PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS
Haworth, W.N.; Stacey, M.
1949-08-30
A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.
Zehavi, D; Seiber, J N
1996-10-01
An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi
1998-11-01
Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.
Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong
2012-01-01
A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.
PRODUCTION OF TRIFLUOROACETIC ACID
Haworth, W.N.; Stacey, M.
1949-07-19
A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.
Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C
1995-12-01
Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.
Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.
Kumari, U; Nigam, A K; Mitial, S; Mitial, A K
2011-07-01
The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.
Watchueng, Jean; Kamnaing, Pierre; Gao, Jin-Ming; Kiyota, Taira; Yeboah, Faustinus; Konishi, Yasuo
2011-05-20
Paclitaxel was purified using high-performance displacement chromatography (HPDC) technique, but not by the mechanism of HPDC. On small scale, paclitaxel was extracted with methanol from dry needles of Taxus canadensis and was enriched by extracting with chloroform after removing water-soluble hydrophilic components and hexane-soluble hydrophobic components. Then, 93-99% purity of paclitaxel was obtained using the HPDC technique. On large scale, taxanes were enriched by solvent partitioning between acetic acid/MeOH/H(2)O and hexane and extracted with CH(2)Cl(2). Taxanes except paclitaxel were further removed by extracting with methanol-water-trifluoroacetic acid (1.0:98.9:0.1, v/v/v). Applying HPDC technique to water-insoluble substances is problematic as this method requires a highly aqueous solvent system. In order to overcome this incompatibility, a system was set up where paclitaxel, although in low concentration, was extracted by methanol-water-trifluoroacetic acid (10.0:89.9:0.1, v/v/v). Recycling the extracting solvent to ensure minimal volume, the extracted paclitaxel was adsorbed on a C(18) trap column. A C(18) column of 4.6mm internal diameter was then connected to the trap column. The HPDC technique was thus carried out using an isocratic acetonitrile-water-trifluoroacetic acid (30.0:69.9:0.1, v/v/v) mobile phase consisting of a displacer cetylpyridinium trifluoroacetate (3mg/mL). Paclitaxel was co-eluted with the displacer and spontaneously crystallized. The crystal (114mg) showed 99.4% purity and only 10% of paclitaxel in the starting crude extract was lost during the enrichment/purification processes. This large scale purification method was successfully applied to purify paclitaxel from Chinese yew in small scale, suggesting general applicability of the method. This is the first report of purifying a water-insoluble natural product using HPDC technique. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.
2008-08-04
L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less
Hydration and dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions
NASA Astrophysics Data System (ADS)
Lyashchenko, A. K.; Balakaeva, I. V.; Simonova, Yu. A.; Timofeeva, L. M.
2017-10-01
Results from microwave measurements of the dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions at maximum water dispersion frequencies (13-25 GHz) and temperatures of 288, 298, and 308 K are given. The static dielectrical constants, times, and activation parameters of the dielectrical relaxation of solutions are calculated. The enthalpy and time of dielectrical relaxation activation are increased by deceleration of the motion of water molecules in the hydrate shells of ions. The changes in dielectrical parameters are in this case minimal in a series of aqueous solutions of diallylammonium salts with cations of different structures and degrees of substitution. It is shown that pyrrolidinium ions are characterized by weak hydrophobic hydration.
Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro
2004-02-06
The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.
The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate
ERIC Educational Resources Information Center
Kjonaas, Richard A.; Clemons, Anthony E.
2008-01-01
A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…
Shashoua, V E
1988-07-01
Ependymin, a brain extracellular glycoprotein that appears to be implicated in neural circuit modifications associated with the process of memory consolidation, can rapidly polymerize into fibrous aggregates when the Ca2+ concentration in solution is reduced by the addition of EGTA or by dialysis. Such aggregates, once formed, could not be redissolved in boiling 1% SDS in 6 M urea, acetic acid, saturated aqueous potassium thiocyanate, and trifluoroacetic acid. They were, however, soluble in formic acid. Investigations of the immunological properties of ependymin indicated that various monomers, oligomers and polymers of the molecule with differing carbohydrate contents can be obtained. The polymerization properties of the ependymins may play an important role in their functions in memory consolidation mechanisms.
Reductive spectrophotometry of divalent tin sensitization on soda lime glass
NASA Astrophysics Data System (ADS)
Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith
2016-07-01
Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.
Hmb(off/on) as a switchable thiol protecting group for native chemical ligation.
Qi, Yun-Kun; Tang, Shan; Huang, Yi-Chao; Pan, Man; Zheng, Ji-Shen; Liu, Lei
2016-05-04
A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.
NASA Astrophysics Data System (ADS)
Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko
2015-05-01
Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.
Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T
2011-05-05
The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.
Kler, Pablo A; Huhn, Carolin
2014-11-01
Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.
Chatterjee, Nachiketa; Goswami, Avijit
2015-08-07
A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.
Synthesis of Energetic Materials
1988-03-01
reacted with excess ethyl urethane, under boron trifluoride catalysis in trifluoroacetic acid, to give the 2,3-bisurethane derivative. This conversion... trifluoride catalysis, to give none of the imidazolidine (1), but only a low yield of the MEDINA derivative (5), via an obscure reaction pathway...trifluoroacetic acid under boron trifluoride catalysis. The major product, isolated in high yield, was the tricyclic ether (18). In fact, compound 18 was
Burra, Gunasekhar; Thakur, Ashwani Kumar
2015-12-01
The data provided in this article are related to the research article entitled "Unaided trifluoroacetic acid pretreatment solubilizes polyglutamine (polyGln) peptides and retains their biophysical properties of aggregation" by Burra and Thakur (in press) [1]. This research article reports data from size exclusion chromatography (SEC), reversed phase-high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) assays. This data show that trifluoroacetic acid (TFA) has the ability to convert insoluble polyGln peptides to soluble monomers. The data also clarify the possibility of trifluoroacetylation modification caused due to TFA. We hope the data presented here will enhance the understanding of polyGln disaggregation and solubilization. For more insightful and useful discussions, see the research article published in Analytical Biochemistry: Methods in the Biological Sciences (Burra and Thakur, in press [1]).
da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio
2008-09-10
This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.
Chakraborty, Asish B.; Berger, Scott J.
2005-01-01
The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853
A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid
NASA Astrophysics Data System (ADS)
Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.
2017-06-01
Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.
Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to applymore » high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.« less
Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong
2011-10-01
The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.
Sireesha, Pedaballi; Sun, Wei-Gang; Su, Chaochin; Kathirvel, Sasipriya; Lekphet, Woranan; Akula, Suri Babu; Li, Wen-Ri
2017-01-01
The surface modification of the TiO2 photoelectrode film is one of the promising ways to improve the photovoltaic performance of dye-sensitized solar cell (DSSC). In this work for the acid treatment of TiO2 powder, fluorine containing compounds such as trifluoroacetic acid was carried out to enhance the properties of photoanode. In order to investigate the effect of trifluoroacetyl group, the TiO2 nanopowders were also treated with different acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid and their properties were compared. The TiO2 powders treated with both acetic acid and TFA have possessed smooth surface morphologies as well as enhanced particle dispersions with reduced particle sizes. Photoelectrodes prepared for these two kinds of TiO2 powders accommodated high amounts of dye loading and exhibited excellent light transmittance (wavelength region of 400–600 nm). Electrochemical impedance spectroscopy analysis showed the smallest radius of the semicircle which indicates the enhanced rate of electron transport for the cell based photoelectrode with trifluoroacetic acid treated TiO2 powder. The solar cell from the untreated TiO2 film showed the power conversion efficiency of 8.86% and the highest efficiency of 9.51% was achieved by the cell fabricated from trifluoroacetic acid treated TiO2 film.
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-01-01
Catalytic oxidative C–H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C–H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C–H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C–H functionalization reactions. PMID:28165474
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-06
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na 2 S 2 O 8 ) using Rh-modified TiO 2 nanoparticles as a photocatalyst, in which H 2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
NASA Astrophysics Data System (ADS)
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-01
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun
2013-07-01
Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kulikov, A U; Zinchenko, A A
2007-02-19
This paper describes the validation of an isocratic HPLC method for the assay of dexpanthenol in aerosol and gel. The method employs the Vydac Proteins C4 column with a mobile phase of aqueous solution of trifluoroacetic acid and UV detection at 206 nm. A linear response (r>0.9999) was observed in the range of 13.0-130 microg mL(-1). The method shows good recoveries and intra and inter-day relative standard deviations were less than 1.0%. Validation parameters as specificity, accuracy and robustness were also determined. The method can be used for dexpanthenol assay of panthenol aerosol and gel with dexpanthenol as the method separates dexpanthenol from aerosol or gel excipients.
Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip
2016-03-01
Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.
Zheng, Weijia; Park, Jin-A; Abd El-Aty, A M; Kim, Seong-Kwan; Cho, Sang-Hyun; Choi, Jeong-Min; Warda, Mohamad; Wang, Jing; Shim, Jae-Han; Shin, Ho-Chul
2018-04-01
We have developed an analytical method for the determination of lincomycin, tylosin A and tylosin B residues in royal jelly using liquid chromatography-triple quadrupole tandem mass spectrometry analysis. For extraction and purification, we employed 1% trifluoroacetic acid and 0.1 m Na 2 EDTA solutions along with an Oasis HLB cartridge. The target antibiotics were well separated in a Kinetex EVO C 18 reversed-phase analytical column using a combination of 0.1% formate acid in ultrapure water (A) and acetonitrile (B) as the mobile phase. Good linearity was achieved over the tested concentration range (5-50 μg/kg) in matrix-matched standard calibration. The coefficients of determination (R 2 ) were 0.9933, 0.9933 and 0.996, for tylosin A, tylosin B and lincomycin, respectively. Fortified royal jelly spiked with three different concentrations of the tested antibiotics (5, 10 and 20 μg/kg) yielded recoveries in the range 80.94-109.26% with relative standard deviations ≤4%. The proposed method was applied to monitor 11 brand of royal jelly collected from domestic markets and an imported brand from New Zealand; all the samples tested negative for lincomycin, tylosin A and tylosin B residues. In conclusion, 1% trifluoroacetic acid and 0.1 m Na 2 EDTA aqueous solvents combined with solid-phase extraction could effectively complete the sample preparation process for royal jelly before analysis. The developed approach can be applied for a routine analysis of lincomycin, tylosin A and tylosin B residues in royal jelly. Copyright © 2017 John Wiley & Sons, Ltd.
Nordstierna, Lars; Yushmanov, Pavel V; Furó, István
2006-08-21
Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.
Reactions in trifluoroacetic acid (CF 3COOH) induced by low energy electron attachment
NASA Astrophysics Data System (ADS)
Langer, Judith; Stano, Michal; Gohlke, Sascha; Foltin, Victor; Matejcik, Stefan; Illenberger, Eugen
2006-02-01
Dissociative electron attachment to trifluoroacetic acid (CF 3COOH) is characterized by an intense low energy shape resonance located near 1 eV and a comparatively weaker core excited resonance located near 7 eV. The shape resonance decomposes into the fragment ions CF 3COO -, CF 2COO -, and CF2-. The underlying reactions include simple bond cleavage but also more complex sequences involving multiple bond cleavages, rearrangement in the precursor ion and formation of new molecules (HF, CO 2). The core excited resonance additionally decomposes into F -, CF3- and probably metastable CO2-.
Brett, M; Findlay, J B
1983-01-01
Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported. PMID:6224479
Llamas-Saiz, Antonio L; Grotenbreg, Gijsbert M; Overhand, Mark; van Raaij, Mark J
2007-03-01
Gramicidin S is a nonribosomally synthesized cyclic decapeptide antibiotic with twofold symmetry (Val-Orn-Leu-D-Phe-Pro)(2); a natural source is Bacillus brevis. Gramicidin S is active against Gram-positive and some Gram-negative bacteria. However, its haemolytic toxicity in humans limits its use as an antibiotic to certain topical applications. Synthetically obtained gramicidin S was crystallized from a solution containing water, methanol, trifluoroacetic acid and hydrochloric acid. The structure was solved and refined at 0.95 A resolution. The asymmetric unit contains 1.5 molecules of gramicidin S, two trifluoroacetic acid molecules and ten water molecules located and refined in 14 positions. One gramicidin S molecule has an exact twofold-symmetrical conformation; the other deviates from the molecular twofold symmetry. The cyclic peptide adopts an antiparallel beta-sheet secondary structure with two type II' beta-turns. These turns have the residues D-Phe and Pro at positions i + 1 and i + 2, respectively. In the crystals, the gramicidin S molecules line up into double-stranded helical channels that differ from those observed previously. The implications of the supramolecular structure for several models of gramicidin S conformation and assembly in the membrane are discussed.
New phenolic grape skin products from Vitis vinifera cv. Pinot Noir.
Kneknopoulos, Petros; Skouroumounis, George K; Hayasaka, Yoji; Taylor, Dennis K
2011-02-09
Anthocyanins and their related compounds were extracted from grape skins of Pinot noir, using 50% aqueous methanol, and purified by solid phase extraction chromatography using XAD-7 resin to obtain a pigment-rich fraction. This fraction was subjected to multilayer coil countercurrent chromatography (MLCCC) using a quaternary solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water acidified with 0.01% trifluoroacetic acid (2:2:0.1-1.8:5) (v/v/v/v) in a step gradient elution to separate anthocyanin oligomers from grape anthocyanins. In the process of the characterization of the MLCCC fractions by electrospray mass spectrometry, two noncolored anthocyanin derivatives were found and characterized on the basis of their mass spectral data. As a result, these compounds have been tentatively identified as coupling products between both hydrated malvidin-3-glucoside and peonidin-3-glucoside, with 2-S-glutathionyl caffeoyl tartaric acid (GRP). It is therefore proposed that grape skins contain this new class of coupling product, and a possible chemical pathway for their formation is suggested.
Rapid purification of staphylococcal enterotoxin B by high-pressure liquid chromatography.
Strickler, M P; Neill, R J; Stone, M J; Hunt, R E; Brinkley, W; Gemski, P
1989-01-01
The Staphylococcus aureus enterotoxins represent a group of proteins that cause emesis and diarrhea in humans and other primates. We have developed a rapid two-step high-pressure liquid chromatography (HPLC) procedure for purification of staphylococcal enterotoxin B (SEB). Sterile filtrates (2.5 liters) of strain 10-275 were adsorbed directly onto a reversed-phase column (50 mm by 30 cm Delta Pak; 300 A [30 nm], 15 microns, C18). SEB was obtained by using a unique sequential gradient system. First, an aqueous ammonium acetate to acetonitrile gradient followed by an aqueous trifluoroacetic acid (TFA) wash was used to remove contaminants. A subsequent TFA to acetonitrile-TFA gradient eluted the bound SEB. Further purification was obtained by rechromatography on a cation-exchange column. From 35 to 45% of the SEB in starting filtrates was recovered. Analysis by immunoblotting of samples separated on sodium dodecyl sulfate-polyacrylamide gels indicated that HPLC-purified SEB exhibited immunological and biochemical properties similar to those of the SEB standard. Induction of an emetic response in rhesus monkeys showed that the HPLC-purified toxin also retained biological activity. Images PMID:2745678
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
Structure and dynamics of a salt-bridge model system in water and DMSO
NASA Astrophysics Data System (ADS)
Lotze, S.; Bakker, H. J.
2015-06-01
We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.
Tylová, Tereza; Kolařík, Miroslav; Olšovská, Jana
2011-07-01
A new simple ultra-high-performance liquid chromatography method with diode array detection (UHPLC-DAD) was developed for chemical fingerprinting analysis of extracellular metabolites in fermentation broth of Geosmithia spp. The SPE method employing Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for extraction of the metabolites. The analyses were performed on an Acquity UPLC BEH C18 column (100 × 2.1 mm i.d.; particle size, 1.7 μm; Waters) using a gradient elution program with an aqueous solution of trifluoroacetic acid and acetonitrile as the mobile phase. The applicability of the method was proved by analysis of 38 strains produced by different species and isolated from different sources (hosts). The results revealed the correlation of obtained UHPLC-DAD fingerprints with taxonomical identity.
Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef
2009-10-09
Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also authentic reference materials.
Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi
2010-01-01
Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g(-1), 141-237 ng g(-1) and 413-755 ng g(-1), respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (
Synthesis and characterization of POSS-(PAA)8 star copolymers and GICs for dental applications.
Zelmer, Christina; Wang, David K; Keen, Imelda; Hill, David J T; Symons, Anne L; Walsh, Laurence J; Rasoul, Firas
2016-04-01
To investigate the application of a new type of multiarm polymer resins in the formulation of Glass Ionic Cements. A series of star copolymers of t-butyl acrylate has been prepared by ATRP using a multiarm POSS-Br8 initiator. The resulting POSS-co-t-butyl acrylate star copolymers with eight arms were subsequently hydrolysed by trifluoroacetic acid to produce the corresponding POSS-co-acrylic acid star copolymers. All of the copolymers have been characterized by (1)H and (13)C NMR and FTIR spectroscopies and TGA/DSC. The as-prepared star copolymers were mixed with the glass powder from Fuji IX GP to produce the GIC samples for compression testing. The new type of multiarm polymer resins have been shown to have narrow molecular weight distributions and thermal properties of the acrylic acid copolymers are similar to that of poly(acrylic acid), with a two stage degradation profile involving transitions at ≈140°C and 250°C, corresponding to anhydride formation and loss of carbon dioxide, respectively. In aqueous solution the POSS-co-acrylic acid copolymers form aggregates with ≈33nm dimensions. When aqueous solutions of POSS-(PAA)8 are mixed with a glass powder, a rigid glass ionomer cement, GIC, is formed with a maximum compressive stress significantly greater than that for a linear PAA GIC of a comparable polymer molecular weight. Therefore, these POSS-(PAA)8 copolymers demonstrate the potential for the application of well characterized star copolymers in the future development of new GICs as dental materials. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zhu, Koudi; Gu, Binghe; Kerry, Michael; Mintert, Markus; Luong, Jim; Pursch, Matthias
2017-03-24
A novel base treatment followed by liquid-liquid extraction was developed to remove the interference of excess derivatization reagent BSTFA [N,O-Bis(trimethylsilyl)trifluoroacetamide] and its byproducts for trace determination of 1-chloro-2-propanol and 2-chloro-1-propanol in a food additive. The corresponding trimethylsilyl derivatives were analyzed by gas chromatography mass spectrometry (GC/MS) detection in selective ion monitoring mode. Due to a large volume splitless injection needed for achieving the required sensitivity, excess BSTFA in the derivatization sample solution interfered with the trimethylsilyl derivatives of the analytes of interest, making their quantitation not attainable. Efforts were made to decompose BSTFA while keeping the trimethylsilyl derivatives intact. Water or aqueous sulfuric acid treatment converted BSTFA into mainly N-trimethylsilyltrifluoroacetamide, which partitions between aqueous and organic layers. In contrast, aqueous sodium hydroxide decomposed BSTFA into trifluoroacetic acid, which went entirely into the aqueous layer. No BSTFA or its byproduct N-trimethylsilyltrifluoroacetamide or trifluroacetamide was found in the organic layer where the derivatized alcohols existed, which in turn completely eliminated their interference, enabling accurate and precise determination of parts per billion of the short-chain alcohols in the food additive. Contrary to the conventional wisdom that a trimethylsilyl derivative is susceptible to hydrolysis, the derivatized short-chain alcohols were found stable even in the presence of 0.17N aqueous sodium hydroxide as the improved GC/MS method was validated successfully, with a satisfactory linearity response in the concentration range of 10-400ng/g (regression coefficient greater than 0.999), good method precision (<4%), good recovery (90-98%), and excellent limit of detection (3ng/g) and limit of quantitation (10ng/g). Copyright © 2017 Elsevier B.V. All rights reserved.
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.
Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon
2012-01-01
The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.
Wang, Xiaohong; Liang, Yong; Peng, Cuilin; Xie, Huichun; Pan, Man; Zhang, Tianyou; Ito, Yoichiro
2010-01-01
Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC) was successfully applied for separation and purification of isoflavonoids from the extract of belamcanda. HSCCC separation was performed on a two-phase solvent system composed of methyl tert-butyl ether -ethyl acetate - n-butyl alcohol – acetonitrile −0.1% aqueous trifluoroacetic acid at a volume radio of 1:2:1:1:5. Semi-purified peak fractions from HSCCC separation were further purified by Prep-HPLC. Nine well-separated fractions were analyzed by HPLC-UV absorption spectrometry to determine their purities and characterized with ESI-MSn. Except for peaksland VII (unknown) seven compounds were identified as apocynin (peak II), mangiferin (peak III), 7-O-methylmangiferin (peak IV), hispidulin (peak V), 3′-hydroxyltectoridin (peak VI), iristectorin B (peak VII), isoiridin (peak IX). PMID:21552369
Liquid-chromatographic determination of sarafloxacin residues in channel catfish muscle-tissue
Meinertz, J.R.; Dawson, V.K.; Gingerich, W.H.; Cheng, B.; Tubergen, M.M.
1994-01-01
A liquid chromatographic method is described for the determination of sarafloxacin hydrochloride residues i n channel catfish (ictalurus punctatus) fillets. Sarafloxacin was extracted from fillet tissue with acetonitrile=water (1 + 1). The extract was centrifuged and the supernatant was partitioned with hexane. The aqueous fraction was filtered through a 0.45 Mum filter and evaporated to dryness. The sample was redissolved with 20% acetonitrile-methanol (3 + 2) and 80% trifluoroacetic acid (0.1%), Centrifuged, and filtered to remove proteins. Samples were analyzed by chromatography with gradient elution on a c18 column and with fluorescence detection (excitation at 280 nm and emission above 389 nm). Mean recoveries ranged from 85.4 To 104%, and relative standard deviations ranged from 1.06 To 5.58% In samples spiked at concentrations of 10.0-863.8 Ng/g. The method detection limit for sarafloxacin was 1.4 Ng/g.
Solomon, Keith R; Velders, Guus J M; Wilson, Stephen R; Madronich, Sasha; Longstreth, Janice; Aucamp, Pieter J; Bornman, Janet F
2016-01-01
Trifluoroacetic acid (TFA) is a breakdown product of several hydrochlorofluorocarbons (HCFC), regulated under the Montreal Protocol (MP), and hydrofluorocarbons (HFC) used mainly as refrigerants. Trifluoroacetic acid is (1) produced naturally and synthetically, (2) used in the chemical industry, and (3) a potential environmental breakdown product of a large number (>1 million) chemicals, including pharmaceuticals, pesticides, and polymers. The contribution of these chemicals to global amounts of TFA is uncertain, in contrast to that from HCFC and HFC regulated under the MP. TFA salts are stable in the environment and accumulate in terminal sinks such as playas, salt lakes, and oceans, where the only process for loss of water is evaporation. Total contribution to existing amounts of TFA in the oceans as a result of the continued use of HCFCs, HFCs, and hydrofluoroolefines (HFOs) up to 2050 is estimated to be a small fraction (<7.5%) of the approximately 0.2 μg acid equivalents/L estimated to be present at the start of the millennium. As an acid or as a salt TFA is low to moderately toxic to a range of organisms. Based on current projections of future use of HCFCs and HFCs, the amount of TFA formed in the troposphere from substances regulated under the MP is too small to be a risk to the health of humans and environment. However, the formation of TFA derived from degradation of HCFC and HFC warrants continued attention, in part because of a long environmental lifetime and due many other potential but highly uncertain sources.
Facile N...N coupling of manganese(V) imido species.
Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu
2007-01-31
(Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).
Kalíková, Květa; Martínková, Monika; Schmid, Martin G; Tesařová, Eva
2018-03-01
A cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co-solvents (methanol and propan-2-ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO 2 /methanol/isopropylamine 80:20:0.1 v/v/v or CO 2 /propan-2-ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β-blockers. A high-performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan-2-ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high-performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high-performance liquid chromatography were also found. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kazil, J.; McKeen, S.; Kim, S.-W.; Ahmadov, R.; Grell, G. A.; Talukdar, R. K.; Ravishankara, A. R.
2014-12-01
Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (≥100μgL-1), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89μgL-1, with peak values of 7.8μgL-1, for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations.
Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng
2014-01-01
Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516
A scalable and operationally simple radical trifluoromethylation
Beatty, Joel W.; Douglas, James J.; Cole, Kevin P.; Stephenson, Corey R. J.
2015-01-01
The large number of reagents that have been developed for the synthesis of trifluoromethylated compounds is a testament to the importance of the CF3 group as well as the associated synthetic challenge. Current state-of-the-art reagents for appending the CF3 functionality directly are highly effective; however, their use on preparative scale has minimal precedent because they require multistep synthesis for their preparation, and/or are prohibitively expensive for large-scale application. For a scalable trifluoromethylation methodology, trifluoroacetic acid and its anhydride represent an attractive solution in terms of cost and availability; however, because of the exceedingly high oxidation potential of trifluoroacetate, previous endeavours to use this material as a CF3 source have required the use of highly forcing conditions. Here we report a strategy for the use of trifluoroacetic anhydride for a scalable and operationally simple trifluoromethylation reaction using pyridine N-oxide and photoredox catalysis to affect a facile decarboxylation to the CF3 radical. PMID:26258541
Lapierre, Catherine; Voxeur, Aline; Karlen, Steven D; Helm, Richard F; Ralph, John
2018-05-30
The arabinosyl side chains of grass arabinoxylans are partially acylated by p-coumarate ( pCA) and ferulate (FA). These aromatic side chains can cross-couple wall polymers resulting in modulation of cell wall physical properties. The determination of p-coumaroylated and feruloylated arabinose units has been the target of analytical efforts with trifluoroacetic acid hydrolysis the standard method to release feruloylated and p-coumaroylated arabinose units from arabinoxylans. Herein, we report on a more robust method to measure these acylated units. Acidolysis of extractive-free grass samples in a dioxane/methanol/aqueous 2 M HCl mixture provided the methyl 5- O- p-coumaroyl- and 5- O-feruloyl-l-arabinofuranoside anomers ( pCA-MeAra and FA-MeAra). These conjugates were readily analyzed by liquid chromatography combined with both UV and MS detection. The method revealed the variability of the relative acylation of arabinose units by pCA or FA in grass cell walls. This methodology will permit delineation of hydroxycinnamate acylation patterns in arabinoxylans.
Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides
2015-01-01
Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596
Yanagida, Akio; Shoji, Atsushi; Shibusawa, Yoichi; Shindo, Heisaburo; Tagashira, Motoyuki; Ikeda, Mitsuo; Ito, Yoichiro
2006-04-21
High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.
Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor
2018-03-01
A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhushan, Ravi; Nagar, Hariom
2015-03-01
Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.
Ganzera, Markus; Aberham, Anita; Stuppner, Hermann
2006-05-31
Grapefruit seed extracts are used in cosmetics, food supplements, and pesticides because of their antimicrobial properties, but suspicions about the true nature of the active compounds arose when synthetic disinfectants such as benzethonium or benzalkonium chloride were found in commercial products. The HPLC method presented herein allows the quality assessment (qualitative and quantitative) of these products for the first time. On the basis of a standard mixture of 18 preservatives most relevant for food and grapefruit products, a method was developed allowing the baseline separation of all compounds within 40 min. Optimum results were obtained with a C-8 stationary phase and a solvent system comprising aqueous trifluoroacetic acid, acetonitrile, and 2-propanol. The assay was fully validated and shown to be sensitive (LOD < or= 12.1 ng on-column), accurate (recovery rates > or = 96.1%), repeatable (sigma(rel) < or = 3.5%), precise (intra-day variation < or = 4.5%, interday variation < or = 4.1%), and rugged. Without any modifications the method could be adopted for LC-MS experiments, where the compounds of interest were directly assignable in positive ESI mode. The quantitative results of several products for ecofarming confirmed previous studies, as seven out of nine specimens were adulterated with preservatives in varying composition. The samples either contained benzethonium chloride (2.5-176.9 mg/mL) or benzalkonium chloride (138.2-236.3 mg/mL), together with smaller amounts of 4-hydroxybenzoic acid esters, benzoic acid, and salicylic acid.
Caruso, Francesco; Orecchio, Santino; Cicero, Maria Grazia; Di Stefano, Cosimo
2007-04-20
A GC-MS investigation is conducted on the double bass "Panormus", property of Conservatorio di Musica "Vincenzo Bellini" in Palermo. The most important components of the varnish (fatty acids) and of the glue (proteinaceous amino acids), with which the musical instrument was treated in the past, are determined. The analyses are carried out by prior derivatization of fatty acids by acidic methanol and of amino acids by acidic methanol and trifluoroacetic anhydride (TFAA). Analytes identification is achieved by direct comparison with several reference materials and the use of a digitized library.
Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro
2009-01-01
Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866
Synthesis and Characterization of Furanic Compounds
2013-09-01
trifluoroacetic acid, 1.6-M solution of BuLi in hexane, dichloromethane, sodium bicarbonate, pyridinium chlorochromate, potassium permanganate , sodium...intermediate, 2,5-diformylfuran (2.29 g, 18.47 mmol), was oxidized in a 100-mL round-bottom flask with potassium permanganate (4.47 g, 153.1 mmol) in a NaOH
Richey, D.G.; Driscoll, C.T.; Likens, G.B.
1997-01-01
The phase out of chlorofluorocharbons (CFCs) has resulted in the use of hydrochlorofluorocharbons (HCFCs) and hydrofluorocarbons (HFCs) as environmentally acceptable alternative chemicles. Trifluoroacetic acid (TFA) has been identified as a degradation byproduct of these compounds, which largely returns the Earth's surface via precipitation. Little is known about...
USDA-ARS?s Scientific Manuscript database
A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...
2006-01-01
molecules18 can mediate an analogous reaction15 that combines the advantages of silica encapsulation with a signifi- cant reduction in cost... Alltech , Deerfield, IL) with a mobile phase of acetonitrile and water (containing 0.05% and 0.1% trifluoroacetic acid, respectively). The concentration
NASA Astrophysics Data System (ADS)
Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.
2008-11-01
Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.
NASA Astrophysics Data System (ADS)
Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.
2013-10-01
Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.
An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care
2009-06-01
controlled devices provide advantages over passive release devices, as the drug delivery process can be controlled actively after implantation and...mm, 5 μm, 100 Å, Alltech Associates, USA), with methanol and 0.1% trifluoroacetic acid (TFA) in water. The gradient used was 2 % TFA/min, starting
Quantifying Inorganic Arsenic and Other Water-Soluble Arsenic Species in Human Milk by HPLC/ICPMS.
Stiboller, Michael; Raber, Georg; Gjengedal, Elin Lovise Folven; Eggesbø, Merete; Francesconi, Kevin A
2017-06-06
Because the toxicity of arsenic depends on its chemical form, risk assessments of arsenic exposure must consider the type of arsenic compound, and hence they require sensitive and robust methods for their determination. Furthermore, the assessment should include studies on the most vulnerable people within a population, such as newborns and infants, and thus there is a need to quantify arsenic species in human milk. Herein we report a method for the determination of arsenic species at low concentrations in human milk by HPLC/ICPMS. Comparison of single and triple quadrupole mass analysers showed comparable performance, although the triple quadrupole instrument more efficiently overcame the problem of ArCl + interference, from the natural chloride present in milk, without the need for gradient elution HPLC conditions. The method incorporates a protein precipitation step with trifluoroacetic acid followed by addition of dichloromethane or dibromomethane to remove the lipids. The aqueous phase was subjected to anion-exchange and cation-exchange/mixed mode chromatography with aqueous ammonium bicarbonate and pyridine buffer solutions as mobile phases, respectively. For method validation, a human milk sample was spiked with defined amounts of dimethylarsinate, arsenobetaine, and arsenate. The method showed good recoveries (99-103%) with detection limits (in milk) in the range of 10 ng As kg -1 . The method was further tested by analyzing two Norwegian human milk samples where arsenobetaine, dimethylarsinate, and a currently unknown As species were found, but iAs was not detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.
A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Toxicity of trifluoroacetate to aquatic organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berends, A.G.; Rooij, C.G. de; Boutonnet, J.C.
1999-05-01
As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined amore » NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.« less
Validation of a fast screening method for the detection of cocaine in hair by MALDI-MS.
