqueous solubility of organic compounds (i.e. salting-out effect) and can be modeled using the Setschenow Equation, the validity of which has not been assessed in high salt concentrations. In this study, we used solid-phase microextraction to determine Setschenow constants for selected organic compounds in aqueous solutions up to 2-5 M NaCl, 1.5-2 M CaCl2, and in Na-Ca binary electrolyte solutions to assess additivity of the constants. These compounds exhibited log-linear behavior up to these high NaCl concentrations. Log-linear decreases in solubility with increasing salt concentration were observed up to 1.5-2 M CaCl2 for all compounds, and added to a sparse database of CaCl2 Setschenow constants. Setschenow constants were additive in binary electrolyte mixtures. New models to predict CaCl2 and KCl Setschenow constants from NaCl Setschenow constants were developed, which successfully predicted the solubility of the compounds measured in this study. Overall, data show that the Setschenow Equation is valid for a wide range of salinity conditions typically found in energy-related technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution
NASA Astrophysics Data System (ADS)
Wei, Guo; Shida, Katsunori
This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.
Zdziennicka, Anna
2009-07-15
The adsorption behaviour at the water-air interface of aqueous solutions of Triton X-100 and methanol (ethanol) mixtures at constant Triton X-100 (TX-100) concentration equal to 10(-7), 10(-6), 10(-5), 10(-4), 6x10(-4) and 10(-3)M, respectively, in a wide range of alcohol concentration was investigated by surface tension measurements of solutions. The obtained values of the surface tension of aqueous solutions of "pure" methanol and ethanol and their mixtures with TX-100, as well as the values of propanol solutions and their mixtures with TX-100 as a function of alcohol concentration taken from the literature were compared with those calculated from the Szyszkowski, Connors and Fainerman and Miller equations. On the basis of this comparison it was stated that these equations can be useful for description of the solution surface tension in the wide range of alcohol concentration, but only at the concentrations of Triton X-100 corresponding to its unsaturated layer in the absence of alcohol. It was also stated that the Connors equation is more adequate for concentrated aqueous organic solutions. The measured values of the surface tension were used in the Gibbs equation to determine the surface excess concentration of Triton X-100 and alcohol. Next, on the basis of Gibbs adsorption isotherms those of Guggenheim and Adam and real adsorption isotherms were established. From the obtained adsorption isotherms it results that alcohol influences the shape of TX-100 isotherms in the whole range of alcohol and TX-100 concentration, but TX-100 influences the alcohol isotherms only at TX-100 concentration at which the saturated monolayer at the solution-air interface is formed in the absence of alcohol. This conclusion was confirmed by analysis of the composition of the surface layer in comparison to the composition of the bulk phase in the equilibrium state.
Nita, Loredana Elena; Chiriac, Aurica P; Neamtu, Iordana; Bercea, Maria
2010-03-01
The interpenetrated macromolecular chains complexation between poly(aspartic acid) and poly(vinyl alcohol) in aqueous solution it was investigated. The interpolymer complexation process was evaluated through dynamic rheology. The aspects concerning the stability of the tested homopolymers and the prepared interpolymeric complex there were achieved from the evaluation of the aqueous solutions'zeta potential and also by determining the pH influence upon the zeta potential and the conductivity. The data obtained through the rheological dynamic measurements were correlated with the composition of the polymeric mixture, the dependence of zeta potential and conductivity. The study reveals the conditions for the formation of interpenetrated polymeric complex as being a ratio of 70wt.% PAS to 30wt.% PVA at 22 degrees C and 50/50 PAS/PVA ratio at 37 degrees C temperature. From the pH influence upon the zeta potential values it was evidenced the PAS aqueous solution does not reach the isoelectric point. At the same time, PVA solution and the complex PAS/PVA reaches the isoelectric point at strongly acid pH. The better stability of PAS, PVA and their mixture in solution is recorded in the alkaline domain (7.5
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, W.Y.
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Jung, Kwan Ho; Lee, Keun-Hyeung
2015-09-15
A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.
Process for extracting technetium from alkaline solutions
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.
1995-01-01
A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.
Bidentate organophosphorus solvent extraction process for actinide recovery and partition
Schulz, Wallace W.
1976-01-01
A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.
Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite
NASA Astrophysics Data System (ADS)
Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen
2018-03-01
The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.
Water purification using organic salts
Currier, Robert P.
2004-11-23
Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.
Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...
2016-01-14
A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.
A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.
NASA Astrophysics Data System (ADS)
Savchenkova, A. S.; Buryak, A. K.; Kurbatova, S. V.
2015-09-01
The sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on porous graphitized carbon was studied. The effect of the structure of analyte molecules and the eluent composition on the characteristics of retention under the conditions of RP HPLC was analyzed. The effect of pH of the eluent on the shift of equilibrium in aqueous acetonitrile solutions was investigated.
ADSORPTION PROCEDURE IN PREPARING U$sup 23$$sup 3$
Stoughton, R.W.
1958-10-14
A process is presented for the separation of protoactinium and thorium from an aqueous nitric acid solution containing these metals. It comprises contacting the solution with a cation exchange phenol-formaldehyde resin containing sulfonic acid groups, and eluting the adsorbed thorium from the resin by means of aqueous nitric acid. Thereafter the adsorbed protoactinium is eluted from the resin by means of an aqueous solution of ammonium fluoride.
