Sample records for aqueous sulphuric acid

  1. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Removing sulphur oxides from a fluid stream

    DOEpatents

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  3. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.

    PubMed

    Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z

    2018-01-30

    Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Industrial applications of new sulphur biotechnology.

    PubMed

    Janssen, A J; Ruitenberg, R; Buisman, C J

    2001-01-01

    The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide in wastewater or as H2S in natural gas, biogas, syngas or refinery gases. Waste streams containing sulphate are generated by many industries, including mining, metallurgical, pulp and paper and petrochemical industries. Applying process technologies that rely on the biological sulphur cycle can prevent environmental pollution. In nature sulphur compounds may cycle through a series of oxidation states (-2, 0, +2, +4, +6). Bacteria of a wide range of genera gain metabolic energy from either oxidising or reducing sulphur compounds. Paques B.V. develops and constructs reactor systems to remove sulphur compounds from aqueous and gaseous streams by utilising naturally occurring bacteria from the sulphur cycle. Due to the presence of sulphide, heavy metal removal is also achieved with very high removal efficiencies. Ten years of extensive laboratory and pilot plant research has, to date, resulted in the construction of over 30 full-scale installations. This paper presents key processes from the sulphur cycle and discusses recent developments about their application in industry.

  5. Sensorially important aldehyde production from amino acids in model wine systems: impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide.

    PubMed

    Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C

    2013-11-01

    The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The non-participation of organic sulphur in acid mine drainage generation

    USGS Publications Warehouse

    Casagrande, D.J.; Finkelman, R.B.; Caruccio, F.T.

    1989-01-01

    Acid mine drainage is commonly associated with land disturbances that encounter and expose iron sulphides to oxidising atmospheric conditions. The attendant acidic conditions solubilise a host of trace metals. Within this flow regime the potential exists to contaminate surface drinking water supplies with a variety of trace materials. Accordingly, in evaluating the applications for mines located in the headwaters of water sheds, the pre-mining prediction of the occurrence of acid mine drainage is of paramount importance. There is general agreement among investigators that coal organic sulphur is a nonparticipant in acid mine drainage generation; however, there is no scientific documentation to support this concensus. Using simulated weathering, kinetic, mass balance, petrographic analysis and a peroxide oxidation procedure, coal organic sulphur is shown to be a nonparticipant in acid mine drainage generation. Calculations for assessing the acid-generating potential of a sedimentary rock should not include organic sulphur content. ?? 1989 Sciences and Technology Letters.

  7. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation.

    PubMed

    Ehrhart, Sebastian; Ickes, Luisa; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-10-27

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208-292 K, sulphuric acid concentrations from 1·10 6 to 1·10 9  cm -3 , and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphuric acid clusters, detected by an Atmospheric Pressure Interface Time of Flight (APi-TOF) mass spectrometer. APi-TOF measurements of the sulphuric acid ion cluster distributions ( (H2SO4)i·HSO4- with i = 0, 1, ..., 10) show qualitative agreement with the SAWNUC ion cluster distributions. Remaining differences between the measured and modeled distributions are most likely due to fragmentation in the APi-TOF. The CLOUD results are in good agreement with previously measured cluster binding energies and show the SAWNUC model to be a good representation of ion-induced and neutral binary nucleation of sulphuric acid-water clusters in the middle and upper troposphere.

  8. Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater.

    PubMed

    Baune, Claudia; Bottcher, Michael E

    2010-12-01

    The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H₂S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H₂S from aqueous solution by an inert gas (N₂) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H₂S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in ³⁴S compared to the liberated H₂S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H₂S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H₂S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Geßler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H

  9. Equilibrium distribution of dissolved sulphur species in water at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Garrels, R.M.; Naeser, C.R.

    1958-01-01

    The Eh-pH diagrams for the equilibrium concentrations in aqueous solution at 25°C of native sulphur and all the various sulphur-containing ions and acids from which the ions are produced have been constructed for systems having a total sulphur concentration of 0.1 molar. The composite of these diagrams indicates that elemental sulphur, H2S, HS− HSO4− and SO4 are the species that predominate in the environments that might be found in nature. This indication is in agreement with the composition of all sulphur-containing minerals.

  10. Identification and geochemical significance of sulphurized fatty acids in sedimentary organic matter from the Lorca Basin, SE Spain

    NASA Astrophysics Data System (ADS)

    Russell, Marie; Hartgers, Walter A.; Grimalt, Joan O.

    2000-11-01

    The presence of free sulphurized fatty acids in various sediment types (carbonates, marls, organic-rich shales) of the Messinian of the Lorca Basin, SE Spain, is reported. These compounds are found in the majority, but not all, of the samples from this basin which also contain sulphur-bound hydrocarbons. They constitute mixtures of C 16-C 26 linear fatty acids predominated by the C 18 homologues with thiophene, thiolane, and thiane rings attached at various chain positions, with the most abundant isomers being those with ring substitution at position C-9. The dominance of these isomers points to an early sulphurization process involving octadec-9,12-dienoic acid and/or octadeca-9-enoic acid, major lipid constituents of algae. In general, the alkylthiophene fatty acids are more abundant than the alkylthiolane or alkylthiane fatty acids. The presence of the sulphur moiety and structural identification was confirmed by GC-HRMS and by desulphurization of the fatty acid fraction. Desulphurization also showed that a portion of the sulphur containing fatty acids is intermolecularly bound to the polymeric organic matter. The samples exhibiting higher proportions of macromolecularly bound fatty acids were also those showing higher abundances of alkylthiolane or alkylthiane fatty acids. The identification of these compounds shows that the original algal lipids, including the fatty acid pool, can be effectively preserved in sedimentary samples by sulphurization. However, sulphur-bonding only occurs by addition to the unsaturated carbons. Thus, only unsaturated fatty acids are preserved, constituting a major bias in terms of the original sedimentary distributions.

  11. Quantification of sulphur amino acids by ultra-high performance liquid chromatography in aquatic invertebrates.

    PubMed

    Thera, Jennifer C; Kidd, Karen A; Dodge-Lynch, M Elaine; Bertolo, Robert F

    2017-12-15

    We examined the performance of an ultra-high performance liquid chromatography method to quantify protein-bound sulphur amino acids in zooplankton. Both cysteic acid and methionine sulfone were linear from 5 to 250 pmol (r 2  = 0.99), with a method detection limit of 13 pmol and 9 pmol, respectively. Although there was no matrix effect on linearity, adjacent peaks and co-eluting noise from the invertebrate proteins increased the detection limits when compared to common standards. Overall, performance characteristics were reproducible and accurate, and provide a means for quantifying sulphur amino acids in aquatic invertebrates, an understudied group. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    NASA Astrophysics Data System (ADS)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  13. Attenuation of Diabetes-induced Cardiac and Subcellular Defects by Sulphur-containing Amino Acids.

    PubMed

    Tappia, Paramjit S; Adameova, Adriana; Dhalla, Naranjan S

    2018-01-30

    Patients with diabetes mellitus have an increased risk of mortality due to cardiovascular complications. Supplementation with specific sulphur-containing amino acids is rapidly emerging as a possible therapeutic adjuvant for diabetes and associated cardiovascular complications. It is well-known that oxidative stress plays an important role in the pathogenesis of diabetes-induced cardiovascular disease, which is invariably associated with abnormal blood lipid profile, insulin resistance and other symptoms of metabolic syndrome. Cysteine and taurine are among the most common sulphur-containing amino acids and their cellular levels decline during diabetes that may contribute to the development of the cardiomyopathy. Although sulphur-containing agents exert multiple actions on cellular and subcellular functions in the heart, they also exhibit antioxidant properties and thus may exert beneficial effects in different pathophysiological conditions. It is concluded that reduction of oxidative stress by cysteine and taurine may serve as an important mechanism for the attenuation of diabetes-induced subcellular and functional abnormalities in the heart. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    PubMed Central

    2013-01-01

    Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the

  15. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    NASA Astrophysics Data System (ADS)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  16. SULPHUR-CONTAINING AMINO ACIDS METABOLISM IN EXPERIMENTAL HYPER- AND HYPOTHYROIDISM IN RATS.

    PubMed

    Nechiporuk, V; Zaichko, N; Korda, М; Melnyk, A; Koloshko, O

    2017-10-01

    Hyper- and hypothyroidism are some of the most common endocrinopathies that cause many metabolic disorders including amino acids metabolism. However, a specific molecular mechanism of thyroid hormones influence on sulphur-containing amino acids metabolism has not been established. The aim of our research was to investigate experimentally the influence of thyroid gland functional state on the main enzymatic systems of sulphur-containing amino acids metabolism in liver and kidneys, the content of homocysteine, cysteine and H2S in blood. The rats were administered with L-thyroxine and mercazolil to simulate the states of hyper- and hypothyroidism, which were confirmed by the content of fT3, fT4 and TSH in the blood. In liver and kidneys of the animals with hypothyroidism we observed the decrease in the activity of enzymes of remethylation cycle of S-adenosylmethioninsyntase, S-adenosylhomocysteinhyhdrolase, betaine-homocysteine methyltransferase. Suppression of transsulfuration transformation of homocysteine to cysteine in hypothyroidism was mainly due to the inhibition of cystathionine synthase activity of cystathionine-β-synthase, wherein cystathionase activity of cystathionine-γ-lyase was not changed. In animals with hypothyroidism we also noticed the inhibition of cysteine desulfunation reactions: the activity of enzymes of cystathionine-β-synthase, cystathionine-γ-lyase and cysteine aminotransferase significantly decreased in liver and kidneys. Experimental hyperthyroidism was accompanied by increase in activity of remethylation cycle enzymes, increase in cystationine synthase activity of cystathionine-β-synthase in liver and activity of these enzymes in kidneys. The simulation of hyperthyroidism led to the decrease of homocysteine concentration, and of hypothyroidism - to the increase of homocysteine and cysteine concentrations and reduced H2S content in blood of the animals. Thus, the significant risk factors for the development of atherosclerosis

  17. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    PubMed

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  18. Impact of sulphur fumigation on the chemistry of ginger.

    PubMed

    Wu, Cheng-Ying; Kong, Ming; Zhang, Wei; Long, Fang; Zhou, Jing; Zhou, Shan-Shan; Xu, Jin-Di; Xu, Jun; Li, Song-Lin

    2018-01-15

    Ginger (Zingiberis Rhizoma), a commonly-consumed food supplement, is often sulphur-fumigated during post-harvest handling, but it remains unknown if sulphur fumigation induces chemical transformations in ginger. In this study, the effects of sulphur fumigation on ginger chemicals were investigated by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS)-based metabolomics. The results showed that sulphur fumigation significantly altered the holistic chemical profile of ginger by triggering chemical transformations of certain original components. 6-Gingesulphonic acid, previously reported as a naturally-occurring component in ginger, was revealed to be a sulphur fumigation-induced artificial derivative, which was deduced to be generated by electrophilic addition of 6-shogaol to sulphurous acid. Using UHPLC-QTOF-MS/MS extracting ion analysis with 6-gingesulphonic acid as a characteristic chemical marker, all the commercial ginger samples inspected were determined to be sulphur-fumigated. The research outcomes provide a chemical basis for further comprehensive safety and efficacy evaluations of sulphur-fumigated ginger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    NASA Astrophysics Data System (ADS)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  20. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  1. Characterization of dross and its recovery by sulphuric acid leaching

    NASA Astrophysics Data System (ADS)

    Rahmani, S. A.; Meidianto, A.; Amal, M. I.; Wismogroho, A. S.; Widayatno, W. B.

    2018-03-01

    This paper reports the characterization of dross from galvanizing process and its recovery using acidic leaching method. The diffraction profile of dross showed identical peaks with that of ZnO. The X-ray Fluorescence (XRF) analysis identified the content of following metals: Zn, Fe, Mn, Ga, Co, and W. The thermal behaviour examination revealed the existence of some volatiles within the initial sample. The acidic leaching at various concentrations of sulphuric acid was conducted to determine the optimum concentration for zinc recovery and the highest yield of zinc sulphate. It is concluded that the optimum concentration of H2SO4 for this kind of dross is 4 M with 71.9% yield of ZnSO4. The result of leaching process was confirmed by infrared spectrum, where various absorptions corresponding to SO4 2- and Zn-O bands were observed.

  2. Electrochemical investigation of lead-calcium alloys in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Bass, K.; Ellis, S. R.; Johnson, M.; Hampson, N. A.

    The hydrogen evolution reaction from, and the cycle life (Pb /ar PbSO 4) of, a series of lead-calcium alloys (0 - 0.2 wt.% Ca) in sulphuric acid hav The exchange current density and Tafel slope for the H.R.E. increase with Ca content up to 0.05 wt.% then decrease to a value approaching that of pure The observed results are explained by: (i) preferential adsorption of calcium ions at the electrode surface; (ii) incorporation of Ca, to form a supersaturated solution, with alloys containing < 0.075 wt.% Ca; (iii) formation of an insoluble, non-conducting layer of calcium sulphate on the high content alloy.

  3. Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS.

    PubMed

    Raab, Andrea; Ronzan, Marilena; Feldmann, Joerg

    2017-10-18

    Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds, high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80% of the total sulphur present in A. sativum. The roots and bulbs of A. sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitively to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (e.g. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as a sulphur-specific detector and ESI-MS as a molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of the so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S

  4. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids.

    PubMed

    Dinda, Srikanta; Patwardhan, Anand V; Goud, Vaibhav V; Pradhan, Narayan C

    2008-06-01

    The kinetics of epoxidation of cottonseed oil by peroxyacetic acid generated in situ from hydrogen peroxide and glacial acetic acid in the presence of liquid inorganic acid catalysts were studied. It was possible to obtain up to 78% relative conversion to oxirane with very less oxirane cleavage by in situ technique. The rate constants for sulphuric acid catalysed epoxidation of cottonseed oil were in the range 0.39-5.4 x 10(-6)L mol(-1)s(-1) and the activation energy was found to be 11.7 kcal mol(-1). Some thermodynamic parameters such as enthalpy, entropy, and free energy of activation were determined to be of 11.0 kcal mol(-1), -51.4 cal mol(-1)K(-1) and 28.1 kcal mol(-1), respectively. The order of effectiveness of catalysts was found to be sulphuric acid>phosphoric acid>nitric acid>hydrochloric acid. Acetic acid was found to be superior to formic acid for the in situ cottonseed oil epoxidation.

  5. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  6. Reactions of sulphur mustard on impregnated carbons.

    PubMed

    Prasad, G K; Singh, Beer

    2004-12-31

    Activated carbon of surface area 1100 m2/gm is impregnated with 4% sodium hydroxide plus 3% Cr(VI) as CrO3 with and without 5% ethylene diamine (EDA), 4% magnesium nitrate and 5% ruthenium chloride by using their aqueous solutions. These carbons are characterized for surface area analysis by BET conventional method and exposed to the vapours of sulphur mustard (HD) at room temperature (30 degrees C). After 24 h, the reaction products are extracted in dichloromethane and analyzed using gas chromatography and mass spectrometry (GC-MS). Hemisulphur mustard, thiodiglycol, 1,4-oxathiane are observed to be the products of reaction between sulphur mustard and NaOH/CrO3/C system, whereas on NaOH/CrO3/EDA/C system HD reacted to give 1,4-thiazane. On Mg(NO3)2/C system it gave hemisulphur mustard and thiodiglycol. On RuCl3/C system it degraded to divinyl sulphone. Residual sulphur mustard is observed along with reaction products in all systems studied. Reaction mechanisms are also proposed for these interesting surface reactions. Above-mentioned carbons can be used in filtration systems for protection against hazardous gases such as sulphur mustard.

  7. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  8. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  9. The regulation of sulphurated amino acid junctions: fact or fiction in the field of inflammation?

    PubMed

    Santangelo, F

    2002-01-01

    The diet of industrialised countries is usually rich in amino acids, which are in part used as a source of calories. However, metabolic alterations are observed in diseased patients and a preferential retention of Sulphurated Amino Acids (SAA) occurs during the inflammatory response. Moreover, it has been demonstrated in a model of an acute sepsis phase of rats that the metabolism of Cysteine is modified. The liver converts Cysteine at a different ratio of Sulphate to Taurine (Tau) i.e. the sulphate production decreases while the Tau conversion increases. The Glutathione (GSH) concentration is greater in the liver, kidneys and other organs and the Cysteine incorporation into proteins is higher in the spleen, lungs and plasma (Acute Phase Proteins) while the Albumin level decreases. The pro-inflammatory cytokines such as Interleukin-1, Interleukin-6 and TNF- alpha are the main initiators that alter protein and amino acid metabolism. Another important phenomenon is the impairment of Methionine conversion to Cysteine during stress. For example, premature infants or AIDS patients are capable of synthesizing Cysteine from Methionine at a much lower rate. Thus, the metabolic flow through the trans-sulphuration path may be inadequate to meet the Cysteine demand under critical conditions. In this complex picture, an SAA supply may contribute to an immune system regulation.

  10. A classical reactive potential for molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2015-10-12

    We present a two state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, itmore » is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent. SMK was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; JLS and IJF were supported by the IMPACT scheme at University College London (UCL). We acknowledge the UCL Legion High Performance Computing Facility, and associated support services together with the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. JLS thanks Dr. Gregory Schenter, Dr. Theo Kurtén and Prof. Hanna Vehkamäki for important guidance and discussions.« less

  11. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  12. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  13. Surface characterisation of ethylene propylene diene rubber upon exposure to aqueous acidic solution

    NASA Astrophysics Data System (ADS)

    Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Hvilsted, Søren; Almdal, Kristoffer

    2006-07-01

    Two types of pure ethylene propylene diene rubbers were exposed to two different acids for varying period of time. Surface characterisation was carried out using X-ray photoelectron spectroscopy (XPS). Two EPDM rubbers selected for this study were comparable in co-monomer compositions but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H 2SO 4) and sulphuric acid (H 2SO 4) (20%, v/v) at ambient temperature from 1 to 12 weeks. XPS analysis indicated that several oxygenated species were formed on the surface of both rubbers after exposure. It was postulated from the XPS analyses that both aqueous acidic solutions attacked the olefinic double bonds (C dbnd C) of ENB. Furthermore, 20% Cr (VI)/H 2SO 4 also attacked the allylic carbon-hydrogen (C sbnd H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H 2SO 4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H 2SO 4 was found to play an important role in alteration of surface chemistry. Studies using a model system consisting of EPDM mixed with Cr (VI) and Cr (III) salts revealed that the change of oxidation state from Cr (VI) to Cr (III) as a consequence of direct involvement of Cr (VI) in the chemical alteration of EPDM surfaces. Interestingly, the presence of long chain branching and molar mass did not significantly influence the chemical processes owing to the acid treatment.

  14. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  15. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  16. Thermometric titration of some monoprotic and diprotic acids in aqueous and non-aqueous media.

    PubMed

    Harries, R J

    1968-12-01

    Some mono- and diprotic acids have been titrated thermometrically with strong alkalis in aqueous and non-aqueous media. Thermograms with sharp arrest points were obtained, from which heats of neutralization were measured. Heats of neutralization in the media used were compared and an effect attributable to hydrogen bonding was found.

  17. Morphology and evolution of sulphuric acid caves in South Italy

    NASA Astrophysics Data System (ADS)

    D'Angeli, Ilenia M.; De Waele, Jo; Galdenzi, Sandro; Madonia, Giuliana; Parise, Mario; Vattano, Marco

    2016-04-01

    Sulphuric acid speleogenesis (SAS) related to the upwelling of acid water enriched in H2S and CO2 represents an unusual way of cave development. Since meteoric infiltration waters are not necessarily involved in speleogenesis, caves can form without the typical associated karst expressions (i.e. dolines) at the surface. The main mechanism of sulphuric acid dissolution is the oxidation of H2S (Jones et al., 2015) which can be amplified by bacterial mediation (Engel et al., 2004). In these conditions, carbonate dissolution associated with gypsum replacement, is generally believed to be faster than the normal epigenic one (De Waele et al., 2016). In Italy several SAS caves have been identified, but only few systems have been studied in detail: Frasassi and Acquasanta Terme (Marche)(Galdenzi et al., 2010), Monte Cucco (Umbria) (Galdenzi & Menichetti, 1995), and Montecchio (Tuscany) (Piccini et al., 2015). Other preliminary studies have been carried out in Calabria (Galdenzi, 2007) and Sicily (De Waele et al., 2016). Several less studied SAS cave systems located in South Italy, and in particular in Apulia (Santa Cesarea Terme), Sicily (Acqua Fitusa, Acqua Mintina) and Calabria (Mt. Sellaro and Cassano allo Ionio) have been selected in the framework of a PhD thesis on SAS caves and their speleogenesis. Using both limestone tablet weight loss (Galdenzi et al., 2012) and micro erosion meter (MEM) (Furlani et al., 2010) methods the dissolution rate above and under water in the caves will be quantified. Geomorphological observations, landscape analysis using GIS tools, and the analysis of gypsum and other secondary minerals (alunite and jarosite) (stable isotopes and dating) will help to reconstruct the speleogenetic stages of cave formation. Preliminary microbiological analysis will determine the microbial diversity and ecology in the biofilms. References Engel S.A., Stern L.A., Bennett P.C., 2004 - Microbial contributions to cave formation: New insight into sulfuric acid

  18. Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Huang, Y.

    2003-03-01

    Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.

  19. On the reasons for low sulphur utilization in the lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, V. S.; Kuzmina, E. V.; Karaseva, E. V.

    2015-01-01

    This work is to study the reasons for the relatively low efficiency of sulphur reduction (about 75%) in lithium-sulphur batteries. The two main reasons for that are suggested to be: the relatively low electrochemical activity of low order lithium polysulphides and blocking of the carbon framework of the sulphur electrode by insoluble products of electrochemical reactions - sulphur and lithium sulphide. The electrochemical activity of lithium polysulphides with different composition (Li2Sn, n = 2-6) has been studied in 1 M solutions of CF3SO3Li in sulfolane. It is shown that lithium polysulphides including lithium disulphide are able to electrochemically reduce with efficiency close to 100%. The electrochemical activity of lithium polysulphides decreases with the order. The order of lithium polysulphides affects the value of voltage of discharge plateaus but not the efficiency of sulphur reducing in the lithium polysulphides species. The relatively low efficiency of sulphur reduction in the lithium-sulphur batteries is more likely caused by blocking of carbon particles in the sulphur electrode by insoluble products of electrochemical reactions (sulphur and lithium sulphide). This prevents the electrochemical reduction of low order lithium polysulphides and especially lithium disulphide.

  20. Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis.

    PubMed

    Samudrala, Shanthi Priya; Kandasamy, Shalini; Bhattacharya, Sankar

    2018-05-10

    Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly effective solid acid catalysts for the selective production of 1,3-propanediol from glycerol. The catalytic performances of the catalysts were investigated in the hydrogenolysis of glycerol with a fixed bed reactor under ambient pressure. The results were found promising and showed that the activation of montmorillonite by sulphuric acid incorporated Brønsted acidity in the catalyst and significantly improved the selectivity to 1,3-propanediol. The catalytic performance of different platinum loaded catalysts was examined and 2 wt% Pt/S-MMT catalyst presented superior activity among others validating 62% 1,3-propanediol selectivity at 94% glycerol conversion. The catalytic activity of 2Pt/S-MMT was systematically investigated under varying reaction parameters including reaction temperature, hydrogen flow rate, glycerol concentration, weight hourly space velocity, and contact time to derive the optimum conditions for the reaction. The catalyst stability, reusability and structure-activity correlation were also elucidated. The high performance of the catalyst could be ascribed to well disperse Pt nanoparticles immobilized on acid-activated montmorillonite, wider pore-structure and appropriate acid sites of the catalyst.

  1. 46 CFR 111.105-31 - Flammable or combustible cargo with a flashpoint below 60 °C (140 °F), carriers of liquid-sulphur...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 60 °C (140 °F), carriers of liquid-sulphur or inorganic acid. 111.105-31 Section 111.105-31... below 60 °C (140 °F), carriers of liquid-sulphur or inorganic acid. (a) Applicability. Each vessel that...) or liquid sulphur cargo, or inorganic acid cargo must meet the requirements of this section, except...

  2. 46 CFR 111.105-31 - Flammable or combustible cargo with a flashpoint below 60 °C (140 °F), carriers of liquid-sulphur...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 60 °C (140 °F), carriers of liquid-sulphur or inorganic acid. 111.105-31 Section 111.105-31... below 60 °C (140 °F), carriers of liquid-sulphur or inorganic acid. (a) Applicability. Each vessel that...) or liquid sulphur cargo, or inorganic acid cargo must meet the requirements of this section, except...

  3. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  4. Sulphur isotopic ratios in mosses indicating atmospheric sulphur sources in southern Chinese mountainous areas

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Liu, Xue-Yan; Xiao, Hong-Wei; Liu, Cong-Qiang

    2008-10-01

    Many mountainous regions in South China have been confronted with the consequences of acidic deposition, but studies on atmospheric S sources are still very limited. In this study, isotopic ratios in mosses were used to discriminate atmospheric S sources. A continuous increase in S isotopic ratios was observed from the south to the north in mountainous mosses and in accord with the previously reported changing trends in urban mosses, indicating a contribution of local anthropogenic S from urban cities. Based on comparisons of S isotopic ratios in mountainous mosses with those in nearby urban mosses, we found that mountainous mosses had significantly higher 34S contents than urban mosses, especially in West China, reflecting an introduction of 34S-enriched sulphur. In conjunction with cloud water data in the literature, we concluded that 34S-enriched sulphur in northerly air masses contributed much to atmospheric S in southern Chinese mountainous areas.

  5. Optimization of the 3-Point Bending Failure of Anodized Aluminum Formed in Tartaric/Sulphuric Acid Using Doehlert Design

    NASA Astrophysics Data System (ADS)

    Bensalah, W.; Feki, M.; De-Petris Wery, M.; Ayedi, H. F.

    2015-02-01

    The bending failure of anodized aluminum in tartaric/sulphuric acid bath was modeled using Doehlert design. Bath temperature, anodic current density, sulphuric acid, and tartaric acid concentrations were retained as variables. Thickness measurements and 3-point bending experiments were conducted. The deflection at failure ( D f) and the maximum load ( F m) of each sample were, then, deducted from the corresponding flexural responses. The treatment of experimental results has established mathematical models of second degree reflecting the relation of cause and effect between the factors and the studied properties. The optimum path study of thickness, deflection at failure, and maximum load, showed that the three optima were opposite. Multicriteria optimization using the desirability function was achieved in order to maximize simultaneously the three responses. The optimum conditions were: C tar = 18.2 g L-1, T = 17.3 °C, J = 2.37 A dm-2, C sul = 191 g L-1, while the estimated response values were e = 57.7 µm, D f = 5.6 mm, and F m = 835 N. Using the established models, a mathematical correlation was found between deflection at failure and thickness of the anodic oxide layer. Before bending tests, aluminum oxide layer was examined by scanning electron microscopy (SEM) and atomic force microscopy. After tests, the morphology and the composition of the anodic oxide layer were inspected by SEM, optical microscopy, and glow-discharge optical emission spectroscopy.

  6. A further study on the dietary-regulated biosynthesis of high-sulphur wool proteins

    PubMed Central

    Gillespie, J. M.; Broad, Andrea; Reis, P. J.

    1969-01-01

    When the diet of sheep is supplemented by the infusion of sulphur-containing amino acids or casein into the abomasum, the newly synthesized wool shows characteristic changes in its amino acid composition, with significant increases in cystine, proline and serine and decreases in aspartic acid and phenylalanine. This modification seems to be due entirely to an alteration in the overall composition of the high-sulphur proteins and to an increase in their proportion in the fibre. These variations are not the result of a change in the composition of individual proteins, but are due to alterations in their relative proportions and to the initiation of the synthesis of `new' proteins, many of which are extremely rich in cystine. It is suggested that the heterogeneity of the high-sulphur proteins may be due, in part, to similar changes in composition caused by natural variations in the nutrition of sheep. ImagesFig. 3.Fig. 4. PMID:5774505

  7. Reactions of molybdenum-sulphur compounds with cyanide: chemical evolution and deactivation of molybdoenzymes.

    PubMed

    Mitchell, P C; Pygall, C F

    1979-08-01

    Reactions of molybdenum-sulphur compounds with cyanide are reported which may be relevant to (1) the chemical evolution of molybdoenzymes and (2) deactivation of molybdoenzymes by cyanide. (1) With aqueous cyanide MoS2 gave thio-bridged complex anions [(Mo(CN)6)2(mu-S)]6- and [(Mo(CN)4(mu-S))2]6-. Under prebiotic conditions such complexes could have been formed similarly from molybdenite and may have been precursors of molybdoenzymes. (2) Only those compounds which contained terminal sulphur bound to molybdenum (i.e., Mo = S groups), viz. oxothiomolybdates and the complex [(Mo(mu-S)(S)(Et2NCS2))2], reacted with cyanide; thiocyanate was formed and the molybdenum underwent two-electron reduction. That the cyanolysable sulphur of xanthine oxidase reacts in the same way with cyanide suggests the presence of a Mo = S group which could be a structural feature of the enzyme or could have been formed by initial cyanolysis of a bound persulphide or cysteine residue.