Vogliardi, Susanna; Favretto, Donata; Frison, Giampietro; Maietti, Sergio; Viel, Guido; Seraglia, Roberta; Traldi, Pietro; Ferrara, Santo Davide
2010-04-01
The sensitivity and specificity of a novel method of screening for cocaine in hair, based on matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS), have been evaluated. The method entails a rapid extraction procedure consisting of shaking 2.5 mg pulverised hair at high frequency in the presence of an acidic solution (160 microL of water, 20 microL of acetonitrile and 20 microL of 1 M trifluoroacetic acid) and a stainless-steel bullet. Following centrifugation, the supernatant is dried under a nitrogen stream, and the residue is reconstituted in 10 microL of methanol/trifluoroacetic acid (7:3; v/v). One microlitre of the extract is deposed on a MALDI sample holder previously scrubbed with graphite; an alpha-cyano-4-hydroxycinnamic acid (matrix) solution is electrosprayed over the dried sample surface to achieve a uniform distribution of matrix crystals. The identification of cocaine is obtained by post-source decay experiments performed on its MH(+) ion (m/z 304), with a limit of detection of 0.1 ng/mg of cocaine. A total of 304 hair samples were analysed in parallel by MALDI-MS and a reference gas chromatography-MS method. The obtained results demonstrate specificity and sensitivity of 100% for MALDI-MS. Evidence of cocaine presence was easily obtained even when hair samples exhibiting particularly low cocaine levels (<0.5 ng/mg) were analysed.
Rayne, Sierra; Forest, Kaya
2009-10-01
Perfluorinated acids (PFAs) are an emerging class of environmental contaminants present in various environmental and biological matrices. Two major PFA subclasses are the perfluorinated sulfonic acids (PFSAs) and carboxylic acids (PFCAs). The physicochemical properties and partitioning behavior for the linear PFA members are poorly understood and widely debated. Even less is known about the numerous branched congeners with varying perfluoroalkyl chain lengths, leading to confounding issues around attempts to constrain the properties of PFAs. Current computational methods are not adequate for reliable multimedia modeling efforts and risk assessments. These compounds are widely present in surface, ground, marine, and drinking waters at concentrations that vary from pg L(-1) to microg L(-1). Concentration gradients of up to several orders of magnitude are observed in all types of aquatic systems and reflect proximity to known industrial sources concentrated near populated regions. Some wastewaters contain PFAs at mg L(-1) to low g L(-1) levels, or up to 10 orders of magnitude higher than present in more pristine receiving waters. With the exception of trifluoroacetic acid, which is thought to have both significant natural and anthropogenic sources, all PFSAs and PFCAs are believed to arise from human activities. Filtration and sorption technologies offer the most promising existing removal methods for PFAs in aqueous waste streams, although sonochemical approaches hold promise. Additional studies need to be conducted to better define opportunities from evaporative, extractive, thermal, advanced oxidative, direct and catalyzed photochemical, reductive, and biodegradation methods. Most PFA treatment methods exhibit slow kinetic profiles, hindering their direct application in conventional low hydraulic residence time systems.
Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi
2016-02-01
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hanson, Mark L; Sibley, Paul K; Mabury, Scott A; Solomon, Keith R; Muir, Derek C G
2002-02-21
Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) have been detected together in environmental water samples throughout the world. TCA may enter into aquatic systems via rainout as the degradation product of chlorinated solvents, herbicide use, as a by-product of water disinfection and from emissions of spent bleach liquor of kraft pulp mills. Sources of TFA include degradation of hydrofluorocarbons (HFCs) refrigerants and pesticides. These substances are phytotoxic and widely distributed in aquatic environments. A study to assess the risk of a binary mixture of TCA and TFA to macrophytes in aquatic microcosms was conducted as part of a larger study on haloacetic acids. M. spicatum and M. sibiricum were exposed to 0.1, 1, 3 and 10 mg/l of both TCA and TFA (neutralized with sodium hydroxide) in replicate (n = 3) 12000 l aquatic microcosms for 49 days in an one-way analysis of variance design. Each microcosm was stocked with 14 individual apical shoots per species. The plants were sampled at regular intervals and assessed for the somatic endpoints of plant length, root growth, number of nodes and wet and dry mass and the biochemical endpoints of chlorophyll-a, chlorophyll-b, carotenoid content and citric acid levels. Results indicate that there were statistically significant effects of the TCA/TFA mixture on certain pigment concentrations immediately after the start of exposure (2-7 days), but the plants showed no signs of stress thereafter. These data suggest that TCA/TFA mixtures at environmentally relevant concentrations do not pose a significant risk to these aquatic macrophytes.
Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains
2012-06-01
trifluoroacetic acid; Tm: melting temperature; TMB, 3,3′,5,5′-tetramethylbenzidine; UPLC , ultra performance liquid chromatography; VAMP, vesicle...activity determination by UPLC . Alternately, in large-scale preparations, phosphoryla- tion reaction was stopped by removing the Src with sepharose beads...peptides. ENZYMATIC ACTIVITY ASSAYS Activity assays were based on UPLC separation and measurement of the cleaved products from a 17-residue SNAP-25
Method of photocatalytic conversion of C-H organics
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.
Method of photocatalytic conversion of C-H organics
Camaioni, D.M.; Lilga, M.A.
1998-01-13
The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.
Halogenated Explosives to Defeat Biological Agents
2015-09-01
The synthetic transformation of difluoramination of ketones by difluoramine (HNF2)29 is a specialized, hazardous process that is not likely to become...defluorination in triflic acid; even 4-(trifluoromethyl)propiophenone (ethyl phenyl ketone ) does not undergo C–F cleavage.45 The prospect of this...trifluoroacetaldehyde hydrate to generate trifluoroacet- aldehyde gas, which reacts with liquefied ammonia at low temperature. Upon warming, the hemiaminal
Wang, Nan-Hsuan; Lee, Wan-Li; Her, Guor-Rong
2011-08-15
A strategy based on postcolumn electrophoretic mobility control (EMC) was developed to alleviate the adverse effect of trifluoroacetic acid (TFA) on the liquid chromatography-mass spectrometry (LC-MS) analysis of peptides. The device created to achieve this goal consisted of a poly(dimethylsiloxane) (PDMS)-based junction reservoir, a short connecting capillary, and an electrospray ionization (ESI) sprayer connected to the outlet of the high-performance liquid chromatography (HPLC) column. By apply different voltages to the junction reservoir and the ESI emitter, an electric field was created across the connecting capillary. Due to the electric field, positively charged peptides migrated toward the ESI sprayer, whereas TFA anions remained in the junction reservoir and were removed from the ionization process. Because TFA did not enter the ESI source, ion suppression from TFA was alleviated. Operation of the postcolumn device was optimized using a peptide standard mixture. Under optimized conditions, signals for the peptides were enhanced 9-35-fold without a compromise in separation efficiency. The optimized conditions were also applied to the LC-MS analysis of a tryptic digest of bovine serum albumin.
1989-06-01
in Anhydrous Trifluoroacetic Acid Media: A Modification for Insoluble or Deactivated Amine and Amida Precursors", Synthesis 1988,. 566 K. Kanakarajan...Organiscne Chemnie. Johannes Gutenburg Univhe~sitat K L De ~rres l 6500 Mvainz. W~est Germany - ... .... u’r .i, j3"eer’r .,versht’Vof Ul.an. J. C. Salamone 0...hexaester, and trianhydride 6 de . complished readily using concentrated sulfuric acid at rivatives. room temperature for 3 days (Scheme 11). As in every
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyamurthy, N.; Barrio, J.R.; Bishop, A.J.
A process is revealed for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb{sub 3}; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to {<=}7. 1 fig.
Satyamurthy, N.; Barrio, J.R.; Bishop, A.J.; Namavari, M.; Bida, G.T.
1996-04-23
A process is revealed for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb{sub 3}; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to {<=}7. 1 fig.
Satyamurthy, Nagichettiar; Barrio, Jorge R.; Bishop, Allyson J.; Namavari, Mohammad; Bida, Gerald T.
1996-01-01
A process for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb.sub.3 ; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to .ltoreq.7.
Oxygen Toxicity and Lung Collagenous Protein.
1981-02-28
Analysis Samples for amino acid analysis qera hydrolyzed at 110C f)r 22 h constant boiling HCI under nitrogen. Samples were driea at room tereratre over...was performed by a gas chromatographic procedure modified from the method of Grimes and Greegor [8]. Samples were hydrolyzed in 2 N trifluoroacetic...evaluated by their ability to incorporate radiolabeled choline and acetate into the saturated lecithin components of chloroform-methanol extractable
Wnuk, S F; Yuan, C S; Borchardt, R T; Balzarini, J; De Clercq, E; Robins, M J
1997-05-23
Selectively protected adenine nucleosides were converted into 5'-carboxaldehyde analogues by Moffatt oxidation (dimethyl sulfoxide/dicyclohexylcarbodiimide/dichloroacetic acid) or with the Dess-Martin periodinane reagent. Hydrolysis of a 5'-fluoro-5'-S-methyl-5'-thio (alpha-fluoro thioether) arabinosyl derivative also gave the 5'-carboxaldehyde. Treatment of 5'-carboxaldehydes with hydroxylamine [or O-(methyl, ethyl, and benzyl)hydroxylamine] hydrochloride gave E/Z oximes. Treatment of purified oximes with aqueous trifluoroacetic acid and acetone effected trans-oximation to provide clean samples of 5'-carboxaldehydes. Adenosine (Ado)-5'-carboxaldehyde and its 4'-epimer are potent inhibitors of S-adenosyl-L-homocysteine (AdoHcy) hydrolase. They bind efficiently to the enzyme and undergo oxidation at C3' to give 3'-keto analogues with concomitant reduction of the NAD+ cofactor to give an inactive, tightly bound NADH-enzyme complex (type I cofactor-depletion inhibition). Potent type I inhibition was observed with 5'-carboxaldehydes that contain a ribo cis-2',3'-glycol. Their oxime derivatives are "proinhibitors" that undergo enzyme-catalyzed hydrolysis to release the inhibitors at the active site. The 2'-deoxy and 2'-epimeric (arabinosyl) analogues were much weaker inhibitors, and the 3'-deoxy compounds bind very weakly. Ado-5'-carboxaldehyde oxime had potent cytotoxicity in tumor cell lines and was toxic to normal human cells. Analogues had weaker cytotoxic and antiviral potencies, and the 3'-deoxy compounds were essentially devoid of cytotoxic and antiviral activity.
Identification of proteins in renaissance paintings by proteomics.
Tokarski, Caroline; Martin, Elisabeth; Rolando, Christian; Cren-Olivé, Cécile
2006-03-01
The presented work proposes a new methodology based on proteomics techniques to identify proteins in old art paintings. The main challenging tasks of this work were (i) to find appropriate conditions for extracting proteins from the binding media without protein hydrolysis in amino acids and (ii) to develop analytical methods adapted to the small sample quantity available. Starting from microsamples of painting models (ovalbumin-based, which is the major egg white protein, and egg-based paintings), multiple extraction solutions (HCl, HCOOH, NH3, NaOH) and conditions (ultrasonic bath, mortar and pestle, grinding resin) were evaluated. The best results were obtained using a commercial kit including a synthetic resin, mortar and pestle to grind the sample in an aqueous solution acidified with trifluoroacetic acid at 1% with additional multiple steps of ultrasonic baths. The resulting supernatant was analyzed by MALDI-TOF in linear mode to verify the efficiency of the extraction solution. An enzymatic hydrolysis step was also performed for protein identification; the peptide mixture was analyzed by nanoLC/nanoESI/Q-q-TOF MS/MS with an adapted chromatographic run for the low sample quantity. Finally, the developed methodology was successfully applied to Renaissance art painting microsamples of approximately 10 microg from Benedetto Bonfigli's triptych, The Virgin and Child, St. John the Baptist, St. Sebastian (XVth century), and Niccolo di Pietro Gerini's painting, The Virgin and Child (XIVth century), identifying, for the first time and without ambiguity, the presence of whole egg proteins (egg yolk and egg white) in a painting binder.
Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis.
Hengsawas Surasarang, Soraya; Florova, Galina; Komissarov, Andrey A; Shetty, Sreerama; Idell, Steven; Williams, Robert O
2018-02-01
A caveolin-1 scaffolding domain, CSP7, is a newly developed peptide for the treatment of idiopathic pulmonary fibrosis. To develop a CSP7 formulation for further use we have obtained, characterized and compared a number of lyophilized formulations of CSP7 trifluoroacetate with DPBS and in combination with excipients (mannitol and lactose at molar ratios 1:5, 70 and 140). CSP7 trifluoroacetate was stable (>95%) in solution at 5 and 25 °C for up to 48 h and tolerated at least 5 freeze/thaw cycles. Lyophilized cakes of CSP7 trifluoroacetate with excipients were stable (>96%) for up to 4 weeks at room temperature (RT), and retained more than 98% of the CSP7 trifluoroacetate in the solution at 8 h after reconstitution at RT. The lyophilized CSP7 formulations were stable for up to 10 months at 5 °C protected from moisture. Exposure of the lyophilized cakes of CSP7 to 75% relative humidity (RH) resulted in an increase in the absorbed moisture, promoted crystallization of the excipients and induced reversible formation of CSP7 aggregates. Increased molar ratio of mannitol slightly affected formation of the aggregates. In contrast, lactose significantly decreased (up to 20 times) aggregate formation with apparent saturation at the molar ratio of 1:70. The possible mechanisms of stabilization of CSP7 trifluoroacetate in solid state by lactose include physical state of the bulking agent and the interactions between lactose and CSP7 trifluoroacetate (e.g. formation of a Schiff base with the N-terminal amino group of CSP7). Finally, CSP7 trifluoroacetate exhibited excellent stability during nebulization of formulations containing mannitol or lactose.
Basicity of pyridine and some substituted pyridines in ionic liquids.
Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella
2010-06-04
The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.
Sharaf, Maged H M; Stiff, Dwight D
2004-06-29
A method for the quantitation of guaifenesin in human serum has been developed and validated. The procedure involves liquid-liquid extraction of the serum sample in the presence of mephenesin as an internal standard, followed by derivatization and analysis using capillary gas chromatography (GC) and electron capture detection (ECD). Different solvents were tested for extraction of guaifenesin from serum. n-Hexane/dichloromethane (1:1, v/v) gave the highest recovery and the lowest background and was chosen as the extraction solvent. After extraction, the residue of guaifenesin was derivatized at 60 degrees C for 30 min, with trifluoroacetic acid anhydride (TFAA) in toluene in the presence of pyridine. Excess trifluoroacetic acid anhydride was removed using dilute solution of ammonium hydroxide. The method proved to be linear over the range of 25.0-1000 ng/ml. Recovery of guaifenesin from spiked samples was consistent, averaging 75.5% at 50.0 ng/ml with a range of 72.0-80.0% (N = 8 determinations) and averaging 78% at 800 ng/ml with a range of 76.0-81.0% (N = 8 determinations). The internal standard recovery was also consistent averaging 72.8% with a range of 67.0-76.0% (N = 16 determinations). Copyright 2004 Elsevier B.V.
Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.
Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar
2018-07-05
Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Metabolism and pharmacokinetics of selected halon replacement candidates.
Dodd, D E; Brashear, W T; Vinegar, A
1993-05-01
Metabolism studies were conducted using Fischer 344 and Sprague-Dawley rats following inhalation exposure to 1.0% (v/v) air atmospheres of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1-chloro-1,1-difluoroethane (HCFC-142b), bromochlorodifluoromethane (Halon 1211), and perfluorohexane (PFH) for 2 h. There were no remarkable differences in results between the two strains of rats. Animals exposed to HCFC-123 or HCFC-124 excreted trifluoroacetic acid in their urine. Urinary fluoride concentrations were increased in rats exposed to HCFC-124, and urinary bromide levels were increased in rats exposed to Halon 1211. Small quantities of volatile metabolites 2-chloro-1,1,1-trifluoroethane (HCFC-133a) and 2-chloro-1,1-difluoroethylene were observed in the livers of rats exposed to HCFC-123. Rats exposed to HCFC-142b excreted chlorodifluoroacetic acid in their urine; no volatile metabolites were detected in tissue samples. For PFH studies, no metabolites were detected in the urine or tissues of exposed animals. These results are consistent with proposed oxidative and reductive pathways of metabolism for these chemicals. Pharmacokinetic studies were carried out in rats exposed by inhalation to 1.0%, 0.1%, or 0.01% of HCFC-123. Following exposure, blood concentrations of HCFC-123 fell sharply, whereas trifluoroacetic acid levels rose for approx. 5 h and then declined gradually. Using a physiologically based pharmacokinetic model, saturation of HCFC-123 metabolism was estimated to occur at approx. 0.2% (2000 ppm) HCFC-123.