NASA Astrophysics Data System (ADS)
Bollengier, O.; Brown, J. M.; Vance, S.; Shaw, G. H.
2015-12-01
Geophysical data from the Galileo and Cassini-Huygens missions are consistent with the presence of aqueous subsurface oceans in Ganymede, Callisto and Titan, the largest icy satellites of the solar system. To understand the history and present state of these moons, the next generation of evolution models will require an accurate description of the properties of these liquid layers to predict the phase boundaries, heat transports and chemical exchanges within them. Sound speed measurements in pressure and temperature allow for the reconstruction of the Gibbs free energy surface of a phase, which in turn gives access to the desired properties (chemical potential, density, heat capacity...). However, such data are still scarce for aqueous solutions bearing Na+, Mg2+, Cl- and SO42- ions (major ions expected in extra-terrestrial oceans) at the high pressures and low temperatures expected for water inside these moons (up to 1.5 GPa for Ganymede, down to freezing temperatures). For pure water, IAPWS accuracy for sound speeds is given to 0.3% above 0.4 GPa. MgSO4aqueous solutions have been explored to 0.7 GPa with a precision limited to about 0.5%. Most other aqueous solutions bearing any combination of these four ions have not been explored at all above a few hundreds MPa. To acquire new high-precision sound speeds in aqueous solutions of various compositions, we set up a new experimental system working in the 0 - 0.7 GPa pressure range and 240 - 350 K temperature range. The device consists in an oil-pressurized steel vessel enclosing a titanium alloy rod supporting the sample and a sealing bellows. A transducer at the top end of the titanium rod generates ultrasonic waves and collects the series of subsequent reflections. Preliminary tests with pure water illustrate a precision of 0.02% and an accuracy within 0.1% of IAPWS on our whole pressure range. Revision of the properties of pure water and H2O-MgSO4 solutions up to 0.7 GPa along with the first data in the H2O-MgCl2 above 0.1 GPa will be presented, and their implications for the internal structure or large icy moons discussed.
Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods
ERIC Educational Resources Information Center
Barlag, Rebecca; Nyasulu, Frazier
2011-01-01
The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…
Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.
Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K
2017-10-24
The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.
Hinoue, Mitsuo; Hori, Hajime
2017-01-01
For a new desorption method development for working environment measurement, desorption efficiency of organic solvent vapors from an activated carbon was examined using desorption solutions that consisted of anionic and nonionic surfactants. Ten μl of an aqueous solution of isopropyl alcohol or methyl ethyl ketone diluted with distilled water was spiked into a 10 ml vial with a coconut-shell-activated carbon (100 mg). The vial was left for 24 h, and 5 ml a desorption solution was added. Afterwards, the vial was put into an incubator at 60°C and left for 24 h, then the desorption efficiency was determined by analyzing the headspace gas in the vial with a gas chromatograph equipped with flame ionization detector. By adding one or four kinds of nonionic surfactants to the aqueous solution containing two kinds of anionic surfactants, the effect adding nonionic surfactant to the desorption efficiency was investigated, but improvement of desorption efficiency was not observed. On the other hand, desorption efficiency varied depending on the production lot of the coconut-shell-activated carbon tube used as the adsorbent.
Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind
2012-09-27
The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.
Jimenez-Ruiz, A; Grueso, E; Perez-Tejeda, P
2015-10-01
Electrogenerated chemiluminescence, ECL, reactions between tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3](2+), and PAMAM GX.0 (X=1 and 2) dendrimers in an aqueous medium were carried out at pH10 (fully deprotonated dendrimer surface). ECL was detected in the presence of GX.0 dendrimers without addition of any known coreactant. Atomic force microscopy, AFM, measurements for GX.0 dendrimers in the presence of the [Ru(bpy)3](2+) complex were also done. AFM images showed the existence of aggregates (pillars) of globular shape, as well as interdendrimer networks forming fibers in the x-y direction for dendrimer aqueous solutions. ECL and AFM results in cooperation suggest that the coreactant effect of the end amine groups is improved by both the dendritic branched shells and the globular z-type aggregates. The ECL efficiency trends as a function of [GX.0] (whole range) can be interpreted taking into account the coreactant effect modulated by the presence of the z and x-y type aggregates. Importantly, ECL efficiency values can be taken as a measure of the change induced on the dendrimer aggregation in aqueous solutions when their concentrations rise. Redox potentials of the [Ru(bpy)3](3+/2+) couple in the presence of the G1.0 and G2.0 dendrimers were also determined. Copyright © 2015 Elsevier Inc. All rights reserved.
Anion dependent ion pairing in concentrated ytterbium halide solutions
NASA Astrophysics Data System (ADS)
Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina
2018-06-01
We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.
Narang, Ajit S; Badawy, Sherif; Ye, Qingmei; Patel, Dhaval; Vincent, Maria; Raghavan, Krishnaswamy; Huang, Yande; Yamniuk, Aaron; Vig, Balvinder; Crison, John; Derbin, George; Xu, Yan; Ramirez, Antonio; Galella, Michael; Rinaldi, Frank A
2015-08-01
Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.
Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.B.; Lee, H.; Lee, K.H.
1998-09-01
The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selectedmore » as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.« less
NASA Astrophysics Data System (ADS)
Amini, Noushin; Hassan, Yassin A.
2012-12-01
Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2·2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids.
Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto
2013-09-01
Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.
Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui
2017-01-01
A novel functional KH2PO4 (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR. PMID:28772632
Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui
2017-03-09
A novel functional KH₂PO₄ (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH₂PO₄ aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations ( c KDP ) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the c KDP . As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion ( c KDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.
Analysis of Direct Samples of Extraterrestrial, Organic-Bearing, Aqueous Fluids
NASA Technical Reports Server (NTRS)
Zolensky, Michael
2016-01-01
I will describe water we have found in 4.5 billion year old extraterrestrial salt, and the organics that are also present. We hypothesize that organics being carried through the parent body of the halite have been deposited adjacent to the fluid inclusions, where they have been preserved against any thermal metamorphism. We are making bulk compositional, carbon and hydrogen isotopic measurements of solid organic phases associated with the aqueous fluid inclusions in the meteorites. We will compare these organics with those found in chondrites and Wild-2 comet coma particles to determine whether these classes of organics had an origin within aqueous solutions.
Mullan, B F; Madsen, M T; Messerle, L; Kolesnichenko, V; Kruger, J
2000-04-01
The purpose of this study was to examine the radiologic attenuation properties of the parent cluster compounds, particularly attenuation as a function of discrete photon energy, before investigating ligand substitutions, which are necessary to improve cluster biocompatibility and to impart desirable physicochemical properties. The linear attenuation coefficients for solutions of the cluster compounds Ta6Br14, K8Ta6O19, and (H3O)2W6Cl14 were determined at 60, 80, 103, 122, and 140 keV from gamma-ray transmission measurements with americium-241, xenon-133, gadolinium-153, cobalt-57, and technetium-99m radioactive sources. Transmission measurements were obtained for a fixed time interval that ensured a statistically accurate count distribution exceeding 20,000 counts through the sample for each trial. On a strictly mole per liter basis, a 0.075 mol/L aqueous solution of K8Ta6O19 showed 1.08 times the attenuation of 0.063 mol/L aqueous iohexol at 60 keV and 3.30 times the attenuation at 80 keV. Similarly, a 0.05 mol/L methanolic solution of (H3O)2W6Cl4 showed 0.96 times (96%) the attenuation of 0.063 mol/L aqueous iohexol at 60 keV but 3.09 times the attenuation of the iohexol solution at 80 keV. Attenuations of 0.063 mol/L aqueous iohexol and 0.0125 mol/L Ta6Br14 (ie, at approximately one-fifth the iohexol concentration) were comparable at greater than 60 keV. These results confirm the theoretic potential for use of early transition metal cluster compounds as radiographic contrast agents. At higher x-ray energies, cluster compounds demonstrate multiplied x-ray attenuation relative to iodinated contrast agents.
NASA Astrophysics Data System (ADS)
Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb
2016-09-01
Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.
Ceramic porous material and method of making same
Liu, Jun; Kim, Anthony Y.; Virden, Jud W.
1997-01-01
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.
Ceramic porous material and method of making same
Liu, J.; Kim, A.Y.; Virden, J.W.
1997-07-08
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.
Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.
Zhang, R H; Zhang, X T; Hu, S M
2008-04-15
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.
Peng, Na; Ai, Ziye; Fang, Zehong; Wang, Yanfeng; Xia, Zhiping; Zhong, Zibiao; Fan, Xiaoli; Ye, Qifa
2016-10-05
Water-soluble quaternized chitins (QCs) were homogeneously synthesized by reacting chitin with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) in 8wt% NaOH/4wt% urea aqueous solutions. The chemical structure and solution properties of the quaternized chitins were characterized by (1)H NMR, FT-IR, elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The results demonstrated that the water-soluble QCs, with a degree of substitution (DS) values of 0.27-0.54, could be obtained by varying the concentration of chitin, the molar ratio of CHPTAC to chitin unit, and the reaction time at room temperature (25°C). Two QCs (DS=0.36 and 0.54) were selected and studied as gene carriers. Agarose gel retardation assay revealed that both QCs could condense DNA efficiently when N/P ratio>3. The results of particle size and zeta potential indicated that both QCs had a good ability of condensing plasmid DNA into compact nanoparticles with the size of 100-200nm and zeta potential of +18 to +36mV. Compared to polyethylenimine (PEI, 25kDa), the QCs exhibited outstanding low cytotoxicity. Transfection efficiencies of the QCs/DNA complexes were measured using pGL-3 encoding luciferase as the foreign DNA, and the QCs/DNA complexes showed effective transfection efficiencies in 293T cells. These results revealed that the QCs prepared in NaOH/urea aqueous solutions could be used as promising non-viral gene carriers owing to their excellent characteristics. Copyright © 2016. Published by Elsevier Ltd.