  8. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  9. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  10. Steam reforming of commercial ultra-low sulphur diesel

    NASA Astrophysics Data System (ADS)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  11. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  12. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard A.; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers M.; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham W.; Wignall, Paul B.; Carslaw, Kenneth S.

    2016-01-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  13. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments.

    PubMed

    Vasquez-Cardenas, Diana; van de Vossenberg, Jack; Polerecky, Lubos; Malkin, Sairah Y; Schauer, Regina; Hidalgo-Martinez, Silvia; Confurius, Veronique; Middelburg, Jack J; Meysman, Filip J R; Boschker, Henricus T S

    2015-09-01

    Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following (13)C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas (13)C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and

  14. Sulphur extended asphalt : research report.

    DOT National Transportation Integrated Search

    1980-05-01

    Extensive research has been directed toward the addition of sulphur to asphaltic concrete mixes to function as either a quality aggregate or as an asphalt cement extender. By utilizing a high sulphur/asphalt ratio sulphur extended asphalt mix, it was...

  15. Use of stable sulphur isotopes to monitor directly the behaviour of sulphur in coal during thermal desulphurization

    USGS Publications Warehouse

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.

    1987-01-01

    A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.

  16. Active-passive corrosion of iron-chromium-nickel alloys in hot concentrated sulphuric acid solutions

    NASA Astrophysics Data System (ADS)

    Kish, Joseph R.

    1999-11-01

    In the manufacture of sulphuric acid more stringent environmental standards and operation economics have forced the industry to improve product utilization, energy efficiency and reliability. A key to improving both the thermal efficiency and reliability is the use and/or development of more corrosion resistance materials including stainless steels, especially in the parts of the plant that handle the condensed acid. Application of more corrosion resistant material requires a better understanding of the corrosion mechanism involved in concentrated H2SO4-H2O (>90 wt.%) solutions. While corrosion kinetics of carbon steel, the traditional material of construction, are relatively well understood, this is much less true in the case of the cyclic active-passive corrosion of stainless steels. Models proposed to explain the cyclic active-passive corrosion involve a periodic formation of either a protective metal sulphate film or an insoluble sulphur layer. To better understand the reactivity and/or passivity of stainless steel in concentrated H2SO4-H2O solutions a study employing immersion and electrochemical techniques, including rotating electrodes, was conducted in order to clarify the following: (1) The state of stainless steel passivity. (2) The conditions in which passivity is stable. (3) The role played by the major alloying elements in establishing and maintaining the passive state. The study involved evaluating the corrosion behaviour of stainless steels S30403 and S43000 along with iron, chromium and nickel in 93.5 wt.% H2SO4 at temperatures between 25--80°C. Major discoveries of the study include: (1) A content of 17--18 wt.% chromium is sufficient to anodically passivate S43000 as the potential is made more noble. Passivity is not stable and requires anodic polarization. (2) Alloyed nickel plays an active role in improving the corrosion resistance of stainless steel. A content of 8 wt.% nickel is sufficient promote a periodic passivation of the base Fe-(17

  17. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  18. Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp.

    PubMed

    Surkov, Alexander V; Böttcher, Michael E; Kuever, Jan

    2012-01-01

    Stable sulphur isotope fractionation was investigated during reduction of thiosulphate and elemental sulphur at 28°C by growing batch cultures of the sulphur- and thiosulphate-reducing bacteria Dethiosulfovibrio marinus (type strain DSM 12537) and Dethiosulfovibrio russensis (type strain DSM 12538), using citrate as carbon and energy source. The cell-specific thiosulphate reduction rate in the growth phase was 7.4±3.9 fmol cell(-1) d(-1). The hydrogen sulphide produced was enriched in (32)S by 10.3±1 ‰ compared with total thiosulphate sulphur, close to previous experimental results observed for other sulphate- and non-sulphate-reducing bacteria. Elemental sulphur reduction yields sulphur isotope enrichment factors between-1.3 and-5.2 ‰ for D. russensis and-1.7 and-5.1 ‰ for D. marinus. The smaller fractionation effects are observed in the exponential growth phase (cellular rates between 5 and 70 fmol S° cell(-1) d(-1)) and enhanced discrimination under conditions of citrate depletion and cell lysis (cellular rates between 0.3 and 3 fmol S° cell(-1) d(-1)).

  19. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution.

    PubMed

    Tomé, Luciana I N; Jorge, Miguel; Gomes, José R B; Coutinho, João A P

    2012-02-16

    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids.

  20. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  1. INTERACTION OF AQUEOUS SOLUTIONS OF CHLORINE WITH MALIC ACID, TARTARIC ACID, AND VARIOUS FRUIT JUICES, A SOURCE OF MUTAGENS

    EPA Science Inventory

    The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...

  2. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis.

    PubMed

    Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A

    2015-11-01

    In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.

  3. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  4. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  5. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases

    NASA Astrophysics Data System (ADS)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  6. The effects of added sulphur amino acids, threonine and an ideal amino acid ratio on nitrogen metabolism in mature, overweight dogs.

    PubMed

    Bohaty, Robin E; de Godoy, Maria R C; McLeod, Kyle R; Harmon, David L

    2012-02-01

    The objectives of this study were to investigate the effects of added essential amino acids in conjunction with a dietary lysine/MJ of 0.72 on nitrogen (N) metabolism in dogs. Treatments were; a control diet, a diet that provided an ideal amino acid profile (IAA), a diet with added total sulphur amino acids (TSAA), and a diet with added TSAA and threonine (TT). Diets were fed to eight overweight, mature, female hounds using a replicated 4 x 4 Latin Square design. Food intake was similar across treatments, however, food N intake was higher (p < 0.001) for TSAA than control, IAA or TT. Nitrogen absorbed was higher (p < 0.01) for TSAA than IAA and control. Urea N excretion was greater for control than TT (p < 0.05). Urine N excretion did not differ between diets. There were no differences in digestibility or N retention of diets. There were no differences in protein turnover, synthesis, or degradation. Blood metabolites were within normal ranges and did not differ due to dietary treatment. Based on the measurements made in this study, there is no benefit for added TSAA, TT or additional EAA in diets for mature dogs formulated to provide a 0.72 g lysine/MJ ME ratio.

  7. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  8. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  9. KINETIC ASPECTS OF CATION-ENHANCED AGGREGATION IN AQUEOUS HUMIC ACIDS. (R822832)

    EPA Science Inventory

    The cation-enhanced formation of hydrophobic domains in aqueous humic acids has been shown to be a slow process, consistent with the evolution and disintegration of humic acid configurations over periods lasting from days to weeks. After the addition of a magnesium salt to a humi...

  10. Sulphur and skin: from Satan to Saddam!

    PubMed

    Leslie, K S; Millington, G W M; Levell, N J

    2004-04-01

    Since the dawn of time, Beelzebub has been showering fire and brimstone (sulphur) on tortured souls, but the cutaneous effects of this have been poorly described. Sulphur has also been used for centuries as a treatment for many skin conditions, such as fungal infections, scabies, psoriasis, eczema and acne. It has also been used extensively in cosmetic preparations and by cosmetic dermatologists treating conditions such as seborrhoeic eczema. Many natural bathing spas have high levels of sulphur; such balneology has been advocated by medical and cosmetic dermatologists as an effective treatment for cutaneous disorders for more than 500 years. Sulphur was often the active agent in many of the so-called 'patent medicines' that became popular in the mid-nineteenth century. Time has not withered medical practitioners' enthusiasm for sulphur. There are various reports in the medical literature of its current use. However sulphur treatment is not without its risks; a sulphur spring dermatitis has been described from a spa bath in Taiwan. With the satanic threat of bio-terrorism, some dermatologists may be treating the effects of contact with sulphur mustard all too soon.

  11. Responses to betaine and inorganic sulphur of sheep in growth performance and fibre growth.

    PubMed

    Nezamidoust, M; Alikhani, M; Ghorbani, G R; Edriss, M A

    2014-12-01

    Sulphur-containing amino acids (SAA) are essential and usually the first limiting amino acids for growth, milk and wool production. The keratin fibre that grows from epidermal tissue is rich in SAA. The rate of fibre growth and its S content are influenced by the availability of SAA. Betaine is a dietary source for a labile methyl group and actively participates in methionine metabolism by donating methyl groups for the remethylation of homocysteine to methionine. Ruminants are capable of synthesizing SAA from inorganic S sources, and most bacteria in the rumen can use inorganic S to meet their requirements for growth. The objective of this study was to examine whether betaine and an inorganic sulphur supplement could provide methyl groups and sulphur amino acids in a way that growth performance and wool production of ewes and lambs are improved. Treatments performed included betaine supplementation, sulphate supplementation and betaine plus sulphate supplementation with five replications for each treatment. The dry matter intake of the ewes was affected by betaine plus sulphate supplementation (p < 0.05). In the ewes, betaine plus sulphate supplementation increased (p < 0.05) the wool growth rate, wool yield, staple length and wool sulphur concentration, while decreasing wool wax and wool yellowness (p < 0.05). In the lambs, wool growth rate, wool yield, fibre diameter, staple length, staple strength, wool sulphur concentration, wool wax and fibre percentage did not differ (p > 0.05) between treatments. In the ewes, plasma methionine concentration increased (p < 0.05) with betaine plus sulphate treatment. No corresponding difference (p > 0.05) was observed in plasma methionine concentration in the lambs. It can be concluded that betaine plus sulphate supplementation has the potential to change wool characteristics in the ewes, while these compounds were without any effect on growth and wool production of the lambs. Combining the two supplements was advantageous

  12. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments.

    PubMed

    Fang, D; Zhao, L; Yang, Z Q; Shan, H X; Gao, Y; Yang, Q

    2009-11-01

    The sulphur-based bioleaching process using sulphur-oxidizing bacteria (SOB) has been demonstrated to be a feasible technology for removing heavy metals from contaminated sediments, but the excess sulphur application will lead to the re-acidification of bioleached sediments. The objective of the present study was to examine the effect of sulphur concentration on the bioleaching of heavy metals from contaminated sediments, with the ultimate purpose of minimizing the sulphur addition. The results showed that the inoculation of 7% of indigenous SOB, containing 3.6 x 10(8) colony forming units (CFU) mL(-1), and addition of elemental sulphur as a substrate (0.5 to 7.0 g L(-1)) resulted in a sharp decrease in sediment pH from an initial pH 8.0 to pH 1.4-2.4 and an increase in ORP (oxidation-reduction potential) from -10 mV to 500 mV within 10 days of bioleaching. Although the increase in sulphur concentration enhanced the rates of pH reduction and ORP elevation, the bioleaching process with the addition of 3.0 g L(-1) of sulphur was already sufficient to reach conditions of acidity (pH < 2.0) and ORP (500 mV) necessary for a satisfactory removal of metals, and, at day 10, 71.8% of Cu, 58.2% of Zn, and 25.3% of Cr were removed from the sediments. During the bioleaching process, Zn removal increased with a reduction in pH, whereas the removal of Cu and Cr increased not only with a reduction in pH but also with an increase in ORP. Results of sequential selective extraction indicated that the final levels of metal removals were dependent on their speciation distribution in the original sediments, and after bioleaching those unremoved metals in the bioleached sediments mainly existed in the residual fraction.

  13. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  14. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  15. Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite

    NASA Astrophysics Data System (ADS)

    Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen

    2018-03-01

    The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.

  16. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  17. Inhibition of citral degradation in an acidic aqueous environment by polyoxyethylene alkylether surfactants.

    PubMed

    Maswal, Masrat; Dar, Aijaz Ahmad

    2013-06-15

    Citral is a flavour component widely used in food and cosmetic industries, but is chemically unstable and degrades over time in aqueous solutions due to acid-catalysed and oxidative reactions leading to loss of desirable flavour. The present study reveals the effect of non-ionic micellar solutions of Brij30 and Brij35 on the extent of solubilisation and stabilisation of citral. The rate of chemical degradation of citral in acidic aqueous solutions was found to be highest, which was subsequently reduced significantly within these studied surfactant systems, suggesting protection of citral from an acidic environment once it is incorporated into the micelles. The work concludes that polyoxyethylene alkylether surfactants with lower HLB value, less dense hydrophilic corona and more hydrophobic core volume are efficient in solubilising and stabilising citral against an acidic environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor.

    PubMed

    Wu, Xin; Chen, Xuan-Xuan; Song, Bing-Nan; Huang, Yan-Jun; Ouyang, Wen-Juan; Li, Zhao; James, Tony D; Jiang, Yun-Bao

    2014-11-21

    Binding of the fluoride ion triggers aggregation of a pyreneboronic acid-catechol ensemble in acidic aqueous solutions, giving rise to intense excimer emission, allowing for sensitive fluoride ion sensing at ppm levels, with an apparent fluoride binding constant higher than 10(3) M(-1) which is unprecedented for boronic acid sensors in water.

  19. Review of the origin of sulphur in DN-1 discharge and its implication for future development, Dauin prospect, central Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrante, L.F.; Hermoso, D.Z.; Candelaria, M.R.

    1997-12-31

    Well DN-1, the first exploratory well of the Dauin geothermal prospect discharged in 1983 substantial quantities of sulphur with a near-neutral pH fluid (pH 6.4 to 7.2) containing maximum chloride levels of 3,300 mg/kg, SO{sub 4} of 300 mg/kg; and high CO{sub 2} and H{sub 2}S relative to the production wells in Palinpinon Field to the north. The chemistry of DN-1 discharge-fluid and the origin of sulphur have been the cause of apprehension for any future development due to concerns on the presence of a possible acid resource southeast of Cuernos de Negros. A reinterpretation of the previous and newmore » surface data was undertaken in 1992 and 1996, including the origin of sulphur, to evaluate the potential of Dauin for development. The results indicate that the sulphur in DN-1 is formed from partial oxidation of hydrogen sulphide derived from the neutralised-acid fluids formed by sulphur hydrolysis at shallow levels but distant from DN-1. The study argues for the presence of near neutral exploitable resource in the prospect area.« less

  20. Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni.

    PubMed

    Pripis-Nicolau, L; de Revel, G; Bertrand, A; Lonvaud-Funel, A

    2004-01-01

    During malolactic fermentation (MLF), the secondary metabolisms of lactic acid bacteria (LAB) contribute to the organoleptic modification of wine. To understand the contribution of MLF, we evaluated the capacity of various wine LAB to metabolize methionine. Using gas chromatography (GC) coupled either with mass spectrometry (MS) or a flame photometry detector in sulphur mode (FPD), we studied this metabolism in laboratory media and wine. In laboratory media, several LAB isolated from wine were able to metabolize methionine. They formed methanethiol, dimethyl disulphide, 3-(methylsulphanyl)propan-1-ol and 3-(methylsulphanyl)propionic acid. These are known to have powerful characteristic odours and play a role in the aromatic complexity of wine. In various red wines, after MLF only the 3-(methylsulphanyl)propionic acid concentration increased significantly, as verified with several commercial starter cultures. This compound, which is characterized by chocolate and roasted odours, could contribute to the aromatic complexity produced by MLF. This study shows that LAB isolated from wine, especially OEnococcus oeni strains, the major species in MLF, are able to metabolize methionine to form volatile sulphur compounds. This is the first study to demonstrate the capacity of wine LAB to metabolize methionine.

  1. Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel

    NASA Astrophysics Data System (ADS)

    Calvo, E. G.; Lufrano, F.; Staiti, P.; Brigandì, A.; Arenillas, A.; Menéndez, J. A.

    2013-11-01

    A highly porous carbon xerogel was synthesized by means of physical activation. The activated carbon xerogel, which displayed a well-developed porous texture (micro- and meso-porosity), was employed as electrode material in different supercapacitors. In assessing the performance of the supercapacitors, special attention was paid to their dimensions and the type of electrolyte used. Both the method of electrode manufacture (rolling and punching of 1 cm2 pellets vs. casting by means of a film applicator to produce 4 cm2 electrodes) and the type of supercapacitor (Swagelok (R) system vs. cell with graphite plate current collectors) were evaluated. The results reveal that the cells with larger electrodes were able to store higher amounts of energy. In addition to the cells, the electrochemical characteristics in aqueous electrolytes with a different pH were studied (H2SO4, Na2SO4 and KOH, 1 M). The highest capacitance values were achieved with sulphuric acid (196 F g-1 as opposed to 140 and 106 F g-1 for Na2SO4 and KOH, respectively), probably due to its higher ionic conductivity and the basic nature of the oxygen functionalities found on the surface of the carbon xerogel. Nevertheless, because of the corrosive character of sulphuric acid, Na2SO4 would be a more suitable electrolyte.

  2. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis.

    PubMed

    Tourna, Maria; Maclean, Paul; Condron, Leo; O'Callaghan, Maureen; Wakelin, Steven A

    2014-06-01

    Sulphur-oxidising bacteria (SOB) play a key role in the biogeochemical cycling of sulphur in soil ecosystems. However, the ecology of SOB is poorly understood, and there is little knowledge about the taxa capable of sulphur oxidation, their distribution, habitat preferences and ecophysiology. Furthermore, as yet there are no conclusive links between SOB community size or structure and rates of sulphur oxidation. We have developed a molecular approach based on primer design targeting the soxB functional gene of nonfilamentous chemolithotrophic SOB that allows assessment of both abundance and diversity. Cloning and sequencing revealed considerable diversity of known soxB genotypes from agricultural soils and also evidence for previously undescribed taxa. In a microcosm experiment, abundance of soxB genes increased with sulphur oxidation rate in soils amended with elemental sulphur. Addition of elemental sulphur to soil had a significant effect in the soxB gene diversity, with the chemolithotrophic Thiobacillus-like Betaproteobacteria sequences dominating clone libraries 6 days after sulphur application. Using culture-independent methodology, the study provides evidence for links between abundance and diversity of SOB and sulphur oxidation. The methodology provides a new tool for investigation of the ecology and role of SOB in soil sulphur biogeochemistry. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  4. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  5. Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.

    PubMed

    Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F

    2015-01-01

    Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  7. Interrogating trees as archives of sulphur deposition

    NASA Astrophysics Data System (ADS)

    Wynn, P. M.; Loader, N. J.; Fairchild, I. J.

    2012-04-01

    A principal driver of climatic variability over the past 1,000 years and essential forcing mechanism for climate, are the changes in atmospheric composition resulting from sulphur aerosols. Natural and anthropogenic aerosols released into the atmosphere disrupt the radiative balance through backscattering and absorption of incoming solar radiation and increase cloud albedo by acting as condensation nuclei. Understanding the impact of sulphur emissions upon climate beyond the last few hundred years however is not straightforward and natural archives of environmental information must be explored. Tree-rings represent one such archive as they are widely distributed and preserve environmental information within a precisely dateable, annually resolved timescale. Until recently the sulphur contained within tree-rings has largely remained beyond the reach of environmental scientists and climate modelers owing to difficulties associated with the extraction of a robust signal and uncertainties regarding post-depositional mobility. Our recent work using synchrotron radiation has established that the majority of non-labile sulphur in two conifer species is preserved within the cellular structure of the woody tissue after uptake and demonstrates an increasing trend in sulphur concentration during the 20th century and during known volcanic events. Due to the clear isotopic distinction between marine (+21), geological (+10 to +30), atmospheric pollution (-3 to +9 ) and volcanic sources of sulphur (0 to +5), isotopic ratios provide a diagnostic tool with which changes in the source of atmospheric sulphur can be detected in a more reliable fashion than concentration alone. Sulphur isotopes should thereby provide a fingerprint of short lived events including volcanic activity when extracted at high resolution and in conjunction with high resolution S concentrations defining the event. Here we present methodologies associated with extracting the sulphur isotopic signal from tree

  8. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.

    PubMed

    Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma

    2013-10-15

    Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.

  9. A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Barraclough, Peter B; Hawkesford, Malcolm J

    2009-02-01

    A sulphate deficiency-induced gene, sdi1, has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat (Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 mm. On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis-element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.

  10. Sulphurous Mineral Waters: New Applications for Health

    PubMed Central

    Carbajo, Jose Manuel

    2017-01-01

    Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids. PMID:28484507

  11. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  12. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  13. Sulphur and oxygen isotope analysis to identify sources of sulphur in gypsum-rich black crusts developed on granites.

    PubMed

    Rivas, T; Pozo, S; Paz, M

    2014-06-01

    We describe the results of sulphur and oxygen isotope analyses used to identify sources of the gypsum present in black crusts that grow on the granite of historical buildings. The crusts were sampled at various locations in and near the city of Vigo (NW Spain) and were analysed for their sulphur content and δ(34)S and δ(18)O isotope ratios. Sampled crusts had δ(34)S values of 7.3‰ to 12.9‰ and δ(18)O values of 6.56‰ to 12.51‰. Sampled as potential sulphur sources were bulk depositions, seawater, foundation, ashlar and construction materials and combustion residues. The results indicated marine and, to a lesser extent, anthropogenic, origins for the sulphur and ruled out the contribution of sub-soil sulphates by capillary rise from building foundations. Isotope analyses would indicate that cement and mortar were enriched in sulphur after their application in buildings. The fact that facade orientation (towards the sea or fossil fuel pollution sources) was correlated with sulphur isotope distribution pointed to various contributions to black crust formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    PubMed Central

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  15. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge

    PubMed Central

    Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.; Manthiram, Arumugam

    2015-01-01

    Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved. PMID:26182892

  16. Sulphur isotope applications in two Philippine geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayon, F.E.B.

    1996-12-31

    A general and very preliminary study of sulphur isotope geochemistry is presented in this paper. Data from the Mt. Apo and Palinpinon geothermal fields are used to demonstrate the use of sulphur isotopes in geothermometry and correlation of sulphur species. Sulphur and oxygen isotope geothermometers applied to Mt. Apo data show very good agreement with temperatures estimated using other established geothermometers, as well as bore measured temperatures. This signifies that sulphur isotopes in S-species in fluids of the Mt. Apo hydrothermal system are in equilibrium at drilled depths. In Palinpinon, on the other hand, temperature estimates from fluid and mineralmore » sulphur isotope geothermometry calculations do not agree with, and are commonly higher than, well measured temperatures and temperatures estimated from other geothermometers. Sulphur isotopes in the presently-exploited Palinpinon fluid are not in equilibrium, and sulphur isotope geothermometry may be reflective of isotopic equilibrium of the deeper portions of the hydrothermal system. Dissolved sulphate in both the Palinpinon and Mt. Apo geothermal fluids appear to originate from the disproportionation of magmatic SO{sub 2} at temperatures below 400{degrees}C. Hydrogen sulphide in well discharge fluids are dominantly directly derived from the magma, with a minor amount coming from SO{sub 2} disproportionation.« less

  17. Effect of strong acids on red mud structural and fluoride adsorption properties.

    PubMed

    Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J

    2014-06-01

    The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Canadian experiences in development of critical loads for sulphur and nitrogen

    Treesearch

    Shaun Watmough; Julian Aherne; Paul Arp; Ian DeMerchant; Rock Ouimet

    2006-01-01

    Critical loads are a broad-scale modelling approach designed to assess the potential risk of pollutants to ecosystems. A description of the methodology for estimating critical loads (sulphur and nitrogen) for acid deposition (CL(A)) for upland forests in eastern Canada is presented, using a case study in central Ontario. In eastern Canada, CL(A) have been calculated...

  19. Aqueous humour and ultraviolet radiation.

    PubMed

    Ringvold, A

    1980-01-01

    Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.

  20. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  1. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.

    PubMed

    Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2018-03-27

    Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ < 0.01) as an additive in polyethylene glycol (PEG) aqueous solution at the Si 3 N 4 /SiO 2 interfaces. The superlow and steady friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.

  2. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Eglinton, Timothy I.; Sinninghe Damsté, Jaap S.; Pool, Wim; de Leeuw, Jan W.; Eijk, Gert; Boon, Jaap J.

    1992-04-01

    This study describes the analysis of sulphur-containing products from Curie-point pyrolysis (Py) of eighty-five samples (kerogens, bitumen, and petroleum asphaltenes and coals) using gas chromatography (GC) in combination with sulphur-selective detection. Peak areas of approximately forty individual organic sulphur pyrolysis products (OSPP) were measured, and the results analysed with the aid of multivariate data reduction techniques (principal components analysis, (PCA)). The structural relationships proposed in an earlier publication ( SINNINGHE DAMSTé et al., 1989a) in which OSPP can be grouped according to common "carbon skeletons" are supported by PCA. The distribution of OSPP varies both as a function of kerogen type (as defined by elemental composition) and maturity, reflecting differences in the relative abundance of the various carbon skeleton types. Sulphur-containing products from Type I, Type II, and, to some extent, Type II-S kerogens are dominated by OSPP derived from "moieties" (i.e., discrete structural components within the macromolecule) possessing linear carbon skeletons, while coals and Type III kerogens give rise to higher relative abundances of OSPP with branched carbon skeletons. Type I kerogens are distinguished from Type II kerogens due to the type of linear carbon skeleton, the former yielding higher relative amounts of 2- n-alkylthiophenes and thiolanes and the latter 2,5-di-substituted sulphur-containing products. Products from sulphur-rich (Type II-S) kerogens differ by higher relative abundances of OSPP derived from precursors with isoprenoid and/or steroidal side-chain carbon skeletons, and by higher absolute abundances of all OSPP. Petroleum and, to a lesser extent, bitumen asphaltenes give rise to OSPP with longer carbon skeletons than do kerogens or coals. This observation supports the models proposed by SINNINGHE DAMSTé et al. (1990a) in which sulphur-containing moieties in asphaltenes are bound by fewer intermolecular bridges

  3. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    PubMed

    de Beer, M; Doucet, F J; Maree, J P; Liebenberg, L

    2015-12-01

    We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products (i.e. <90 mass% as CaCO3). In this study, we used the insight gained from our previous work and developed an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained; no vaterite or aragonite was detected. The product was made up of micron-size particles, which were further characterised by XRD, TGA, SEM, BET and true density. Results showed that about 0.37 ton of high-grade PCC can be produced from 1.0 ton of gypsum waste, and generates about 0.19 ton of residue, a reduction of 80% from original waste gypsum mass to mass of residue that needs to be discarded off. The use of gypsum waste as primary material in replacement of mined limestone for the production of PPC could alleviate waste disposal problems, along with converting significant volumes of waste materials into marketable commodities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  5. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  6. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland.

    PubMed

    Strauss, Harald; Chmiel, Hannah; Christ, Andreas; Fugmann, Artur; Hanselmann, Kurt; Kappler, Andreas; Königer, Paul; Lutter, Andreas; Siedenberg, Katharina; Teichert, Barbara M A

    2016-01-01

    Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria.

  7. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  8. Conducting linear chains of sulphur inside carbon nanotubes

    PubMed Central

    Fujimori, Toshihiko; Morelos-Gómez, Aarón; Zhu, Zhen; Muramatsu, Hiroyuki; Futamura, Ryusuke; Urita, Koki; Terrones, Mauricio; Hayashi, Takuya; Endo, Morinobu; Young Hong, Sang; Chul Choi, Young; Tománek, David; Kaneko, Katsumi

    2013-01-01

    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (~800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ~450–650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ~90 GPa to become metallic. PMID:23851903

  9. Crystallization of aqueous inorganic-malonic acid particles: nucleation rates, dependence on size, and dependence on the ammonium-to-sulfate ratio.