Corradini, D; Huber, C G; Timperio, A M; Zolla, L
2000-07-21
Reversed-phase liquid chromatography (RPLC) was interfaced to mass spectrometry (MS) with an electrospray ion (ESI) source for the separation and accurate molecular mass determination of the individual intrinsic membrane proteins that comprise the photosystem II (PS II) major light-harvesting complex (LHC II) and minor (CP24, CP26 and CP29) antenna system, whose molecular masses range between 22,000 and 29,000. PS II is a supramolecular complex intrinsic of the thylacoid membrane, which plays the important role in photosynthesis of capturing solar energy, and transferring it to photochemical reaction centers where energy conversion occurs. The protein components of the PS II major and minor antenna systems were extracted from spinach thylacoid membranes and separated using a butyl-silica column eluted by an acetonitrile gradient in 0.05% (v/v) aqueous trifluoroacetic acid. On-line electrospray MS allowed accurate molecular mass determination and identification of the protein components of PS II major and minor antenna system. The proposed RPLC-ESI-MS method holds several advantages over sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the conventional technique for studying membrane proteins, including a better protein separation, mass accuracy, speed and efficiency.
Miyaguchi, Hajime; Kakuta, Masaya; Iwata, Yuko T; Matsuda, Hideaki; Tazawa, Hidekatsu; Kimura, Hiroko; Inoue, Hiroyuki
2007-09-07
We developed a rapid sample preparation method for the toxicological analysis of methamphetamine and amphetamine (the major metabolite of methamphetamine) in human hair by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to facilitate fast screening and quantitation. Two milligrams of hair were mechanically micropulverized for 5 min in a 2-ml plastic tube together with 100 microl of an aqueous solvent containing 10% acetonitrile, 100 mM trifluoroacetic acid and the corresponding deuterium analogues as internal standards. The pulverizing highly disintegrated the hair components, simultaneously allowing the extraction of any drugs present in the hair. After filtering the suspension with a membrane-filter unit, the clear filtrate was directly analyzed by HPLC-MS/MS. No evaporation processes were required for sample preparation. Method optimization and validation study were carried out using real-case specimens and fortified samples in which the drugs had been artificially absorbed, respectively. Concentration ranges for quantitation were 0.040-125 and 0.040-25 ng/mg for methamphetamine and amphetamine, respectively. Real-case specimens were analyzed by the method presented here and by conventional ones to verify the applicability of our method to real-world analysis. Our method took less than 30 min for a set of chromatograms to be obtained from a washed hair sample.
Luo, Zhiqiang; Chen, Xinjing; Wang, Guopeng; Du, Zhibo; Ma, Xiaoyun; Wang, Hao; Yu, Guohua; Liu, Aoxue; Li, Mengwei; Peng, Wei; Liu, Yang
2018-01-01
Trelagliptin succinate is a dipeptidyl peptidase IV (DPP-4) inhibitor which is used as a new long-acting drug for once-weekly treatment of type 2 diabetes mellitus (DM). In the present study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for separation and determination of trelagliptin succinate and its eight potential process-related impurities. The chromatographic separation was achieved on a Waters Xselect CSH™ C 18 (250mm×4.6mm, 5.0μm) column. The mobile phases comprised of 0.05% trifluoroacetic acid in water as well as acetonitrile containing 0.05% trifluoroacetic acid. The compounds of interest were monitored at 224nm and 275nm. The stability-indicating capability of this method was evaluated by performing stress test studies. Trelagliptin succinate was found to degrade significantly in acid, base, oxidative and thermal stress conditions and only stable in photolytic degradation condition. The degradation products were well resolved from the main peak and its impurities. In addition, the major degradation impurities formed under acid, base, oxidative and thermal stress conditions were characterized by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). The method was validated to fulfill International Conference on Harmonisation (ICH) requirements and this validation included specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. The developed method in this study could be applied for routine quality control analysis of trelagliptin succinate tablets, since there is no official monograph. Copyright © 2017 Elsevier B.V. All rights reserved.
La Scola, Bernard; Raoult, Didier
2009-11-25
With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.
Damián Chanique, Gerardo; Heraldo Arévalo, Alejandro; Alicia Zon, María; Fernández, Héctor
2013-07-15
The electro-reduction of patulin mycotoxin and 5-hydroxymethylfurfural at glassy carbon electrodes in acetonitrile +0.1 mol L(-1) tetrabutylammonium perchlorate, in both the absence and the presence of different aliquots of trifluoroacetic acid is reported. 5-hydroxymethylfurfural is the most common interference in the determination of patulin in products derived from apples. The electrochemical techniques were cyclic and square wave voltammetries, and controlled potential bulk electrolysis. The number of electrons exchanged in the patulin electro-reduction of n=1 could be inferred from controlled potential bulk electrolysis measurements. Ultraviolet-visible and infrared spectroscopies were used to identify patulin electro-reduction product/s. A value of (2.1±0.1)×10(-5) cm(2) s(-1) for the patulin diffusion coefficient was calculated from convoluted cyclic voltammograms. A method based on square wave voltammetry was developed for the quantitative determination of patulin in both fresh, and commercial apple juices in the presence of 5-hydroxymethylfurfural. Calibration curves obtained from solutions of the commercial reagent, and commercial apple juices were linear in the range from 3.0×10(-7) to 2.2×10(-5) mol L(-1). The lowest concentration measured experimentally for a signal to noise ratio of 3:1 was 3×10(-7) mol L(-1) (45 ppb) and a recovery percent of 84% was determined for commercial apple juices. This electroanalytical methodology appears as a good screening method for the determination of patulin in apple juices. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pokrovskiy, O. I.; Kayda, A. S.; Usovich, O. I.; Parenago, O. O.; Lunin, V. V.
2017-11-01
A regime is found in which chiral stationary phase based on macrocyclic glycopeptide eremomycin allows separation of salbutamol sulfate enantiomers in supercritical fluid chromatography. Enantioseparation occurs only when two dynamic modifiers are used simultaneously: isopropylamin + trifluoroacetic acid or isopropylamin + ammonium acetate. Amine molar concentration in mobile phase has to be higher than acid molar concentration, otherwise enantiomers coelute. We suppose that with amine excess a mechanism of enantiorecognition is realized which involves ionic sorbent-sorbate interactions. Such mechanism is well-known for glycopeptide chiral selectors in liquid chromatography, but for supercritical fluid chromatography it is reported for the first time.
Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech
2018-01-01
In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.
Fukuzumi, Shunichi; Mandal, Sukanta; Mase, Kentaro; Ohkubo, Kei; Park, Hyejin; Benet-Buchholz, Jordi; Nam, Wonwoo; Llobet, Antoni
2012-06-20
Four-electron reduction of O(2) by octamethylferrocene (Me(8)Fc) occurs efficiently with a dinuclear cobalt-μ-1,2-peroxo complex, 1, in the presence of trifluoroacetic acid in acetonitrile. Kinetic investigations of the overall catalytic reaction and each step in the catalytic cycle showed that proton-coupled electron transfer from Me(8)Fc to 1 is the rate-determining step in the catalytic cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, M.R.; Svec, W.A.
1980-05-09
Bis(chlorophyllide) ethylene glycol diesters were prepared for each of the title compounds. Pheophytins a and b isolated from alfalfa and bacteriochlorophyll a isolated from R. sphaeroides were treated with 80% aqueous trifluoroacetic acid to yield the corresponding pheophorbides. Pyropheophorbide was prepared by a literature procedure. Carbonic anhydride and benzotriazole-1-methanesulfonate activation methods were used in the esterification of the pheophorbides with ethylene glycol at ambient temperature. Each method yielded 75%+ of the pheophorbide ethylene glycol monoester. These monoesters were treated with equimolar amounts of the corresponding pheophorbide by using benzotriazol-1-methanesulfonate/4-(dimethylamino)pyridine in CH/sub 2/Cl/sub 2/ or dicyclohexylcarbodiimide/4-(dimethylamino)pyridine in CH/sub 2/Cl/sub 2/ atmore » ambient temperature. Yields of bis(phenophorbide) ethylene glycol diesters averaged about 50% for the former method and 70% for the latter method. Insertion of the magnesium atoms into the a series macrocycles was accomplished with iodomagnesium 2,6-di-tert-butyl-4-methylphenolate, IMgBHT, in CH/sub 2/Cl/sub 2/, while the metalation of the b and bacterial series macrocycles was carried out with a mixture of IMgBHT and lithium 2,2,6,6-tetramethylpiperidide in thiophen, all at ambient temperature. Both mono- and dimetalated derivatives were isolated and characterized in each case.« less
Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons
NASA Technical Reports Server (NTRS)
Kaminsky, Laurence S.
1990-01-01
Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.
Wang, Ziyuan; Wang, Yuhang; Li, Jianfeng; Henne, Stephan; Zhang, Boya; Hu, Jianxin; Zhang, Jianbo
2018-03-06
HFO-1234yf (2,3,3,3-tetrafluoropropene) was proposed as an automobile air conditioner (MAC) refrigerant worldwide. However, its atmospheric degradation product is the highly soluble and phytotoxic trifluoroacetic acid (TFA), which persists in aquatic environments. We used a global three-dimensional chemical transport model to assess the potential environmental effects resulting from complete future conversion of the refrigerant in all MAC to HFO-1234yf in China, the United States, and Europe. The annual mean atmospheric concentrations of HFO-1234yf were 2.62, 2.20, and 2.73 pptv, and the mean deposition rates of TFA were 0.96, 0.45, and 0.52 kg km -2 yr -1 , in three regions. The regional TFA deposition sources mainly came from emissions within the same region. The annual TFA deposition in the North Pole region was lower than the global average and mainly originated from European emissions. A potential doubling in the future HFO-1234yf emissions in China mainly affected the local TFA depositions. The TFA concentrations in rainwater were strongly affected by the regional precipitation rates. North Africa and the Middle East, regions with scant rainfall, had extremely high TFA concentrations. The rainwater concentrations of TFA during individual rain events can exceed the level considered to be safe, indicating substantial potential regional risks from future HFO-1234yf use.
Couderc, Carine; Nappez, Claude; Drancourt, Michel
2012-03-30
It is recommended that harmful Biosafety Level 3 (BSL-3) bacteria be inactivated prior to identification by mass spectrometry, yet optimal effects of inactivation protocol have not been defined. Here, we compare trifluoroacetic acid inactivation (protocol A) with ethanol inactivation (protocol B) of Yersinia organisms prior to identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The total number of peaks detected was 10.5 ± 1.7 for protocol A and 15.7 ± 4.2 for protocol B (ρ <0.001, ANOVA test). The signal-to-noise ratio for the m/z 6049 peak present in all of the tested Yersinia isolates was 9.7 ± 3.1 for protocol A and 18.1 ± 4.6 for protocol B (ρ < 0.001). Compared with spectra in our local database containing 48 Yersinia spp., including 20 strains of Y. pestis, the identification score was 1.79 ± 0.2 for protocol A and 1.97 ± 0.19 for protocol B (ρ = 0.0024). Our observations indicate that for the identification of Yersinia organisms, ethanol inactivation yielded MALDI-TOF-MS spectra of significantly higher quality than spectra derived from trifluoroacetic acid inactivation. Combined with previously published data, our results permit the updating of protocols for inactivating BSL-3 bacteria. Copyright © 2012 John Wiley & Sons, Ltd.
D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart
2014-06-01
Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.
Magiera, Sylwia; Gülmez, Şefika; Michalik, Aleksandra; Baranowska, Irena
2013-08-23
A new approach based on microextraction by packed sorbent (MEPS) and a reversed-phase ultra-high pressure liquid chromatography (UHPLC) method was developed and validated for the determination and quantification of nonsteroidal anti-inflammatory drugs (NSAIDs) (acetylsalicylic acid, ketoprofen, diclofenac, naproxen and ibuprofen) in human urine. The important factors that could influence the extraction were previously screened using the Plackett-Burman design approach. The optimal MEPS extraction conditions were obtained using C18 phase as a sorbent, small sample volume (20μL) and a short time period (approximately 5min) for the entire sample preparation step. The analytes were separated on a core-shell column (Poroshell 120 EC-C18; 100mm×3.0mm; 2.7μm) using a binary mobile phase composed of aqueous 0.1% trifluoroacetic acid and acetonitrile in the gradient elution mode (4.5min of analysis time). The analytical method was fully validated based on linearity, limits of detection (LOD), limits of quantification (LOQ), inter- and intra-day precision and accuracy, and extraction yield. Under optimised conditions, excellent linearity (R(2)>0.9991), limits of detection (1.07-16.2ngmL(-1)) and precision (0.503-9.15% RSD) were observed for the target drugs. The average absolute recoveries of the analysed compounds extracted from the urine samples were 89.4-107%. The proposed method was also applied to the analysis of NSAIDs in human urine. The new approach offers an attractive alternative for the analysis of selected drugs from urine samples, providing several advantages including fewer sample preparation steps, faster sample throughput and ease of performance compared to traditional methodologies. Copyright © 2013 Elsevier B.V. All rights reserved.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527
Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin
2009-09-01
This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.
NASA Astrophysics Data System (ADS)
Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans
2014-05-01
Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time in the coil and increase in the concentration of radical but complete combustion of highly chlorinated or fluorinated compounds was not achieved. Due to these findings the limit for a LC-IRMS system for similar structure compounds can be predicted. 1. Elsner, M., et al., Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 2012. 403(9): p. 2471-2491. 2. Krummen, M., et al., A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004. 18(19): p. 2260-2266.
Ho, Jenny T C; White, Jim F; Grisshammer, Reinhard; Hess, Sonja
2008-05-01
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.
Leszczak, Victoria; Place, Laura W; Franz, Natalee; Popat, Ketul C; Kipper, Matt J
2014-06-25
In the design of scaffolds for tissue engineering biochemical function and nanoscale features are of particular interest. Natural polymers provide a wealth of biochemical function, but do not have the processability of synthetic polymers, limiting their ability to mimic the hierarchy of structures in the natural extracellular matrix. Thus, they are often combined with synthetic carrier polymers to enable processing. Demineralized bone matrix (DBM), a natural polymer, is allograft bone with inorganic material removed. DBM contains the protein components of bone, which includes adhesion ligands and osteoinductive signals, such as important growth factors. Herein we describe a novel method for tuning the nanostructure of DBM through electrospinning without the use of a carrier polymer. This work surveys solvents and solvent blends for electrospinning DBM. Blends of hexafluoroisopropanol and trifluoroacetic acid are studied in detail. The effects of DBM concentration and dissolution time on solution viscosity are also reported and correlated to observed differences in electrospun fiber morphology. We also present a survey of techniques to stabilize the resultant fibers with respect to aqueous environments. Glutaraldehyde vapor treatment is successful at maintaining both macroscopic and microscopic structure of the electrospun DBM fibers. Finally, we report results from tensile testing of stabilized DBM nanofiber mats, and preliminary evaluation of their cytocompatibility. The DBM nanofiber mats exhibit good cytocompatibility toward human dermal fibroblasts (HDF) in a 4-day culture; neither the electrospun solvents nor the cross-linking results in any measurable residual cytotoxicity toward HDF.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition
NASA Astrophysics Data System (ADS)
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen
2018-03-01
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.
How to examine soil sorption of ionizable organic compounds and avoid varying pH?