Wu, Jia; Wang, Shixia; Zheng, Haifei
2016-01-01
The Raman wavenumber of the symmetric stretching vibration of carbonate ion (ν1-CO32−) was measured in three aqueous solutions containing 2.0 mol·L−1 Na2CO3 and 0.20, 0.42, or 0.92 mol·L−1 NaCl, respectively, from 122 to 1538 MPa at 22 °C using a moissanite anvil cell. The ν1 Raman signal linearly shifted to higher wavenumbers with increasing pressure. Most importantly, the slope of ν1-CO32− Raman frequency shift (∂ν1/∂P)I was independent of NaCl concentration. Moreover, elevated ionic strength was found to shift the apparent outline of the carbonate peak toward low wavenumbers, possibly by increasing the proportion of the contact ion pair NaCO3−. Further investigations revealed no cross-interaction between the pressure effect and the ionic strength effect on the Raman spectra, possibly because the distribution of different ion-pair species in the carbonate equilibrium was largely pressure-independent. These results suggested that the ionic strength should be incorporated as an additional constraint for measuring the internal pressure of various solution-based systems. Combining the ν1-CO32− Raman frequency slope with the pressure herein with the values for the temperature or the ionic strength dependencies determined from previous studies, we developed an empirical equation that can be used to estimate the pressure of carbonate-bearing aqueous solutions. PMID:27982064
Automated iodine monitor system. [for aqueous solutions
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.
Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions
NASA Astrophysics Data System (ADS)
Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny
2016-06-01
The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.
Price, Marianne O; Quillin, Clorissa; Price, Francis W
2005-07-01
To evaluate the effect of gatifloxacin ophthalmic solution 0.3% (Zymar, Allergan, Inc., Irvine, CA, USA) on corneal endothelial cell density and morphology and to measure gatifloxacin penetration into aqueous humor. This was a single-center, open-label clinical study. Ten patients undergoing standard cataract surgery and 20 nonsurgical subjects instilled gatifloxacin 0.3% four times per day for 2 days, then every 10 min for 1 hr on the third day (the surgery day for the cataract patients). Corneal endothelial cells were counted using noncontact specular microscopy. Anterior chamber fluid was withdrawn from the surgical patients, and the gatifloxacin concentration was quantified by high-pressure liquid chromatography. Baseline endothelial cell counts (mean +/- SD) were 2400 +/- 442 in the surgical group and 2520 +/- 212 in the nonsurgical group. The mean differences from baseline 1 hr after the last dose of gatifloxacin 0.3% were -51 +/- 213 (p = 0.23) in the surgical group and -7 +/- 150 (p = 0.42) in the nonsurgical group. In the nonsurgical group, the mean difference from baseline 3 weeks after the last dose was 18 +/- 147 (p = 0.71). The mean concentration (+/- SD) of gatifloxacin in aqueous humor was 1.26 +/- 0.55 microg/ml. A preoperative, prophylactic course of gatifloxacin 0.3% ophthalmic solution did not significantly affect endothelial cell density or morphology, while meaningful drug concentration was achieved in the aqueous humor.
Interactions in micellar solutions of β-casein
NASA Astrophysics Data System (ADS)
Leclerc, E.; Calmettes, P.
1997-02-01
β-casein is a protein which forms micelles in aqueous solvents. The magnitude and the range of the weight-average interactions between the diverse solute particles are infrared from small-angle neutron scattering measurements made on various β-casein solutions. Well above the critical micelle concentration (CMC), these interactions are repulsive. They weaken with decreasing protein concentration, and finally become strongly attractive near the CMC. Although indispensable for micelle formation this fact has never been reported so far.
SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF
Magnusson, L.B.
1958-04-01
A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.
Radiolysis of aqueous solutions of thiamine
NASA Astrophysics Data System (ADS)
Chijate, C.; Albarran, G.; Negron-Mendoza, A.
1998-06-01
The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.
Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.
Mosquera-Giraldo, Laura I; Taylor, Lynne S
2015-02-02
Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.
ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS
Long, R.S.; Bailes, R.H.
1958-04-15
A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.
Removal of copper ions from aqueous solutions by a steel-making by-product.
López, F A; Martín, M I; Pérez, C; López-Delgado, A; Alguacil, F J
2003-09-01
A study is made of the use of a steel-making by-product (rolling mill scale) as a material for removing Cu(2+) ions from aqueous solutions. The influence of contact time, initial copper ion concentration and temperature on removal capability is considered. The removal of Cu(2+) ions from an aqueous solution involves two processes: on the one hand, the adsorption of Cu(2+) ions on the surface of mill scale due to the iron oxides present in the latter; and on the other hand, the cementation of Cu(2+) onto metallic iron contained in the mill scale. Rolling mill scale is seen to be an effective material for the removal of copper ions from aqueous solutions.
Process for recovering pertechnetate ions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1997-02-18
A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
Shepherd, I W
1976-01-01
Raman polarization measurements of the amide I band are reported in ionized poly-L-lysine dissolved in aqueous methanol. The observed changes with methanol concentration, attributed to changes in coil conformation and to the helix-coil transition, represent a novel method of measuring polymer conformation. Polarization measurements as a function of temperature yield values of the energy differences between rotational isomeric states in the coil. deltaH, of 8.8 +/- 0.7, 10.4 +/- 1.1 and 10.8 +/- 1.5 kJ/mol at methanol concentrations (v/v) of 85, 80 and 70% respectively. The stabilization energy of the helix is estimated at 9.3 kJ/mol. PMID:949317
Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A
2015-05-19
In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.