    PubMed

    Parsons, Matthew T; Riffell, Jenna L; Bertram, Allan K

    2006-07-06

    Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0

  10. Recovery of acetic acid from dilute aqueous solutions using catalytic dehydrative esterification with ethanol.

    PubMed

    Yagyu, Daisuke; Ohishi, Tetsuo; Igarashi, Takeshi; Okumura, Yoshikuni; Nakajo, Tetsuo; Mori, Yuichiro; Kobayashi, Shū

    2013-03-01

    We have developed a direct esterification of aqueous acetic acid with ethanol (molar ratio=1:1) catalyzed by polystyrene-supported or homogeneous sulfonic acids toward the recovery of acetic acid from wastewater in chemical plants. The equilibrium yield was significantly increased by the addition of toluene, which had a high ability to extract ethyl acetate from the aqueous phase. It was shown that low-loading and alkylated polystyrene-supported sulfonic acid efficiently accelerated the reaction. These results suggest that the construction of hydrophobic reaction environments in water was critical in improving the chemical yield. Addition of inorganic salts was also effective for the reaction under not only biphasic conditions (toluene-water) but also toluene-free conditions, because the mutual solubility of ethyl acetate and water was suppressed by the salting-out effect. Among the tested salts, CaCl(2) was found to be the most suitable for this reaction system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  12. Surface Crystallographic Dependence of Voltammetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold-Acidic Aqueous Interfaces

    DTIC Science & Technology

    1992-02-01

    Crystallographic Dependence of Voltaumetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold -Acidic Aqueous Interfaces by...Crystallographic Dependence of Voltamnnetric Oxidation )f Polyhydric Alcohols and Related Systems at onocrystalline Gold -Acidic Aqueous [nterfaces...mannitol, on seven oriented gold surfaces, Au(lll), 100), (110), (221), (533), (311), and (210), is reported with the objective of assessing the ole of

  13. Pyroclastic sulphur eruption at Poás volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Francis, P. W.; Thorpe, R. S.; Brown, G. C.

    1980-02-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on Io1-7. Although fumarolic sulphur and SO2 gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported8,9, sulphur in a pyroclastic form has only been described from Poás volcano, Costa Rica10. Here we amplify the original descriptions by Bennett and Raccichini10 and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  14. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  15. Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal−OH Radical Oxidation and Implications for Secondary Organic Aerosol

    PubMed Central

    2009-01-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  16. Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status.

    PubMed

    Ostaszewska, Monika; Juszczuk, Izabela M; Kołodziejek, Izabella; Rychter, Anna M

    2014-04-15

    Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by

  17. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  19. Hydrolytic cleavage of pyroglutamyl-peptide bond. V. selective removal of pyroglutamic acid from biologically active pyroglutamylpeptides in high concentrations of aqueous methanesulfonic acid.

    PubMed

    Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki

    2006-06-01

    Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.

  20. Sources of sulphur in rain collected below a wheat canopy.

    PubMed

    Raybould, C C; Unsworth, M H; Gregory, P J

    1977-05-12

    Vegetation plays an important role in the cycle of sulphur between the atmosphere and the soil. We have measured the quantity of sulphur in rain collected below a maturing wheat canopy. This sulphur has three sources: first, the atmosphere, from which falling rain gains SO2 and sulphate; second, leaf surfaces, from which rain washes sulphur which was previously deposited by turbulent transfer ('dry deposition'), and third, leaf tissue, from which rain leaches sulphur. We have now deduced from field and laboratory measurements that leaching supplied nearly 90% of the sulphur gained by rain as it fell through the wheat canopy. Only a small fraction of sulphur which had been dry-deposited on the surface of leaves could be washed off.

  1. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  2. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  3. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  4. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  5. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  6. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids

    PubMed Central

    2018-01-01

    Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles. PMID:29806009

  8. Metastable equilibria among dicarboxylic acids and the oxidation state during aqueous alteration on the CM2 chondrite parent body

    NASA Astrophysics Data System (ADS)

    McAlister, Jason A.; Kettler, Richard M.

    2008-01-01

    Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.

  9. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  10. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  12. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  15. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    PubMed

    de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J

    2014-11-01

    The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting.

    PubMed

    Gu, Wenjie; Zhang, Fabao; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi

    2011-06-01

    A simulated aerobic composting experiment was used to explore the effects of sulphur and Thiobacillus thioparus during six manure composting treatments. The addition of sulphur led to a decrease of the pH level within the range 6-6.3, which was lower than the control treatment (CK). The concentration of ammonium nitrogen in T1 (0.25% sulphur), T2 (0.5% sulphur), T3 (0.25% sulphur + T. thioparus) and T4 (0.5% sulphur + T. thioparus) were much higher than the ammonium N in CK. The results indicated that addition of sulphur could increase the concentration of ammonium N and reduce loss of nitrogen. However, excess sulphur had a negative effect on temperature and GI. Addition of T. thioparus could increase concentration of available S, alleviate these negative influences and reduce compost biological toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  18. Kinetics of beta-haematin formation from suspensions of haematin in aqueous benzoic acid.

    PubMed

    Egan, Timothy J; Tshivhase, Mmboneni G

    2006-11-14

    Kinetics of beta-haematin (synthetic malaria pigment) formation from haematin have been studied in the presence of aqueous benzoic acid and derivatives of benzoic acid. Formation of the beta-haematin product is demonstrated by X-ray diffraction and IR spectroscopy. Reactions were followed by determining the fraction of unreacted haematin at various time points during the process via reaction of extracted aliquots with pyridine. The kinetics can be fitted to the Avrami equation, indicating that the process involves nucleation and growth. Reaction kinetics in stirred benzoic acid are similar to those previously observed in acetic acid, except that benzoic acid is far more active in promoting the reaction than acetic acid. The reaction reaches completion within 2 h in the presence of 0.050 M benzoic acid (pH 4.5, 60 degrees C). This compares with 1 h in the presence of 4.5 M acetic acid and 4 h in the presence of 2 M acetic acid. The reaction rate in benzoic acid is not affected if the stirring rate is decreased to zero, but very vigorous stirring appears to disrupt nucleation. The rate constant for beta-haematin formation in benzoic acid has a linear dependence on benzoic acid concentration and follows Arrhenius behaviour with temperature. There is a bell-shaped dependence on pH. This suggests that the haematin species in which one propionate group is protonated and the other is deprotonated is optimal for beta-haematin formation. When the reaction is conducted in para-substituted benzoic acid derivatives, the log of the rate constant increases linearly with the Hammett constant. These findings suggest that the role of the carboxylic acid may be to disrupt hydrogen bonding and pi-stacking in haematin, facilitating conversion to beta-haematin. The large activation energy for conversion of precipitated haematin to beta-haematin suggests that the reaction in vivo most likely involves direct nucleation from solution and probably does not occur in aqueous medium.

  19. Exploiting sulphur-carrier proteins from primary metabolism for 2-thiosugar biosynthesis

    PubMed Central

    Sasaki, Eita; Zhang, Xuan; Sun, He G.; Lu, Mei-Yeh Jade; Liu, Tsung-lin; Ou, Albert; Li, Jeng-yi; Chen, Yu-hsiang; Ealick, Steven E.; Liu, Hung-wen

    2014-01-01

    Sulphur is an essential element for life and exists ubiquitously in living systems1,2. Yet, how the sulphur atom is incorporated in many sulphur-containing secondary metabolites remains poorly understood. For C-S bond formation in primary metabolites, the major ionic sulphur sources are the protein-persulphide and protein-thiocarboxylate3,4. In each case, the persulphide and thiocarboxylate group on these sulphur-carrier (donor) proteins are post-translationally generated through the action of a specific activating enzyme. In all bacterial cases reported thus far, the genes encoding the enzyme that catalyzes the actual C-S bond formation reaction and its cognate sulphur-carrier protein co-exist in the same gene cluster5. To study 2-thiosugar production in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action appear similar to those of ThiG, the enzyme catalyzing thiazole formation in thiamin biosynthesis6,7. However, no sulphur-carrier protein gene could be located in the BE-7585A cluster. Subsequent genome sequencing revealed the presence of a few sulphur-carrier proteins likely involved in the biosynthesis of primary metabolites, but surprisingly only a single activating enzyme gene in the entire genome of A. orientalis. Further experiments showed that this activating enzyme is capable of adenylating each of these sulphur-carrier proteins, and likely also catalyzing the subsequent thiolation taking advantage of its rhodanese activity. A proper combination of these sulphur delivery systems is effective for BexX-catalyzed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. These studies represent the first complete characterization of a thiosugar formation in nature and also demonstrate the receptor promiscuity of the sulphur-delivery system in A. orientalis. Our

  20. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  1. Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions.

    PubMed

    Li, Yunqi; Li, Ji; Xia, Qiuyang; Zhang, Boce; Wang, Qin; Huang, Qingrong

    2012-10-04

    Zein is a corn prolamin that has broad industrial applications because of its unique physical properties. Currently, the high cost of extraction and purification, which is directly related to the dispersion of zein in different solvents, is the major bottleneck of the zein industry. Solution behaviors of zein have been studied for a long time. However, the physical nature of zein in different solvents remains unclear. In this study, small-angle X-ray scattering (SAXS), static light scattering (SLS), and rheology were combined to study the structure and protein-solvent interaction of α-zein in both acetic acid and aqueous ethanol solutions. We found that the like-dissolve-like rule, the partial unfolding, and the protonation of zein are all critical to understanding the solution behaviors. Zein holds an elongated conformation (i.e., prolate ellipsoid) in all solutions, as revealed from SAXS data. There is an "aging effect" for zein in aqueous ethanol solutions, as evidenced by the transition of Newtonian rheological profiles for fresh zein solutions to the non-Newtonian shear thinning behavior for zein solutions after storage at room temperature for 24 h. Such shear thinning behavior becomes more pronounced for zein solutions at higher concentrations. The SLS results clearly show that acetic acid is a better solvent to dissolve zein than aqueous ethanol solution, as supported by a more negative second virial coefficient. This is majorly caused by the protonation of the protein, which was further verified by the dissolution of zein in water (a nonsolvent for zein) with the addition of acids.

  2. GEOCHEMICAL FEATURES OF WATER-ROCK INTERACTIONS AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine on the eastern shore of Clear Lake is the source of poor quality acid mine drainage seeping into Clear Lake. Lateral and vertical geochemical trends in ground water composition point to a number of redox reactions taking place as a function of subsu...

  3. Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.

    PubMed

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-12-25

    The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.

  4. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.

  5. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  6. Opto-electrochemical spectroscopy of metals in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, K., E-mail: khaledhabib@usa.net

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographicmore » interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.« less

  7. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.

    PubMed

    Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang

    2014-10-20

    Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  9. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    NASA Astrophysics Data System (ADS)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  10. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  11. Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj

    2012-06-15

    Novel pentacenequinone derivative 3 has been synthesized using the Suzuki-Miyaura coupling protocol which forms fluorescent nanoaggregates in aqueous media due to its aggregation-induced emission enhancement attributes and selectively senses picric acid with a detection limit of 500 ppb.

  12. Sulphur cycling between terrestrial agroecosystem and atmosphere.

    PubMed

    Zgorelec, Zeljka; Pehnec, Gordana; Bašić, Ferdo; Kisić, Ivica; Mesić, Milan; Zužul, Silva; Jurišić, Aleksandra; Sestak, Ivana; Vađić, Vladimira; Cačković, Mirjana

    2012-09-01

    Central gas station of the natural gas borehole system Podravina is located near the village Molve. It delivers more than a quarter of total energy used in Croatia to its consumers. Over the years, adapting technology to increasingly demanding and rigorous standards in environmental protection has become paramount. Yet, despite all the industry has undertaken to address the risk of harmful substances entering the food chain, a multidisciplinary research team of independent scientists monitors the content of specific substances in all components of the ecosystem. This paper presents measurements of total sulphur contents in soil surface [(0 to 3) cm] and subsurface [(3 to 8) cm] layers (study period: autumn 2006 - spring 2010) and in plants (study period: spring 2000 - spring 2010), and the concentration of gaseous sulphur compounds in the air. Concentrations of hydrogen sulphide (H2S) and mercaptans (RSH) were measured from the summer of 2002 until the autumn of 2010, while concentrations of sulphur dioxide (SO2) were measured from the spring of 2008 until the autumn of 2010. The paper also shows total annual atmospheric sulphur (S-SO4) deposition at Bilogora measuring station (study period: 2001 - 2010). Average monthly concentrations of H2S in air varied between 0.2 μg m-3 and 2.0 μg m-3, RSH between 0.1 μg m-3 and 24.5 μg m-3, and SO2 between 0.4 μg m-3 and 2.8 μg m-3 depending on the location and the season of sampling. Mean values of total sulphur in soil and in Plantago lanceolata plant ranged between 610 mg kg-1 and 1,599 mg kg-1 and between 3,614 mg kg-1 and 4,342 mg kg-1, respectively, depending on the soil type, location, and sampling depth. Average values of total sulphur mass ratio for all examined single soil samples (n=80) were 1,080 mg kg-1 for both studied layers, and 4,108 mg kg-1 for all analysed plant samples (n=85). Average total annual atmospheric sulphur deposition at Bilogora measuring station was 6.3 kg of S-SO4 per hectare.

  13. Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...

  14. Regularities in the association of polymethacrylic acid with benzethonium chloride in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tugay, A. V.; Zakordonskiy, V. P.

    2006-06-01

    The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.

  15. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  16. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  17. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine.

    PubMed

    du Toit, W J; Pretorius, I S; Lonvaud-Funel, A

    2005-01-01

    The objective of this study was to investigate the effects of free molecular and bound forms of sulphur dioxide and oxygen on the viability and culturability of a selected strain of Acetobacter pasteurianus and a selected strain of Brettanomyces bruxellensis in wine. Acetic acid bacteria and Brettanomyces/Dekkera yeasts associated with wine spoilage were isolated from bottled commercial red wines. One bacterium, A. pasteurianus strain A8, and one yeast, B. bruxellensis strain B3a, were selected for further study. The resistance to sulphur dioxide and the effect of oxygen addition on these two selected strains were determined by using plating and epifluorescence techniques for monitoring cell viability in wine. Acetobacter pasteurianus A8 was more resistant to sulphur dioxide than B. bruxellensis B3a, with the latter being rapidly affected by a short exposure time to free molecular form of sulphur dioxide. As expected, neither of these microbial strains was affected by the bound form of sulphur dioxide. The addition of oxygen negated the difference observed between plate and epifluorescence counts for A. pasteurianus A8 during storage, while it stimulated growth of B. bruxellensis B3a. Acetobacter pasteurianus A8 can survive under anaerobic conditions in wine in the presence of sulphur dioxide. Brettanomyces bruxellensis B3a is more sensitive to sulphur dioxide than A. pasteurianus A8, but can grow in the presence of oxygen. Care should be taken to exclude oxygen from contact with wine when it is being transferred or moved. Wine spoilage can be avoided by preventing growth of undesirable acetic acid bacteria and Brettanomyces/Dekkera yeasts through the effective use of sulphur dioxide and the management of oxygen throughout the winemaking process.

  18. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  19. Analytical applications of condensed phosphoric acid-IV Iodometric determination of sulphur in sulphate and sulphide ores and minerals and other compounds after reduction with sodium hypophosphite and tin metal in condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Ishii, H

    1980-06-01

    Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.

  20. A new look at sulphur chemistry in hot cores and corinos

    NASA Astrophysics Data System (ADS)

    Vidal, Thomas H. G.; Wakelam, Valentine

    2018-03-01

    Sulphur-bearing species are often used to probe the evolution of hot cores because their abundances are particularly sensitive to physical and chemical variations. However, the chemistry of sulphur is not well understood in these regions, notably because observations of several hot cores have displayed a large variety of sulphur compositions, and because the reservoir of sulphur in dense clouds, in which hot cores form, is still poorly constrained. In order to help disentangle its complexity, we present a fresh comprehensive review of sulphur chemistry in hot cores along with a study of sulphur's sensibility to temperature and pre-collapse chemical composition. In parallel, we analyse the discrepencies that result from the use of two different types of models (static and dynamic) in order to highlight the sensitivity to the choice of model to be used in astrochemical studies. Our results show that the pre-collapse chemical composition is a critical parameter for sulphur chemistry in hot cores and that it could explain the different sulphur compositions observed. We also report that differences in abundances for a given species between the static and dynamic models can reach six orders of magnitude in the hot core, which reveals the key role of the choice of model in astrochemical studies.

  1. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  2. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis.

    PubMed

    Sasaki, Eita; Zhang, Xuan; Sun, He G; Lu, Mei-yeh Jade; Liu, Tsung-lin; Ou, Albert; Li, Jeng-yi; Chen, Yu-hsiang; Ealick, Steven E; Liu, Hung-wen

    2014-06-19

    Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon-sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery

  3. Amino acid composition of some Mexican foods.

    PubMed

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  4. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterialmore » populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.« less

  5. Evaluation of assimilatory sulphur metabolism in Caldicellulosiruptor saccharolyticus.

    PubMed

    Pawar, Sudhanshu S; van Niel, Ed W J

    2014-10-01

    Caldicellulosiruptor saccharolyticus has gained reputation as being among the best microorganisms to produce H2 due to possession of various appropriate features. The quest to develop an inexpensive cultivation medium led to determine a possible replacement of the expensive component cysteine, i.e. sulphate. C. saccharolyticus assimilated sulphate successfully in absence of a reducing agent without releasing hydrogen sulphide. A complete set of genes coding for enzymes required for sulphate assimilation were found in the majority of Caldicellulosiruptor species including C. saccharolyticus. C. saccharolyticus displayed indifferent physiological behaviour to source of sulphur when grown under favourable conditions in continuous cultures. Increasing the usual concentration of sulphur in the feed medium increased substrate conversion. Choice of sulphur source did not affect the tolerance of C. saccharolyticus to high partial pressures of H2. Thus, sulphate can be a principle sulphur source in an economically viable and more sustainable biohydrogen process using C. saccharolyticus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biological parameters in technogenic soils of a former sulphur mine

    NASA Astrophysics Data System (ADS)

    Siwik-Ziomek, Anetta; Brzezińska, Małgorzata; Lemanowicz, Joanna; Koper, Jan; Szarlip, Paweł

    2018-04-01

    This study was conducted on the soils originating from a reclamation area of the former sulphur mine in Tarnobrzeg, Poland. Soil was sampled 16 years after the completion of mining works with the open-pit method at Machów, as well as 7 years after sulphur mining via the `smelting' method in the Jeziórko mine was abandoned. Several biological parameters were examined: soil respiration, soil microbial biomass and the activity of rhodanese and arylsulphatase enzymes taking part in sulphur transformation within the site's soils. The soils showed a high total sulphur and sulphates content. The SO42- constituted a large fraction of total sulphur, in some cases, exceeding 80% or even 95% of total sulphur. The soil pH decreased due to the degrading effects of sulphur mining. In the soils studied from the locations with the lowest soil pH value, no activity of arylsulphatase was reported and the activity of rhodanese was lowest. The highest soil respiration values were recorded from the 0-5 cm layer in the areas covered with forest vegetation. A high soil respiration value at the waste heap at Machów wherein a very high concentration of Stot and SO42- was observed can be due to the ability of fungi to produce hyphal strands and to survive unfavourable conditions.

  7. Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe.

    PubMed Central

    Grassineau, N V; Nisbet, E G; Bickle, M J; Fowler, C M; Lowry, D; Mattey, D P; Abell, P; Martin, A

    2001-01-01

    Sulphur and carbon isotopic analyses on small samples of kerogens and sulphide minerals from biogenic and non-biogenic sediments of the 2.7 x 10(9) years(Ga)-old Belingwe Greenstone Belt (Zimbabwe) imply that a complex biological sulphur cycle was in operation. Sulphur isotopic compositions display a wider range of biological fractionation than hitherto reported from the Archaean. Carbon isotopic values in kerogen record fractionations characteristic of rubisco activity methanogenesis and methylotrophy and possibly anoxygenic photosynthesis. Carbon and sulphur isotopic fractionations have been interpreted in terms of metabolic processes in 2.7 Ga prokaryote mat communities, and indicate the operation of a diverse array of metabolic processes. The results are consistent with models of early molecular evolution derived from ribosomal RNA. PMID:11209879

  8. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum sims grown in Ghana.

    PubMed

    Berhow, Mark A; Affum, Andrews Obeng; Gyan, Ben A

    2012-07-01

    Rosmarinic acid (RA) is an important antioxidant polyphenol that is found in a variety of spices and herbs, including Ocimum canum Sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical thin-layer chromatography was used to examine the composition of the polyphenols in leaf extracts. The polyphenol content in the aqueous and methanol extracts from the leaf, as determined by the Folin-Ciocalteu method, were 314 and 315 mg gallic acid equivalent/g leaf sample, respectively. The total flavonoid concentration as determined by the aluminum(III) chloride method was 135 mg catechin equivalent/g leaf sample. High-performance liquid chromatography coupled to an electrospray Quadrupole time-of-flight mass spectrometer was also used to determine the polyphenol fingerprint profile in the leaf extracts of O. canum. Although the average RA concentration in the O. canum leaf extracts from Ghana was 1.69 mg/g dry weight (reported values range from 0.01 to 99.62 mg/g dry weight), this polyphenol was still a prominent peak in addition to caffeic acid derivatives.

  9. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

    PubMed

    Percival, Carl J; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Topping, David O; Lowe, Douglas; Utembe, Steven R; Bacak, Asan; McFiggans, Gordon; Cooke, Michael C; Xiao, Ping; Archibald, Alexander T; Jenkin, Michael E; Derwent, Richard G; Riipinen, Ilona; Mok, Daniel W K; Lee, Edmond P F; Dyke, John M; Taatjes, Craig A; Shallcross, Dudley E

    2013-01-01

    Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved

  10. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Case report: Aqueous and Vitreous amino-acid concentrations in a patient with maple syrup urine disease operated on rhegmatogenous retinal detachment.

    PubMed

    Kanakis, Menelaos G; Michelakakis, Helen; Petrou, Petros; Koutsandrea, Chrysanthi; Georgalas, Ilias

    2016-10-03

    Maple syrup urine disease (MSUD) is a rare metabolic disorder, affecting the metabolism of branched chain amino-acids (Valine, Leukine, Isoleukine). We present a rare case of rhegmatogenous retinal detachment (RRD) in a MSUD patient. We performed amino acid analysis of aqueous humour, vitreous and serum samples obtained during surgery from a 24 year old female MSUD patient successfully operated on RRD. Serum values for a-amino-butyric acid, valine, isoleucine, leucine, tyrosine, phenylalanine, ornithine and histidine were low, while values for citrulline, methionine and lysine were borderline low, all attributed to the patient's special diet. Serum glutamate was above normal, probably due to the breakdown of glutamine to glutamate. In the aqueous and vitreous the amino acids implicated in MSUD (Valine, Leukine Isoleukine), were within normal range. Glutamate was absent in the vitreous and presented low levels in the aqueous. Glutamate has been reported to play an important role in retinal damage. Elevated glutamate levels have been reported in vitreous specimens from patients subjected to vitrectomy or buckling surgery for RRD. In MSUD, glutamate has been implicated in the pathogenesis of brain damage. Low levels of glutamate have been observed in the cerebellum of experimental MSUD animals, as well as postmortem brain tissue from a child that died of leucine intoxication. The reduction was attributed to the elevation of a-ketoisocaproic which reverses the net direction of nitrogen flow. It could be argued that this could impact on amino acid concentration in aqueous and vitreous fluids. Although no definite conclusions can be drawn by this extremely rare case, the low vitreous and aqueous levels of Glutamate is an interesting finding. Further studies are needed to provide a better insight in the role of amino acids as neurotransmitters in the human eye in health and disease.

  12. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less

  13. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake.

    PubMed

    Doleman, Joanne F; Grisar, Katrijn; Van Liedekerke, Lena; Saha, Shikha; Roe, Mark; Tapp, Henri S; Mithen, Richard F

    2017-11-01

    Despite its importance in many areas of human metabolism, there are no recommended daily intake guide lines for sulphur. It is generally assumed that most dietary sulphur originates from intake of methionine and cysteine. We estimated sulphur intake from food diaries, and validated the results with the use of a duplicate diet analyses. Sulphur intake estimations were highly correlated with that obtain through an elemental analysis of duplicate diets, with a mean±sd daily intakes of 956±327.9mg estimated from diet diary analyses and 935±329.9mg estimated by a duplicate diet analyses. Sulphur intake from alliaceous and cruciferous vegetables contributed up to 42% of total sulphur intake. Daily intake estimation comparisons through diet diary analyses and duplicate diet for other elements showed good agreement, except for sodium and zinc, in which analyses of 24h diet dairies overestimated intake by 35% and 52%, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    PubMed

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Levels of cystathionine gamma lyase production by Geotrichum candidum in synthetic media and correlation with the presence of sulphur flavours in cheese.

    PubMed

    Gente, Stéphanie; La Carbona, Stéphanie; Guéguen, Micheline

    2007-03-10

    Geotrichum candidum is a cheese-ripening agent with the potential to produce sulphur flavour compounds in soft cheeses. We aimed to develop an alternative test for predicting the aromatic (sulphur flavours) potential of G. candidum strains in soft cheese. Twelve strains of G. candidum with different levels of demethiolase activity (determined by a chemical method) in YEL-met (yeast extract, lactate methionine) medium were studied. We investigated cgl (cystathionine gamma lyase) gene expression after culture in three media - YEL-met, casamino acid and curd media - and then carried out sensory analysis on a Camembert cheese matrix. We found no correlation between demethiolase activity in vitro and cgl gene expression. Sensory analysis (detection of sulphur flavours) identified different aromatic profiles linked to cgl expression, but not to demethiolase activity. The RT-PCR technique described here is potentially useful for predicting the tendency of a given strain of G. candidum to develop sulphur flavours in cheese matrix. This is the first demonstration that an in vitro molecular approach could be used as a predictive test for evaluating the potential of G. candidum strains to generate sulphur compounds in situ (Camembert cheese matrix).

  16. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  17. The detection of sulphur in contamination spots in electron probe X-ray microanalysis

    USGS Publications Warehouse

    Adler, I.; Dwornik, E.J.; Rose, H.J.

    1962-01-01

    Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.

  18. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton.

    PubMed

    Sirés, Ignasi; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2007-01-01

    Acidic aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, have been degraded by indirect electrooxidation methods such as electro-Fenton and photoelectro-Fenton with Fe(2+) as catalyst using an undivided electrolytic cell with a Pt anode and an O(2)-diffusion cathode able to electrogenerate H(2)O(2). At pH 3.0 about 80% of mineralization is achieved with the electro-Fenton method due to the efficient production of oxidant hydroxyl radical from Fenton's reaction between Fe(2+) and H(2)O(2), but stable Fe(3+) complexes are formed. The photoelectro-Fenton method favors the photodecomposition of these species under UVA irradiation, reaching more than 96% of decontamination. The mineralization current efficiency increases with rising metabolite concentration up to saturation and with decreasing current density. The photoelectro-Fenton method is then viable for treating acidic wastewaters containing this pollutant. Comparative degradation by anodic oxidation (without Fe(2+)) yields poor decontamination. Chloride ion is released during all degradation processes. The decay kinetics of clofibric acid always follows a pseudo-first-order reaction, with a similar rate constant in electro-Fenton and photoelectro-Fenton that increases with rising current density, but decreases at greater metabolite concentration. 4-Chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol, along with carboxylic acids such as 2-hydroxyisobutyric, tartronic, maleic, fumaric, formic and oxalic, are detected as intermediates. The ultimate product is oxalic acid, which forms very stable Fe(3+)-oxalato complexes under electro-Fenton conditions. These complexes are efficiently photodecarboxylated in photoelectro-Fenton under the action of UVA light.

  19. Coefficients of interphase distribution and Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-11-01

    Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.

  20. The Negative Effects of Volatile Sulphur Compounds.

    PubMed

    Milella, Lisa

    2015-01-01

    Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research.

  1. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  2. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  3. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  4. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins

    PubMed Central

    Marsolais, Frédéric

    2012-01-01

    The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman–Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins. PMID:23066144

  5. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins.

    PubMed

    Liao, Dengqun; Pajak, Agnieszka; Karcz, Steven R; Chapman, B Patrick; Sharpe, Andrew G; Austin, Ryan S; Datla, Raju; Dhaubhadel, Sangeeta; Marsolais, Frédéric

    2012-10-01

    The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.

  6. Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Konarov, Aishuak; Bakenov, Zhumabay; Yashiro, Hitoshi; Sun, Yang-Kook; Myung, Seung-Taek

    2017-07-01

    A S/DPAN (dehydrogenated polyacrylonitrile) composite shows promising electrode performances as a cathode material for Li-S batteries though its electric conductivity is insufficient for high rate tests. In an attempt to enhance the electric conductivity, the S/DPAN composite is attached on reduced graphene oxide (rGO) sheets via self-assembling modification. As a result, the conductivity improves to ∼10-4 S cm-1, and the S/DPAN/rGO composite thereby delivers approximately 90% of the theoretical capacity of sulphur at a rate of 0.2C (0.34 A g-1) over 700 mAh (g-S)-1 even at 2C (3.4 A g-1). We first report on the Csbnd S bond between sulphur and DPAN in a composite that maintains the bond even after an extensive cycling test, as confirmed by time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). These synergistic effects enable facile electron transport such that the S/DPAN/rGO composite electrode is able to maintain superior electrode performances.