NASA Astrophysics Data System (ADS)
Borisover, Mikhail
2017-04-01
Multiple natural and anthropogenic organic compounds including new and emerging pollutants undergo ionization in aqueous solutions, and their sorption by soils and sediments is contributed by presence of both molecular and ionized species. Better understanding of environmental fate of organic chemicals requires taking into account interactions of molecular and ionized species with environmental sorbents. A "standard" (and undoubtedly important) procedure for differentiating contributions of molecular and ionized species into the overall soil sorption of an organic compound involves varying pH of solution in batch sorption experiments. However, varying pH is (1) often not possible, without destroying a sorbent, e.g., due to the buffer capacity of soils containing carbonates, (2) difficult for further interpretation, since it changes not only the ionization status of a solute in a solution but also the sorbent structure, e.g., a conformation of organic matter, and/or ionization of surface functional groups, (3) making difficult (or even impossible) to explicitly evaluate the role of dissolved species-bulk water interactions, directly affecting the affinity of a sorbate to distribute between water and a sorbent. Indeed, both molecular and ionized species undergo interactions with the solvent bulk and, at least in the case of the ionized ones, there was no a simple way to quantify organic ion-water interactions and their role in organic ion distribution between soil and water phases. This paper presents a "counter-intuitive" approach to examine sorption interactions of an ionizable compound, without experimenting with varied pH. The approach is based on an idea of replacing an initial state in sorption transfer of an ionizable compound from the solvent bulk to a solvated (hydrated) sorbed state: a traditional coefficient describing distribution of a partially ionized compound between a hydrated sorbent and a co-equilibrated aqueous phase is converted to the coefficient describing the transfer of the sorbing compound from its initial molecular (non-ionized) state (in a solution or in the gas phase) to the final hydrated sorbed state equilibrated with the actual aqueous solution of this ionizable compound. In this way, any contributions from the bulk solvent-organic ion interactions into the sorption transfer may be excluded; in addition, further any solute-solvent interactions may be taken out of the consideration. Therefore, compound's sorption characteristics "cleared" of solute-solvent interactions may be obtained, and a better understanding of relations between interactions in a sorbed phase and a molecular structure of organic sorbates can be reached. The approach is illustrated by examining sorption of variously ionized organic compounds, i.e., those belonging to the pharmaceuticals and personal care products (triclosan, gemfibrozil, galaxolide), and aliphatic organic acids on natural and organic amendment-enriched soils. Specifically, it is demonstrated how the greater H-donating ability of trifluoroacetic acid, as compared with acetic acid, strengthens the acid interactions in the soil phase. In another series of examples, it is shown how hydrophobic and non-ionizing galaxolide interacts weakly with soils, as compared with partially ionized triclosan and almost fully ionized gemfibrozil, i.e., leading to the conclusions not reachable based only on the direct comparison of experimentally measured distribution coefficients.
Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel
2017-10-09
The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area ratios of monosaccharides. The proposed procedure using UHPSFC/MS represents an interesting alternative which can compete with other chromatographic methods in the field of saccharide analysis in terms of speed, sensitivity and simplicity of workflow. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Ping; Powell, Saul R.
2010-01-01
Carbonylation is a commonly studied form of oxidative modification to proteins which can be conveniently detected using commercially available kits. The most common of these kits is the Oxyblot™ Protein Oxidation Detection Kit (Chemicon/Millipore). Over the past year we have observed severely diminished sensitivity of these kits which was shown to be a result of a change in the formulation of one of the components supplied in the kit. This component, the 10X 2,4-dinitrophenylhydrazine derivatization solution, which had previously been dissolved in 100% trifluoroacetic acid (TFA), was now dissolved in 2N hydrochloric acid, which according to our results is not acid enough. Further, we observed that upon storage even DNPH dissolved in TFA is subject to degradation. Based on these studies, we make recomendations that should improve the sensitivity and reproducibilty of this assay. PMID:20230891
Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions
NASA Astrophysics Data System (ADS)
Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome
1986-08-01
It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.
NASA Astrophysics Data System (ADS)
Kalinovskaya, I. V.; Zadorozhnaya, A. N.
2017-04-01
The fluorescence properties of mixed-metal compounds of Eu(III) and Gd(III) with trifluoroacetic acid, Eu1-хGdx(С2F3O2)3·yD·zH2O, where D - 1,10-phenanthroline, 2,2-dipyridil, diphenylguanidine, x = 0, 0.25, 0.5, or 0.7, were studied. Luminescence spectroscopic evidence and the examination of excitation spectra indicate the occurrence of efficient energy transfer from the gadolinium to the europium ion. The greatest promotion of Eu3+ photoluminescence at 615 nm is observed when Eu:Gd = 1:1.
Aqueous humour and ultraviolet radiation.
Ringvold, A
1980-01-01
Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.
Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto
2006-01-01
The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Mączka, M.; Hermanowicz, K.; Hanuza, J.
2010-08-01
New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ˜162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.
SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES
Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.
1962-08-14
A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)
Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B
2013-11-22
This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2012-01-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway
NASA Astrophysics Data System (ADS)
Benesch, J. A.; Gustin, M. S.
Trifluoroacetate (TFA, CF 3COO -), a break down product of hydro(chloro)-fluorocarbons (HFC/HCFCs), has been suggested to contribute to forest decline syndrome. To investigate the possible effects, Pinus ponderosa was exposed to TFA applied as mist (150 and 10,000 ng l -1) to foliar surfaces. Needles accumulated TFA as a function of concentration and time. However, no adverse physiological responses, as plant morphology, photosynthetic and conductance rates, were observed at the TFA concentrations used in this study.
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Tiwari, S. P.; Kumar, A.; Kumar, K.
2018-04-01
The synthesis and spectroscopy of the upconverting nanoparticles, cubic NaYF4:Er3+/Yb3+ phosphor is developed for latent fingermark detection. The cubic phase of NaYF4: Er3+/Yb3+ phosphor is synthesized by thermal decomposition method using trifluoroacetate precursor with coordinating ligand octadecene and oleic acid in a mixture of technical grade. The synthesized samples showed intense green emission using 976 nm diode laser as an excitation source. Because of excellent property of luminescence in green regime the sample is used to detect the latent fingermark on a porous glass surface.
Horiguchi, Yoshie; Kodama, Hirokazu; Nakamura, Masayoshi; Yoshimura, Tsuyoshi; Hanezi, Kaori; Hamada, Hiroko; Saitoh, Toshiaki; Sano, Takehiro
2002-02-01
A synthesis of 1,1-disubstituted 1,2,3,4-tetrahydroisoquinolines (6) was achieved in a highly efficient manner via Pictet-Spengler reaction of arylethylamines (1) and acyclic and cyclic ketones (2) using titanium (IV) isopropoxide and acetic-formic anhydride. The cyclization of the in situ formed acyliminium ion (4) to N-formyl 1,2,3,4-tetrahydroisoquinoline (5) was greatly facilitated by using trifluoroacetic acid as an additional reagent. The Pictet-Spengler reaction was carried out by one pot procedure, providing a convenient and effective method for preparing various 1,2,3,4-tetrahydroisoquinolines.
Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography.
Cole, S R; Dorsey, J G
1997-01-01
While the choice of stationary phase, organic modifier, and gradient strength can have significant effects on biomolecule separations, mobile phase additives can also have a significant effect on the chromatographic selectivity, recovery, efficiency and resolution. Given the importance of stationary phase coverage, the beneficial, silanol-masking properties of amines, and the potential for selectivity modification through ion-pair interactions, cyclohexylamine was examined as a mobile phase additive and compared with triethylamine and trifluoroacetic acid. Greatly improved separation was possible when cyclohexylamine was used as compared with phosphate buffer, and cyclohexylamine did not require purification before use, while triethylamine required distillation before 'clean' chromatograms were obtained.
Chen, Xiaohong; Zhao, Yonggang; Yao, Shanshan; Li, Xiaoping; Jin, Micong
2011-12-01
A sensitive and selective analytical method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) was developed for the simultaneous determination of nine preservatives and sweeteners in yellow wine and wine. After the sample was diluted by pure water, the UFLC separation was performed on a Shim-pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) with a linear gradient elution program of acetonitrile-ammonium acetate (AmAc, 2.5 mmol/L)-trifluoroacetic acid (TFA, 0.01%, v/v) aqueous solution as the mobile phase. Electrospray ionization was applied and operated in the negative multiple reaction monitoring (MRM) mode. The results showed that the limits of detection (LODs, S/N > 3) for the nine analytes were in the range of 0.03 - 15.0 microg/L, and the limits of quantitation (LOQs, S/N > 10) were in the range of 0.1 - 50.0 microg/L. The calibration curves showed good linearity for the nine analytes in their detection ranges, and the correlation coefficients (r2) were larger than 0.998. The recoveries were between 96.2% and 100.5% with the relative standard deviations (RSDs) of 0.6% - 5.4% for yellow wine, and between 96.0% and 104.0% with the RSDs of 0.7% - 4.8% for wine. Additionally, the mass spectral characterizations of the nine food additives were studied and the fragmentation pathways were speculated. The method is sensitive, reproducible and adaptable to the simultaneous rapid determination of the nine food additives in different yellow wine and wine samples.
Bu, Zhisi; Lv, Liqiong; Li, Xingnuo; Chu, Chu; Tong, Shengqiang
2017-11-01
Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH-zone-refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution-extrusion mode was investigated for pH-zone-refining countercurrent chromatography for the first time. A two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n-hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH-zone-refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH-zone-refining countercurrent chromatography, yielding 53 mg of aurantio-obtusin, 40 mg of chryso-obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high-performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH-zone-refining mode was observed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple HPLC method for simultaneous determination of lopinavir, ritonavir and efavirenz.
Usami, Yoshiko; Oki, Tsuyoshi; Nakai, Masahiko; Sagisaka, Masafumi; Kaneda, Tsuguhiro
2003-06-01
We developed a simple HPLC method for the simultaneous determination of lopinavir (LPV), ritonavir (RTV) and efavirenz (EFV) to evaluate the efficiency of co-administration of LPV/RTV and EFV in Japanese patients enrolled in a clinical study. The monitoring of LPV plasma concentration is important because co-administration of LPV/RTV with EFV sometimes decreases plasma concentrations of LPV caused by EFV activation of cytochrome P-450 3A. A solution of acetonitrile, methanol and tetramethylammonium perchlorate (TMAP) in dilute aqueous trifluoroacetic acid (TFA) has been used as the mobile phase in a HPLC method to elute LPV and RTV. We found that a solvent ratio of 45 : 5 : 50 (v/v/v) of acetonitrile/methanol/0.02 M TMAP in 0.2% TFA optimized separation of LPV, RTV and EFV. A column temperature of 30 degrees C was necessary for the reproducibility of the analyses. Standard curves were linear in the range 0.060 to 24.06 micro g/ml for LPV, 0.010 to 4.16 micro g/ml for RTV, and 0.047 to 37.44 micro g/ml for EFV. Coefficients of variation (CVs) of LPV, RTV and EFV in intraday and interday assays ranged from 1.5 to 4.0%, 2.5 to 16.8% and 1.0 to 7.7%, respectively. Accuracies ranged from 100 to 110%, 101 to 116% and 99 to 106% for LPV, RTV and EFV, respectively. The extraction recoveries were 77-87, 77-83 and 81-91% for LPV, RTV and EFV, respectively.
Prebiotic synthesis and degradation of amino acids by UV-irradiation at room temperature and 77K.
NASA Astrophysics Data System (ADS)
Mita, H.; Shimoyama, A.
Amino acids (AAs) were synthesized prebioticaly by UV irradiation to aqueous solution of amines and nitriles, and mixtures of graphite-ammonia-water (GAW mix.) at room temperature (RT, model of the primitive ocean) and 77 K (model of comet ice), using a Xe excimer lamp (max is 172 nm) and a low-pressure mercury lamp (max is 185/254 nm). Degradation of glycine and, degradation and racemization of aspartic acid were carried out by UV irradiation at RT. AAs in the irradiated samples were determined quantitatively by a gas chromatograph combined with a mass spectrometer after derivatized with HCl/2-propanol and trifluoroacetic anhydride. Maximum 16 hydrolyzed AAs from C2 to C6 were detected quantitatively. Amino acids have chiral center were nearly racemic. Therefore, those amino acids were not contaminants. In the most case, glycine was the most abundant AA and its concentration was 4.1 μmol/l from 1mmol/l acetonitrile solu. at RT for 3 h, 1 nmol/l from 100 mmol/l acetonitrile solu. at 77K for 1 h, 3.8?μmol/l from 10 mmol/l methylamine solu. at RT for 15 h, 278 μmol/l from 1 mol/l methylamine solu. At 77K for 4h, and 38.6 pmol/g-Carbon from GAW mix. at RT for 24 h. Maximum producing time of glycine from acetonitrile was 3 h and the shortest, that from GAW mix. was the longest among our experiments. Amount of glycine was decreased in gradually, after maximum producing time. Yields of glycine from acetonitrile and methylamine at 77K were lower than those at RT. Amounts of large AAs were lower than those of small AAs as glycine and alanine. Half-life time of glycine UV irradiation at RT was nearly 30 min. and similar to that of aspartic acid. Half-life time of racemization of aspartic acid was 2.1 h. It was able to confirm that a lot of AAs were synthesized by UV irradiation in the model experiments of primitive environments, even in simulated comet ice, from different starting materials. AA formation from developed material, as acetonitrile was more rapid and higher yield than that from primitive material as GAW mix. Degradation rate of AAs was faster than formation rate of AAs. Therefore, some protective systems are required for accumulation of AAs.
Wang, Zhao; Luo, Ting; Sheng, Ruilong; Li, Hui; Sun, Jingjing; Cao, Amin
2016-01-11
In this work, a series of diblock terpolymer poly(6-O-methacryloyl-D-galactopyranose)-b-poly(methacrylic acid-co-6-cholesteryloxy hexyl methacrylate) amphiphiles bearing attached galactose and cholesterol grafts denoted as the PMAgala-b-P(MAA-co-MAChol)s were designed and prepared, and these terpolymer amphiphiles were further exploited as a platform for intracellular doxorubicin (DOX) delivery. First, employing a sequential RAFT strategy with preliminarily synthesized poly(6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose) (PMAIpGP) macro-RAFT initiator and a successive trifluoroacetic acid (TFA)-mediated deprotection, a series of amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MAChol)s were prepared, and were further characterized by NMR, Fourier transform infrared spectrometer (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and a dynamic contact angle testing instrument (DCAT). In aqueous media, spontaneous micellization of the synthesized diblock terpolymer amphiphiles were continuously examined by critical micellization concentration assay, dynamic light scattering (DLS), and transmission electron microscopy (TEM), and the efficacies of DOX loading by these copolymer micelles were investigated along with the complexed nanoparticle stability. Furthermore, in vitro DOX release of the drug-loaded terpolymer micelles were studied at 37 °C in buffer under various pH conditions, and cell toxicities of as-synthesized diblock amphiphiles were examined by MTT assay. Finally, with H1299 cells, intracellular DOX delivery and localization by the block amphiphile vectors were investigated by invert fluorescence microscopy. As a result, it was revealed that the random copolymerization of MAA and MAChol comonomers in the second block limited the formation of cholesterol liquid-crystal phase and enhanced DOX loading efficiency and complex nanoparticle stability, that ionic interactions between the DOX and MAA comonomer could be exploited to trigger efficient DOX release under acidic condition, and that the diblock terpolymer micellular vector could alter the DOX trafficking in cells. Hence, these suggest the pH-sensitive PMAgala-b-P(MAA-co-MAChol)s might be further exploited as a smart nanoplatform toward efficient antitumor drug delivery.
Additive free preparative chiral SFC separations of 2,2-dimethyl-3-aryl-propanoic acids.
Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Kempson, James; Mathur, Arvind
2016-11-30
A series of racemic 2,2-dimethyl-3-aryl-propanoic acids were resolved by chiral supercritical fluid chromatography (SFC) without the use of an acidic additive, trifluoroacetic acid (TFA). The use of additive-free protic methanol as co-solvent in CO 2 was expanded to successfully resolve other series of carboxylic acid containing racemates. Large-scale SFC of racemic acid 4, 3-(1-(4-fluorophenyl)-1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoic acid, in methanol without TFA as additive on both Chiralpak AD-H and Chiralcel OJ-H will be discussed, along with impact on throughput and solvent consumption. Investigation of co-solvent effect on peak sharpening of acid racemate 20, 2-(2-chloro-9-fluoro-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropanoic acid, without TFA further indicated that methanol in CO 2 provided improved peak shape compared with isopropanol (IPA) and acetonitrile. Finally, we discuss the resolution of basic aromatic chiral amines without the addition of basic additives such as diethylamine (DEA) and application of this protocol for the large-scale SFC separation of weakly basic indazole-containing racemate 14, methyl 3-(1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoate, in methanol without DEA. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid
NASA Astrophysics Data System (ADS)
Shukla, M. K.; Mishra, P. C.