NASA Technical Reports Server (NTRS)
Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.
2005-01-01
Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.
NASA Astrophysics Data System (ADS)
McLafferty, Jason
Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.
PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS
Faris, B.F.
1960-04-01
A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.
Chiou, C.T.; Shoup, T.D.; Porter, P.E.
1985-01-01
Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.
NASA Astrophysics Data System (ADS)
Noel, M.; Santhanam, R.; Francisca Flora, M.
The solvent can play a major role in the intercalation/de-intercalation process and the stability of graphite substrates towards this process. This fact is established in the present work that involves fluoride intercalation/de-intercatlation on graphite electrodes in aqueous and aqueous methanolic HF solutions where the HF concentration is varied between 1.0 and 18.0 M. In addition to cyclic voltammetry and potentiostatic polarization, open-circuit potential decay measurements, scanning electron microscopy and X-ray diffraction measurements have been employed. In general, addition of methanol and increasing concentration of HF raise the overall intercalation/de-intercalation efficiency. Methanol is adsorbed preferentially on the graphite lattice and, hence, suppresses both oxygen evolution and the formation of passive graphite oxides. In 15.0 M HF, the optimum methanol concentration is 5 vol.%. This suggests that, in addition to the adsorption effect, there is some weakening of the structured water molecules that facilitates the solvated fluoride ions for efficient intercalation.
A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.
Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner
2016-10-01
Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri
2012-11-21
In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.
Han, Xu; Liu, Yang; Critser, John K.
2010-01-01
Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a “mass redemption” method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. PMID:20447385
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.
Fluorescence microscopy for measuring fibril angles in pine tracheids
Ralph O. Marts
1955-01-01
Observation and measurement of fibril angles in increment cores or similar small samples from living pine trees was facilitated by the use of fluorescence microscopy. Although some autofluorescence was present, brighter images could be obtained by staining the specimens with a 0.1% aqueous solution of a fluorochrome (Calcozine flavine TG extra concentrated, Calcozine...
How Does a Hydrophobic Macromolecule Respond to Mixed Osmolyte Environment?
Tah, Indrajit; Mondal, Jagannath
2016-10-04
The role of the protecting osmolyte Trimethyl N-oxide (TMAO) in counteracting the denaturing effect of urea on a protein is quite well established. However, the mechanistic role of osmolytes on the hydrophobic interaction underlying protein folding is a topic of contention and is emerging as a key area of biophysical interest. Although recent experiment and computer simulation have established that individual aqueous solution of TMAO and urea respectively stabilizes and destabilizes the collapsed conformation of a hydrophobic polymer, it remains to be explored how a mixed aqueous solution of protecting and denaturing osmolytes influences the conformations of the polymer. In order to bridge the gap, we have simulated the conformational behavior of both a model hydrophobic polymer and a synthetic polymer polystyrene in an aqueous mixture of TMAO and urea. Intriguingly, our free energy based simulations on both the systems show that even though a pure aqueous solution of TMAO stabilizes the collapsed or globular conformation of the hydrophobic polymer, addition of TMAO to an aqueous solution of urea further destabilizes the collapsed conformation of the hydrophobic polymer. We also observe that the extent of destabilization in a mixed osmolyte solution is relatively higher than that in pure aqueous urea solution. The reinforcement of the denaturation effect of the hydrophobic macromolecule in a mixed osmolyte solution is in stark contrast to the well-known counteracting role of TMAO in proteins under denaturing condition of urea. In both model and realistic systems, our results show that in a mixed aqueous solution, greater number of cosolutes preferentially bind to the extended conformation of the polymer relative to that in the collapsed conformation, thereby complying with Tanford-Wyman preferential solvation theory disfavoring the collapsed conformation. The results are robust across a range of osmolyte concentrations and multiple cosolute forcefields. Our findings unequivocally imply that the action of mixed osmolyte solution on hydrophobic polymer is significantly distinct from that of proteins.
Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford
2012-03-01
We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.
NASA Astrophysics Data System (ADS)
Nemoto, Shimpei; Ueno, Tomonaga; Watthanaphanit, Anyarat; Hieda, Junko; Bratescu, Maria Antoaneta; Saito, Nagahiro
2017-09-01
A simple method of fabricating carboxyl-terminated multiwalled carbon nanotubes (MWCNTs) with alkyl spacers was developed to improve the dispersion quality of MWCNTs in aqueous solutions using solution plasma (SP) in a 6-aminocaproic acid solution. The formation of SP in the solution led to better dispersion of MWCNTs in aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) results indicate that a carboxyl group with an alkyl spacer can be introduced by SP treatment in the 6-aminocaproic acid solution. Sedimentation tests show that the SP-treated MWCNTs in the 6-aminocaproic acid solution retained their good dispersion quality in aqueous solutions of pHs 5, 6, and 9. The alkyl spacer plays an important role in the preservation of dispersion states particularly at pH 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dem'yanova, T.A.; Stepanov, A.V.; Babaev, A.S.