  7. Volatile sulphur compounds in UHT milk.

    PubMed

    Al-Attabi, Z; D'Arcy, B R; Deeth, H C

    2009-01-01

    Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.

  8. Urea, Uric Acid, Prolactin and fT4 Concentrations in Aqueous Humor of Keratoconus Patients.

    PubMed

    Stachon, Tanja; Stachon, Axel; Hartmann, Ulrike; Seitz, Berthold; Langenbucher, Achim; Szentmáry, Nóra

    2017-06-01

    Keratoconus is a noninflammatory disease of the cornea associated with progressive thinning and conical shape. Metabolic alterations in the urea cycle, with changes in collagen fibril stability, oxidative stress, thyroid hormones and prolactin with regulatory effect on biosynthesis and biomechanical stability of corneal stroma, may all play a role in keratoconus etiology. Our purpose was to determine urea, uric acid, prolactin and free thyroxin (fT4) concentrations in human aqueous humor (hAH) of keratoconus and cataract patients. hAH was collected from 100 keratoconus (penetrating keratoplasty) (41.9 ± 14.9 years, 69 males) and 100 cataract patients (cataract surgery) (71.2 ± 12.4 years, 58 males). Urea, uric acid, prolactin and fT4 concentrations were measured by Siemens clinical chemistry or immunoassay system. For statistical analysis, a generalized linear model (GLM) was used. Urea concentration was 11.88 ± 3.03 mg/dl in keratoconus and 16.44 ± 6.40 mg/dl in cataract patients, uric acid 2.04 ± 0.59 mg/dl in keratoconus and 2.18 ± 0.73 mg/dl in cataract groups. Prolactin concentration was 3.18 ± 0.34 ng/ml in keratoconus and 3.33 ± 0.32 ng/ml in cataract patients, fT4 20.57 ± 4.76 pmol/l in KC and 19.06 ± 3.86 pmol/l in cataract group. Urea concentration was effected through gender (p = 0.039), age (p = 0.001) and diagnosis (p = 0.025). Uric acid concentration was not effected through any of the analyzed parameters (p > 0.056). Prolactin and fT4 concentration were effected only through diagnosis (p = 0.009 and p = 0.006). Urea and prolactin concentrations are decreased, fT4 concentration is increased in aqueous humor of keratoconus patients, and uric acid concentration remains unchanged. Urea concentration in aqueous humor is also increased in older and male patients. Therefore, metabolic disorder and hormonal balance may both have an impact on keratoconus development. Further studies are necessary to assess the specific impact.

  9. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  10. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites.

    PubMed

    Shahbaz, M; Stuiver, C E E; Posthumus, F S; Parmar, S; Hawkesford, M J; De Kok, L J

    2014-01-01

    The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism-related gene expression and the suggested regulatory metabolites. At high tissue Cu levels, there was no relation between sulphur metabolite levels viz. total sulphur, sulphate and water-soluble non-protein thiols, and the expression and activity of sulphate transporters and expression of APS reductase under sulphate-sufficient or-deprived conditions, in the presence or absence of H2 S. This indicated that the regulatory signal transduction pathway of sulphate transporters was overruled or by-passed upon exposure to elevated Cu concentrations. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. A Multi-spectroscopic Investigation of Sulphur Speciation in Silicate Glasses and Slags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, P.; Connelly, A; Hand, R

    2010-01-01

    Sulphur K-edge x-ray absorption near-edge structure (XANES), sulphur K{sub {alpha}} and K{sub {beta}} high resolution x-ray emission spectroscopies (XES), electron paramagnetic resonance (EPR) and optical absorption spectroscopies have been used to study the speciation of sulphur in a range of soda-lime-silica glasses and silicate slags. Several inorganic standards with known sulphur oxidation states and structural environments have also been analysed. Results confirm that the average oxidation state of sulphur in glasses decreases, as expected, in the order (colourless>light olive>dark olive>light amber>dark amber). This behaviour is consistent with decreasing S{sup 6+}/{Sigma}S ratio, which has been quantified by linear combination fitting ofmore » XES S K{alpha} spectra, and with analysed sulphur contents which exhibit a characteristic relationship with oxygen partial pressure, pO{sub 2}. A combination of S{sup 6+}, S{sup 5+}, S{sup 4+} and more reduced sulphur species has been detected in olive and amber glasses. The S{sup 4+} and S{sup 5+} species are most evident in olive-coloured glasses produced under moderately reducing conditions that coincide with minimum sulphur solubilities. The reduced form of sulphur, present in all reduced glasses, is interpreted as being present as S{sup 2-} on the basis of XANES, XES, EPR and optical measurements. An alternative interpretation of the data is that there is a continuum of less strongly reduced species, primarily S{sup +} and S{sup 2+}; this interpretation has less merit. In this paper we show that the established relationship that describes sulphur redox only in terms of S{sup 6+} and S{sup 2-}, and which states that only these two species co-exist over a narrow, moderately reducing range of pO{sub 2}, does not fully describe the behaviour of S in the industrial, non-equilibrated glasses studied. Hence this relationship requires slight modification for non-equilibrated systems to explain the existence of

  12. Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P

    2009-12-24

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.

  13. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    NASA Astrophysics Data System (ADS)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  14. Placing an upper limit on cryptic marine sulphur cycling.

    PubMed

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  15. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter.

    PubMed

    Sawyer, Anne L; Hankamer, Ben D; Ross, Ian L

    2015-05-01

    A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.

  16. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent.

    PubMed

    Roy Choudhury, S; Goswami, A

    2013-01-01

    Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility. © 2012 The Society for Applied Microbiology.

  17. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  18. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  19. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.

    PubMed

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J; Xiang, Cheng-Bin

    2010-07-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a 'sulphur-free' solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance.

  20. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  1. Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway.

    PubMed

    Moniuszko, Grzegorz; Skoneczny, Marek; Zientara-Rytter, Katarzyna; Wawrzyńska, Anna; Głów, Dawid; Cristescu, Simona M; Harren, Frans J M; Sirko, Agnieszka

    2013-11-01

    Most genes from the plant-specific family encoding Response to Low Sulphur (LSU)-like proteins are strongly induced in sulphur (S)-deficient conditions. The exact role of these proteins remains unclear; however, some data suggest their importance for plants' adjustment to nutrient deficiency and other environmental stresses. This work established that the regulation of ethylene signalling is a part of plants' response to S deficiency and showed the interaction between UP9C, a tobacco LSU family member, and one of the tobacco isoforms of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO2A). Increase in ethylene level induced by S deficiency does not take place in tobacco plants with UP9C expressed in an antisense orientation. Based on transcriptomics data, this work also demonstrated that the majority of tobacco's response to S deficiency is misregulated in plants expressing UP9C-antisense. A link between response to S deficiency, ethylene sensing, and LSU-like proteins was emphasized by changes in expression of the genes encoding ethylene receptors and F-box proteins specific for the ethylene pathway.

  2. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product

    NASA Astrophysics Data System (ADS)

    Sanni, O.; Popoola, A. P. I.; Fayomi, O. S. I.

    2018-06-01

    Literature has shown that different organic compounds are effective corrosion inhibitors for metal in acidic environments. Such compounds usually contain oxygen, nitrogen or sulphur and function through adsorption on the metal surface, thereby creating a barrier for corrosion attack. Unfortunately, these organic compounds are toxic, scarce and expensive. Therefore, plants, natural product and natural oils have been posed as cheap, environmentally acceptable, abundant, readily available and effective molecules having low environmental impact. The corrosion resistance of austenitic stainless steel Type 316 in the presence of eco-friendly waste product was studied using weight loss and potentiodynamic polarization techniques in 0.5 M H2SO4. The corrosion rate and corrosion potential of the steel was significantly altered by the studied inhibitor. Results show that increase in concentration of the inhibitor hinders the formation of the passive film. Experimental observation shows that its pitting potential depends on the concentration of the inhibitor in the acid solution due to adsorption of anions at the metal film interface. The presence of egg shell powder had a strong influence on the corrosion resistance of stainless steel Type 316 with highest inhibition efficiency of 94.74% from weight loss analysis, this is as a result of electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible for corrosion and surface deterioration. Inhibitor adsorption fits the Langmuir isotherm model. The two methods employed for the corrosion assessment were in good agreement.

  3. Potential of Sulphur-containing Amino Acids in the Prevention of Catecholamine-induced Arrhythmias.

    PubMed

    Adameova, Adriana; Tappia, Paramjit S; Hatala, Robert; Dhalla, Naranjan S

    2018-01-30

    Various physiological and pathological stimuli can hypersensitize the sympathetic nervous system resulting in a substantial release of catecholamines (CA) and consequent alterations in excitation-contraction coupling and excitation-transcription coupling. It has been shown that oxidation products of CA, rather than CA themselves, are responsible for such adaptation to a new equilibrium. While chronic, sustained accumulation of CA and their toxic products are associated with the depression in cardiac contractile force and remodeling, acute excessive release of CA can result in brief oxidative bursts and serious damage leading in lethal arrhythmias. In response to such oxidative stress, dysregulation of ion homeostasis, activation of neurohumoral system, immune and inflammatory responses, are augmented. These events are inter-related, and as a complex promote electrical instability. Likewise, remodeling occurring after the loss of cardiomyocytes, induces the development of a proarrhythmogenic environment. Thus, CA oxidation products may be involved in triggering arrhythmias as a result of both changes in cardiac cell automaticity and conduction velocity. In contrast, sulphur-containing amino acids (S-AA), in particular taurine and its precursor cysteine have been shown to modulate redox state of the heart. However, the multiple anti-oxidant properties of S-AA are unlikely to be exclusively responsible for their anti-arrhythmic action. They also possess additional cytoprotective effects which can stabilize electrical activity of the heart. It is concluded that specific S-AA may attenuate deleterious effects of supraphysiological levels of CA and this could serve as an important mechanism for the treatment and/or prevention of arrhythmogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Sulphur tracer experiments in laboratory animals using 34S-labelled yeast.

    PubMed

    Martínez-Sierra, J Giner; Moreno Sanz, F; Herrero Espílez, P; Marchante Gayón, J M; Rodríguez Fernández, J; García Alonso, J I

    2013-03-01

    We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.

  5. Characterization of selectively etched halloysite nanotubes by acid treatment

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, Daniel; Ferri, Jose M.; Ripoll, Laura; Hidalgo, Montserrat; Lopez-Martinez, Juan; Balart, Rafael

    2017-11-01

    Halloysite nanotubes (HNTs) are a type of naturally occurring inorganic nanotubes that are characterized by a different composition between their external and internal walls. The internal walls are mainly composed of alumina whilst external walls are composed of silica. This particular structure offers a dual surface chemistry that allows different selective surface treatments which can be focused on increasing the lumen, increasing porosity, etc. In this work, HNTs were chemically treated with different acids (sulphuric, acetic and acrylic acid), for 72 h at a constant temperature of 50 °C. As per the obtained results, the treatment with sulphuric acid is highly aggressive and the particular shape of HNTs is almost lost, with a remarkable increase in porosity. The BET surface area increases from 52.9 (untreated HNTs) up to 132.4 m2 g-1 with sulphuric acid treatment, thus showing an interesting potential in the field of catalysis. On the other hand, the treatment with acetic acid led to milder effects with a noticeable increase in the lumen diameter that changed from 13.8 nm (untreated HNTs) up to 18.4 nm which the subsequent increase in the loading capacity by 77.8%. The aluminium content was measured by X-ray fluorescence (XRF) and laser induced breakdown spectroscopy (LIBS). The final results using two systems, suggest a good correlation between the acid strength and the aluminium reduction. Consequently, is possible to conclude that new applications for HNTs can be derived from selective etching with acids. Sulphuric acid widens the potential of HNTs in the field of catalysis while weak acids such as acetic and acrylic acids give a controlled and homogeneous lumen increase with the corresponding increase in the loading capacity.

  6. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis

    PubMed Central

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J.; Xiang, Cheng-Bin

    2010-01-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a ‘sulphur-free’ solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance. PMID:20547563

  7. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Costs and benefits of low-sulphur fuel standard for Baltic Sea shipping.

    PubMed

    Antturi, Jim; Hänninen, Otto; Jalkanen, Jukka-Pekka; Johansson, Lasse; Prank, Marje; Sofiev, Mikhail; Ollikainen, Markku

    2016-12-15

    The maximum allowable fuel sulphur content for shipping in the Baltic Sea dropped from 1%S to 0.1%S in 1 January 2015. We provide a cost-benefit analysis of the sulphur reduction policy in the Baltic Sea Sulphur Emission Control Area (SECA). We calculated the abatement costs based on shipowners' optimal decision-making in choosing between low-sulphur fuel and a sulphur scrubber, and the benefits were modelled through a high-resolution impact pathway analysis, which took into account the formation and dispersion of the emissions, and considered the positive health impacts resulting from lowered ambient PM 2.5 concentrations. Our basic result indicates that for the Baltic Sea only, the latest sulphur regulation is not cost-effective. The expected annual cost is roughly €465 M and benefit 2200 saved Disability Adjusted Life-Years (DALYs) or monetized €105 M. Based on our sensitivity analysis, the benefits yet have a potential to exceed the costs. The analysis neither takes into account the acidifying impact of sulphur nor the impact North Sea shipping has on the cost-benefit ratio. Lastly, a similar approach is found highly recommendable to study the implications of the upcoming Tier III NO x standard for shipping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING (LEFT BACKGROUND), AND TWIN COTTAGES (UPPER RIGHT) (4 x 5 negative; 5 x 7 print) - Salt Sulpher Springs, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  10. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  11. SMED - Sulphur MEditerranean Dispersion

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro

    2016-04-01

    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  12. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  13. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants.

    PubMed

    Singh, Madhulika; Kushwaha, Bishwajit Kumar; Singh, Samiksha; Kumar, Vipin; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2017-03-01

    The present study investigates modulation in hexavalent chromium [Cr(VI) 25 μM] toxicity by sulphur (S; 0.5, 1.0 and 1.5 mM S as low (LS), medium (MS) and high sulphur (HS), respectively) in Solanum melongena (eggplant) seedlings. Biomass accumulation (fresh and dry weights), photosynthetic pigments, photosynthetic oxygen evolution and S content were declined by Cr(VI) toxicity. Furthermore, fluorescence characteristics (JIP-test) were also affected by Cr(VI), but Cr(VI) toxicity on photosystem II photochemistry was ameliorated by HS treatment via reducing damaging effect on PS II reaction centre and its reduction side. Enhanced respiration, Cr content and oxidative biomarkers: superoxide radical, hydrogen peroxide, lipid peroxidation and membrane damage were observed under Cr(VI) stress. Though Cr(VI) enhanced adenosine triphasphate sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), glutathione-S-transferase (GST), glutathione reductase (GR) and ascorbate peroxidase (APX) activity, and content of total glutathione, cysteine and NP-SH, however, their levels/activity were further enhanced by S being maximum with HS treatment. The results show that Cr(VI) toxicity does increase under LS treatment while HS protected Cr(VI)-induced damaging effects in brinjal seedlings. Under HS treatment, in mitigating Cr(VI) toxicity, S assimilation and its associated metabolites such as cysteine, glutathione and NP-SH play crucial role. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. [Allelopathy of grape root aqueous extracts].

    PubMed

    Li, Kun; Guo, Xiu-wu; Guo, Yin-shan; Li, Cheng-xiang; Xie, Hong-gang; Hu, Xi-xi; Zhang, Li-heng; Sun, Ying-ni

    2010-07-01

    Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.

  15. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  16. Utilization of sulphurized palm oil as cutting fluid base oil for broaching process

    NASA Astrophysics Data System (ADS)

    Sukirno; Ningsih, Y. R.

    2017-03-01

    Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is

  17. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  18. Agrobacterium tumefaciens can obtain sulphur from an opine that is synthesized by octopine synthase using S-methylmethionine as a substrate.

    PubMed

    Flores-Mireles, Ana Lidia; Eberhard, Anatol; Winans, Stephen C

    2012-06-01

    Agrobacterium tumefaciens incites plant tumours that produce nutrients called opines, which are utilized by the bacteria during host colonization. Various opines provide sources of carbon, nitrogen and phosphorous, but virtually nothing was previously known about how A. tumefaciens acquires sulphur during colonization. Some strains encode an operon required for the catabolism of the opine octopine. This operon contains a gene, msh, that is predicted to direct the conversion of S-methylmethionine (SMM) and homocysteine (HCys) to two equivalents of methionine. Purified Msh carried out this reaction, suggesting that SMM could be an intermediate in opine catabolism. Purified octopine synthase (Ocs, normally expressed in plant tumours) utilized SMM and pyruvate to produce a novel opine, designated sulfonopine, whose catabolism by the bacteria would regenerate SMM. Sulfonopine was produced by tobacco and Arabidopsis when colonized by A. tumefaciens and was utilized as sole source of sulphur by A. tumefaciens. Purified Ocs also used 13 other proteogenic and non-proteogenic amino acids as substrates, including three that contain sulphur. Sulfonopine and 11 other opines were tested for induction of octopine catabolic operon and all were able to do so. This is the first study of the acquisition of sulphur, an essential element, by this pathogen. © 2012 Blackwell Publishing Ltd.

  19. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  20. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  1. Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions

    NASA Astrophysics Data System (ADS)

    Tjong, S. C.

    1990-03-01

    The effect of ruthenium addition on the spontaneous passivation behaviour of Fe-40Cr alloy in 0.5M H 2SO 4 and 0.5M HCl acid solutions has been studied. Auger and XPS techniques were also used to investigate the surface chemistries of the spontaneously passivated film. Electrochemical measurements indicate that the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys exhibit spontaneous passivation upon exposing them in both hydrochloric and sulphuric acid solutions from 25 to 85 ° C. However, the transition time for spontaneous passivation reduces dramatically with an increase in the ruthenium content and solution temperature. Furthermore, this transition time also decreases for the investigated alloys exposed in a less aggressive sulphuric acid solution. AES results show that ruthenium and chromium are enriched in the spontaneous passive films formed on the Fe-40Cr-0.1Ru alloy in both hydrochloric and sulphuric acid solutions at 25 °C, and also in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in hydrochloric acid solution at 25 ° C. AES does not detect the presence of ruthenium in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in sulphuric acid solution. However, XPS analysis shows that ruthenium and chromium are incorporated into the spontaneous passive films formed on the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys in both hydrochloric and sulphuric acid solutions as Ru 4+ and Cr 3+ species.

  2. Environmentally friendly microwave-assisted sequential extraction method followed by ICP-OES and ion-chromatographic analysis for rapid determination of sulphur forms in coal samples.

    PubMed

    Mketo, Nomvano; Nomngongo, Philiswa N; Ngila, J Catherine

    2018-05-15

    A rapid three-step sequential extraction method was developed under microwave radiation followed by inductively coupled plasma-optical emission spectroscopic (ICP-OES) and ion-chromatographic (IC) analysis for the determination of sulphur forms in coal samples. The experimental conditions of the proposed microwave-assisted sequential extraction (MW-ASE) procedure were optimized by using multivariate mathematical tools. Pareto charts generated from 2 3 full factorial design showed that, extraction time has insignificant effect on the extraction of sulphur species, therefore, all the sequential extraction steps were performed for 5 min. The optimum values according to the central composite designs and counter plots of the response surface methodology were 200 °C (microwave temperature) and 0.1 g (coal amount) for all the investigated extracting reagents (H 2 O, HCl and HNO 3 ). When the optimum conditions of the proposed MW-ASE procedure were applied in coal CRMs, SARM 18 showed more organic sulphur (72%) and the other two coal CRMs (SARMs 19 and 20) were dominated by sulphide sulphur species (52-58%). The sum of the sulphur forms from the sequential extraction steps have shown consistent agreement (95-96%) with certified total sulphur values on the coal CRM certificates. This correlation, in addition to the good precision (1.7%) achieved by the proposed procedure, suggests that the sequential extraction method is reliable, accurate and reproducible. To safe-guard the destruction of pyritic and organic sulphur forms in extraction step 1, water was used instead of HCl. Additionally, the notorious acidic mixture (HCl/HNO 3 /HF) was replaced by greener reagent (H 2 O 2 ) in the last extraction step. Therefore, the proposed MW-ASE method can be applied in routine laboratories for the determination of sulphur forms in coal and coal related matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment

    NASA Astrophysics Data System (ADS)

    Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu

    2017-05-01

    Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.

  4. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  5. Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.

    2018-05-01

    The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.

  6. Effect of Thiobacillus thioparus 1904 and sulphur addition on odour emission during aerobic composting.

    PubMed

    Gu, Wenjie; Sun, Wen; Lu, Yusheng; Li, Xia; Xu, Peizhi; Xie, Kaizhi; Sun, Lili; Wu, Hangtao

    2018-02-01

    The effects of sulphur and Thiobacillus thioparus 1904 on odour emissions during composting were studied. Results indicated that the sulphur addition reduced the pH and decreased cumulative emission of ammonia and the nitrogen loss by 47.80% and 44.23%, respectively, but the amount of volatile sulphur compounds (VSCs) and the sulphur loss increased. The addition of T. thioparus 1904 effectively reduced the cumulative emissions of H 2 S, methyl sulphide, methanethiol, dimethyl disulphide and the sulphur loss by 33.24%, 81.24%, 32.70%, 54.22% and 54.24%, respectively. T. thioparus 1904 also limited the nitrogen loss. The combined application of sulphur and T. thioparus 1904 resulted in the greatest amount of nitrogen retention. The accumulation of ammonia emissions was reduced by 63.33%, and the nitrogen loss was reduced by 71.93%. The combined treatment did not increase the emission of VSCs. The application of sulphur and T. thioparus 1904 may help to control the odour of compost. Copyright © 2017. Published by Elsevier Ltd.

  7. Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry.

    PubMed

    Alam, Raquibul; Shang, Julie Q; Cheng, Xiangrong

    2012-05-01

    The oxidation of sulphidic mine tailings and consequent acid generation poses challenges for the environment. Accurate and precise analysis of sulphur content is necessary for impact assessment and management of mine tailings. Here, the authors aim at developing a rapid and easy digestion procedure, which may analyse and measure the total amount of sulphur in mine tailings by using inductively coupled plasma. For evaluating effects of several variables, the researchers used a univariate (analysis of variance (ANOVA)) strategy and considered factors such as composition of the acid mixture, heating time, and refluxing device to optimize the performance. To do the experiment, the researchers have used two certified reference materials (KZK-1 and RTS-2) and samples of tailings from Musselwhite mine. ANOVA result shows that heating time is the most influencing factor on acid digestion of the reference materials whereas in case of a digestion of tailings sample, hydrochloric acid proved to be the most significant parameter. Satisfactory results between the measured and referenced values are found for all experiments. It is found that the aqua regia (1 ml HNO(3) + 3 ml HCl) digestion of 0.1 g of samples after only 40 min of heating at 95°C produced fast, safe, and accurate analytical results with a recovery of 97% for the selected reference materials.

  8. Acid rain and its ecological consequences.

    PubMed

    Singh, Anita; Agrawal, Madhoolika

    2008-01-01

    Acidification of rain-water is identified as one of the most serious environmental problems of transboundary nature. Acid rain is mainly a mixture of sulphuric and nitric acids depending upon the relative quantities of oxides of sulphur and nitrogen emissions. Due to the interaction of these acids with other constituents of the atmosphere, protons are released causing increase in the soil acidity Lowering of soil pH mobilizes and leaches away nutrient cations and increases availability of toxic heavy metals. Such changes in the soil chemical characteristics reduce the soil fertility which ultimately causes the negative impact on growth and productivity of forest trees and crop plants. Acidification of water bodies causes large scale negative impact on aquatic organisms including fishes. Acidification has some indirect effects on human health also. Acid rain affects each and every components of ecosystem. Acid rain also damages man-made materials and structures. By reducing the emission of the precursors of acid rain and to some extent by liming, the problem of acidification of terrestrial and aquatic ecosystem has been reduced during last two decades.

  9. Nitrogen and sulphur mustard induced histopathological observations in mouse visceral organs.

    PubMed

    Sharma, Manoj; Pant, S C; Pant, J C; Vijayaraghavan, R

    2010-11-01

    Nitrogen mustards (HN) and sulphur mustard (SM) are potent alkylating blister inducing chemical warfare agents. Single 1.0 LD50 dose produced a progressive fall in body weight from second day onwards in all groups of mustard agents exposed animals. Histological examination of spleen, liver skin and kidney revealed significant histopathological lesions in nitrogen mustards and sulphur mustard. These lesions include granulovascular degeneration with perinuclear clumping of the cytoplasm of hepatocytes and renal parenchymal cells. Renal lesions were characterized by congestion and hemorrhage. The maximum toxic manifestation were noted in spleen and skin of HN-3 exposed mice while sulphur mustard reported maximum toxicity in liver and kidneys. The study suggests both nitrogen mustards and sulphur mustard to be extremely toxic by percutaneous route based on histopathological observation and can contributed to earlier reported free radical generation by these toxicants.

  10. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  11. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  12. Efficacy of mineral cationic carrier against sulphur mustard in skin decontamination.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2008-12-01

    The aim of this study was to evaluate decontamination (absorption) efficacy of a preparation called Mineral Cationic Carrier (MCC) against skin contamination with sulphur mustard in vivo. MCC is a synthetic preparation with known ion exchange, absorption efficiency, and bioactive potential. CBA mice were applied increasing doses of sulphur mustard on their skin and MCC was administered immediately after skin contamination. The results have confirmed the decontamination efficacy of MCC preparation, corresponding to 8.4 times the LD50 of percutaneous sulphur mustard, and call for further investigation.

  13. Aqueous Alteration on Mars. Chapter 23

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.

    2007-01-01

    Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the

  14. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  15. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  16. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  17. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2013-01-01

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by L-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. PMID:23258274

  18. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  19. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.

    PubMed

    Rashid, Mamun; Price, Nathaniel T; Gracia Pinilla, Miguel Ángel; O'Shea, Kevin E

    2017-10-15

    Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg -1 min -1 for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl - , SO 4 2- and NO 3 - with some inhibition effect by CO 3 2- . The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media. Copyright © 2017. Published by Elsevier Ltd.

  20. Terahertz microfluidic chips for detection of amino acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Cong; Fan, Ning; Zhang, Cunlin

    2016-11-01

    Microfluidic technology can control the fluidic thickness accurately in less than 100 micrometers. So the combination of terahertz (THz) and microfluidic technology becomes one of the most interesting directions towards biological detection. We designed microfluidic chips for terahertz spectroscopy of biological samples in aqueous solutions. Using the terahertz time-domain spectroscopy (THz-TDS) system, we experimentally measured the transmittance of the chips and the THz absorption spectra of L-threonine and L-arginine, respectively. The results indicated the feasibility of performing high sensitivity THz spectroscopy of amino acids solutions. Therefore, the microfluidic chips can realize real-time and label-free measurement for biochemistry samples in THz-TDS system.

  1. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  2. Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2013-08-01

    The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.

  3. Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi

    1998-11-01

    Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.

  4. Identification and distribution of sulfate reducing bacteria and sulphur-oxidising bacteria in northern South China Sea

    NASA Astrophysics Data System (ADS)

    Mao, S.; Zhu, X.; Guan, H.; Wu, D.; Wu, N.

    2015-12-01

    Fatty acids are one of the major components in modern marine sediments. It is well known that the saturated short-chain FAs were typically to be from vascular plants, algae, bacteria, and other sources, while the saturated long-chain FAs are the major components found in leaf waxes, suberin, and cutin in terrestrial higher plants. So the lipid biomarkers of fatty acids in Site 4B from Shenhu Area, northern South China Sea were investigated in Recent research supported from the 973 Program (2009CB219506), and the resources of branched fatty acids and monounsaturated fatty acids were mainly discussed. The results reveal that i/a15:0, i/a17:0, 16:1ω5, 18:1ω9 and 10me16:0 are derived from sulfate reducing bacteria (SRB), while 16:1ω7t/c and 18:1ω7 are originated from sulphur-oxidising bacteria (SOB). The biomakers of methanotrophs such as 16:1ω6/8 and 18:1ω6/8 were not detected in the sediments which coincide with more positive carbon isotope values of the fatty acids in the sediments. The stable relationship between SRB and SOB below 97cm in the sediments reflects the relative stable oxidative and reductive depositional environment which may be connected with the sulphur cycle in the sediments, that is carried out as sulfate is reduced to sulfide, and then sulfide is oxidized to sulfate and elemental sulfur, at last elemental sulfur is disproportionated to sulfide and sulfate. The frequently changed relationship of SRB and SOB above 97cm in the sediments indicates intensely changing oxidative and reductive sedimental environment, that may related with diapir structure around Site 4B, which also brings about hydrocarbon seepage leading to increasing biomass at 97cm.