1996-04-01
Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.
Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry
NASA Astrophysics Data System (ADS)
Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.
2015-05-01
Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.
Keith, D; Hong, B; Christensen, M
1997-05-01
A quick, simple, and efficient extraction technique was developed for the removal of protein from soft hydrophilic contact lenses. An extraction solvent consisting of a 50:50 mix of 0.2% trifluoroacetic acid and acetonitrile was used to remove protein from in vitro laboratory-deposited and human-worn contact lenses. The protein removed was analyzed using HPLC, bicinchoninic acid (BCA) analysis, and SDS-PAGE gel electreophoresis. Extraction efficiency for lysozyme from laboratory-deposited Group IV lenses was determined to be approximately 100%. Group IV human-worn contact lenses were extracted and analyzed for lysozyme by HPLC and total protein by bicinchoninic acid (BCA) analysis. Groups I, II, III, and IV contact lenses deposited with an artificial tear protein solution and human-worn lenses were extracted and analyzed by SDS-PAGE gel electreophoresis and micro-BCA. The ACN/TFA procedure offers a simple, quick, and efficient extraction technique for removal of protein from contact lenses for subsequent analysis.
NASA Astrophysics Data System (ADS)
Aksamentova, Tamara N.; Chipanina, Nina N.; Oznobikhina, Larisa P.; Adamovich, Sergei N.; Smirnov, Vladimir I.
2018-01-01
Tris- 1, bis- 2, and mono- 3 (2-hydroxyethyl)amine-N-oxides isomers, their protonated forms, and H-complexes with acids have been studied in gas phase and DMSO solution by the quantum chemical calculations using DFT and MP2 methods. It is found that the proton affinity of the endo isomers 1a-3a, exo isomers 1b-3b and epi isomer 1c depends on the number of the hydroxyethyl groups, steric factors and strengths of the intramolecular H-bonds OHṡṡṡON in 1a-3a and OHṡṡṡOH in 1b-3b. The peculiarities of formation of the hydrogen bonded and proton transfer complexes of tris(2-hydroxyethyl)amine-N-oxide with trifluoroacetic and 2-methylphenyloxyacetic acids are defined by 1 configuration, acid strength and solvent polarity. The structure of 1 and its complexes upon transition to solution was determined using FTIR spectroscopy.
Patthy, M; Gyenge, R
1988-09-30
The behaviour of trifluoroacetate and heptafluorobutyrate as pairing ions for the reversed-phase ion-pair separation of monoamine transmitters and related metabolites was studied. The performance of systems with the perfluorinated acids was compared with that of systems containing sodium octyl sulphonate and was found to be better in terms of peak resolution combined with total analysis time, day-to-day reproducibility and the time required for attaining initial chromatographic equilibrium. Rat brain samples were deproteinized in the acidified mobile phase, injected directly on to a high-performance liquid chromatographic column and quantitated using an amperometric detector. Sample run times were 6-8 min, at a relatively low flow-rate. The detection limits achieved are fairly uncommon with conventional bore columns. The two perfluorinated acids studied differ in the dominant mechanisms of ion-pair formation and show selectivity differences as a result.
Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz
2017-12-01
Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE
Schubert, J.
1958-06-01
A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C Austen
2018-03-09
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran
2015-11-23
An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tashtoush, Bassam M; Jacobson, Elaine L; Jacobson, Myron K
2007-02-19
A rapid method using an isocratic high-pressure liquid chromatography and UV detection for determination of both all-trans retinoic acid (tretinoin) and 13-cis retinoic acid (isotretinoin) in dermatological preparations is presented. Tretinoin and isotretinoin samples were extracted with acetonitrile by a procedure that can be completed in less than 10 min. Subsequent separation and quantification of amounts as low as 10 pmol was accomplished in less than 15 min using reversed-phase HPLC with isocratic elution with 0.01% trifluoroacetic acid (TFA)/acetonitrile (15:85, v/v). Validation experiments confirmed the precision and accuracy of the method. When applied to commercial tretinoin samples, recoveries of 104.9% for cream formulations and 107.7% for gel formulations were obtained. Application of the method for analysis of a tretinoin cream exposed to solar simulated light (SSL) demonstrated detection of the major photoisomerization product isotretinoin as well as 9-cis retinoic acid, demonstrating the utility of the method for studies of tretinoin photostability. The method should also facilitate studies of the formulation compatibility and photocompatibility of tretinoin with agents that may improve its clinical tolerability.
Synthesis of α-Halo-α,α-Difluoromethyl Ketones by a Trifluoroacetate Release/Halogenation Protocol
John, Jinu P.; Colby, David A.
2011-01-01
Three series of α-halo-α,α-difluoromethyl ketones are prepared from highly α-fluorinated gem-diols by exploiting the facile release of trifluoroacetate, followed by immediate trapping of the liberated α,α-difluoroenolate with an electrophilic chlorine, bromine, or iodine source. The products are typically isolated in good yields, even in the case of sensitive, α-iodo-α,α-difluoromethyl ketones. Also, we demonstrate that an α-iodo-α,α-difluoromethyl ketone will participate in a copper-promoted reaction to forge a new carbon–carbon bond. PMID:21995668
Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water
NASA Technical Reports Server (NTRS)
Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.
2017-01-01
Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing
Aqueous-phase source of formic acid in clouds
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.
1983-01-01
The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.
Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent
NASA Astrophysics Data System (ADS)
Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.
2013-07-01
The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.
Dulani Dhanapala, B; Mannino, Natalie A; Mendoza, Laura M; Tauni Dissanayake, K; Martin, Philip D; Suescun, Leopoldo; Rabuffetti, Federico A
2017-01-31
Owing to their potential as single-source precursors for compositionally complex materials, there is growing interest in the rational design of multimetallic compounds containing fluorinated ligands. In this work, we show that chemical and structural principles for a materials-by-design approach to bimetallic trifluoroacetates can be established through a systematic investigation of the crystal-chemistry of their monometallic counterparts. A(CF 3 COO) 2 ·nH 2 O (A = Mg, Ca, Sr, Ba, Mn) monometallic trifluoroacetates were employed to demonstrate the feasibility of this approach. The crystal-chemistry of monometallic trifluoroacetates was mapped using variable-temperature single-crystal X-ray diffraction, powder X-ray diffraction, and thermal analysis. The evolution with temperature of the previously unknown crystal structure of Mg(CF 3 COO) 2 ·4H 2 O was found to be identical to that of Mn(CF 3 COO) 2 ·4H 2 O. More important, the flexibility of Mn x (CF 3 COO) 2x ·4H 2 O (x = 1, 3) to adopt two structures, one isostructural to Mg(CF 3 COO) 2 ·4H 2 O, the other isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O, enabled the synthesis of Mg-Mn and Ca-Mn bimetallic trifluoroacetates. Mg 0.45 Mn 0.55 (CF 3 COO) 2 ·4H 2 O was found to be isostructural to Mg(CF 3 COO) 2 ·4H 2 O and exhibited isolated metal-oxygen octahedra with Mg 2+ and Mn 2+ nearly equally distributed over the metal sites (Mg/Mn: 45/55). Ca 1.72 Mn 1.28 (CF 3 COO) 6 ·4H 2 O was isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O and displayed trimers of metal-oxygen corner-sharing octahedra; Ca 2+ and Mn 2+ were unequally distributed over the central (Ca/Mn: 96/4) and terminal (Ca/Mn: 38/62) octahedral sites.
Difluoro-and Trifluoromethylation of Electron-Deficient Alkenes in an Electrochemical Microreactor.
Arai, Kenta; Watts, Kevin; Wirth, Thomas
2014-02-01
Electrochemical microreactors, which have electrodes integrated into the flow path, can afford rapid and efficient electrochemical reactions without redox reagents due to the intrinsic properties of short diffusion distances. Taking advantage of electrochemical microreactors, Kolbe electrolysis of di-and trifluoroacetic acid in the presence of various electron-deficient alkenes was performed under constant current at continuous flow at room temperature. As a result, di-and trifluoromethylated compounds were effectively produced in either equal or higher yields than identical reactions under batch conditions previously reported by Uneyamas group. The strategy of using electrochemical microreactor technology is useful for an effective fluoromethylation of alkenes based on Kolbe electrolysis in significantly shortened reaction times.
Microwave spectroscopy and curious molecular dynamics of ethyl trifluoroacetate
NASA Astrophysics Data System (ADS)
Bohn, Robert K.; Montgomery, John A.; Harvey Michels, H.; Acharte, Christian
2017-05-01
The first ethyl ester whose structure was determined by microwave spectroscopy is ethyl formate. It exists in two conformations. In the 1970s, that study was used as a model to determine the structures of other ethyl esters, ethyl cyanoformate, chloroformate, and trifluoroacetate. They display the same conformations as ethyl formate. But under the experimental conditions used, Stark modulation with a maximum electric field, static low pressure gas, rapid sweeping, and long detector time constants, each of those esters displays bands of an additional third species. A careful, high resolution study of ethyl cyanoformate only observed two conformers. A model has been proposed that the third species derives from a dense array of torsionally excited states with broadened transitions due to short lifetimes. The present study of ethyl trifluoroacetate in a pulsed jet Fourier Transform spectrometer is intended to clarify the earlier results. Two conformers are observed including all their monosubstituted 13C and 18O isotopologs. In a pulsed jet Fourier Transform spectrometer using argon as the carrier gas, only one conformer is observed. Switching to helium as the carrier gas, another, higher energy conformer is also observed.
Thermometric titration of some monoprotic and diprotic acids in aqueous and non-aqueous media.
Harries, R J
1968-12-01
Some mono- and diprotic acids have been titrated thermometrically with strong alkalis in aqueous and non-aqueous media. Thermograms with sharp arrest points were obtained, from which heats of neutralization were measured. Heats of neutralization in the media used were compared and an effect attributable to hydrogen bonding was found.
Tomé, Luciana I N; Jorge, Miguel; Gomes, José R B; Coutinho, João A P
2012-02-16
Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids.
Process for the preparation of lactic acid and glyceric acid
Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI
2008-12-02
Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.
Solvent extraction system for plutonium colloids and other oxide nano-particles
Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam
2014-06-03
The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.
King, C. Judson; Tung, Lisa A.
1992-01-01
Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2012 CFR
2012-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2014 CFR
2014-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2013 CFR
2013-04-01
... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...
NASA Astrophysics Data System (ADS)
Tereshchenko, D. S.; Morozov, I. V.; Boltalin, A. I.; Karpova, E. V.; Glazunova, T. Yu.; Troyanov, S. I.
2013-01-01
A series of fluoro(trifluoroacetato)metallates were synthesized by crystallization from solutions in trifluoroacetic acid containing nickel(II) or cobalt(II) nitrate hydrates and alkali metal or ammonium fluorides: Li[Ni3(μ3-F)(CF3COO)6(CF3COOH)3](CF3COOH)3 ( I), M'[Ni3(μ3-F)(CF3COO)6(CF3COOH)3] ( M' = Na ( II), NH4 ( IV), Rb ( V), and Cs ( VI)), NH4[Co3(μ3-F) (CF3COO)6(CF3COOH)3] ( III), and Cs[Ni3(μ3-F)(CF3COO)6(CF3COOH)3](CF3COOH)0.5 ( VII). The crystal structures of these compounds were determined by single-crystal X-ray diffraction. All structures contain triangular trinuclear complex anions [ M 3″(μ3-F)(CF3COO)6(CF3COOH)3]- ( M″ = Ni, Co) structurally similar to trinuclear 3d metal oxo carboxylate complexes. The three-coordinated F atom is located at the center of the triangle formed by Ni(II) or Co(II) atoms. The metal atoms are linked in pairs by six bridging trifluoroacetate groups located above and below the plane of the [ M″3 F] triangle. The oxygen atoms of the axial CF3COOH molecules complete the coordination environment of M″ atoms to an octahedron.
RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS
Ader, M.
1963-11-19
A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)
The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...
SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS
Warf, J.C.
1959-04-21
The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.
Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert
2015-01-15
First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.
Corredor, Claudia; Tomasella, Frank P; Young, Joel
2009-01-02
Mixtures of thiuram disulfides are frequently used as accelerators in rubber stoppers for injectables and sterilized powders for injection. Rapid reactions of thiuram disulfides between themselves and with thiols yield mixed disulfides due to thiol-disulfide exchange. The possibility of exchange reactions of thiuram disulfides extracted from rubber stoppers and drug products containing pendant thiol groups have not been reported in the analysis of potential stopper extractables. In this paper we report the formation and identification of mixed thiuram disulfides of N,N,N',N'-dimethylthiuram disulfide (TMTD), N,N,N',N'-dibutylthiuram disulfide (TBTD), and captopril (a thiol-containing drug). A reversed-phase HPLC method was developed for the determination of TMTD, TBTD, captopril and their disulfides in aqueous vehicles, using a YMC ODS AQ column at 35 degrees C and mobile phases A and B consisting of acetonitrile:water:trifluoroacetic acid (TFA) (20:80:0.1) and acetonitrile:TFA (100:0.1), respectively. The captopril-TBTD and captopril-TMTD disulfides were identified by MS, with molecular ions at m/z 420.9 and m/z of 337.1, respectively. Possible structures for the fragment ions in the spectra are provided. Mixed captopril-thiuram formation was studied as a function of pH. Captopril-TMTD formation was enhanced at pH 6.0, reaching a maximum of 31.3% in 4.1h. At pH 4.0 and 2.2, the mixed captopril adduct product was still detected in solution after 20h. The impact of the formation of mixed disulfide products of thiol-containing drugs with thiurams in the HPLC profile of extractables and leachables studies is discussed.
Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi
2014-09-01
To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15vol.% TFA solution, L/S ratio of 8.0 mL g(-1), reacting at 40°C for 180 min along with appropriate agitation. LiNi1/3Co1/3Mn1/3O2 is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi1/3Co1/3Mn1/3O2 powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi1/3Co1/3Mn1/3O2 are 201 mAh g(-)(1) and 155.4 mAh g(-1) (2.8-4.5 V, 0.1C), respectively. The discharge capacity remains at 129 mAh g(-1) even after 30 cycles with a capacity retention ratio of 83.01%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kowalczuk, Dorota; Wawrzycka, Maria Bozena; Haratym Maj, Agnieszka
2006-01-01
Nifedipine (Nif) is widely used in treating cardiovascular disorders (especially hypertension) and for inhibiting preterm labor. A fully validated selective high-performance liquid chromatographic method with diode array detection, using solid-phase extraction, was developed for the determination of Nif in human serum. To assess specificity, Nif and its degradation products were separated on a Purospher RP-18 (5 microm, 125 x 4 mm) column plus a LiChrospher 100 RP-18 (5 microm, 4 x 4 mm) precolumn with a mobile phase of methanol-10 mM aqueous trifluoroacetic acid, pH 7.3 (57 + 43, v/v); chromatographic separation was followed by UV detection at 238 nm. For toxicological analysis, Nif in the presence of other calcium-channel antagonist drugs was identified under optimum chromatographic conditions. The calibration graph was constructed over the concentration range of 12.5-400 ng/mL in serum with good correlation (r = 0.9956). This method was not subject to interference by other plasma components and was successfully applied to the assay of Nif in spiked human serum and in serum of women in preterm labor after sublingual administration of 30 mg Nif per day divided into 3 equal doses. The mean recovery based on the ratio of the slopes of serum and mobile phase standard curves was 96.5%. The detection and quantification limits of the drug in spiked human serum were found to be 6 and 17.5 ng/mL, respectively. Validation of the method demonstrated good intraday and interday precision, which ranged from 2.18 to 6.67% and from 6.52 to 11.93%, respectively.
King, C.J.; Tung, L.A.
1992-07-21
Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.
Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham
2015-01-01
Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865
Carboxylic acid sorption regeneration process
King, C. Judson; Poole, Loree J.
1995-01-01
Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.