1987-03-01
The fluorescence spectrum of trivalent europium in aqueous solutions of thenoyltrifluoroacetone, excited by a nitrogen laser with emission wavelength 337 nm, exhibits bands at 582, 593, 616, 650, and 695 nm. Two bands appear in the fluorescence spectrum of trivalent curium under the same conditions - at 598 and 607 nm. The times of quenching of the fluorescence of the ions of these elements were measured, both in H/sub 2/O medium and in D/sub 2/O. A linear relationship was found between the fluorescence intensity of europium and curium and their concentration in TTA solution. The limit of determination of europiummore » and curium by the fluorescent method with laser excitation using the bands at 615 and 607 nm proved equal to 0.3 and 0.07 ng/ml, respectively.« less
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji
2015-05-01
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto
2015-05-07
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less
Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.
Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer
2016-10-05
The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.
Djamali, Essmaiil; Chen, Keith; Murray, Richard C; Turner, Peter J; Cobble, James W
2009-02-26
Integral heat of solution measurements of barium chloride to 619.81 K, copper oxide in an excess of perrhenic acid to 585 K, and cobalt perrhenate in perrhenic acid to 573 K were measured in a high dilution calorimeter (< or =10(-3) m) at psat, from which the high temperature thermodynamic properties of aqueous barium chloride, copper perrhenate, and cobalt perrhenate were obtained. From the known differences between the corresponding properties for aqueous perrhenate and chloride ions, the thermodynamic properties of completely ionized aqueous copper and cobalt chloride were obtained from ionic additivity. The enthalpy and derived heat capacity data at higher temperatures (T > 473.15 K) suggest that the ligand field stabilization energy of Co2+(aq) may be disappearing.
Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.
1976-06-22
This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.
SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE
Rimshaw, S.J.
1961-10-24
A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)
Engineering and Design. Containment and Disposal of Aqueous Film-Forming Foam Solution
1997-05-23
Aqueous Film-Forming Foam (AFFF) concentrate used in DoD facilities must be "MIL-SPEC" foam conforming to MIL - F - 24385 . MIL-SPEC foam is recognized...requirements, the MIL - F - 24385 provides for important chemical and physical properties not specified by other standards. "MIL-SPEC" AFFF concentrate...is the standard by which others are measured. Other commercially available AFFF concentrates are simply not comparable to those conforming to MIL - F - 24385 . 3.2
Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.
Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R
2012-08-23
Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.
Polymer-assisted aqueous deposition of metal oxide films
Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2003-07-08
An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.
Recovering oil by injecting aqueous alkali, cosurfactant and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisberg, J.; Bielmowicz, L. J.; Thigpen, D. R.
1985-01-15
A process of recovering oil from a subterranean reservoir in which the oil is acidic but forms monovalent cation soaps of only relatively low interfacial activity when reacted with aqueous alkaline solutions, comprises displacing the oil toward a production location with a mixture of gas and cosurfactant-containing aqueous alkaline solution.
NASA Astrophysics Data System (ADS)
Cvetkovic, Dragan; Markovic, Dejan
2008-01-01
Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roscioli-Johnson, Kristyn M.; Zarzana, Christopher A.; Groenewold, Gary S.
In this paper, solutions of N,N-didodecyl-N',N'-dioctyldiglycolamide in n-dodecane were subjected to γ-irradiation in the presence and absence of both an aqueous nitric acid phase and air sparging. The solutions were analyzed using ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS) to determine the rates of radiolytic decay of the extractant as well as to identify radiolysis products. The DGA concentration decreased exponentially with increasing dose, and the measured degradation rate constants were uninfluenced by the presence or absence of acidic aqueous phase, or by air sparging. Finally, the identified radiolysis products suggest that the bonds most vulnerable to radiolytic attack are thosemore » in the diglycolamide center of these molecules and not in the side chains.« less
NASA Astrophysics Data System (ADS)
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
Membrane Treatment of Aqueous Film Forming Foam (AFFF) Wastes for Recovery of Its Active Ingredients
1980-10-01
T ME1MBRANE TREATMENT OF AQUEOUS FILM FORMING FOAM~ (AFFF) WASTES FOR RECOVERY OFI Fts ACTIVE INGREDIENTS FINAL REPORT October 1980 by Edward S. K...OF THIS PAGEOPMn Date AVntr* d)__ ---- Ultrafiltration (UF) and Reverse Osmosis (RO) treatment of Aqueous Film Forming Foam (AFFF) solutions was...of Aqueous Film Forming Foam (AFFF) solutions was investigated to determine the feasibility of employing membrane processes to separate and recover
Huang, Yuan; Sutter, Eli; Wu, Liangmei; Xu, Hong; Bao, Lihong; Gao, Hong-Jun; Zhou, Xingjiang; Sutter, Peter
2018-06-21
Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore de-ionized (DI) water as a solution top gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal sub-threshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels where such control is difficult to realize with conventional back-gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.
Method for producing oxygen from lunar materials
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
1993-01-01
This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.