  5. Determination of the wine preservative sulphur dioxide with cyclic voltammetry using inkjet printed electrodes.

    PubMed

    Schneider, Marion; Türke, Alexander; Fischer, Wolf-Joachim; Kilmartin, Paul A

    2014-09-15

    During winemaking sulphur dioxide is added to prevent undesirable reactions. However, concerns over the harmful effects of sulphites have led to legal limits being placed upon such additives. There is thus a need for simple and selective determinations of sulphur dioxide in wine, especially during winemaking. The simultaneous detection of polyphenols and sulphur dioxide, using cyclic voltammetry at inert electrodes is challenging due to close oxidation potentials. In the present study, inkjet printed electrodes were developed with a suitable voltammetric signal on which the polyphenol oxidation is suppressed and the oxidation peak height for sulphur dioxide corresponds linearly to the concentration. Different types of working electrodes were printed. Electrodes consisting of gold nanoparticles mixed with silver showed the highest sensitivity towards sulphur dioxide. Low cost production of the sensor elements and ultra fast determination of sulphur dioxide by cyclic voltammetry makes this technique very promising for the wine industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  7. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  8. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    PubMed

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  9. Delayed head and neck complications of sulphur mustard poisoning in Iranian veterans.

    PubMed

    Zojaji, R; Balali-Mood, M; Mirzadeh, M; Saffari, A; Maleki, M

    2009-10-01

    Sulphur mustard is a chemical warfare agent which was used against Iranian combatants and civilians between 1983 and 1988. The purpose of this study was to document the delayed toxic effects of sulphur mustard in Iranian veterans, focussing on head and neck complications. This was a two-year, prospective, descriptive study of 43 male Iranian veterans aged 34 to 48 years (mean 41.8 years) who were moderately disabled or worse due to sulphur mustard poisoning. Investigations were performed with consent, including haematological, biochemical and immunological tests, spirometry, chest X-ray, high resolution computed tomography of the lungs, and skin biopsies. Further investigations and interventions were performed as clinically indicated. The most affected sites were the lungs (95 per cent), peripheral nerves (77 per cent), skin (73 per cent), eyes (68 per cent), and head and neck (16.2 per cent). Of seven patients with mostly head and neck complications, four had a skin disorder (hyperpigmentation in all four, an erythematous, papular rash in two, and dry skin in one). Two patients had thyroid cancer (undifferentiated thyroid carcinoma in one and papillary carcinoma of a thyroglossal cyst in the other, 12 and 14 years after sulphur mustard exposure, respectively). One patient had nasopharyngeal carcinoma, 12 years after sulphur mustard exposure. Carcinomas of the thyroid and nasopharynx in three patients with sulphur mustard exposure are reported for the first time.

  10. Ultrasensitive detection of nitroexplosive - picric acid via a conjugated polyelectrolyte in aqueous media and solid support.

    PubMed

    Hussain, Sameer; Malik, Akhtar Hussain; Afroz, Mohammad Adil; Iyer, Parameswar Krishnan

    2015-04-28

    Picric acid (PA) detection at parts per trillion (ppt) levels is achieved by a conjugated polyelectrolyte (PMI) in 100% aqueous media and on a solid platform using paper strips and chitosan (CS) films. The unprecedented selectivity is accomplished via combination of ground state charge transfer and resonance energy transfer (RET) facilitated by favorable electrostatic interactions.

  11. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  12. Aqueous Alteration on Mars: Evidence from Landed Missions

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C., III; Yen, Albert S.; Gellert, Ralf

    2015-01-01

    Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been “extensively” altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale crater’s Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planum’s sulfate-rich sedimentary deposit containing jarosite is the most “famous” acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev crater’s Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale crater’s Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly

  13. Regional modelling of anthropogenic sulphur in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Engardt, M.; Leong, C. P.

    A co-operative research project between the Malaysian Meteorological Service (MMS) and the Swedish Meteorological and Hydrological Institute (SMHI) focussing on the usage of an atmospheric transport and chemistry model, has just been initiated. Here, we describe the main features of the dispersion model and discuss a first set of calculations in light of available measurements of sulphuric species in Southeast Asia. According to our results, anthropogenic sulphur concentrations and depositions are particularly high near the large cities of the region, around a metal smelter in the southern Philippines, and in a region extending from northern Vietnam into southeastern China. These areas coincide with the high-emissions regions of Southeast Asia and we tentatively conclude that regional transport of acidifying species is not as far-reaching as in the mid-latitudes. From our calculations, and from supporting measurements we conclude that most of rural Southeast Asia is not yet severely affected by anthropogenic sulphur, but given the rapid rate of economical development in this region the situation may deteriorate quickly. Areas that are particularly at risk include the large cities, northern Vietnam, most of central Thailand, most of peninsular Malaysia, eastern Sumatra and parts of Java, all of which receive total-sulphur depositions in excess of 0.5 g S m -2 yr -1. Our model simulates sulphate in precipitation in accordance with measurements, but it has a tendency to overestimate atmospheric SO 2. It remains to be investigated whether this is a problem in the model formulation or a result of unrepresentative sampling. An immediate continuation of this study should be performed with higher spatial resolution than the currently used 100×100 km 2. Other imperfections in this model study, which should be addressed in future work, include parameterised vertical transport in deep convective clouds, the influence of natural emissions (primarily from volcanoes) on the

  14. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan

    2013-01-01

    Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.

  15. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.

    PubMed

    Arslan, G; Pehlivan, E

    2008-11-01

    Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.

  16. Rapid and precise determination of total sulphur in soda-lime-silica glasses.

    PubMed

    Beesley, W J; Chamberlain, B R

    1974-04-01

    A method is described for the determination of total sulphur in small amounts of soda-lime-silica glasses (100 mg or less). The crushed glass is mixed with vanadium pentoxide and decomposed at 1450 degrees under oxygen. The sulphur is quantitatively removed from the glass and determined by a conductometric technique. The method is standardized by accurately injecting sulphur dioxide into the furnace tube. The analysis time is about 10 min and the overall precision (2s) is of the order of 5%.

  17. [Raman spectroscopic analysis of dissolution and phase transformation of chloropinnoite in the boric acid aqueous solution].

    PubMed

    Li, Xiao-Ping; Gao, Shi-Yang; Liu, Zhi-Hong; Hu, Man-Cheng; Xia, Shu-Ping

    2005-01-01

    Raman spectroscopy of dissolution and transformation of chloropinnoite in 4.5% (w.t.%) boric acid aqueous solution at 30 degrees C has been recorded. The Raman spectra of kinetics process have been obtained. The phase transformation product is kurnakovite (2MgO x 3B2O3 x 15H2O). The main polyborate anions and their interaction in aqueous solution have been proposed according to the Raman spectrum. Some assignments were tentatively given and the relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained. A mechanisms of dissolution and crystallization reactions and the formation condition of kurnakovite in Qinghai-Tibet plateau were proposed and discussed.

  18. Sulphur management in onion (Allium cepa) cultivation in hills of Himachal Pradesh.

    PubMed

    Jaggi, R C; Sharma, R K

    2010-05-01

    Field experiment were conducted at CSK HPKV Research Farm, Palampur during Rabi seasons of 2000-01 and 2001-02, to study the response of onion (Allium cepa var Patna red) at four sulphur levels (0, 15, 30 and 60 kg ha(-1)) applied through Gypsum and S95. The analysis was done to allocate the limited availability of sulphur for maximizing net profit over fertilizer cost. The results show that the dose of sulphur under its full availability is 43.02 kg ha(-1). But under its scarce availability the maximum benefit would occur when it is applied up to 32.11 kg ha(-1) followed by even distribution of fertilizer i.e. 20 kg ha(-1). The returns following sulphur application at these rates, would be Rs 69340, 73092 and 68700 ha(-1) respectively.

  19. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  1. Kinetic Studies of the Thermal Decomposition of 2-Chloroethylphosphonic Acid in Aqueous Solution

    PubMed Central

    Biddle, Eric; Kerfoot, Douglas G. S.; Kho, Yioe Hwa; Russell, Kenneth E.

    1976-01-01

    The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions. PMID:16659748

  2. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  4. Microbial sulphur isotope fractionation in a Mars analogue environment at Rio Tinto, SW Spain

    NASA Astrophysics Data System (ADS)

    Velasco, Esther; Mason, Paul; Gonzalez-Toril, Elena; Zegers, Tanja; Davies, Gareth; Amils, Ricardo

    2010-05-01

    The development of geochemical proxies for possible early life on Mars is important in preparation for future space missions, especially those that will return samples to Earth. Sulfur isotopes are likely to be a key future tool for this purpose since abundant sulphate minerals on the surface of Mars [1], such as jarosite (KFe3+3(SO4)2(OH)6), may record the activity of sulphur metabolizing microorganisms. Little is currently known about the sulphur isotope effects associated with sulphate reduction in the acidic environments where jarosite and other minerals are likely to have precipitated. Here we investigate the relationship between sulphate reducing activity and sulphur isotope fractionation in a modern hyper-acidic subareal environment at Rio Tinto, SW Spain [2,3,4]. The geochemical characteristics of Rio Tinto are the consequence of modern weathering of pyrite-rich ores in the Iberian Pyritic Belt, and the metabolism of iron and sulphur compounds by chemolithotrophic microorganisms. This results in a high concentration of ferric iron that is soluble under the acidic conditions generated by the biological activity. These conditions cause the precipitation of ferric-bearing minerals, including amorphous phases and hydronium jarosite. Sulphate reducing bacteria have recently been isolated from Rio Tinto sediments despite the fact that high concentrations of ferrous iron can inhibit microbial sulphate reduction. Flow-through reactor experiments were performed using sediment samples from Río Tinto, in localities where the potential for sulphate-reducing activity was previously identified. Sediments were taken both in the upper part of the river and in the estuary where tidal effects have created a dynamic environment, with mixing between hyperacidic and marine conditions. Sediments were incubated in the laboratory at 30oC, using an artificial input solution with sulphate in excess using techniques developed by Stam et al. [5]. Two sets of experiments were done at

  5. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2017-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of Δ G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of Δ H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  6. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records.

    PubMed

    Wynn, P M; Loader, N J; Fairchild, I J

    2014-04-01

    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel "on-line" method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice.

    PubMed

    Finamor, Isabela; Pérez, Salvador; Bressan, Caroline A; Brenner, Carlos E; Rius-Pérez, Sergio; Brittes, Patricia C; Cheiran, Gabriele; Rocha, Maria I; da Veiga, Marcelo; Sastre, Juan; Pavanato, Maria A

    2017-04-01

    No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC). Chronic administration of aspartame increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH), oxidized glutathione (GSSG), γ-glutamylcysteine ​​(γ-GC), and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine ​​(SAH). Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc) and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway. Copyright © 2017. Published by Elsevier B.V.

  8. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  9. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity.

    PubMed

    Kebukawa, Yoko; Chan, Queenie H S; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E

    2017-03-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.

  10. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  11. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  12. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  13. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  14. Acid-base properties of aqueous illite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Q.; Sun, Z.; Forsling, W.

    In this paper, the acid-base properties of illite/water suspensions are examined using the constant capacitance surface complexation model. On the basis of results of potentiometric titrations and solubility experiments, the authors conclude that the proton reactions in the supernatants of illite suspensions can be successfully represented by proton reactions of Al(H{sub 2}O){sub 6}{sup 3+} and Si(OH){sub 4} in water solutions. For illustrating the acidic characteristics of aqueous illite surfaces, two surface protonation models are proposed: (1) one site-one pK{sub a} model, {triple_bond}SOH {r_reversible} {triple_bond}SO{sup {minus}} + H{sup +}, pK{sub a}{sup int} = 4.12-4.23; (2) two sites-two pK{sub a}s model, {triple_bond}S{submore » 1}OH {r_reversible} {triple_bond}S{sup 1}O{sup {minus}} + H{sup +}, pK{sub a{sub I}} = 4.17-4.44, and {triple_bond}S{sub II}OH {r_reversible} {triple_bond}S{sub II}O{sup {minus}} + H{sup +}, pK{sub a{sub II}}{sup int} = 6.35-7.74. Evaluation of these two models indicates that both of them can give good descriptions of the experimental data of systems with different illite concentrations and ionic strengths and that the one site-one pK{sub a} model can be considered as a simplification of the two sites-two pK{sub a}s model. Since both models assume only deprotonation reactions at the illite surfaces, they suggest that the surface behavior of the illite is similar to that of amorphous SiO{sub 2}. Model assumptions, experimental procedures, and evaluative criteria are detailed in the paper.« less

  15. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  16. Aqueous lithium air batteries

    DOEpatents

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  17. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  18. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    NASA Astrophysics Data System (ADS)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  19. RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Elson, R.E.

    1959-07-14

    The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.

  20. Superlubricity of a Mixed Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu

    2011-05-01

    A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction

  1. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.

    PubMed

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I; Toci, René; Mendel, Ralf R; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-04

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  2. Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy.

    PubMed

    Kollberg, Gittan; Holme, Elisabeth

    2009-12-01

    Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.

  3. Sulphur shuttling across a chaperone during molybdenum cofactor maturation

    NASA Astrophysics Data System (ADS)

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I.; Toci, René; Mendel, Ralf R.; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-01

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP—used as a surrogate of the molybdenum cofactor’s nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  4. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  5. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  6. Aqueous chlorination of mefenamic acid: kinetics, transformation by-products and ecotoxicity assessment.

    PubMed

    Adira Wan Khalit, Wan Nor; Tay, Kheng Soo

    2016-05-18

    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.

  7. Thymus-like activities of sulphur derivatives on T-cell differentiation

    PubMed Central

    1977-01-01

    Levamisole and sodium diethyldithiocarbamate can induce in vivo thymocyte differentiation from precursor spleen cells of nu/nu mice and evoke indirect plaque-forming cells in nude mice immunized with sheep red cells. These sulphur drugs induce in thymusless mice the production of a serum factor which transfer in vivo immune enhancement and in vitro thymocyte differentiation. In vivo treatment with sulphur derivative can substitute for an alleged thymice hormone. PMID:188971

  8. Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Mat, Hanapi

    2014-01-01

    In this study, elemental mercury (EM) adsorbents were synthesized using tetraethyl orthosilicate (TEOS) and 3-mercaptopropyl trimethoxysilane as silica precursors. The synthesized silica gel (SG)-TEOS was further functionalized through impregnation with elemental sulphur and carbon disulphide (CS2). The SG adsorbents were then characterized by using scanning electron microscope, Fourier transform infra-red spectrophotometer, nitrogen adsorption/desorption, and energy-dispersive X-ray diffractometer. The EM adsorption of the SG adsorbents was determined using fabricated fixed-bed adsorber. The EM adsorption results showed that the sulphur-functionalized SG adsorbents had a greater Hgo breakthrough adsorption capacity, confirming that the presence of sulphur in silica matrices can improve Hgo adsorption performance due to their high affinity towards mercury. The highest Hgo adsorption capacity was observed for SG-TEOS(CS2) (82.62 microg/g), which was approximately 2.9 times higher than SG-TEOS (28.47 microg/g). The rate of Hgo adsorption was observed higher for sulphur-impregnated adsorbents, and decreased with the increase in the bed temperatures.

  9. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  10. Paper-based electrochemical sensor for on-site detection of the sulphur mustard.

    PubMed

    Colozza, Noemi; Kehe, Kai; Popp, Tanja; Steinritz, Dirk; Moscone, Danila; Arduini, Fabiana

    2018-06-22

    Herein, we report a novel paper-based electrochemical sensor for on-site detection of sulphur mustards. This sensor was conceived combining office paper-based electrochemical sensor with choline oxidase enzyme to deliver a sustainable sensing tool. The mustard agent detection relies on the evaluation of inhibition degree of choline oxidase, which is reversibly inhibited by sulphur mustards, by measuring the enzymatic by-product H 2 O 2 in chronoamperometric mode. A nanocomposite constituted of Prussian Blue nanoparticles and Carbon Black was used as working electrode modifier to improve the electroanalytical performances. This bioassay was successfully applied for the measurement of a sulphur mustard, Yprite, obtaining a detection limit in the millimolar range (LOD = 0.9 mM). The developed sensor, combined with a portable and easy-to-use instrumentation, can be applied for a fast and cost-effective detection of sulphur mustards.

  11. Enhanced dispersion of boron nitride nanosheets in aqueous media by using bile acid-based surfactants

    NASA Astrophysics Data System (ADS)

    Chae, Ari; Park, Soo-Jin; Min, Byunggak; In, Insik

    2018-01-01

    Facile noncovalent surface functionalization of hydroxylated boron nitride nanosheet (BNNS-OH) was attempted through the sonication-assisted exfoliation of h-BN in aqueous media in the presence of bile acid-based surfactants such as sodium cholic acid (SC) or sodium deoxycholic acid (SDC), resulting in SC- or SDC-BNNS-OH dispersion with high up to 2 mg ml-1 and enhanced dispersion stability due to the increased negative zeta potential. While prepared SC-BNNS-OH revealed multi-layered BNNS structures, the large lateral sizes of hundreds nanometers and clear h-BN lattice structures are very promising for the preparation and application of water-processable BNNS-based nanomaterials. It is regarded that noncovalent functionalization of BNNS-OH based on σ-π interaction between with σ-rich bile acid-based amphiphiles and π-rich BNNS is very effective to formulate multi-functional BNNS-based nanomaterials or hybrids that can be utilized in various applications where both the pristine properties of BNNS and the extra functions are simultaneously required.

  12. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  13. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil.

    PubMed

    Stamford, N P; Santos, P R; Santos, C E S; Freitas, A D S; Dias, S H L; Lira, M A

    2007-04-01

    Phosphate rocks have low available P and soluble P fertilizers have been preferably used in plant crop production, although economic and effective P sources are needed. Experiments were carried out on a Brazilian Typic Fragiudult soil with low available P to evaluate the agronomic effectiveness of phosphate rock (PR) compared with soluble phosphate fertilizer. Yam bean (Pachyrhizus erosus) inoculated with rhizobia (strains NFB 747 and NFB 748) or not inoculated was the test crop. Biofertilizers were produced in field furrows by mixing phosphate rock (PR) and sulphur inoculated with Acidithiobacillus (S+Ac) in different rates (50, 100, 150 and 200 g S kg(-1) PR), with 60 days of incubation. Treatments were carried out with PR; biofertilizers B(50), B(100), B(150), B(200); triple super phosphate (TSP); B(200) without Acidithiobacillus and a control treatment without P application (P(0)). TSP and biofertilizers plus S inoculated with Acidithiobacillus increased plant growth. Soil acidity and available P increased when biofertilizers B(150) and B(200) were applied. We conclude that biofertilizers may be used as P source; however, long term use will reduce soil pH and potentially reduce crop growth.

  14. In-situ spectroscopic investigations of the redox behavior of poly(indole-5-carboxylic-acid) modified electrodes in acidic aqueous solutions.

    PubMed

    Talbi, H; Billaud, D; Louarn, G; Pron, A

    2001-03-01

    The oxidation of electrochemically grown poly(indole-5-carboxylic-acid) (P5CO2H) and its spectroscopic properties have been studied by in-situ spectroelectrochemical techniques. The purpose of this paper is to characterize the different modifications on the P5CO2H backbone, induced by the electrochemical oxidation in aqueous acidic solution. We have identified, on the basis of Raman spectra, the vibrational modes associated with neutral and oxidized segments of polymer. It was shown that at least three chemically and optically different species (perhaps other products too) are produced in different potential regimes upon oxidation of this polymer. The results obtained also indicate that the molecular properties of this conducting polymer are better revealed by in-situ resonant spectra than by ex-situ infrared and Raman studies.

  15. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  16. Biodegradation of the xenobiotic organic disulphide 4,4'-dithiodibutyric acid by Rhodococcus erythropolis strain MI2 and comparison with the microbial utilization of 3,3'-dithiodipropionic acid and 3,3'-thiodipropionic acid.

    PubMed

    Wübbeler, Jan Hendrik; Bruland, Nadine; Wozniczka, Milena; Steinbüchel, Alexander

    2010-04-01

    Application of the non-toxic 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4'-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species Rhodococcus erythropolis. Transposon mutagenesis of R. erythropolis strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.

  17. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  19. Effects of the Aqueous Extract from Tabebuia roseoalba and Phenolic Acids on Hyperuricemia and Inflammation

    PubMed Central

    Ferraz-Filha, Zilma Schimith; Ferrari, Fernanda Cristina; Araújo, Marcela Carolina de Paula Michel; Bernardes, Ana Catharina Fernandes P. F.

    2017-01-01

    Tabebuia species (Bignoniaceae) have long been used in folk medicine as anti-inflammatory, antirheumatic, antimicrobial, and antitumor. The aim of this study was to investigate if aqueous extract from the leaves (AEL) of Tabebuia roseoalba (Ridl.) Sandwith, Bignoniaceae, and its constituents could be useful to decrease serum uric acid levels and restrain the gout inflammatory process. HPLC analysis identified caffeic acid and chlorogenic acid in AEL. Antihyperuricemic effects and inhibition of liver XOD (xanthine oxidoreductase) by AEL and identified compounds were evaluated in hyperuricemic mice. Anti-inflammatory activity was evaluated on MSU (monosodium urate) crystal-induced paw edema. In addition, AEL antioxidant activity in vitro was evaluated. AEL, caffeic, and chlorogenic acids were able to reduce serum uric acid levels in hyperuricemic mice probably through inhibition of liver xanthine oxidase activity and significantly decreased the paw edema induced by MSU crystals. AEL showed significant antioxidant activity in all evaluated assays. The results show that the AEL of Tabebuia roseoalba can be a promising agent for treatment for gout and inflammatory diseases. We suggest that caffeic and chlorogenic acids may be responsible for the activities demonstrated by the species. PMID:29375639

  20. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  1. Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia

    NASA Astrophysics Data System (ADS)

    Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Robertson, Richard; Beckles, Denise M.

    2013-03-01

    Sulphur Springs is a vigorous, geothermal field associated with the active Soufrière Volcanic Centre in southern Saint Lucia, Lesser Antilles island arc. The 'Sulphur Springs Park' is an important tourist attraction (touted as the 'world's only drive-through volcano') with some of the hot pools being developed into recreational pools. Some 200,000 people visit the park each year. Since 2001, the hydrothermal fluids of Sulphur Springs have been sampled as part of an integrated volcanic monitoring programme for the island. Gas and water samples were analysed to characterise the geochemistry of the hydrothermal system, and to assess the equilibrium state and subsurface temperatures of the reservoir. This has also enabled us, for the first time, to establish baseline data for future geochemical monitoring. The gases are of typical arc-type composition, with N2 excess and low He and Ar content. The dry gas composition is dominated by CO2 (ranging from 601-993 mmol/mol), with deeper magmatic sourced H2S-rich vapour undergoing boiling and redox changes in the geothermal reservoir to emerge with a hydrothermal signature in the fumarolic gases. Fluid contributions from magmatic degassing are also evident, mainly from the moderate to high contents of HCl and deeply-sourced H2S gas, respectively. Sulphur Springs hydrothermal waters have acid-sulphate type compositions (SO4 = 78-4008 mg/L; pH = 3-7), and are of primarily meteoric origin which have been affected by evaporation processes based on the enrichment in both δ18O and δD (δ18O = - 1 to 15‰ and δD = - 9 to 14‰ respectively) in relation to the global meteoric water line (GMWL). These waters are steam-heated water typically formed by absorption of H2S-rich gases in the near surface oxygenated groundwaters. Reservoir temperatures calculated from the evaluation of gas equilibria in the CO2-CH4-H2 system reveal higher temperatures (190 to 300 °C) than those derived from quartz geothermometry (95 to 169 °C), which

  2. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...

  3. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...

  4. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  5. Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.

    PubMed

    Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi

    2004-02-01

    In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.

  6. Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances

    NASA Astrophysics Data System (ADS)

    Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath

    2017-11-01

    Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.

  7. Investigations of kinetics and mechanism of chloropinnoite in boric acid aqueous solution at 303 K by Raman spectroscopy.

    PubMed

    Xiaoping, Li; Shiyang, Gao; Shuping, Xia

    2004-10-01

    Raman spectroscopy of dissolution and transformation of chloropinnoite in 4.5% (wt.%) boric acid aqueous solution at 303 K has been recorded. The Raman spectra of kinetics process have been obtained. The phase transformation product is 2MgO.3B2O3.15H2O (kurnakovite). The main polyborate anions and their interaction in aqueous solution have been proposed according to the Raman spectrum. Some assignments were tentatively given and the relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained. A mechanism of dissolution and crystallization reactions and the formation condition of kurnakovite in Qinghai-Tibet plateau were proposed and discussed.

  8. Preventing iron(ii) precipitation in aqueous systems using polyacrylic acid: some molecular insights.

    PubMed

    Artola, Pierre-Arnaud; Rousseau, Bernard; Clavaguéra, Carine; Roy, Marion; You, Dominique; Plancque, Gabriel

    2018-06-22

    We present molecular dynamics simulations of aqueous iron(ii) systems in the presence of polyacrylic acid (PAA) under the extreme conditions that take place in the secondary coolant circuit of a nuclear power plant. The aim of this work is to understand how the oligomer can prevent iron(ii) deposits, and to provide molecular interpretation. We show how, to this end, not only the complexant ability is necessary, but also the chain length compared to iron(ii) concentration. When the chain is long enough, a hyper-complexation phenomenon occurs that can explain the specific capacity of the polymer to prevent iron(ii) precipitation.

  9. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor

    PubMed Central

    Malkin, Sairah Y; Rao, Alexandra MF; Seitaj, Dorina; Vasquez-Cardenas, Diana; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Boschker, Henricus TS; Meysman, Filip JR

    2014-01-01

    Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution. PMID:24671086

  10. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor.

    PubMed

    Malkin, Sairah Y; Rao, Alexandra M F; Seitaj, Dorina; Vasquez-Cardenas, Diana; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Boschker, Henricus T S; Meysman, Filip J R

    2014-09-01

    Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution.

  11. Monitoring of oxidation steps of ascorbic acid redox reaction by kinetics-sensitive voltcoulometry in unsupported and supported aqueous solutions and real samples.

    PubMed

    Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj

    2003-04-01

    Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.

  12. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.

    PubMed

    Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi

    2016-01-01

    Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population.

  13. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  15. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions.

    PubMed

    Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad

    2016-12-01

    The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO 2 ) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO 2 and ZnO) on the removal efficiency of humic acid. pH zpc of raw walnut shell, walnut shell modified with TiO 2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO 2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.

  16. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.

    PubMed

    Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan

    2016-01-05

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  17. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries

    PubMed Central

    Helen, M.; Reddy, M. Anji; Diemant, Thomas; Golla-Schindler, Ute; Behm, R. Jürgen; Kaiser, Ute; Fichtner, Maximilian

    2015-01-01

    Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4–8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell. PMID:26173723

  18. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  19. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.

    PubMed

    Gogoi, Bedanta; Sen Sarma, Neelotpal

    2015-06-03

    Rapid detection of picric acid in real sample is of outmost importance from the perspective of health, safety, and environment. In this study, a very simple and cost-effective detection of picric acid is accomplished by developing a couple of biobased conjugates curcumin-cysteine (CC) and curcumin-tryptophan (CT), which undergo efficient fluorescence turn on toward picric acid in aqueous media. Both the probes experience about 26.5-fold fluorescence enhancements at 70 nM concentration of the analyte. Here, the fluorescence turn on process is governed by the aggregation induced emission, which is induced from the electrostatic interaction between the conjugates with picric acid. The detection limit of CC and CT are about 13.51 and 13.54 nM of picric acid, respectively. Importantly, both the probes exhibit high selectivity and low interference of other analogues toward the detection of picric acid. In addition, the probes are highly photostable, show low response time and are practically applicable for sensing picric acid in real environmental samples, which is the ultimate goal of this work.

  20. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  1. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  2. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats.

    PubMed

    Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna

    2016-11-01

    Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. Copyright © 2015. Published by Elsevier B.V.

  4. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Recovery of elemental sulphur from anaerobic effluents through the biological oxidation of sulphides.

    PubMed

    de Sousa, José Tavares; Lima, Jéssyca de Freitas; da Silva, Valquíria Cordeiro; Leite, Valderi Duarte; Lopes, Wilton Silva

    2017-03-01

    The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S 0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S 2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S 0 . The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S 2- , while 20.9% was present as dissolved SO 4 2- and 46% was precipitated as S 0 . It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S 2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.