1992-02-01
Crystallographic Dependence of Voltaumetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold -Acidic Aqueous Interfaces by...Crystallographic Dependence of Voltamnnetric Oxidation )f Polyhydric Alcohols and Related Systems at onocrystalline Gold -Acidic Aqueous [nterfaces...mannitol, on seven oriented gold surfaces, Au(lll), 100), (110), (221), (533), (311), and (210), is reported with the objective of assessing the ole of
ADSORPTION PROCEDURE IN PREPARING U$sup 23$$sup 3$
Stoughton, R.W.
1958-10-14
A process is presented for the separation of protoactinium and thorium from an aqueous nitric acid solution containing these metals. It comprises contacting the solution with a cation exchange phenol-formaldehyde resin containing sulfonic acid groups, and eluting the adsorbed thorium from the resin by means of aqueous nitric acid. Thereafter the adsorbed protoactinium is eluted from the resin by means of an aqueous solution of ammonium fluoride.
Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.
Sekiya, S; Ohmori, K; Harii, K
1997-01-01
A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.
Acidities of Water and Methanol in Aqueous Solution and DMSO
ERIC Educational Resources Information Center
Gao, Daqing
2009-01-01
The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…
Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction
NASA Astrophysics Data System (ADS)
Fuller, M.; Huang, Y.
2003-03-01
Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.
Tian, Ying; Yao, Yiming; Chang, Shuai; Zhao, Zhen; Zhao, Yangyang; Yuan, Xiaojia; Wu, Fengchang; Sun, Hongwen
2018-02-06
A total of 23 per- and polyfluoroalkyl substances (PFASs) were investigated in the air, dry deposition, and plant leaves at two different landfills and one suburban reference site in Tianjin, China. The potential of landfills as sources of PFASs to the atmosphere and the phase distribution therein were evaluated. The maximum concentrations of ∑PFASs in the two landfills were up to 9.5 ng/m 3 in the air, 4.1 μg/g in dry deposition, and 48 μg/g lipid in leaves with trifluoroacetic acid and perfluoropropionic acid being dominant (71%-94%). Spatially, the distribution trend of ionizable and neutral PFASs in all three kinds of media consistently showed the central landfill > the downwind > the upwind > the reference sites, indicating that landfills are important sources to PFASs in the environment. Plant leaves were found effective in uptake of a variety of airborne PFASs including polyfluoroalkyl phosphoric acid diesters, thus capable of acting as a passive air sampling approach for air monitoring.
Carboxylic acid sorption regeneration process
King, C.J.; Poole, L.J.
1995-05-02
Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...
SE-72/AS-72 generator system based on Se extraction/ As reextraction
Fassbender, Michael Ernst; Ballard, Beau D
2013-09-10
The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.
Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A
2018-04-01
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
NASA Astrophysics Data System (ADS)
Salikin, Jamilah; Abdullah, Aminah
2013-11-01
A methodusingliquid chromatography-electrospray mass spectrometry (LC-(ESI)MS) for the simultaneous determination of three macrolides (tylosin, spiramycin and tilmicosin) in poultry muscle has been developed. The drugs were extracted with EDTA McIlvaine buffer, filter through celite 545 and the extracts were cleaned up by SPE Oasis HLB cartridge. Separation was carried out in end-capped silica-based C18 column and mobile phases containing trifluoroacetic acid-acetonitrile with a binary gradient system at a flow rate 0.5 ml/min. Detection was performed by single mass spectrometry with electrospray ionization in the positive mode. Several parameters affecting the mass spectra were studied. Chicken samples from the market were analyzed to check the residue of macrolide antibiotics.
Parsons, Matthew T; Riffell, Jenna L; Bertram, Allan K
2006-07-06
Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0.36), the rates are not as dependent on RH. The homogeneous nucleation rates for aqueous (NH(4))(2)SO(4) particles were parametrized using classical nucleation theory, and from this analysis we determined that the interfacial surface tension between the crystalline ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is between 0.053 and 0.070 J m(-2).
Raman spectra of amino acids and their aqueous solutions
NASA Astrophysics Data System (ADS)
Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang
2011-03-01
Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.
Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai
2014-09-17
Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.
USDA-ARS?s Scientific Manuscript database
Aqueous dispersions of normal and high-amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes. Partial conversion of complexed sodium palmitate to palmitic acid by addition of acetic acid led to the formation of gels. Bl...
Van Wanseele, Yannick; Viaene, Johan; Van den Borre, Leslie; Dewachter, Kathleen; Vander Heyden, Yvan; Smolders, Ilse; Van Eeckhaut, Ann
2017-04-15
In this study, the separation of four neuromedin-like peptides is investigated on four different core-shell stationary phases. Moreover, the effect of the mobile phase composition, i.e. organic modifier (acetonitrile and methanol) and additive (trifluoroacetic acid, formic acid, acetic acid, ammonium formate and ammonium acetate) on the chromatographic performance is studied. An improvement in chromatographic performance is observed when using the ammonium salt instead of its corresponding acid as additive, except for the column containing a positively charged surface (C18+). In general, the RP-Amide column provided the highest separation power with different mobile phases. However, for the neuromedin-like peptides of interest, the C18+ column in combination with a mobile phase containing methanol as organic modifier and acetic acid as additive provided narrower and higher peaks. A three-factor, three-level design is applied to further optimize the method in terms of increased peak height and reduced solvent consumption, without loss in resolution. The optimized method was subsequently used to assess the in vitro microdialysis recovery of the peptides of interest. Recovery values between 4 and 8% were obtained using a perfusion flow rate of 2μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.
Anumula, K R; Du, P
1999-11-15
Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.
Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin
TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less
Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas
2012-10-11
Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.
2009-01-01
Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930
Aqueous infrared carboxylate absorbances: Aliphatic di-acids
Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.
1998-01-01
Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.
2017-07-01
In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2011-06-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES
Boyd, G.E.; Russell, E.R.; Schubert, J.
1959-08-01
An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.
ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G.E.; Russell, E.R.; Schubert, J.
An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.
Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS
NASA Astrophysics Data System (ADS)
Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.
2012-06-01
A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.
Lorenz, Dominic; Knöpfle, Anna; Akil, Youssef; Saake, Bodo
2017-11-01
The chemical structures obtained by the modification of arabinoxylans with the cyclic carbonates propylene carbonate (PC) and 4-vinyl-1,3-dioxolan-2-one (VEC) with varying degrees of substitution were investigated. Therefore, a new analytical method was developed that is based on a microwave-assisted hydrolysis of the polysaccharides with trifluoroacetic acid and the reductive amination with 2-aminobenzoic acid. The peak assignment was achieved by HPLC-MS and the carbohydrate derivatives were quantified by HPLC-fluorescence. The obtained maximum molar substitution of PC-derivatized xylan (X HP ) was 1.8; the molar substitution of VEC-derivatized xylan (X HVE ) was 2.3. Investigations of xylose and arabinose based mono- and disubstituted derivatives revealed a preferred reaction of the cyclic carbonates with arabinose. Conversion rates were up to 2.4 times higher for monosubstitution and up to 3.0 times for disubstitution compared to xylose. Furthermore, the reaction with VEC was preferred due to higher reactivity of the newly introduced side chains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor.
Wu, Xin; Chen, Xuan-Xuan; Song, Bing-Nan; Huang, Yan-Jun; Ouyang, Wen-Juan; Li, Zhao; James, Tony D; Jiang, Yun-Bao
2014-11-21
Binding of the fluoride ion triggers aggregation of a pyreneboronic acid-catechol ensemble in acidic aqueous solutions, giving rise to intense excimer emission, allowing for sensitive fluoride ion sensing at ppm levels, with an apparent fluoride binding constant higher than 10(3) M(-1) which is unprecedented for boronic acid sensors in water.
Methods for removing contaminants from algal oil
Lupton, Francis Stephen
2016-09-27
Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.
[Allelopathy of grape root aqueous extracts].
Li, Kun; Guo, Xiu-wu; Guo, Yin-shan; Li, Cheng-xiang; Xie, Hong-gang; Hu, Xi-xi; Zhang, Li-heng; Sun, Ying-ni
2010-07-01
Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.
Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R
2016-04-15
The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aqueous Alteration on Mars: Evidence from Landed Missions
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, Richard V.; Clark, Benton C., III; Yen, Albert S.; Gellert, Ralf
2015-01-01
Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been “extensively” altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale crater’s Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planum’s sulfate-rich sedimentary deposit containing jarosite is the most “famous” acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev crater’s Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale crater’s Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly resulting in large amounts of short-range ordered materials and little physical separation of primary and secondary materials). Most of the aqueous alteration appears to have occurred early in the planet’s history; however, minor aqueous alteration may be occurring at the surface today (e.g., thin films of water forming carbonates akin to those discovered by Phoenix).
Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.
The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL.« less
NASA Astrophysics Data System (ADS)
Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.
2012-11-01
Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.
The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds
NASA Astrophysics Data System (ADS)
Tuckermann, Rudolf; Cammenga, Heiko K.
The surface tensions of aqueous solutions of levoglucosan, 3-hydroxybutanoic acid, 3-hydroxybenzoic acid, azelaic acid, pinonic acid, and humic acid have been measured. These compounds are suggested as model substances for the water-soluble organic compounds (WSOC) in atmospheric aerosols and droplets which may play an important role in the aerosol cycle because of their surface-active potentials. The reductions in surface tension induced by single and mixed WSOC in aqueous solution of pure water is remarkable. However, the results of this investigation cannot explain the strong reduction in surface tension in real cloud and fog water samples at concentrations of WSOC below 1 mg/mL.
Thomas, Daniel A; Coggon, Matthew M; Lignell, Hanna; Schilling, Katherine A; Zhang, Xuan; Schwantes, Rebecca H; Flagan, Richard C; Seinfeld, John H; Beauchamp, J L
2016-11-15
The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.
Preparing polymeric matrix composites using an aqueous slurry technique
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)
1993-01-01
An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Yamagiwa, Katsuya; Hirabayashi, Izumi; Suzuki, Katsumi; Tanaka, Shoji
2001-07-01
Ultrahigh-Jc YBa2Cu3O7-x (YBCO) films have been successfully fabricated by the metalorganic deposition method using a trifluoroacetate coating solution which is prepared by a newly developed purification technique, the solvent-into-gel (SIG) method. The prepared pure coating solution has less than 0.25% impurities and has a wide flexibility in process conditions to obtain high-Jc YBCO film. Using this feature, we have successfully formed 50 mm diameter YBCO films, which have a critical current density over 10 MA cm-2 (77 K, 0 T) on LaAlO3 single crystalline substrates.
Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents.
Okuno, Y
1997-02-01
The Baeyer-Villiger reaction of p-anisaldehyde with peroxyacetic acid in nonpolar solvents to give p-anisylformate was examined on the basis of ab initio molecular orbital calculations. To explain the experimental observations, the free-energy change was evaluated for each case in the absence and in the presence of an acid catalyst. It was found that, without catalysts, the rate-determining step corresponds to the carbonyl addition of peroxyacetic acid to p-anisaldehyde and the reaction hardly occurs. Acetic acid was found to catalyze the carbonyl addition and change the rate-determining step from the carbonyl addition to the migration of the carbonyl-adduct intermediate. Trifluoroacetic acid was observed to catalyze both the carbonyl addition and migration, and the carbonyl addition was demonstrated to be a rate-determining step. The results provided a convincing explanation of the complex kinetics seen experimentally. Further calculations were performed for the reaction of benzaldehyde with peroxyacetic acid to give phenylformate. Migratory aptitude was found to depend on the catalyst. Isotope effects were also investigated, and the exceptional isotope effect observed experimentally was shown to be due to the rate-determining carbonyl addition caused by autocatalysis. It is concluded that the mechanism of the reaction varies with catalysis or substituent effects. Copyright © 1997 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
KINETIC ASPECTS OF CATION-ENHANCED AGGREGATION IN AQUEOUS HUMIC ACIDS. (R822832)
The cation-enhanced formation of hydrophobic domains in aqueous humic acids has been shown to be a slow process, consistent with the evolution and disintegration of humic acid configurations over periods lasting from days to weeks. After the addition of a magnesium salt to a humi...
Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...
CESIUM RECOVERY FROM AQUEOUS SOLUTIONS
Goodall, C.A.
1960-09-13
A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.
Karraker, D.G.
1959-07-14
A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.
NASA Astrophysics Data System (ADS)
McAlister, Jason A.; Kettler, Richard M.
2008-01-01
Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.
METHOD OF APPLYING COPPER COATINGS TO URANIUM
Gray, A.G.
1959-07-14
A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Menchero, E.; Centeno, J.; Magni, G.
1962-03-01
The extraction of traces of Ru, Zr, Nb, Ce, and U at low concentrations (5 mg/l in aqueous solution) from nitric acid solutions using trilauryl amine (TLA) has been experimentally studied. TLA will eventually be used for final purification of plutonium. Room-temperature data on plutonium contaminant distribution between aqueous solutions of varying nitric acid concentrations and a Shellsol-T solution containing l0% TlA and 5% octyl alcohol are presented. Within the temperature and nitric acid concentration ranges tested, the extractability of uranium increased with increased acid concentrations, although acid concentration in the aqueous phase had no effect on the decontamination factorsmore » for the main fission products. (H.G.G.)« less
Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter
2010-07-02
In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously measured IP-HSCCC-ESI-MS base peak ion trace in the experimental range of m/z 50-2200 by masking stationary phase bleeding and generating a stable single solvent phase for ESI-MS/MS detection. Immediate structural data were retrieved throughout the countercurrent chromatography run containing complete MS/MS-fragmentation pattern of the separated acyl-substituted betanidin oligoglycosides. Single ion monitoring indicated clearly the base-line separation of higher concentrated acylated betacyanin components. Copyright 2010 Elsevier B.V. All rights reserved.
Hyman, H.H.; Dreher, J.L.
1959-07-01
The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.
Acid and alkali effects on the decomposition of HMX molecule: a computational study.
Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei
2011-11-03
The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).
1977-06-10
HYPOPHOSPHITE :80x I0O4 PHOSPHITE I1.8 x 10- PHOSPHATE 8.0 x 1- SODIUM SALTS: 10 mg/I 16 mad NSWC/WOL TR 77-49 TABLE 3 RECOVERY OF PHOSPHORUS IN NITRIC ACID...of the benzene extract by shaking with aqueous nitric acid resulted in nitric acid oxidation of P4 to phosphate ion. which then nassed into the...aqueous phase. The treatment was carrie out in a mechanical shaker or magnetic stirrer. The aqueous layer, containing phosphate , was isolated in a
Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David
1999-01-01
A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.
Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.
1999-03-30
A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.
Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana
USDA-ARS?s Scientific Manuscript database
Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...
USDA-ARS?s Scientific Manuscript database
Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...
Highly specific and reversible fluoride sensor based on an organic semiconductor.
Aboubakr, Hecham; Brisset, Hugues; Siri, Olivier; Raimundo, Jean-Manuel
2013-10-15
A novel sulfonamide-conjugated benzo-[2,1-b:3,4-b']bithiophene semiconductor has been designed and synthetized in order to develop a probe for specific detection of anions both in the homogeneous (solution) and heterogeneous phase. Its photophysical and electrochemical data were reported in this study. On the basis of the optical and NMR titrations analysis, the chelator was found to be highly selective for fluoride compared to others anions (Ka = 1.6 × 10(4) M(-1) in dimethyl sulfoxide (DMSO)). In addition, from an intricate sample, the novel chelator shows exceptional specificity toward fluoride and reveals a complete reversibility after addition of trifluoroacetic acid (TFA). Sensing films were obtained by electrochemical polymerization of the probe on an electrode surface, which clearly show effective detection of fluoride.
Kanazawa, Hideko; Tsubayashi, Akane; Nagata, Yoshiko; Matsushima, Yoshikazu; Mori, Chiharu; Kizu, Junko; Higaki, Megumu
2002-03-01
The chiral separation of loxoprofen was achieved on a chiral column with UV and circular dichroism (CD) detection. The good resolution of four loxoprofen stereoisomers was obtained. The column used for the chiral separation was Chiralcel OJ column (250 x 4.6 mm) using hexane-2-propanol-trifluoroacetic acid (95:5:0.1), as an eluent. The flow-rate was 1.0 ml/min and the detection was at 225 nm. In addition, CD and UV spectra were obtained by stopped flow scanning. The method allows the determination of the stereoisomers of loxoprofen in human plasma after the administration of therapeutic dose of the racemic drug, thus HPLC with CD detector is useful for the stereospecific determination of loxoprofen products in biological samples.