Lee, Eun Zoo; Lee, Sun Uk; Heo, Nam-Su; Stucky, Galen D; Jun, Young-Si; Hong, Won Hi
2012-04-25
A turn-on fluorescence sensor, Cu(2+)-c-mpg-C(3)N(4), was developed for detection of CN(-) in aqueous solution by simply mixing cubic mesoporous graphitic carbon nitride (c-mpg-C(3)N(4)) and aqueous solution of Cu(NO(3))(2). The highly sensitive detection of CN(-) with a detection limit of 80 nM is not only possible in aqueous solution but also in human blood serum.
Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory
2015-01-01
A dielectrophoresis (DEP)-based method is reported to achieve highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension (IFT) forces with no trapped oil while the encapsulated cells are free from the electrical damages due to the Faraday cage effect. PMID:26297051
SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS
Cowan, G.A.
1959-08-25
The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.
Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.
Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao
2018-05-18
Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.
Application of fluorescent dyes for some problems of bioelectromagnetics
NASA Astrophysics Data System (ADS)
Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey
2016-04-01
Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
NASA Astrophysics Data System (ADS)
Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.
2013-10-01
Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.
Solution behavior of metoclopramide in aqueous-alcoholic solutions at 30°C
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Sawale, R. T.; Tawde, P. D.; Kalyankar, T. M.
2016-07-01
Densities (ρ) and refractive indices ( n D) of solutions of antiemetic drug metoclopramide (4-amino-5-chloro- N-(2-(diethylamino)ethyl)-2-methoxybenzamide hydrochloride hydrate) in methanolwater and ethanol-water mixtures of different compositions were measured at 30°C. Apparent molar volume (φv) of the drug was calculated from density data and partial molar volumes (φ v 0 ) were determined from Massons relation. Concentration dependence of nD has been studied to determine refractive indices of solution at infinite dilution ( n D 0 ). Results have been interpreted in terms of solute-solvent interactions.
Adsorption of arsenic from aqueous solution using magnetic graphene oxide
NASA Astrophysics Data System (ADS)
Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.
2017-06-01
A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.
Cai, Longfei; Zhong, Minghua; Li, Huolin; Xu, Chunxiu; Yuan, Biyu
2015-07-01
We describe a simple and cost-effective strategy for rapid fabrication of microfluidic paper-based analytical devices and valves by inkjet printing. NaOH aqueous solution was printed onto a hydrophobic filter paper, which was previously obtained by soaking in a trimethoxyoctadecylsilane-heptane solution, allowing selective wet etching of hydrophobic cellulose to create hydrophilic-hydrophobic contrast with a relatively good resolution. Hexadecyltrimethylammonium bromide (CTMAB)-ethanol solution was printed onto hydrophobic paper to fabricate temperature-controlled valves. At low temperature, CTMAB deposited on the paper is insoluble in aqueous fluid, thus the paper remains hydrophobic. At high temperature, CTMAB becomes soluble so the CTMAB-deposited channel becomes hydrophilic, allowing the wicking of aqueous solution through the valve. We believe that this strategy will be very attractive for the development of simple micro analytical devices for point-of-care applications, including diagnostic testing, food safety control, and environmental monitoring.
Adsorptive removal of antibiotics from aqueous solution using carbon materials.
Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie
2016-06-01
Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing
2017-11-01
A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.
Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.
Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth
2010-04-14
Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.
Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L
2010-11-25
A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.
REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS
Ames, L.L.
1962-01-16
ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)
Seaborg, G.T.
1957-10-29
Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, Wen Y.
1984-01-01
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.
Kajiwara, K; Motegi, A; Murase, N
2001-01-01
The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.
NASA Astrophysics Data System (ADS)
Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi
2014-05-01
Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, A.B.
1975-06-01
A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.
Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.
1978-01-01
An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.
Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production
NASA Technical Reports Server (NTRS)
T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor); Huang, Cunping (Inventor)
2014-01-01
Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.
Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo
2017-05-01
We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.
SEPARATION OF HAFNIUM FROM ZIRCONIUM
Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.
1960-05-31
The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.
Kraus, K.A.; Moore, G.E.
1959-02-01
A process is presented for the separation of protactinium values from an aqueous solution containing Pa and Th values comprising establishing in the solution a HCl concentration of from 4 to 11 molar, contacting the resulting solution with an anion-exchange adsorbent, such as a polystyrene divinyl benzene polymer with quatenary amines as the active exchange group, to effect the adsorption of Pa values upon the adsorbent while leaving Th values in the solution, and then washlng the separated Pa bearing adsorbent with an aqueous solution of HCl of less than 4M to exclusively elute Pa values from the adsorbent. If hexavalent U values are contained in the original solution thcy are adsorbed on the resin together with Pa. A separation is offected chromatographically by percolating the resin with aqueous HCl.
Singlet Oxygen in Aqueous Solution: A Lecture Demonstration
ERIC Educational Resources Information Center
Shakhashiri, Bassam Z.; Williams, Lloyd G.
1976-01-01
Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)
NASA Astrophysics Data System (ADS)
Jackman, Spencer D.
Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation was observed in all aqueous systems under electrochemical conditions. While LATP was surprisingly resistant to static corrosion in a hot, aqueous LiOH solution, electrochemical degradation was observed at the cathode due to subsurface pitting. Strength measurements were more instructive than impedance measurements in detecting this degradation.