  6. Bioorganometallic chemistry. 5. Molecular recognition of aromatic amino acid guests by Cp{sup *} Rh-nucleobase/nucleoside/nucleotide cyclic trimer hosts in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Maestre, M.F.; Fish, R.H.

    We report what we believe is the first example of bioorganometallic hosts, 1-4, [Cp{sup *}Rh(9-methyladenine)]{sub 3}(OTf){sub 3} (1), [Cp{sup *}Rh(Me-5`-AMP)]{sub 3} (4), being able to recognize aromatic amino acid guests L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) in aqueous media at pH 7. Results show that the molecular recognition of aromatic amino acids with bioorganometallic hosts 1-4 in aqueous solution, as studied by {sup 1}H NMR and NOE techniques, occurs predominately via a {pi}-{pi} interaction, and, in the case of L-Trp, additional electronic/hydrophobic interactions with hosts are possible. 7 refs., 1 fig., 1 tab.

  7. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    PubMed

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-08-30

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

  8. Scrubbing intensification for sulphur and ammonia compounds removal.

    PubMed

    Couvert, A; Sanchez, C; Laplanche, A; Renner, C

    2008-02-01

    Operating conditions were optimised in a new compact scrubber in order to remove odorous sulphur (H(2)S and CH(3)SH) and ammonia compounds. The influence of the superficial gas and liquid velocities, pH, contactor length, inlet concentrations (sulphur compounds, ammonia, chlorine), and the mixing effects was characterised. Whereas abatement increased with velocities, pH and the chlorine concentration, an increase of inlet CH(3)SH concentration drove to a worse efficiency of process. Moreover, the contactor length and the presence of another pollutant in the gas phase only played a role on the methylmercaptan removal. Finally, the reactive consumptions were estimated at the outlet of the reactor. The chlorination by-product quantification permitted to understand the under-stoichiometry.

  9. [Sulphurous vaginal douching and vulvovaginal atrophy].

    PubMed

    Costantino, M; Conti, V; Marongiu, M B; Napolano, G; Filippelli, A

    2017-01-01

    During climacteric the reduction or interruption of estrogenic stimulus determines a gradual atrophy of the tissues of the urogenital tract.Vulvovaginal atrophy can be cause of dryness, itch, burning, and dyspareunia. Vulvovaginal atrophy is associated also with depression. Hence the importance of an appropriate treatment of the vulvovaginal atrophy. Between therapeutic options we can add, particularly for women who suffer only from vaginal symptoms, the spa therapy that uses mineral waters with benefic effects on vaginal tissue wellness and health. On the basis of considerations described above and on the insufficient literature data, the objective of our single-arm pilot study has been to evaluate, in women suffering from vulvovaginal atrophy, the effects and safety of a vaginal douching cycle with sulphurous mineral water and impact on depression disorder frequently observed. The study was conducted on 24 women affected by vulvovaginal atrophy; mean age:57±11 years; age range:42-81 years. The subjects were treated, for 2 weeks, with sulphurous vaginal douching from Terme of Telese S.p.A. (Benevento-Italy). At the beginning and at the end of the SPA treatment the following symptoms were evaluated: dryness, burning, itch, dyspareunia and leucorrhoea (using VAS scale); the impact on psychological distress (using S.D.S. Zung-test). At the end of the spa treatment, the mean values±SD, compared to baseline, have showed a significant (p<0.05) reduction in leucorrhoea (-88%), in vulvar itch (-79%), in vaginal burning (-71%), in vaginal dryness (-65%) with an improvement of psichological distress as demonstrated by S.D.S. Zung-test. The data of this single-arm pilot clinical trial show that the sulphurous vaginal douching cycle can be considered very useful in women suffering from vulvovaginal atrophy with improving of the quality of life and social relationship.

  10. Sulphur cycling in a Neoarchaean microbial mat.

    PubMed

    Meyer, N R; Zerkle, A L; Fike, D A

    2017-05-01

    Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ 34 S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ 34 S and Δ 33 S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ 34 S and Δ 33 S = -0.21 ± 0.65‰ (±1σ). These large variations in δ 34 S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ 34 S = 8.36 ± 1.16‰ and Δ 33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical

  11. Zero-valent sulphur is a key intermediate in marine methane oxidation.

    PubMed

    Milucka, Jana; Ferdelman, Timothy G; Polerecky, Lubos; Franzke, Daniela; Wegener, Gunter; Schmid, Markus; Lieberwirth, Ingo; Wagner, Michael; Widdel, Friedrich; Kuypers, Marcel M M

    2012-11-22

    Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea. Hence, AOM might not be an obligate syntrophic process but may be carried out by the ANME alone. Furthermore, we show that the produced S(0)--in the form of disulphide--is disproportionated by the Deltaproteobacteria associated with the ANME. Our observations expand the diversity of known microbially mediated sulphur transformations and have significant implications for our understanding of the biogeochemical carbon and sulphur cycles.

  12. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    DOE PAGES

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    2015-10-17

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less

  13. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less

  14. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    PubMed

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  16. Origin and diagenetic transformations of C 25 and C 30 highly branched isoprenoid sulphur compounds: Further evidence for the formation of organically bound sulphur during early diagenesis

    NASA Astrophysics Data System (ADS)

    Kohnen, M. E. L.; Damsté, J. S. Slnninghe; Kock-van Dalen, A. C.; Haven, H. L. Ten; Rullkötter, J.; De Leeuw, J. W.

    1990-11-01

    A number of C 25 and C 30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[ b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C 25 and C 30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 × 10 3 a) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C 25 and C 30) and unsaturated HBI thiolanes (C 25 and C 30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.

  17. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions.

    PubMed

    Anoop Krishnan, K; Sreejalekshmi, K G; Vimexen, V; Dev, Vinu V

    2016-02-01

    The prospective application of sulphurised activated carbon (SAC) as an ecofriendly and cost-effective adsorbent for Zinc(II) removal from aqueous phase is evaluated, with an emphasis on kinetic and isotherm aspects. SAC was prepared from sugarcane bagasse pith obtained from local juice shops in Sree Bhadrakali Devi Temple located at Ooruttukala, Neyyattinkara, Trivandrum, India during annual festive seasons. Activated carbon modified with sulphur containing ligands was opted as the adsorbent to leverage on the affinity of Zn(II) for sulphur. We report batch-adsorption experiments for parameter optimisations aiming at maximum removal of Zn(II) from liquid-phase using SAC. Adsorption of Zn(II) onto SAC was maximum at pH 6.5. For initial concentrations of 25 and 100mgL(-1), maximum of 12.3mgg(-1) (98.2%) and 23.7mgg(-1) (94.8%) of Zn(II) was adsorbed onto SAC at pH 6.5. Kinetic and equilibrium data were best described by pseudo-second-order and Langmuir models, respectively. A maximum adsorption capacity of 147mgg(-1) was obtained for the adsorption of Zn(II) onto SAC from aqueous solutions. The reusability of the spent adsorbent was also determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sulphur Spring: Busy Intersection and Possible Martian Analogue

    NASA Technical Reports Server (NTRS)

    Nankivell, A.; Andre, N.; Thomas-Keprta, K.; Allen, C.; McKay, D.

    2000-01-01

    Life in extreme environments exhibiting conditions similar to early Earth and Mars, such as Sulphur Spring, may harbor microbiota serving as both relics from the past as well as present day Martian analogues.

  19. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE PAGES

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej; ...

    2015-07-25

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  20. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  1. Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy

    The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.

  2. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    PubMed

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  3. In vivo pharmacokinetic comparisons of ferulic acid and puerarin after oral administration of monomer, medicinal substance aqueous extract and Nao-De-Sheng to rats

    PubMed Central

    Ouyang, Zhen; Zhao, Ming; Tang, Jianming; Pan, Lulin

    2012-01-01

    Background: Nao-De-Sheng decoction (NDS), a traditional Chinese medicine (TCM) prescription containing Radix puerariae lobatae, Floscarthami, Radix et Rhizoma Notoginseng, Rhizoma chuanxiong and Fructus crataegi, is effective in the treatment of cerebral arteriosclerosis, ischemic cerebral stroke and apoplexy linger effect. Ferulic acid and puerarin are the main absorbed effective ingredients of NDS. Objective: To assess the affection of other components in medical material and compound recipe compatibility on the pharmacokinetics of ferulaic acid and puerarin, of ferulic acid from the monomer Rhizoma chuanxiong aqueous extract and NDS were studied. And pharmacokinetics comparisons of puerarin from the monomer Radix puerariae extract and NDS decoction were investigated simultaneously. Materials and Methods: At respective different time points after oral administration of the monomer, medicinal substance aqueous extract and NDS at the same dose in rats, plasma concentrations of ferulic acid and puerarin in rats were determined by RP-HPLC, and the main pharmacokinetic parameters were estimated with 3P97 software. Results: The plasma concentration-time curves of ferulaic acid and puerarin were both best fitted with a two-compartment model. AUC0−t, AUC0→∞, Tmax, and Cmax of ferulic acid in the monomer and NDS decoction were increased significantly (P < 0.05) compared with that in Rhizoma chuanxiong aqueous extract. And statistically significant increase (P < 0.05) in pharmacokinetic parameters of puerarin including AUC0−t, AUC0→∞, CL, Tmax and Cmax were obtained after oral administration of puerarin monomer compared with Radix puerariae extract. Although the changes of AUC0−t, AUC0→∞ and CL had no statistically significant, Cmax of puerarin in NDS was increased remarkably (P < 0.05) compared with that in single puerarin. Conclusions: Some ingredients of Rhizoma chuanxiong and Radix puerariae may be suggested to remarkably influence plasma

  4. Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.

    PubMed

    Franz, Heather B; Kim, Sang-Tae; Farquhar, James; Day, James M D; Economos, Rita C; McKeegan, Kevin D; Schmitt, Axel K; Irving, Anthony J; Hoek, Joost; Dottin, James

    2014-04-17

    The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.

  5. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.

    PubMed

    Ashraf, Anam; Bibi, Irshad; Niazi, Nabeel Khan; Ok, Yong Sik; Murtaza, Ghulam; Shahid, Muhammad; Kunhikrishnan, Anitha; Li, Dongwei; Mahmood, Tariq

    2017-07-03

    In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L -1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g -1 , respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R 2 = 0.97) and O-mont (R 2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH 2 , and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.

  6. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    NASA Astrophysics Data System (ADS)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  7. Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats

    PubMed Central

    Shahrokhi, Nader; Keshavarzi, Zakieh; Khaksari, Mohammad

    2015-01-01

    Objective: Gastric ulcer is an important clinical problem, chiefly due to extensive use of some drugs. The aim was to assess the activity of Mumijo extract (which is used in traditional medicine) against acetic acid induced gastric ulcer in rats. Materials and Methods: The aqueous extract of Mumijo was prepared. Animals were randomly (n = 10) divided into four groups: Control, sham-operated group (received 0.2 ml of acetic acid to induce gastric ulcer), Mumijo (100 mg/kg/daily) were given for 4 days postacetic acid administration, and ranitidine group (20 mg/kg). The assessed parameters were pH and pepsin levels (by Anson method) of gastric contents and gastric histopathology. Ranitidine was used as reference anti-ulcer drug. Results: The extract (100 mg/kg/daily, p.o.) inhibited acid acetic-induced gastric ulceration by elevating its pH versus sham group (P < 0.01) and decreasing the pepsin levels compared to standard drug, ranitidine (P < 0.05). The histopathology data showed that the treatment with Mumijo extract had a significant protection against all mucosal damages. Conclusion: Mumijo extract has potent antiulcer activity. Its anti-ulcer property probably acts via a reduction in gastric acid secretion and pepsin levels. The obtained results support the use of this herbal material in folk medicine. PMID:25709338

  8. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries

    NASA Astrophysics Data System (ADS)

    Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert

    2014-05-01

    Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.

  9. Ru-Sn/AC for the Aqueous-Phase Reduction of Succinic Acid to 1,4-Butanediol under Continuous Process Conditions

    DOE PAGES

    Vardon, Derek R.; Settle, Amy E.; Vorotnikov, Vassili; ...

    2017-08-18

    Succinic acid is a biomass-derived platform chemical that can be catalytically converted in the aqueous phase to 1,4-butanediol (BDO), a prevalent building block used in the polymer and chemical industries. Despite significant interest, limited work has been reported regarding sustained catalyst performance and stability under continuous aqueous-phase process conditions. As such, this work examines Ru-Sn on activated carbon (AC) for the aqueous-phase conversion of succinic acid to BDO under batch and flow reactor conditions. Initially, powder Ru-Sn catalysts were screened to determine the most effective bimetallic ratio and provide a comparison to other monometallic (Pd, Pt, Ru) and bimetallic (Pt-Sn,more » Pd-Re) catalysts. Batch reactor tests determined that a ~1:1 metal weight ratio of Ru to Sn was effective for producing BDO in high yields, with complete conversion resulting in 82% molar yield. Characterization of the fresh Ru-Sn catalyst suggests that the sequential loading method results in Ru sites that are colocated and surface-enriched with Sn. Postbatch reaction characterization confirmed stable Ru-Sn material properties; however, upon a transition to continuous conditions, significant Ru-Sn/AC deactivation occurred due to stainless steel leaching of Ni that resulted in Ru-Sn metal crystallite restructuring to form discrete Ni-Sn sites. Computational modeling confirmed favorable energetics for Ru-Sn segregation and Ni-Sn formation at submonolayer Sn incorporation. To address stainless steel leaching, reactor walls were treated with an inert silica coating by chemical vapor deposition. With leaching reduced, stable Ru-Sn/AC performance was observed that resulted in a molar yield of 71% BDO and 15% tetrahydrofuran for 96 h of time on stream. Postreaction catalyst characterization confirmed low levels of Ni and Cr deposition, although early-stage islanding of Ni-Sn will likely be problematic for industrially relevant time scales (i.e., thousands of hours

  10. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    PubMed

    Amich, Jorge; Schafferer, Lukas; Haas, Hubertus; Krappmann, Sven

    2013-01-01

    Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  11. Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution

    NASA Astrophysics Data System (ADS)

    Bajo, Petra; Borsato, Andrea; Drysdale, Russell; Hua, Quan; Frisia, Silvia; Zanchetta, Giovanni; Hellstrom, John; Woodhead, Jon

    2017-08-01

    In this study, the 'dead carbon proportion' (DCP) calculated from combined U-Th and radiocarbon analyses was used to explore the carbon isotope systematics in Corchia Cave (Italy) speleothems, using the example of stalagmite CC26 which grew during the last ∼12 ka. The DCP values in CC26 are among the highest ever recorded in a stalagmite, spanning the range 44.8-68.8%. A combination of almost closed-system conditions and sulphuric acid dissolution (SAD) are proposed as major drivers in producing such a high DCP with minor contribution from old organic matter from the deep vadose zone. The long-term decrease in both DCP and δ13C most likely reflects post-glacial soil recovery above the cave, with a progressive increase of soil CO2 contribution to the total dissolved inorganic carbon (DIC). Pronounced millennial-scale shifts in DCP and relatively small coeval but antipathetic changes in δ13C are modulated by the effects of hydrological variability on open and closed-system dissolution, SAD and prior calcite precipitation. Hence, the DCP in Corchia Cave speleothems represents an additional proxy for rainfall amount.

  12. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    PubMed

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  13. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  14. Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds.

    PubMed

    Blank, J G; Miller, G H; Ahrens, M J; Winans, R E

    2001-01-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  15. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  16. Beyond Hydrophobicity: Aqueous Interfaces, Interactions, and Reactions

    NASA Astrophysics Data System (ADS)

    Perkins, Russell James

    Many important chemical reactions from all branches of chemistry occur with water as a solvent. Furthermore, in environmental chemistry, biochemistry, and synthetic chemistry, key reactions occur in heterogeneous aqueous systems, where interfacial effects are particularly important. Despite the importance of aqueous environments and the tremendous amount of work done to study them, there are aspects that require further explanation and remain controversial. I have performed experimental studies to help elucidate the fundamental characteristics of aqueous systems, while examining specific phenomena across several fields. The genetic disorder phenylketonuria (PKU) can result in increased levels of the aromatic amino acid phenylalanine in human serum. Much of my work has focused on the driving forces behind partitioning of aromatic small molecules, including phenylalanine, into air-water or membrane-water interfacial regions, and the consequences of partitioning on interfacial properties. Drastically different behaviors for structurally similar aromatic molecules are observed, differences that cannot be explained by hydrophobic effects. These observations can be explained, however, through the development of a more detailed picture of interactions and partitioning, including the formation of interfacial aggregates. For phenylalanine, this partitioning appears to result in drastic changes in membrane morphology and permeability. This is a likely molecular-level cause for the damage associated with the disease state of PKU. Aqueous systems are further complicated by the reactivity of water. It often serves not only the role of a solvent, but also a reactant, a product, and/or a catalyst. I explore this reactivity using an organic molecule with relevance to environmental chemistry, zymonic acid. Zymonic acid forms spontaneously from pyruvic acid, an important atmospheric species. While zymonic acid exists as a single species in solid form when dissolved in DMSO, once in

  17. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  18. Determination of lithium sulphur batteries internal resistance by the pulsed method during galvanostatic cycling

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, V. S.; Kuzmina, E. V.; Mochalov, S. E.

    2014-04-01

    The pulsed method of measuring impedance is described. The cell is galvanostatically stimulated by a bipolar current signal of square shape. The cell response is registered by sampling U+[i], U-[i] with selected period Δt. The impedance spectra are calculated by direct Fourier transform. The internal resistance of the lithium sulphur cell is characteristically minimum in the calculated impedance diagrams in the frequency range of 0.035-5 Hz. It is shown that the lithium sulphur cells have maximum internal resistance at the transient between high and low voltage plateaus of charge and discharge curves. The internal resistance increases significantly during the initial stages of cycling because of the formation of passivation layers at the electrodes. It was found that the internal resistance of the lithium sulphur cell in the same charge state is governed by the way in which it is achieved. This is explained by differences in molar volumes of products generated in the sulphur electrode by electrochemical reaction during charging and discharging.

  19. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability.

    PubMed

    Manju, S; Sreenivasan, K

    2011-07-01

    Polymer-drug conjugates have gained much attention largely to circumvent lower drug solubility and to enhance drug stability. Curcumin is widely known for its medicinal properties including its anticancer efficacy. One of the serious drawbacks of curcumin is its poor water solubility which leads to reduced bioavailability. With a view to address these issues, we synthesized hyaluronic acid-curcumin (HA-Cur) conjugate. The drug conjugate was characterized using FT-IR, NMR, Dynamic light scattering and TEM techniques. The conjugates, interestingly found to assembles as micelles in aqueous phase. The formation of micelles seems to improve the stability of the drug in physiological pH. We also assessed cytotoxicity of the conjugate using L929 fibroblast cells and quantified by MTT assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus

    PubMed Central

    Amich, Jorge; Schafferer, Lukas; Haas, Hubertus; Krappmann, Sven

    2013-01-01

    Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen. PMID:24009505

  1. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  2. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution

    NASA Astrophysics Data System (ADS)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae

    2017-01-01

    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  3. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  4. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants.

    PubMed

    Tian, Ye; Liimatainen, Jaana; Alanne, Aino-Liisa; Lindstedt, Anni; Liu, Pengzhan; Sinkkonen, Jari; Kallio, Heikki; Yang, Baoru

    2017-04-01

    Phenolic compounds of berries and leaves of thirteen various plant species were extracted with aqueous ethanol and analyzed with UPLC-DAD-ESI-MS, HPLC-DAD, and NMR. The total content of phenolics was consistently higher in leaves than in berries (25-7856 vs. 28-711mg/100g fresh weight). Sea buckthorn leaves were richest in phenolic compounds (7856mg/100g f.w.) with ellagitannins as the dominant compound class. Sea buckthorn berries contained mostly isorhamnetin glycosides, whereas quercetin glycosides were typically abundant in most samples investigated. Anthocyanins formed the dominating group of phenolics in most dark-colored berries but phenolic acid derivatives were equally abundant in saskatoon and chokeberry berries. Caffeoylquinic acids constituted 80% of the total phenolic content (1664mg/100g f.w.) in bilberry leaves. B-type procyanidins and caffeoylquinic acids were the major phenolic compounds in hawthorn and rowanberry, respectively. Use of leaves of some species with prunasin, tyramine and β-p-arbutin, may be limited in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. RECENT GEOCHEMICAL SAMPLING AND MERCURY SOURCES AT SULPHUR BANK MERCURY MINE, LAKE COUNTY, CA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM), located on the shore of Clear Lake in Lake County, California, has been identified as a significant source of mercury to the lake. Sulphur Bank was actively minded from the 1880's to the 1950's. Mining and processing operations at the Sulph...

  6. Properties of L-ascorbic acid in water and binary aqueous mixtures of D-glucose and D-fructose at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh

    2017-12-01

    Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.

  7. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  8. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less

  9. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2009-01-01

    The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.

  11. Sorption of tetracycline antibiotics on hyper-crosslinked polystyrene from aqueous and aqueous-organic media

    NASA Astrophysics Data System (ADS)

    Udalova, A. Yu.; Dmitrienko, S. G.; Apyari, V. V.

    2015-06-01

    The sorption of tetracycline, oxytetracycline, chlortetracycline, and doxycycline on hyper-cross-linked polystyrene from aqueous and aqueous-organic solutions is studied under static and dynamic conditions in order to extend the range of the sorbents suitable for sorption isolation and the preconcentration of tetracycline antibiotics. Features of tetracycline sorption depending on the acidity of a solution and the nature and concentration of the compounds are explained. It is shown that hyper-crosslinked polystyrene can be used for the group sorption preconcentration of these compounds.

  12. Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation.

    PubMed

    Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S

    2007-07-20

    In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.

  13. Stabilization process of metallic mercury by sulphur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudey, Claire-Emilie; Bardy, Maud; Huc, Christelle

    2013-07-01

    The technical field of this subject can be described as the treatment of mercury based wastes in order to stock or eliminate them. Toxic mercury vapours prevent from directly stocking or incinerating the wastes. Therefore, some processes have already been implemented to reduce the mercury mobility. Those immobilization processes are created to avoid mercury release in the atmosphere by volatilization or in the soil by leaching. Among the 3 current processes: encapsulation, amalgamation and stabilization, we took an interest on the last one. Stabilization can be defined as an immobilization due to a combination between a molecule and motionless particlesmore » to reduce the release of dangerous elements in the atmosphere or the biosphere. The most common technique of metallic mercury stabilization found in readings is the sulphur amalgamation technique. It consists in the chemical reaction: Hg + S → HgS. A mercury sulphide is then produced and is very insoluble in the water. A 386 deg. C heating transforms it in red sulphide. The obtained mixture can be easily and safely stored in a waste storage. In this context, solid sulphur is added in wide excess compared to the liquid mercury to cause the reaction: Hg(l) + S(s) → HgS(s) with a molar ratio between 1/6.5 and 1/19. The main drawback of this technique is the generation of an important waste quantity: a mixture of HgS and sulphur. Moreover there's no guarantee about the absence of mercury vapours. Therefore there's a real need to improve the ratio and the safety of the reaction, which is the purpose of this study. The volume of the created product is greatly reduced in this case and authorizes significant savings on storage costs. The other experimental parameters discussed in this study are temperature, volume, flask type and mixing speed. (authors)« less

  14. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE PAGES

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...

    2017-07-14

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low

  15. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low

  16. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  17. Sulphur chemistry in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Vastel, Charlotte; Quénard, D.; Le Gal, R.; Wakelam, V.; Andrianasolo, A.; Caselli, P.; Vidal, T.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.

    2018-05-01

    The L1544 pre-stellar core has been observed as part of the ASAI IRAM 30m Large Program as well as follow-up programs. These observations have revealed the chemical richness of the earliest phases of low-mass star-forming regions. In this paper we focus on the twenty-one sulphur bearing species (ions, isotopomers and deuteration) that have been detected in this spectral-survey through fifty one transitions: CS, CCS, C3S, SO, SO2, H2CS, OCS, HSCN, NS, HCS+, NS+ and H2S. We also report the tentative detection (4 σ level) for methyl mercaptan (CH3SH). LTE and non-LTE radiative transfer modelling have been performed and we used the NAUTILUS chemical code updated with the most recent chemical network for sulphur to explain our observations. From the chemical modelling we expect a strong radial variation for the abundances of these species, which mostly are emitted in the external layer where non thermal desorption of other species has previously been observed. We show that the chemical study cannot be compared to what has been done for the TMC-1 dark cloud, where the abundance is supposed constant along the line of sight, and conclude that a strong sulphur depletion is necessary to fully reproduce our observations of the prototypical pre-stellar core L1544.

  18. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  19. 30 CFR 250.1603 - Determination of sulphur deposit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Determination of sulphur deposit. 250.1603 Section 250.1603 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT..., after completion of the wells, of producing minerals at the wellheads). (b) A determination under...

  20. A sulphur budget for sour gas plants

    Treesearch

    Richard D. Rowe

    1976-01-01

    The principal aim of this project is to produce a mass balance for the SO2 that is emitted into the atmosphere from sour gas plants in various localities in Alberta. Partial sulphur budgets for two plants at dissimilar locations are shown to exhibit major differences. The rise and dispersion of sour gas plant plumes have been investigated in...

  1. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  2. Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests.

    PubMed

    Oulehle, Filip; Tahovská, Karolina; Chuman, Tomáš; Evans, Chris D; Hruška, Jakub; Růžek, Michal; Bárta, Jiří

    2018-07-01

    Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global "hot spots" of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH 4 NO 3 ) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds.

  4. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    PubMed

    Ohde, Thomas; Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  5. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system

    PubMed Central

    Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002–2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  6. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    PubMed

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Higher plants as bioindicators of sulphur dioxide emissions in urban environments.

    PubMed

    Hijano, Concepción Fidalgo; Domínguez, Maria Dolores Petit; Gimínez, Rosario García; Sínchez, Pilar Hungría; García, Inís Sancho

    2005-12-01

    The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO(2) air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO(2) deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO(2) atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such as Pyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodara and Pinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO(2) were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except for Cedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.

  8. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    NASA Astrophysics Data System (ADS)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  9. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  10. 30 CFR 250.1603 - Determination of sulphur deposit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Determination of sulphur deposit. 250.1603 Section 250.1603 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... of the wells, of producing minerals at the wellheads). (b) A determination under paragraph (a) of...

  11. 30 CFR 250.1603 - Determination of sulphur deposit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Determination of sulphur deposit. 250.1603 Section 250.1603 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... the wells, of producing minerals at the wellheads). (b) A determination under paragraph (a) of this...

  12. 30 CFR 250.1603 - Determination of sulphur deposit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Determination of sulphur deposit. 250.1603 Section 250.1603 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... of the wells, of producing minerals at the wellheads). (b) A determination under paragraph (a) of...

  13. 30 CFR 250.1603 - Determination of sulphur deposit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Determination of sulphur deposit. 250.1603 Section 250.1603 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... of the wells, of producing minerals at the wellheads). (b) A determination under paragraph (a) of...

  14. The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand.

    PubMed

    Stepka, Zane; Dror, Ishai; Berkowitz, Brian

    2018-01-01

    As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al 2 O 3, SiO 2 , CeO 2 , ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution.

    PubMed

    Inbaraj, B Stephen; Sulochana, N

    2004-08-01

    The fruit of the jack (Artocarpus heterophyllus) is one of the popular fruits in India, where the total area under this fruit is about 13,460 ha. A significant amount of peel (approximately 2,714-11,800 kg per tree per year) is discarded as agricultural waste, as apart from its use as a table fruit, it is popular in many culinary preparations. Treatment of jackfruit peel with sulphuric acid produced a carbonaceous product which was used to study its efficiency as an adsorbent for the removal of Cd(II) from aqueous solution. Batch experiments were performed as a function of process parameters; agitation time, initial metal concentration, adsorbent concentration and pH. Kinetic analyses made with Lagergren pseudo-first-order, Ritchie second-order and modified Ritchie second-order models showed better fits with modified Ritchie second-order model. The Langmuir-Freundlich (Sips equation) model best defined the experimental equilibrium data among the three isotherm models (Freundlich, Langmuir and Langmuir-Freundlich) tested. Taking a particular metal concentration, the optimum dose and pH required for the maximum metal removal was established. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 0.01 M HCl.

  16. Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution.

    PubMed

    Lee, Xinqing; Huang, Daikuan; Lou, Dawei; Pawliszyn, Janusz

    2012-07-01

    Formic and acetic acids are ubiquitous in the environment, food, and most of the natural products. Extraction of the acids from aqueous solution is required for their isotope analysis by the gas chromatography-isotope ratio mass spectrometry. To this objective, we have previously developed a purge-and-trap technique using the dynamic solid-phase microextraction technology, the NeedlEX. The extraction efficiency, however, remains unexamined. Here, we address this question using the flame ionization detector and isotope ratio mass spectrometer while comparing it with that of the CAR/PDMS fiber. The results show that the NeedlEX is applicable at a wide range of concentration through coordination of purge volume given the minimum amount 3.7 ng and 1.8 ng of formic and acetic, respectively, is extracted. The efficiency of NeedlEX was 6-7 times lower than the fiber at 1000 μg/mL depending on the analyte. It is, however, superior to the latter at 10 μg/mL or less owing to its lower detection limit. The extraction efficiency of both acids is equivalent in molar amount. This is, however, disguised by the different response of the flame ionization detector. The isotope ratio mass spectrometor overcomes this problem but is compromised by relatively large errors. These results are particularly useful for isotopic analysis of carboxylic acids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [The determination of molecular sulphur in Matsesta mineral water and its analog Novonukutskaya mineral water].

    PubMed

    Khutorianskiĭ, V A; Smirnov, A I; Matveev, D A

    2014-01-01

    The method of microcolumn reversed phase high performance liquid chromatography (rp-HPLC) was employed to determine the content of elemental sulphur in mineral waters. The study envisaged the analysis of the samples of sulphide-containing mineral waters Novonukutskaya and Matsesta obtained by the solid phase extraction technique. Based on these data, the authors discuss the origin and the circulation of sulphur in the hydrogen sulphide sources. The elution conditions selected in this study ensured the high-resolution separation of the octasulphur peak from the peaks of allotropic components of the extract whereas the two-wave detection technique allowed to identify the peaks of molecular sulphur.

  18. Sequestration of U(VI) from Acidic, Alkaline, and High Ionic-Strength Aqueous Media by Functionalized Magnetic Mesoporous Silica Nanoparticles: Capacity and Binding Mechanisms

    EPA Science Inventory

    Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...

  19. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  20. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    NASA Astrophysics Data System (ADS)

    Kohnen, Math E. l.; Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. c.; Jan, W. De Leeuw

    1991-05-01

    Three types of sulphur-rich high-molecular-weight material in the alkylsulphide, the polar, and the asphaltene fractions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised using Raney Ni and were treated with MeLi/MeI, a chemical degradation method which cleaves selectively and quantitatively di- or polysulphide linkages. The products formed were characterised by gas chromatography-mass spectrometry. Raney Ni desulphurisation revealed that these S-rich macromolecules are in substantial part composed of sulphur-linked biomarkers with linear, branched, isoprenoid, steroid, hopanoid, and carotenoid carbon skeletons. MeLi/Mel treatment provided evidence that a major part of the total amount of macromolecularly bound biomarkers are linked via di- or polysulphide moieties to the macromolecular network. Since the di- or polysulphide linkages are attached at specific positions of the bound biomarkers it is proposed that they are formed by intermolecular incorporation reactions of HS x- into low-molecular-weight functionalised biological lipids during early diagenesis. The different properties (solubility and molecular weight) of the sulphur-rich macromolecules in the alkylsulphide, the resin, and the asphaltene fractions can be explained simply by differences in degree of sulphur cross-linking.

  1. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  2. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoic acid.

    PubMed

    Mashruwala, Ameya A; Roberts, Christina A; Bhatt, Shiven; May, Kerrie L; Carroll, Ronan K; Shaw, Lindsey N; Boyd, Jeffrey M

    2016-12-01

    Staphylococcus aureus SufT is composed solely of the domain of unknown function 59 (DUF59) and has a role in the maturation of iron-sulphur (Fe-S) proteins. We report that SufT is essential for S. aureus when growth is heavily reliant upon lipoamide-utilizing enzymes, but dispensable when this reliance is decreased. LipA requires Fe-S clusters for lipoic acid (LA) synthesis and a ΔsufT strain had phenotypes suggestive of decreased LA production and decreased activities of lipoamide-requiring enzymes. Fermentative growth, a null clpC allele, or decreased flux through the TCA cycle diminished the demand for LA and rendered SufT non-essential. Abundance of the Fe-S cluster carrier Nfu was increased in a ΔclpC strain and a null clpC allele was unable to suppress the LA requirement of a ΔsufT Δnfu strain. Over-expression of nfu suppressed the LA requirement of the ΔsufT strain. We propose a model wherein SufT, and by extension the DUF59, is essential for the maturation of holo-LipA in S. aureus cells experiencing a high demand for lipoamide-dependent enzymes. The findings presented suggest that the demand for products of Fe-S enzymes is a factor governing the usage of one Fe-S cluster assembly factor over another in the maturation of apo-proteins. © 2016 John Wiley & Sons Ltd.

  3. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Shock, Everetr L.; Koretsky, Carla M.

    1995-04-01

    Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.

  4. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  5. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  6. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  7. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada.

    PubMed

    Nightingale, Michael; Mayer, Bernhard

    2012-01-01

    Sources and processes affecting the sulphur cycle in the Canyon Creek watershed in Alberta (Canada) were investigated. The catchment is important for water supply and recreational activities and is also a source of oil and natural gas. Water was collected from 10 locations along an 8 km stretch of Canyon Creek including three so-called sulphur pools, followed by the chemical and isotopic analyses on water and its major dissolved species. The δ(2)H and δ(18)O values of the water plotted near the regional meteoric water line, indicating a meteoric origin of the water and no contribution from deeper formation waters. Calcium, magnesium and bicarbonate were the dominant ions in the upstream portion of the watershed, whereas sulphate was the dominant anion in the water from the three sulphur pools. The isotopic composition of sulphate (δ(34)S and δ(18)O) revealed three major sulphate sources with distinct isotopic compositions throughout the catchment: (1) a combination of sulphate from soils and sulphide oxidation in the bedrock in the upper reaches of Canyon Creek; (2) sulphide oxidation in pyrite-rich shales in the lower reaches of Canyon Creek and (3) dissolution of Devonian anhydrite constituting the major sulphate source for the three sulphur pools in the central portion of the watershed. The presence of H(2)S in the sulphur pools with δ(34)S values ∼30 ‰ lower than those of sulphate further indicated the occurrence of bacterial (dissimilatory) sulphate reduction. This case study reveals that δ(34)S values of surface water systems can vary by more than 20 ‰ over short geographic distances and that isotope analyses are an effective tool to identify sources and processes that govern the sulphur cycle in watersheds.

  8. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Moon; Kim, Su Hwan; Kwak, Sang Kyu; Kwon, Young-Nam

    2018-06-01

    This work was systematically investigated the effects of acidic aqueous solution (15 wt% sulfuric acid as model wastewater from smelting process) on the physical and chemical properties of commercially available nanofiltration (NF) polyamide membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-based NE90 membrane. Surface properties of the membranes were studied before and after exposure to strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and electrophoretic light scattering spectrophotometer. The characterization and permeation results showed piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 membrane. Furthermore, density functional theory (DFT) calculation was also conducted to reveal the different acid-tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The calculations were well compatible with the surface characterization results. In addition, the energy barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the surface characterizations and DFT calculation results.

  9. A metal-free organic-inorganic aqueous flow battery.

    PubMed

    Huskinson, Brian; Marshak, Michael P; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R; Galvin, Cooper J; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2014-01-09

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals

  10. A metal-free organic-inorganic aqueous flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, B; Marshak, MP; Suh, C

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metalsmore » and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox

  11. Recovering oil by injecting aqueous alkali, cosurfactant and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisberg, J.; Bielmowicz, L. J.; Thigpen, D. R.

    1985-01-15

    A process of recovering oil from a subterranean reservoir in which the oil is acidic but forms monovalent cation soaps of only relatively low interfacial activity when reacted with aqueous alkaline solutions, comprises displacing the oil toward a production location with a mixture of gas and cosurfactant-containing aqueous alkaline solution.

  12. Antitumoural Sulphur and Selenium Heteroaryl Compounds: Thermal Characterization and Stability Evaluation.

    PubMed

    Alcolea, Verónica; Garnica, Pablo; Palop, Juan A; Sanmartín, Carmen; González-Peñas, Elena; Durán, Adrián; Lizarraga, Elena

    2017-08-08

    The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under manufacturing conditions is also critical to ensure no undesired degradations or transformations occur. In this study, the thermal behaviour of 40 derivatives of a series of sulphur and selenium heteroaryl compounds with potential antitumoural activity were studied. In addition, the most promising cytotoxic derivatives were analysed by a combination of differential scanning calorimetry, X-ray diffraction and thermogravimetric techniques in order to investigate their polymorphism and thermal stability. Moreover, stability under acid, alkaline and oxidative media was tested. Degradation under stress conditions as well as the presence of polymorphism was found for the compounds VA6E and VA7J, which might present a hurdle to carrying on with formulation. On the contrary, these obstacles were not found for derivative VA4J.

  13. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (saa) pretreatment and fermentation to succinic acid by Escherichia coli afp184

    USDA-ARS?s Scientific Manuscript database

    Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...

  14. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less

  15. Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion.

    PubMed

    Mirandola, Prisco; Gobbi, Giuliana; Malinverno, Chiara; Carubbi, Cecilia; Ferné, Filippo M; Artico, Marco; Vitale, Marco; Vaccarezza, Mauro

    2013-03-01

    The positive effects of spa therapy on ear, nose, and throat pathology are known but robust literature in this field, is still lacking. The aim of this study was to assess through a retrospective analysis, the effects on otitis media with effusion of Politzer endotympanic inhalation of sulphurous waters in children aged 5-9 years. A cohort of 95 patients was treated with Politzer insufflations of sulphurous water: 58 patients did a cycle consisting of a treatment of 12 days per year for three consecutive years; 37 patients followed the same procedure for 5 years consecutively. The control population was represented by untreated, age-matched children. A standard audiometric test was used before and after each cycle of treatment. One cycle of Politzer inhalation of sulphur-rich water improved the symptoms. Three cycles definitively stabilized the improvement of hearing function. Our results show that otitis media with effusion in children can be resolved by an appropriate non-pharmacological treatment of middle ear with sulphur-rich water.

  16. Primordial helium abundance determination using sulphur as metallicity tracer

    NASA Astrophysics Data System (ADS)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  17. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at variousmore » temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.« less

  18. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  19. Comparison of the influence of polyaspartic acid and polylysine functional groups on the adsorption at the Cr2O3-Aqueous polymer solution interface

    NASA Astrophysics Data System (ADS)

    Ostolska, Iwona; Wiśniewska, Małgorzata

    2014-08-01

    Polyamino acids are a group of synthesized polymers obtained by polymerization of a given kind of amino acid monomer. Because of high biodegradability of this class of polymers, they can be used as flocculation or stabilization agents in the environmental aspects. Therefore determination of their influence on the stability of the aqueous suspension of metal oxides is important. An influence of different functional groups of polyamino acids, their molecular weight and concentration on the adsorption at the chromium (III) oxide (Cr2O3)-aqueous solution interface was determined. Experiments were carried out for four values of solution pH varying from 3 to 10 (3, 4, 7.6 and 10, respectively). Two polymers were used: anionic polyaspartic acid (ASP) of 6800 and 27,000 as well as polylysine (LYS) of 4900 and 33,000 molecular weights. Changes of surface charge density of colloidal Cr2O3 in the presence and in the absence of macromolecular substances were determined using potentiometric titration. In these studies the influence of the concentration and molecular weight of the ionic polymers on the pHpzc value was determined. Additionally, due to the lack of appropriate literature data, potentiometric titration of the selected polymers was performed to determine pKa values.

  20. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  1. Free energy of formation of a crystal nucleus in incongruent solidification: Implication for modeling the crystallization of aqueous nitric acid droplets in polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Djikaev, Yuri S.; Ruckenstein, Eli

    2017-04-01

    Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σls of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σls based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σsv of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σsv of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σsv to the nucleation of nitric acid trihydrate crystals in PSC droplets of stoichiometric

  2. Comparative distribution of sulphur, thiols and disulphides in the porcine stratum corneum.

    PubMed

    Meyer, W; Zschemisch, N H; Lehmann, H; Busche, R; Kunz, U

    2005-01-01

    Biochemical, histochemical and cytochemical analyses were used to determine the sulphur contents and the thiol and disulphide distribution in the stratum corneum (SC) of the wild boar (WB), a large domestic pig breed (DP) and the Goettingen miniature pig (GMP). The sulphur contents (% DW) were different in the three animal types (WB: 1.70-1.38 body, 0.54 ear; DP: 0.84-0.53 body, 0.50 ear; GMP: 2.28-2.51 body, 2.66 ear). The results of the histochemical analysis of SH- and -S-S- groups were clear, and densitometrical extinctions were highest in most body regions of the GMP for thiols and disulphides, followed by the DP for thiols, and the WB for disulphides. Absolute SC thickness was highest in the body of the GMP (62-80 mum), and generally lowest in the ear (20-38 mum) of all animal types. Relative SC thickness was the same for all animals in the body (40-66%), but lower in the ear (30%). Only -S-S- concentrations were correlated with SC thickness, and primarily in the GMP. Cytochemical analysis showed that high sulphur concentrations were obvious particularly in the CCE of corneal cells in the DP, as compared to the cytoplasm. Intracellular sulphur distribution was homogenous in the WB, and in the GMP, although in the latter at a higher concentration level. The results indicate breed-related effects on keratinisation in porcine corneal cells. Only the SC of the outer side of the ear of DP females is recommended as a model for humans.

  3. The Gaia-ESO Survey: Galactic evolution of sulphur and zinc

    NASA Astrophysics Data System (ADS)

    Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.; Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.; François, P.; Skúladóttir, Á.; Bragaglia, A.; Donati, P.; Spina, L.; Gallagher, A. J.; Ludwig, H.-G.; Christlieb, N.; Hansen, C. J.; Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.; Friel, E.; Jiménez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino, E.; Tang, B.; Tautvaišienė, G.; Vallenari, A.; Hawkins, K.; Gilmore, G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.

    2017-08-01

    Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims: We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods: By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results: We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions: Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 188.B-3002, 193.B-0936.The full table of S abundances is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128

  4. The 2016 Al-Mishraq sulphur plant fire: Source and health risk area estimation

    NASA Astrophysics Data System (ADS)

    Björnham, Oscar; Grahn, Håkan; von Schoenberg, Pontus; Liljedahl, Birgitta; Waleij, Annica; Brännström, Niklas

    2017-11-01

    On October 20, 2016, Daesh (Islamic State) set fire to the sulphur production site Al-Mishraq as the battle of Mosul in northern Iraq became more intense. An extensive plume of toxic sulphur dioxide and hydrogen sulphide caused comprehensive casualties. The intensity of the SO2 release was reaching levels of minor volcanic eruptions and the plume was observed by several satellites. By investigation of the measurement data from instruments on the MetOp-A, MetOp-B, Aura and Soumi satellites we have estimated the time-dependent source term to 161 kilotonnes sulphur dioxide released into the atmosphere during seven days. A long-range dispersion model was utilized to simulate the atmospheric transport over the Middle East. The ground level concentrations predicted by the simulation were compared with observation from the Turkey National Air Quality Monitoring Network. Finally, the simulation data provided, using a probit analysis of the simulated data, an estimate of the health risk area that was compared to reported urgent medical treatments.

  5. The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia

    NASA Astrophysics Data System (ADS)

    Eckardt, F. D.; Spiro, B.

    1999-02-01

    This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO 4·2H 2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H 2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO 4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H 2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50-70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ 34S ‰CDT) of these

  6. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  7. A Simplified Model of Local Structure in Aqueous Proline Amino Acid Revealed by First-Principles Molecular Dynamics Simulations

    PubMed Central

    Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.

    2008-01-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850

  8. A simplified model of local structure in aqueous proline amino acid revealed by first-principles molecular dynamics simulations.

    PubMed

    Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J

    2008-12-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.

  9. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  10. Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance.

    PubMed

    Kilic, Arzu; Sahinkaya, Erkan; Cinar, Ozer

    2014-01-01

    Kinetics of sulphur-limestone autotrophic denitrification process in batch assays and the impact of sulphur/limestone ratio on the process performance in long-term operated packed-bed bioreactors were evaluated. The specific nitrate and nitrite reduction rates increased almost linearly with the increasing initial nitrate and nitrite concentrations, respectively. The process performance was evaluated in three parallel packed-bed bioreactors filled with different sulphur/limestone ratios (1:1, 2:1 and 3:1, v/v). Performances of the bioreactors were studied under varying nitrate loadings (0.05 - 0.80 gNO(-)(3) - NL⁻¹ d⁻¹) and hydraulic retention times (3-12 h). The maximum nitrate reduction rate of 0.66 g L⁻¹ d⁻¹ was observed at the loading rate of 0.80 g NO(-)(3) - N L⁻¹ d⁻¹ in the reactor with sulphur/limestone ratio of 3:1. Throughout the study, nitrite concentrations remained quite low (i.e. below 0.5 mg L⁻¹ NO(-)(2) -N. The reactor performance increased in the order of sulphur/limestone ratio of 3:1, 2:1 and 1:1. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes showed quite stable communities in the reactors with the presence of Methylo virgulaligni, Sulfurimonas autotrophica, Sulfurovum lithotrophicum, Thiobacillus aquaesulis and Sulfurimonas autotrophica related species.

  11. Acute exposure of symptomatic steelworkers to sulphur dioxide and carbon dust: effects on mucociliary transport, pulmonary function, and bronchial reactivity.

    PubMed Central

    Wolff, R K; Obminski, G; Newhouse, M T

    1984-01-01

    Nine steel workers participated in controlled exposures to sulphur dioxide alone and sulphur dioxide plus carbon dust (5 ppm and 10 mg/m3, respectively). All were experiencing work related respiratory difficulties. Bronchial clearance was measured using radioaerosol inhalations and external detection. Results were variable and no statistically significant changes were observed. One asthmatic showed a complete cessation of clearance during exposure to sulphur dioxide and carbon dust. Bronchial reactivity was found to be significantly raised after exposure to sulphur dioxide but equivocal results were found after exposure to sulphur dioxide and carbon dust. Pronounced changes in pulmonary function were seen only in the two asthmatic subjects. They could not tolerate the levels, indicating that these threshold limit values are too high, at least for these individuals who showed much greater sensitivity to the pollutants than the others. PMID:6498113

  12. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide.

    PubMed

    Wang, Zhiyu; Dong, Yanfeng; Li, Hongjiang; Zhao, Zongbin; Wu, Hao Bin; Hao, Ce; Liu, Shaohong; Qiu, Jieshan; Lou, Xiong Wen David

    2014-09-25

    Lithium-sulphur batteries are one very appealing power source with high energy density. But their practical use is still hindered by several issues including short lifespan, low efficiency and safety concern from the lithium anode. Polysulphide dissolution and insulating nature of sulphur are generally considered responsible for the capacity degradation. However, the detachment of discharge products, that is, highly polar lithium sulphides, from nonpolar carbon matrix (for example, graphene) has been rarely studied as one critical factor. Here we report the strongly covalent stabilization of sulphur and its discharge products on amino-functionalized reduced graphene oxide that enables stable capacity retention of 80% for 350 cycles with high capacities and excellent high-rate response up to 4 C. The present study demonstrates a feasible and effective strategy to solve the long-term cycling difficulty for lithium-sulphur batteries and also helps to understand the capacity decay mechanism involved.

  13. Effect of amylopectin on the rheological properties of aqueous dispersions of starch-sodium palmitate complexes

    USDA-ARS?s Scientific Manuscript database

    Aqueous dispersions of normal and high-amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes. Partial conversion of complexed sodium palmitate to palmitic acid by addition of acetic acid led to the formation of gels. Bl...

  14. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution.

    PubMed

    Huang, Hanjing; Yang, Shang-Tian; Ramey, David E

    2004-01-01

    An energy-efficient hollow-fiber membrane extraction process was successfully developed to separate and recover lactic acid produced in fermentation. Although many fermentation processes have been developed for lactic acid production, an economical method for lactic acid recovery from the fermentation broth is still needed. Continuous extraction of lactic acid from a simulated aqueous stream was achieved by using Alamine 336 in 2-octanol contained in a hollow-fiber membrane extractor. In this process, the extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor, and the final product is a concentrated lactate salt solution. The extraction rate increased linearly with an increase in the Alamine 336 content in the solvent (from 5 to 40%). Increasing the concentration of the undissociated lactic acid in the feed solution by either increasing the lactate concentration (from 5 to 40 g/L) or decreasing the solution pH (from 5.0 to 4.0) also increased the extraction rate. Based on these observations, a reactive extraction model with a first-order reaction mechanism for both lactic acid and amine concentrations was proposed. The extraction rate also increased with an increase in the feed flow rate, but not the flow rates of solvent and the stripping solution, suggesting that the process was not limited by diffusion in the liquid films or membrane pores. A mathematical model considering both diffusion and chemical reaction in the extractor and back extractor was developed to simulate the process. The model fits the experimental data well and can be used in scale up design of the process.

  15. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin

    2015-08-01

    Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.

  16. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation.

    PubMed

    Wawrzyńska, Anna; Lewandowska, Małgorzata; Sirko, Agnieszka

    2010-03-01

    Sulphur deficiency severely affects plant growth and their agricultural productivity leading to diverse changes in development and metabolisms. Molecular mechanisms regulating gene expression under low sulphur conditions remain largely unknown. AtSLIM1, a member of the EIN3-like (EIL) family was reported to be a central transcriptional regulator of the plant sulphur response, however, no direct interaction of this protein with any sulphur-responsive promoters was demonstrated. The focus of this study was on the analysis of a promoter region of UP9C, a tobacco gene strongly induced by sulphur limitation. Cloning and subsequent examination of this promoter resulted in the identification of a 20-nt sequence (UPE-box), also present in the promoters of several Arabidopsis genes, including three out of four homologues of UP9C. The UPE-box, consisting of two parallel tebs sequences (TEIL binding site), proved to be necessary to bind the transcription factors belonging to the EIL family and of a 5-nt conserved sequence at the 3'-end. The yeast one-hybrid analysis resulted in the identification of one transcription factor (NtEIL2) capable of binding to the UPE-box. The interactions of NtEIL2, and its homologue from Arabidopsis, AtSLIM1, with DNA were affected by mutations within the UPE-box. Transient expression assays in Nicotiana benthamiana have further shown that both factors, NtEIL2 and AtSLIM1, activate the UP9C promoter. Interestingly, activation by NtEIL2, but not by AtSLIM1, was dependent on the sulphur-deficiency of the plants.

  17. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, Swindon, Wiltshire SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particularmore » is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.« less

  18. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition

    NASA Astrophysics Data System (ADS)

    Bernabé-Pineda, Margarita; Ramírez-Silva, María. Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto

    2004-04-01

    The stability of curcumin (H 3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur 3- species of 1.39 (10 -9) M min -1. There were three acidity constants measured for the curcumin as follows: p KA3=10.51±0.01 corresponding to the equilibrium HCur 2-=Cur 3-+H +, a p KA2=9.88±0.02 corresponding to the equilibrium H 2Cur -=HCur -2+H +. These p KA values were attributed to the hydrogen of the phenol part of the curcumin, while the p KA1=8.38±0.04 corresponds to the equilibrium H 3Cur=H 2Cur -+H + and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.

  19. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Measurement of acid precipitation in Norway

    Treesearch

    Arne Semb

    1976-01-01

    Since January 1972, chemical analysis of daily precipitation samples from about 20 background stations in Norway has been carried out on a routine basis. Air monitoring is carried out at six stations. The chemical analysis programme is: sulphate, pH and acidity in precipitation, sulphates and sulphur dioxide in air. In addition, more detailed chemical analysis of...

  1. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  2. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th wasmore » found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)« less

  3. Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Satinover, Scott J.; Yiacoumi, Sotira

    Neutralization of the bio-oil pH has been shown to generate a neutralized bio-oil aqueous phase (NBOAP) that includes most of the acidic components and a neutralized bio-oil organic phase (NBOOP) that includes hydrophobic organics, such as phenols. NBOOP can be used for fuel production, while NBOAP can be fed to microbial electrolysis cells (MECs) for hydrogen production. After pH neutralization, some organic acidic components remain in NBOOP. This work is focused on capturing acidic compounds from NBOOP through water extraction and electrosorption, and demonstrating hydrogen production via MECs. Capacitive deionization (CDI) is proven effective in capturing ions from NBOOP-contacted watermore » and NBOAP via electrosorption. Captured acidic compounds enable the MEC application to effectively produce renewable hydrogen. Chemical oxygen demand (COD) removal of 49.2%, 61.5%, and 60.8% for 2, 4, and 10 g/L-anode/day loading were observed, corresponding to a total COD degradation of 0.19 g/L, 0.79 g/L, and 1.3 g/L, respectively. A maximum hydrogen productivity of 4.3 L-H 2/L-anode/day was obtained. Major compounds in the water phase such as fatty acids, sugar derivatives, furanic and phenolic compounds were converted to hydrogen with an efficiency of 80–90%. Lastly, this approach may lead the entire biomass pyrolysis process to be an overall carbon-neutral process.« less

  4. Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells

    DOE PAGES

    Park, Lydia Kyoung-Eun; Satinover, Scott J.; Yiacoumi, Sotira; ...

    2018-02-17

    Neutralization of the bio-oil pH has been shown to generate a neutralized bio-oil aqueous phase (NBOAP) that includes most of the acidic components and a neutralized bio-oil organic phase (NBOOP) that includes hydrophobic organics, such as phenols. NBOOP can be used for fuel production, while NBOAP can be fed to microbial electrolysis cells (MECs) for hydrogen production. After pH neutralization, some organic acidic components remain in NBOOP. This work is focused on capturing acidic compounds from NBOOP through water extraction and electrosorption, and demonstrating hydrogen production via MECs. Capacitive deionization (CDI) is proven effective in capturing ions from NBOOP-contacted watermore » and NBOAP via electrosorption. Captured acidic compounds enable the MEC application to effectively produce renewable hydrogen. Chemical oxygen demand (COD) removal of 49.2%, 61.5%, and 60.8% for 2, 4, and 10 g/L-anode/day loading were observed, corresponding to a total COD degradation of 0.19 g/L, 0.79 g/L, and 1.3 g/L, respectively. A maximum hydrogen productivity of 4.3 L-H 2/L-anode/day was obtained. Major compounds in the water phase such as fatty acids, sugar derivatives, furanic and phenolic compounds were converted to hydrogen with an efficiency of 80–90%. Lastly, this approach may lead the entire biomass pyrolysis process to be an overall carbon-neutral process.« less

  5. The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds

    NASA Astrophysics Data System (ADS)

    Tuckermann, Rudolf; Cammenga, Heiko K.

    The surface tensions of aqueous solutions of levoglucosan, 3-hydroxybutanoic acid, 3-hydroxybenzoic acid, azelaic acid, pinonic acid, and humic acid have been measured. These compounds are suggested as model substances for the water-soluble organic compounds (WSOC) in atmospheric aerosols and droplets which may play an important role in the aerosol cycle because of their surface-active potentials. The reductions in surface tension induced by single and mixed WSOC in aqueous solution of pure water is remarkable. However, the results of this investigation cannot explain the strong reduction in surface tension in real cloud and fog water samples at concentrations of WSOC below 1 mg/mL.

  6. Unsaturated C3,5,7,9-Monocarboxylic Acids by Aqueous, One-Pot Carbon Fixation: Possible Relevance for the Origin of Life

    PubMed Central

    Scheidler, Christopher; Sobotta, Jessica; Eisenreich, Wolfgang; Wächtershäuser, Günter; Huber, Claudia

    2016-01-01

    All scientific approaches to the origin of life share a common problem: a chemical path to lipids as main constituents of extant cellular enclosures. Here we show by isotope-controlled experiments that unsaturated C3,5,7,9-monocarboxylic acids form by one-pot reaction of acetylene (C2H2) and carbon monoxide (CO) in contact with nickel sulfide (NiS) in hot aqueous medium. The primary products are toto-olefinic monocarboxylic acids with CO-derived COOH groups undergoing subsequent stepwise hydrogenation with CO as reductant. In the resulting unsaturated monocarboxylic acids the double bonds are mainly centrally located with mainly trans-configuration. The reaction conditions are compatible with an origin of life in volcanic-hydrothermal sub-seafloor flow ducts. PMID:27283227

  7. Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study.