Wang, Tianshu
2006-01-01
This study has developed a method for measuring the enthalpy of volatilization (Delta(vol)H) of a compound in a dilute solution via ion-molecule reactions and gas-phase analysis using selected ion flow tube mass spectrometry (SIFT-MS). The Delta(vol)H/R value was obtained using an equation with three variant forms either from the headspace concentration of the solution or from individual product ion(s). Under certain experimental conditions, the equation has the simplest form [formula: see text], where R is the gas constant (8.314 J . mol(-1) . K(-1)), i(n) and I are the respective product and precursor ion count rates, and T is the temperature of the solution. As an example, a series of 27.0 micromol/L aqueous solutions of acetone was analyzed over a temperature range of 25-50 degrees C at 5 degrees C intervals using H3O+, NO+ and O2+* precursor ions, producing a mean Delta(vol)H/R value of 4700 +/- 200 K. This corresponds with current literature values and supports the consistency of the new method. Notably, using this method, as long as the concentration of the solution falls into the range of Henry's law, the exact concentration does not have to be known and it can require only one sample at each temperature. Compared with previous methods which involve the measurement of Henry's law constant at each temperature, this method significantly reduces the number of samples required and avoids the labour and difficulties in preparing standard solutions at very low concentrations. Further to this, if the contents of a solution were unknown the measured Delta(vol)H/R from individual product ion(s) can help to identify the origin of the ion(s). Copyright 2006 John Wiley & Sons, Ltd.
Dagade, Dilip H; Shetake, Poonam K; Patil, Kesharsingh J
2007-07-05
The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.
Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming
2015-10-28
A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOLVENT EXTRACTION PROCESS FOR PLUTONIUM
Seaborg, G.T.
1959-04-14
The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.
Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.
Ku, Y; Wang, W; Shen, Y S
2000-02-01
The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.
Process for the extraction of technetium from uranium
Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.
2010-12-21
A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.
ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS
Roberts, F.P.
1963-08-13
Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)
Armour, Margaret-Ann; Linetsky, Asya; Ashick, Donna
2008-10-01
Water-soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non-health threatening products. The research was in the management of small quantities of hazardous wastes, such as are generated in school, college, and university teaching laboratories; in research laboratories; in industrial quality control and testing laboratories; and in small industries. Methods for the recovery of silver, nickel, and cobalt salts from relatively small volumes of aqueous solutions of their soluble salts were developed and tested. Where it was not practical to recover the metal salt, the practice has been to convert it to a water-insoluble salt, often the sulfide. This requires the use of highly toxic reagents. It was found that a number of heavy metal salts can be precipitated as the silicates, returning them to the form in which they are found in the natural ore. These salts show similar solubility properties to the sulfides in neutral, acidic, and basic aqueous solutions. The work has determined the conditions, quantities, and solution acidity that result in the most effective precipitation of the heavy metal salt. The concentration of the metal ions remaining in solution was measured by AA and ICP spectrometry. Specific methods have been developed for the conversion of salts of mercury and chromium to nonsoluble products.
Method for separating water soluble organics from a process stream by aqueous biphasic extraction
Chaiko, David J.; Mego, William A.
1999-01-01
A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2018-01-01
The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions ( h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.
Smalley, John F.
2017-04-06
In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less
Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C
2011-05-24
The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).
Simoncic, Z; Roskar, R; Gartner, A; Kogej, K; Kmetec, V
2008-05-22
Perindopril Erbumine (PER) is one of the newly used angiotensin-converting enzyme inhibitors (ACE inhibitors) and is used for the treatment of patients with hypertension and symptomatic heart failure. It has two main degradation pathways, i.e. the degradation by hydrolysis and the degradation by cyclization. An isothermal heat conduction microcalorimetry (MC) and high pressure liquid chromatography (HPLC) were used for the characterization of aqueous solutions of PER and its stability properties. The rates of heat evolved during degradation of perindopril were measured by MC as a function of temperature and pH and from these data rate constant and change in enthalpy of the reactions were determined. With the HPLC method the concentration of perindopril and its degradation products were measured as a function of time in aqueous solutions of different pH that were stored at different temperatures. We demonstrated that reactions of degradation of perindopril at observed conditions follow the first order kinetics. The Arrhenius equation for each pH was determined. At pH 6.8 only one degradation pathway is present, i.e. the degradation by hydrolysis. Degradation constants for this pathway calculated from MC data are in good agreement with those obtained from HPLC. MC as a non-specific technique was shown to be useful in studies of PER when one reaction was present in the sample and also when more chemical and physical processes were simultaneously running.
Cooperativity between various types of polar solute-solvent interactions in aqueous media.
Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y
2015-08-21
Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.
Montenegro, L; Carbone, C; Giannone, I; Puglisi, G
2007-05-01
The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-01
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2012 CFR
2012-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2014 CFR
2014-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2013 CFR
2013-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
Method for gettering organic, inorganic and elemental iodine in aqueous solutions
Beahm, Edward C.; Shockley, William E.
1990-07-03
A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.
Method for gettering organic, inorganic and elemental iodine in aqueous solutions
Beahm, Edward C.; Shockley, William E.
1990-01-01
A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.
Crystal growth in fused solvent systems
NASA Technical Reports Server (NTRS)
Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.
1973-01-01
Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.