    PubMed

    Liu, Liuxie; Li, Kai; Chen, Xiao; Liang, Xiaoqin; Zheng, Yan; Li, Laicai

    2018-03-29

    The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO 2 , while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO 2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O-H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials. Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory.

  8. Inhibition of gastric acid secretion by a standardized aqueous extract of Cecropia glaziovii Sneth and underlying mechanism.

    PubMed

    Souccar, C; Cysneiros, R M; Tanae, M M; Torres, L M B; Lima-Landman, M T R; Lapa, A J

    2008-06-01

    Cecropia glazioui Sneth (Cecropiaceae) is used in folk medicine in tropical and subtropical Latin America as cardiotonic, diuretic, hypotensive, anti-inflammatory and anti-asthmatic. The hypotensive/antihypertensive activity of the plant aqueous extract (AE) and isolated butanolic fraction (BuF) has been confirmed and putatively related to calcium channels blockade in vascular smooth musculature [Lapa, A.J., Lima-Landman, M.T.R., Cysneiros, R.M, Borges, A.C.R., Souccar, C., Barreta, I.P., Lima, T.C.M., 1999. The Brazilian folk medicine program to validate medicinal plants - a topic in new antihypertensive drug research. In: Hostettman, K., Gupta, M.P., Marston, A. (Eds.), Proceedings Volume, IOCD/CYTED Symposium, Panamá City, Panamá, 23-26 February 1997. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 185-196; Lima-Landman, M.T., Borges, A.C., Cysneiros, R.M., De Lima, T.C., Souccar, C., Lapa, A.J., 2007. Antihypertensive effect of a standardized aqueous extract of Cecropia glaziovii Sneth in rats: an in vivo approach to the hypotensive mechanism. Phytomedicine 14, 314-320]. Bronchodilation and antidepressant-like activities of both AE and BuF have been also shown [Delarcina, S., Lima-Landman, M.T., Souccar, C., Cysneiros, R.M., Tanae, M.M., Lapa, A.J., 2007. Inhibition of histamine-induced bronchospasm in guinea pigs treated with Cecropia glaziovi Sneth and correlation with the in vitro activity in tracheal muscles. Phytomedicine 14, 328-332; Rocha, F.F., Lima-Landman, M.T., Souccar, C., Tanae, M.M., De Lima, T.C., Lapa, A.J., 2007. Antidepressant-like effect of Cecropia glazioui Sneth and its constituents -in vivo and in vitro characterization of the underlying mechanism. Phytomedicine 14, 396-402]. This study reports the antiulcer and antisecretory gastric acid activities of the plant AE, its BuF and isolated compounds with the possible mechanism involved. Both AE and Bu

  9. Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yuankun; Hu, Jun; Wang, Jianlong

    2014-03-01

    The radiation-induced degradation of sulfamethazine (SMT) was carried out by gamma irradiation. SMT with initial concentration of 20 mg/L was irradiated in the presence of 0, 0.1, 0.2, 0.4 and 0.6 mM extra Fe2+. The results showed that ferrous ion (Fe2+) could enhance the degradation of SMT by gamma irradiation in aqueous solution. SMT could be almost completely removed at 1 kGy without extra Fe2+, however, TOC removal efficiency was less than 10%. Several intermediate products, such as 4,6-dimethylpyrimidin-2-amine, 4-aminobenzenesulfonic acid, 4-nitrophenol 4-nitrobenzenesulfonic acid, 2-amino-6-methylpyrimidine-4-carboxylic acid, and 4-amino-N-carbamimidoyl-benzenesulfonamide and formic acid, acetic acid, and sulfate were identified. Possible pathway of SMT degradation in aqueous solution was tentatively proposed.

  10. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    Large mass independent fractionation (MIF) of sulphur isotopes in sedimentary rocks older than 2.3 Ga and the absence of this isotopic anomaly in younger rocks seem to be the consequence of a change in Earth's atmospheric composition from essentially oxygen-free or to oxygen-rich conditions. MIF is produced by photochemical reactions of volcanogenic sulphur dioxide with UV radiation in the absence of an ozone shield. The products of such processes are elemental sulphur with positive and sulphate with negative Δ33S values. Here we present isotope data (32S, 33S, 34S) for sedimentary pyrites from Archaean and Palaeoproterozoic rocks of the Kaapvaal Craton (South Africa), the Pilbara Craton (Australia) and the Greenland Shield (Isua Supercrustal Belt). Their ages range from 3.85 to 2.47 Ga. Large positive Δ33S values up to +9.13 ‰ in several Archaean units from the Kapvaal and Pilbara Cratons are attributed to low atmospheric oxygen at that time. Interestingly, very low Δ33S values between -0.28 and +0.57 ‰ appear to characterize the Witwatersrand succession of South Africa (3.0 Ga). This rather small MIF signature was previously detected in rocks of the same age in Western Australia (OHMOTO et al., 2005). The signature is interpreted as a global signal, which could be the consequence of a shielding effect induced by one or more atmospheric components. The most probable chemical compounds for this process are methane and carbon dioxide. Rocks of the Kameeldoorns Fm. (2.71 Ga), Kaapvaal Craton, display also low values between -0.46 and +0.33 ‰, which are consistent with the small (absent) MIF signal in rocks of the Hardey Fm. (2.76 Ga) of Western Australia (OHMOTO et al., 2005). Very low carbon isotope values between -51 and -40 ‰ in late Archaean kerogens (2.6 - 2.8 Ga) indicate a high concentration of methane in the atmosphere (PAVLOV et al., 2001). This high methane level could produce an organic haze, which absorbed most of the UV radiation and prevented

  11. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.

    PubMed

    Pang, Quan; Kundu, Dipan; Cuisinier, Marine; Nazar, L F

    2014-08-26

    The lithium-sulphur battery relies on the reversible conversion between sulphur and Li2S and is highly appealing for energy storage owing to its low cost and high energy density. Porous carbons are typically used as sulfur hosts, but they do not adsorb the hydrophilic polysulphide intermediates or adhere well to Li2S, resulting in pronounced capacity fading. Here we report a different strategy based on an inherently polar, high surface area metallic oxide cathode host and show that it mitigates polysulphide dissolution by forming an excellent interface with Li2S. Complementary physical and electrochemical probes demonstrate strong polysulphide/Li2S binding with this 'sulphiphilic' host and provide experimental evidence for surface-mediated redox chemistry. In a lithium-sulphur cell, Ti4O7/S cathodes provide a discharge capacity of 1,070 mAh g(-1) at intermediate rates and a doubling in capacity retention with respect to a typical conductive carbon electrode, at practical sulphur mass fractions up to 70 wt%. Stable cycling performance is demonstrated at high rates over 500 cycles.

  12. Impact of Sulphurous Water Politzer Inhalation on Audiometric Parameters in Children with Otitis Media with Effusion

    PubMed Central

    Mirandola, Prisco; Gobbi, Giuliana; Malinverno, Chiara; Carubbi, Cecilia; Ferné, Filippo M.; Artico, Marco; Vitale, Marco

    2013-01-01

    Objectives The positive effects of spa therapy on ear, nose, and throat pathology are known but robust literature in this field, is still lacking. The aim of this study was to assess through a retrospective analysis, the effects on otitis media with effusion of Politzer endotympanic inhalation of sulphurous waters in children aged 5-9 years. Methods A cohort of 95 patients was treated with Politzer insufflations of sulphurous water: 58 patients did a cycle consisting of a treatment of 12 days per year for three consecutive years; 37 patients followed the same procedure for 5 years consecutively. The control population was represented by untreated, age-matched children. A standard audiometric test was used before and after each cycle of treatment. Results One cycle of Politzer inhalation of sulphur-rich water improved the symptoms. Three cycles definitively stabilized the improvement of hearing function. Conclusion Our results show that otitis media with effusion in children can be resolved by an appropriate non-pharmacological treatment of middle ear with sulphur-rich water. PMID:23524467

  13. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. 30 CFR 250.124 - Will MMS approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Will MMS approve gas injection into the cap rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF OCEAN ENERGY... increase potential hazards to present or future sulphur mining operations. Fees ...

  15. 76 FR 52963 - Information Collection Activity: Prospecting for Minerals Other Than Oil, Gas, and Sulphur on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... ID No. BOEM-2011-0076] Information Collection Activity: Prospecting for Minerals Other Than Oil, Gas... paperwork requirements in the regulations under, Prospecting for Minerals Other than Oil, Gas, and Sulphur...: 30 CFR Part 280, Prospecting for Minerals Other than Oil, Gas, and Sulphur on the Outer Continental...

  16. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS.

    PubMed

    Kler, Pablo A; Huhn, Carolin

    2014-11-01

    Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.

  17. Adsorption of a textile dye "Indanthrene Blue RS (C.I. Vat Blue 4)" from aqueous solutions onto smectite-rich clayey rock.

    PubMed

    Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher

    2009-12-30

    The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.

  18. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests.

    PubMed

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1-0.2 g m(-2) year(-1) with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m(-2) year(-1) is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO3(-)/SO4(2-) and NH4(+)/SO4(2-) in precipitation show significantly increasing trends in time similarly to those of pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    NASA Astrophysics Data System (ADS)

    Maheswari, J. Uma; Krishnan, C.; Kalyanaraman, S.; Selvarajan, P.

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV-Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  1. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in

    We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less

  2. [Therapeutic effect of the association between pulmonary ventilation and aerosol--inhalation with sulphureous mineral water in the chronic bronchopneumopathies].

    PubMed

    Lopalco, M; Proia, A R; Fraioli, A; Serio, A; Cammarella, I; Petraccia, L; Grassi, M

    2004-04-01

    Our research evaluates the efficacy of the inalation therapy by mineral sulphureous water in patients suffering from cronic bronchopneumopathy. From August to October 2002, two groups of patients, randomly selected, suffering from cronic bronchopneumonopathy, were studied at spa center "Pompeo" in Ferentino (FR). Every patient was treated daily during a cycle of twelve days. The first group was treated by pneumonic mechanical ventilation associated to sulphureous water aerosolinalation, the second by mechanical pulmonary ventilation associated to sulphureous water aerosol-inalation medicated with flunisolide. Every patient carried out spirometry, before and after treatment, and the measurement of FEV1 was considered a good parameter to evaluate the respiratory function. All patients reported an improvement in symptoms as dyspnea and cough. Results obtained show a significant functional improvement of respiratory function in both groups, evaluated by FEV1. Equal efficacy treating the patients by medicated and not medicated treatments stress the therapeutic role of mineral sulphureous waters in chronic bronchopneumopathies. Our research points out the usefullness of pneumonic ventilation associated with sulphureous water aerosol-inalation in patients suffering from chronic bronchopneumopathies.

  3. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne

    1997-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  4. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. Copyright © 2014. Published by Elsevier Ltd.

  5. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling.

    PubMed

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2018-02-01

    This study investigated the impact of sulphur content on the performance of an anaerobic membrane bioreactor (AnMBR) with an emphasis on the biological stability, contaminant removal, and membrane fouling. Removal of 38 trace organic contaminants (TrOCs) that are ubiquitously present in municipal wastewater by AnMBR was evaluated. Results show that basic biological performance of AnMBR regarding biomass growth and the removal of chemical oxygen demand (COD) was not affected by sulphur addition when the influent COD/SO 4 2- ratio was maintained higher than 10. Nevertheless, the content of hydrogen sulphate in the produced biogas increased significantly and membrane fouling was exacerbated with sulphur addition. Moreover, the increase in sulphur content considerably affected the removal of some hydrophilic TrOCs and their residuals in the sludge phase during AnMBR operation. By contrast, no significant impact on the removal of hydrophobic TrOCs was noted with sulphur addition to AnMBR. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO4.

    PubMed

    Darlewski, Witold; Popiel, Stanisław; Nalepa, Tomasz; Gromotowicz, Waldemar; Szewczyk, Rafał; Stankiewicz, Romuald

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods. (c) 2009 Elsevier B.V. All rights reserved.

  7. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth

  8. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    PubMed

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  9. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    PubMed

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  10. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOEpatents

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  11. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  12. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  13. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  14. The use of sulphur as a rigid binder and for the impregnation of concrete : state of the art.

    DOT National Transportation Integrated Search

    1982-01-01

    Recent research has led to the development of durable modified-sulphur mortars, concretes, and coatings. All of the methods of using sulphur as a binder for rigid concrete rely on the reaction of one or more modifiers to stabilize, in the hardened st...

  15. Effects of chronic and acute exposure to sulphur dioxide on the growth of hybrid poplar cuttings

    Treesearch

    Leon S. Dochinger; Keith F. Jensen

    1975-01-01

    Hybrid poplar clones were fumigated in controlled-environment chambers with either 5 ppm sulphur dioxide for 1½, 3, and 6 h or with 0.25 ppm sulphur dioxide for six weeks. Multivariate analyses were made from shoot-growth data before and after treatment and on the foliar injury induced by S02. Both short- and long-term fumigation produced similar...

  16. Plasmon-driven sequential chemical reactions in an aqueous environment.

    PubMed

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  17. Quantifying Sulphur Emissions and Atmospheric Aerosol Loading From the 1730-36 Lanzarote Eruption

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Blake, S.; Self, S.

    2005-12-01

    The AD 1730-36 eruption of Lanzarote (Canary Islands) is the third largest basaltic fissure eruption known to have occurred in the last 1000 years, after the Icelandic events of Laki (AD 1783-84) and Eldgja (AD 934). Our new volume estimates suggest that the Lanzarote eruption produced ~6 km3 of alkali basalt magma along a 15-km long, E-W trending fissure. Eruptive activity occurred in five distinct phases. Each phase began with Strombolian fire fountain activity, building large spatter and scoria cones. This was accompanied and followed by effusive aa and pahoehoe lava flow emplacement. As studies in Iceland have shown, this type of sustained fissure eruption can release large amounts of SO2 to the upper atmosphere, leading to the formation of sulphate aerosol clouds and causing widespread environmental damage and human suffering. Matrix glasses in scoria and surface lava samples have 80-300 ppm S (EMPA) and 300-600 ppm H2O (FTIR), whereas glass inclusions in olivine have 420-2650 ppm S and 1000-5000 ppm H2O. Low sulphur inclusions are believed to be partially degassed, representing melt that was trapped during degassing-induced crystallization that occurred as a result of shallow decompression. The inclusions with the highest sulphur contents trap the original un-degassed melt, as indicated by their consistent S/K2O ratio (0.22). The high sulphur contents are also consistent with our finding, from olivine-spinel equilibria, that the magma was relatively oxidized (log fO2 -4.8) therefore favouring the formation of sulphate species and preventing sulphide saturation. Our glass analyses indicate that 40 Mt of SO2 was injected into the upper troposphere - lower stratosphere via 12-16-km-high eruption plumes and that over half this amount was released during the first year of activity. This figure correlates with published Greenland ice-core (GISP-2) data that shows an acidity spike in 1731, suggesting stratospheric transport of sulphate aerosol to the North during

  18. Fluid inclusion and sulphur isotope evidence for syntectonic mineralisation at the Elura mine, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Seccombe, P. K.

    1990-10-01

    Fluid inclusion and sulphur isotope data for the discordant, metasediment-hosted massive sulphide deposit at Elura are consistent with a syntectonic origin of the orebodies. Thermometric and laser Raman microprobe analyses indicate that two-phase, primary fluid inclusions are low salinity and H2O-CO2-CH4 types. Inclusion fluids from quartz in ore yield homogenisation temperatures (Th) ranging from 298 ° to 354 °C (mean 320 °C). They are likely to have been trapped close to the solvus of the H2O-CO2-(CH4-NaCl) system and thus should give temperatures of the mineralising fluid. An additional, low Th population of later fluid inclusions is recognised in quartz from ore and syntectonic extension veins in the adjacent wallrock. Th's for these low CO2bearing inclusions range from 150 to 231 °C (mean 190 °C), and should be considerably lower than true trapping temperatures. Sulphur isotopic composition (δ34S) of pyrite, sphalerite, pyrrhotite and galena ranges from 4.7 to 12.6% and indicates a sulphur source from underlying Cobar Supergroup metasediments. An average temperature of 275 °C from the sphalerite-galena sulphur isotopic thermometer suggests isotopic re-equilibration below peak metamorphic temperatures.

  19. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; hide

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  20. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  1. Identification and on-line monitoring of reduced sulphur species (RSS) by voltammetry in oxic waters.

    PubMed

    Superville, Pierre-Jean; Pižeta, Ivanka; Omanović, Dario; Billon, Gabriel

    2013-08-15

    Based on automatic on-line measurements on the Deûle River that showed daily variation of a peak around -0.56V (vs Ag|AgCl 3M), identification of Reduced Sulphur Species (RSS) in oxic waters was performed applying cathodic stripping voltammetry (CSV) with the hanging mercury drop electrode (HMDE). Pseudopolarographic studies accompanied with increasing concentrations of copper revealed the presence of elemental sulphur S(0), thioacetamide (TA) and reduced glutathione (GSH) as the main sulphur compounds in the Deûle River. In order to resolve these three species, a simple procedure was developed and integrated in an automatic on-line monitoring system. During one week monitoring with hourly measurements, GSH and S(0) exhibited daily cycles whereas no consequential pattern was observed for TA. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Coordination chemistry of vitamin C. Part I. Interaction of L-ascorbic acid with alkaline earth metal ions in the crystalline solid and aqueous solution.

    PubMed

    Tajmir-Riahi, H A

    1990-10-01

    The interaction of L-ascorbic acid with alkaline earth metal ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type Mg(L-ascorbate)2.4H2O, Ca(L-ascorbate)2.2H2O, Sr(L-ascorbate)2.2H2O and Ba(L-ascorbate)2.2H2O were isolated and characterized by means of 13C NMR and FT-IR spectroscopy. Spectroscopic and other evidence suggested that in aqueous solution, the binding of the alkaline earth metal ions is through the O-3 atom of the ascorbate anion, while in the solid state the binding of the Mg(II) is different from those of the other alkaline earth metal ion salts. The Mg(II) ion binds to the O-3, O-1 atom of the two ascorbate anions and to two H2O molecules, while the eight-coordination around the Ca(II), Sr(II), and Ba(II) ions would be completed by the coordination of three acid anions, through O-5, O-6 of the first, O-3, O-5, O-6 of the second and O-1 of the third anion as well as to two H2O molecules. The structural properties of the alkaline earth metal-ascorbate salts are different in the solid and aqueous solution.

  3. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2014-01-14

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the

  4. Lipoic acid biosynthesis defects.

    PubMed

    Mayr, Johannes A; Feichtinger, René G; Tort, Frederic; Ribes, Antonia; Sperl, Wolfgang

    2014-07-01

    Lipoate is a covalently bound cofactor essential for five redox reactions in humans: in four 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). Two enzymes are from the energy metabolism, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase; and three are from the amino acid metabolism, branched-chain ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the GCS. All these enzymes consist of multiple subunits and share a similar architecture. Lipoate synthesis in mitochondria involves mitochondrial fatty acid synthesis up to octanoyl-acyl-carrier protein; and three lipoate-specific steps, including octanoic acid transfer to glycine cleavage H protein by lipoyl(octanoyl) transferase 2 (putative) (LIPT2), lipoate synthesis by lipoic acid synthetase (LIAS), and lipoate transfer by lipoyltransferase 1 (LIPT1), which is necessary to lipoylate the E2 subunits of the 2-oxoacid dehydrogenases. The reduced form dihydrolipoate is reactivated by dihydrolipoyl dehydrogenase (DLD). Mutations in LIAS have been identified that result in a variant form of nonketotic hyperglycinemia with early-onset convulsions combined with a defect in mitochondrial energy metabolism with encephalopathy and cardiomyopathy. LIPT1 deficiency spares the GCS, and resulted in a combined 2-oxoacid dehydrogenase deficiency and early death in one patient and in a less severely affected individual with a Leigh-like phenotype. As LIAS is an iron-sulphur-cluster-dependent enzyme, a number of recently identified defects in mitochondrial iron-sulphur cluster synthesis, including NFU1, BOLA3, IBA57, GLRX5 presented with deficiency of LIAS and a LIAS-like phenotype. As in DLD deficiency, a broader clinical spectrum can be anticipated for lipoate synthesis defects depending on which of the affected enzymes is most rate limiting.

  5. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  6. Physical and chemical processes of sulphur dioxide in the plume from an oil-fired power station.

    PubMed

    Flyger, H; Lewin, E; Thomsen, E L; Fenger, J; Lyck, E; Gryning, S E

    1977-03-01

    The Danish contribution to the EUROCOP COST 61a project is described. Work concerned the physical and chemical reactions of sulphur dioxide released from a power station. The investigation was based on the application of two tracers. Inactive, inert SF6 is used to monitor the dispersion of and deposition from the plume; it was intended to use radioactive 35SO2 to determine the degree of oxidation of sulphur released from the stack; so far, however, public reaction has prevented the use of a release of activity in field experiments. The report describes the construction and testing of airborne instruments for continuous registration of sulphur dioxide, nitrogen oxides, ozone and the tracer SF6, as well as for measurements of temperature and humidity. Sulphur samples were collected on filter paper in a specially constructed low volume air sampler, and the subsequentchemical analysis in the laboratory is described. Finally, the problem of navigation is treated. It is shown that nitrogen oxides may be used as an internal tracer in plume experiments. Preliminary experiments based on inactive analysis only indicated an overall half-life for SO2 in the plume of about half an hour.

  7. An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health

    NASA Astrophysics Data System (ADS)

    Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic

    2015-10-01

    Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion

  8. Acidity of open and intercepted precipitation in forests

    Treesearch

    J. Baker; Drake Hocking; Marvin Nyborg

    1976-01-01

    Emissions of sulphur dioxide appear to have an acidifying effect on grossfall (open rainfall), throughfall, stemflow and soil solution at sites near major sources. Resulting effects on soil chemistry include elevated extractable acidity and aluminum and depressed exchangeable bases, especially calcium and magnesium. These changes are mostly in the incipient phases in...

  9. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  10. A comparison of decontamination effects of commercially available detergents in rats pre-exposed to topical sulphur mustard.

    PubMed

    Misik, Jan; Jost, Petr; Pavlikova, Ruzena; Vodakova, Eva; Cabal, Jiri; Kuca, Kamil

    2013-06-01

    The genotoxic vesicant sulphur mustard [bis-2-(chloroethyl)sulphide] is a chemical warfare agent which is easily available due to its relatively simple synthesis. Thus, sulphur mustard is a potential agent for mass contamination. In this study, we focused on sulphur mustard toxicity and decontamination in a rat model using commercially available detergent mixtures for dermal decontamination. Male Wistar rats were percutaneously treated with sulphur mustard and subjected to wet decontamination 2 min postexposure. Commercially produced detergents Neodekont™, Argos™, Dermogel™ and FloraFree™ were tested for their decontamination efficacy against an exposed group and their protective ratios determined. The results showed that all tested detergent solutions produced an increase in the median lethal dose [LD(50) = 9.83 (5.87-13.63) mg·kg(-1)] in comparison to controls, which led to increased survival of experimental animals. In general, all tested detergents provided modest decontamination efficacy (PR = 2.0-5.7). The highest protective ratio (5.7) was consistently achieved with Argos™. Accordingly, Argos™ should be considered in further investigation of mass casualty decontamination.

  11. Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies

    PubMed Central

    Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    The distribution and enantiomeric composition of the 5-carbon (C5) amino acids found in CI-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/N-acetyl-l-cysteine derivatization. A large l-enantiomeric excess (ee) of the α-methyl amino acid isovaline was found in the CM meteorite Murchison (lee = 18.5 ± 2.6%) and the CI meteorite Orgueil (lee = 15.2 ± 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any CI meteorite. The l-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C5 amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no l-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for l-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other α-dialkyl amino acids found in altered CI and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life. PMID:19289826

  12. Enrichment of the Amino Acid L-Isovaline by Aqueous Alteration on CI and CM Meteorite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    The distribution and enantiomeric composition of the 5-carbon (C(sub 5)) amino acids found in Cl-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/Nacetyl- l-cysteine derivatization. A large L-enantiomeric excess (ee) of the a-methyl amino acid isovaline was found in the CM meteorite Murchison (L(sub ee) = 18.5 +/- 2.6%) and the Cl meteorite Orguell (L(sub ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any Cl meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(sub 5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered Ct and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.

  13. Studies of a urinary biomarker of dietary inorganic sulphur in subjects on diets containing 1-38 mmol sulphur/day and of the half-life of ingested 34SO4(2-).

    PubMed

    Curno, R; Magee, E A; Edmond, L M; Cummings, J H

    2008-09-01

    Sulphites are widely used food additives that may damage health, hence limits are set on their use. They are excreted in urine as sulphate, along with sulphate derived from sulphur amino acids. Dietary intakes of sulphites are hard to determine, so we have tested the utility of urinary nitrogen:sulphate ratio as a biomarker of inorganic sulphur (IS) intake. Additionally we determined the half-life of ingested (34)SO(4)(2-) from its urinary excretion. Twenty healthy adult subjects were recruited by poster advertisement, for a 24-h study where they ate specified foods, which were high in IS, in addition to their normal diet. The half-life of ingested (34)SO(4)(2-) was assessed in five healthy volunteers, given 5.9 mmols of Na(2)(34)SO(4) as a single dose and collecting all urine specimens for 72-96 h. Urine and duplicate diets from three previously conducted studies were analysed for nitrogen and sulphate content, thus expanding the range of IS intakes for evaluation. Duplicate diets were analysed for IS content by ion exchange chromatography, while IS intake was predicted from urinary sulphate (g/day S)-(urinary nitrogen (g/day)/18.89). (32)S:(34)S ratios were determined by liquid chromatography mass spectrometry/mass spectrometry. The range of IS intake was 1.3-37.5 mmol S/day. Actual and predicted IS intakes were mmol/day+/-s.e. 9.2+/-0.65 and 7.0+/-0.45, respectively, and were correlated r=0.60 (n=108). The mean half-life of ingested (34)SO(4)(2-) was 8.2 h. From a 24-h urine collection, IS intake from the habitual diet can be determined for groups of individuals. To predict individual intakes of IS, which may include high sporadic amounts from beer and wine, at least 48 h of urine collection would be required.

  14. Impact of In-Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.

    2017-10-01

    We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.

  15. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    NASA Astrophysics Data System (ADS)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  16. The Neoarchaean surficial sulphur cycle: An alternative hypothesis based on analogies with 20th-century atmospheric lead.

    PubMed

    Gallagher, M; Whitehouse, M J; Kamber, B S

    2017-05-01

    We revisit the S-isotope systematics of sedimentary pyrite in a shaly limestone from the ca. 2.52 Ga Gamohaan Formation, Upper Campbellrand Subgroup, Transvaal, South Africa. The analysed rock is interpreted to have been deposited in a water depth of ca. 50-100 m, in a restricted sub-basin on a drowning platform. A previous study discovered that the pyrites define a nonzero intercept δ 34 S V - CDT -Δ 33 S data array. The present study carried out further quadruple S-isotope analyses of pyrite, confirming and expanding the linear δ 34 S V - CDT -Δ 33 S array with an δ 34 S zero intercept at ∆ 33 S ca. +5. This was previously interpreted to indicate mixing of unrelated S-sources in the sediment environment, involving a combination of recycled sulphur from sulphides that had originally formed by sulphate-reducing bacteria, along with elemental sulphur. Here, we advance an alternative explanation based on the recognition that the Archaean seawater sulphate concentration was likely very low, implying that the Archaean ocean could have been poorly mixed with respect to sulphur. Thus, modern oceanic sulphur systematics provide limited insight into the Archaean sulphur cycle. Instead, we propose that the 20th-century atmospheric lead event may be a useful analogue. Similar to industrial lead, the main oceanic input of Archaean sulphur was through atmospheric raindown, with individual giant point sources capable of temporally dominating atmospheric input. Local atmospheric S-isotope signals, of no global significance, could thus have been transmitted into the localised sediment record. Thus, the nonzero intercept δ 34 S V - CDT -Δ 33 S data array may alternatively represent a very localised S-isotope signature in the Neoarchaean surface environment. Fallout from local volcanic eruptions could imprint recycled MIF-S signals into pyrite of restricted depositional environments, thereby avoiding attenuation of the signal in the subdued, averaged global open ocean

  17. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  18. Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance

    USDA-ARS?s Scientific Manuscript database

    A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...

  19. Unravelling the Carbon and Sulphur Metabolism in Coastal Soil Ecosystems Using Comparative Cultivation-Independent Genome-Level Characterisation of Microbial Communities

    PubMed Central

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-01-01

    Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool. PMID:25225969

  20. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-01-01

    Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.