Lu, Weidong; Alam, Md Asraful; Pan, Ying; Wu, Jingcheng; Wang, Zhongming; Yuan, Zhenhong
2016-10-01
The biomass of Chlorella sp. was pretreated with three different aqueous deep eutectic solvents (aDESs), i.e. aqueous choline chloride-oxalic acid (aCh-O), aqueous choline chloride-ethylene glycol (aCh-EG) and aqueous urea-acetamide (aU-A). The effect of aDESs pretreatment of microalgae biomass was evaluated in terms of lipid recovery rate, total carbohydrate content, fatty acid composition, and thermal chemical behavior of biomass. Results indicated that, lipid recovery rate was increased from 52.03% of untreated biomass to 80.90%, 66.92%, and 75.26% of the biomass treated by aCh-O, aCh-EG and aU-A, respectively. However, there were no major changes observed in fatty acid profiles of both untreated and treated biomass, specifically palmitic acid, palmitoleic acid and stearic acid under various pretreatments. Furthermore, characterizations of untreated and treated biomass were carried out using Fourier transform infrared (FTIR), thermogravimetry analysis (TGA) and scanning electron microscope (SEM) to understand the enhanced lipids recovery. Copyright © 2016. Published by Elsevier Ltd.
Photochemistry of aqueous pyruvic acid
Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica
2013-01-01
The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751
Chao, Che-Yi; Yin, Mei-Chin
2009-03-01
The antibacterial effects of roselle calyx aqueous and ethanol extracts and protocatechuic acid against food spoilage bacteria Salmonella typhimurium DT104, Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus were examined. Minimal inhibitory concentrations of roselle calyx aqueous and ethanol extracts and protocatechuic acid against these bacteria were in the range of 112-144, 72-96, and 24-44 microg/mL, respectively. Protocatechuic acid content in roselle calyx aqueous and ethanol extracts was 2.8 +/- 0.7 and 11.9 +/- 1.2 mg/g, respectively. Antibacterial activity of roselle calyx ethanol extract and protocatechuic acid was not affected by heat treatments from 25 degrees to 75 degrees C and 25 degrees to 100 degrees C, respectively. After 3 days storage at 25 degrees C, the addition of roselle calyx extracts and protocatechuic acid exhibited dose-dependent inhibitory effects against test bacteria in ground beef and apple juice, in which the roselle calyx ethanol extract showed greater antibacterial effects than the aqueous extract. These data suggest that roselle calyx ethanol extract and protocatechuic acid might be potent agents as food additives to prevent contamination from these bacteria.
Wu, Jingming; Lee, Hian Kee
2006-10-15
Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.
ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS
Long, R.S.; Bailes, R.H.
1958-04-15
A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM
Vogler, S.; Beederman, M.
1961-05-01
A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.
Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers
Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.
1972-01-01
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264
Jonke, A.A.
1957-10-01
In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.
Cesium recovery from aqueous solutions
Goodhall, C. A.
1960-09-13
A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)
NASA Astrophysics Data System (ADS)
Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.
2017-10-01
We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.
NASA Astrophysics Data System (ADS)
Kabotso, Daniel Elorm Kwame
The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.
Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite
NASA Astrophysics Data System (ADS)
Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen
2018-03-01
The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.
Studies on the oxidation of hexamethylbenzene 2: Preparation of dimethylpyromellitic acid
NASA Technical Reports Server (NTRS)
Chiba, K.; Tomura, S.
1986-01-01
Hexamethylbenzene (HMB) was difficult to be oxidized with an alkaline potassium permanganate solution, since HMB was insoluble in an aqueous alkaline solution. But, when HMB was warmed with 50% nitric acid for a short time, and then treated with aqueous potassium permanganate, the reaction occurred readily and dimethylpyromellitic acid was obtained. When HMB was warmed with 50% nitric acid for 1 to 2 minutes, a yellow material was produced, which was soluble in hot aqueous potassium hydroxide, though free from carboxylic acids. It contained a little amount of bis-(nitromethyl)prehnitene and several unknown compounds. Further, the heat stability of polyimide prepared by the reaction of tetramethyldimethylpyromellitate with 4,4 prime-diaminodiphenylmethane turned out to be nearly equal to that of polyimide prepared from tetramethylpyromellitate.
Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Jasper, Justin T; Sedlak, David L; Pettersson, Curt E
2015-08-28
A method for enantiomeric separation of the three β-blocking agents atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid, a major metabolite of both metoprolol and in environmental matrices also atenolol, has been developed. By use of supercritical fluid chromatography and the polysaccharide-based Chiralpak(®) IB-3, all four compounds were simultaneously enantiomerically separated (Rs>1.5) within 8min. Detection was performed using tandem mass spectrometry, and to avoid isobaric interference between the co-eluting metoprolol and metoprolol acid, the achiral column Acquity(®) UPC(2) BEH 2-EP was attached ahead of to the chiral column. Carbon dioxide with 18% methanol containing 0.5% (v/v) of the additives trifluoroacetic acid and ammonia in a 2:1 molar ratio were used as mobile phase. A post column make-up flow (0.3mL/min) of methanol containing 0.1% (v/v) formic acid was used to enhance the positive electrospray ionization. Detection was carried out using a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode, using one transition per analyte and internal standard. The method was successfully applied for monitoring the enantiomeric fraction change over time in a laboratory scale wetland degradation study. It showed good precision, recovery, sensitivity and low effect of the sample matrix. Copyright © 2015. Published by Elsevier B.V.
Nagy, A; Szoke, B; Schally, A V
1993-01-01
A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004
Method for making an energetic material
Fox, Robert V [Idaho Falls, ID
2008-03-18
A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.
Waterflooding employing surfactants derived from metallic soaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, S.A.
1975-12-16
A waterflooding process is described in which a petroleum oil containing divalent metal soaps is contacted with an inorganic acid in order to convert the soaps to the corresponding organic acids. The organic acids thus obtained may be injected into the reservoir followed by an aqueous alkaline solution. Alternatively, the organic acids may be contacted with an aqueous solution in order to convert the acids to the corresponding surface-active monovalent salts, which may be then injected into the reservoir. (4 claims)
Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-dimensional Modeling Study
NASA Technical Reports Server (NTRS)
Kotamarthi, V. R.; Rodriguez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.
1998-01-01
Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 microg/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The anually averaged rainwater concentration of 0.12 gg/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 microg/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 microg/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.
NASA Technical Reports Server (NTRS)
Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.; Prather, Michael J.
1998-01-01
Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS[Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger. 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3 - 0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.
Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study
NASA Technical Reports Server (NTRS)
Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.
1998-01-01
Trifluoroacetic acid (TFA; CF3COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.
Ishiwata, Kiichi; Ebinuma, Ryoichi; Watanabe, Chuichi; Hayashi, Kunpei; Toyohara, Jun
2018-06-05
The aim of this study was to establish a reliable and routine method for the preparation of 4-[ 10 B]borono-2-[ 18 F]fluoro-L-phenylalanine (L-[ 18 F]FBPA) for boron neutron capture therapy-oriented diagnosis using positron emission tomography. To produce L-[ 18 F]FBPA by electrophilic fluorination of 4-[ 10 B]borono-L-phenylalanine (L-BPA) with [ 18 F]acetylhypofluorite ([ 18 F]AcOF) via [ 18 F]F 2 derived from the 20 Ne(d,α) 18 F nuclear reaction, several preparation parameters and characteristics of L-[ 18 F]FBPA were investigated, including: pre-irradiation for [ 18 F]F 2 production, the carrier F 2 content in the Ne target, L-BPA-to-F 2 ratios, separation with high-performance liquid chromatography (HPLC) using 10 different eluents, enantiomeric purity, and residual trifluoroacetic acid used as the reaction solvent by gas chromatography-mass spectrometry. The activity yields and molar activities of L-[ 18 F]FBPA (n = 38) were 1200 ± 160 MBq and 46-113 GBq/mmol, respectively, after deuteron-irradiation for 2 h. Two 5 min pre-irradiations prior to [ 18 F]F 2 production for 18 F-labeling were preferable. For L-[ 18 F]FBPA synthesis, 0.15-0.2% of carrier F 2 in Ne and L-BPA-to-F 2 ratios > 2 were preferable. HPLC separations with five of the 10 eluents provided injectable L-[ 18 F]FBPA without any further formulation processing, which resulted in a synthesis time of 32 min. Among the five eluents, 1 mM phosphate-buffered saline was the eluent of choice. The L-[ 18 F]FBPA injection was sterile and pyrogen-free, and contained very small amounts of D-enantiomer (< 0.1% of L-[ 18 F]FBPA), L-BPA (< 1% of L-FBPA), and trifluoroacetic acid (< 0.5 ppm). L-[ 18 F]FBPA injection was reliably prepared by the electrophilic fluorination of L-BPA with [ 18 F]AcOF followed by HPLC separation with 1 mM phosphate-buffered saline.
Stamatov, Stephan D; Stawinski, Jacek
2007-12-07
A trifluoroacetate-catalyzed opening of the oxirane ring of glycidyl derivatives bearing allylic acyl or alkyl functionalities with trifluoroacetic anhydride (TFAA), provides an efficient entry to configurationally homogeneous 1(3)-acyl- or 1(3)-O-alkyl-sn-glycerols. Selective introduction of tert-butyldimethylsilyl- (TBDMS), or triisopropylsilyl- (TIPS) transient protections at the terminal sites within these key intermediates secures 1(3)-acyl- or 1(3)-O-alkyl-3(1)-O-TBDMS (or TIPS)-sn-glycerols as general bifunctional precursors to 1,2(2,3)-diacyl-, 1(3)-O-alkyl-2-acyl- and 1,3-diacyl-sn-glycerols and hence triester isosters. Incorporation of a requisite acyl residue at the central carbon of the silylated synthons with a subsequent Et(3)N.3HF-promoted, direct trichloroacetylation across the siloxy system by trichloroacetic anhydride (TCAA), followed by cleavage of the trichloroacetyl group, affords the respective 1,2(2,3)-diacyl- or 1(3)-O-alkyl-2-acyl-sn-glycerols. Alternatively, a reaction sequence involving: (i) attachment of a trichloroacetyl fragment at the stereogenic C2-centre of the monosilylated glycerides; (ii) replacement of the silyl moiety by a short- or long-chain carboxylic acid residue by means of the acylating agent: tetra-n-butylammonium bromide (TBABr)-carboxylic acid anhydride (CAA)-trimethylsilyl bromide (TMSBr); and (iii) removal of the trichloroacetyl replacement, provides pure 1,3-diacyl-sn-glycerols. The TBABr-CAA-TMSBr reagent system allows also a one-step conversion of 1,2-diacylglycerol silyl ethers into homochiral triglycerides with predefined asymmetry and degree of unsaturation. These compounds can also be accessed via a two-step one-pot approach where the trichloroacetyl derivatives of 1,2(2,3)- or 1,3-diacyl-sn-glycerols serve as triester building blocks for establishing the third ester bond at preselected C3(1)- or C2-positions within the glycerol skeleton at the very last synthetic stage. In all instances, the target compounds were produced under mild conditions, in high enantiomeric purity, and in practically quantitative yields.
Photolysis of α-KETO Acids in Model Atmospheric Water
NASA Astrophysics Data System (ADS)
Eugene, A. J.; Guzman, M. I.
2017-12-01
Recent work has reported the potential of aqueous-phase photochemistry to promote secondary organic aerosol (SOA) formation. New aqueous photochemical SOA sources may contribute to bridging the gap between field measurements of SOA and models of SOA formation. The ubiquitous α-ketocarboxylic acids pyruvic and glyoxylic acid are known products of the atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) as well as of biogenic volatile organic compounds (VOCs). The combination of a carbonyl chromophore (absorbing at wavelengths λ ≥ 300 nm) and hydrophilic functional groups makes these acids likely candidates for forming aqueous SOA by direct sunlight photolysis. We use a variety of analytical techniques including: 2,4-dinitrophenylhydrazine (DNPH) derivatization; ultra-high performance liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry;1H and 13C NMR; and 13C gCOSY NMR to probe the kinetics and mechanisms of the direct photolysis of model solutions of pyruvic acid and glyoxylic acid. The results indicate that despite the structural similarity between the two acids, they each react via very different primary photochemical pathways. Pyruvic acid undergoes a proton-coupled electron transfer (PCET) mechanism with radical recombination, resulting in CO2 and 6-8 carbon organic acids. In contrast, glyoxylic acid primarily undergoes α-cleavage to generate CO, CO2, and glyoxal which is a key species in SOA formation. This work demonstrates that aqueous photolysis is a very competitive atmospheric sink for both pyruvic and glyoxylic acid, indicating that these photoreactions are capable of contributing substantially to SOA formation.
Polymerization of beta-amino acids in aqueous solution
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.
Fate of 2,4,6-Trinitrotoluene in a Simulated Compost System
1994-09-01
to the NaOH solution. The insoluble material remaining after the NaOH fractionation con- tained the humin fraction as well as remaining cellulose ...insoluble) (solb) HUMIN + CELLULOSE MIBK (insoluble) (MIBK) (aqueous) ICELLULOSE HUMIN HUMIC ACID + FULVIC ACID +HCI to pH 1 (insoLuble) (soluble...0.5 N NaOH (insoluble) (soluble) HUMIN+ CELLULOSE • MIBK (insoluble) (MIBK) (aqueous) CELLULOSE HUMIN HUMIC ACID + FULVIC ACID + HUMIN +HCl to pH 1
NASA Astrophysics Data System (ADS)
Ershov, Boris G.; Panich, Nadezhda M.
2018-01-01
The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).
Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu
2011-07-28
By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society
Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki
2006-06-01
Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.
Preparation and Identification of Benzoic Acids and Benzamides: An Organic "Unknown" Lab
NASA Astrophysics Data System (ADS)
Taber, Douglass F.; Nelson, Jade D.; Northrop, John P.
1999-06-01
The reaction of an unknown substituted benzene derivative (illustrated by toluene) with oxalyl chloride and aluminum chloride gives the acid chloride. Hydrolysis of the acid chloride gives the acid, and reaction of the acid with concentrated aqueous ammonia gives the benzamide.

Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation
NASA Astrophysics Data System (ADS)
Liu, Yuankun; Hu, Jun; Wang, Jianlong
2014-03-01
The radiation-induced degradation of sulfamethazine (SMT) was carried out by gamma irradiation. SMT with initial concentration of 20 mg/L was irradiated in the presence of 0, 0.1, 0.2, 0.4 and 0.6 mM extra Fe2+. The results showed that ferrous ion (Fe2+) could enhance the degradation of SMT by gamma irradiation in aqueous solution. SMT could be almost completely removed at 1 kGy without extra Fe2+, however, TOC removal efficiency was less than 10%. Several intermediate products, such as 4,6-dimethylpyrimidin-2-amine, 4-aminobenzenesulfonic acid, 4-nitrophenol 4-nitrobenzenesulfonic acid, 2-amino-6-methylpyrimidine-4-carboxylic acid, and 4-amino-N-carbamimidoyl-benzenesulfonamide and formic acid, acetic acid, and sulfate were identified. Possible pathway of SMT degradation in aqueous solution was tentatively proposed.
Ellis, D A; Martin, J W; Muir, D C; Mabury, S A
2000-02-15
This investigation was carried out to evaluate 19F NMR as an analytical tool for the measurement of trifluoroacetic acid (TFA) and other fluorinated acids in the aquatic environment. A method based upon strong anionic exchange (SAX) chromatography was also optimized for the concentration of the fluoro acids prior to NMR analysis. Extraction of the analyte from the SAX column was carried out directly in the NMR solvent in the presence of the strong organic base, DBU. The method allowed the analysis of the acid without any prior cleanup steps being involved. Optimal NMR sensitivity based upon T1 relaxation times was investigated for seven fluorinated compounds in four different NMR solvents. The use of the relaxation agent chromium acetylacetonate, Cr(acac)3, within these solvent systems was also evaluated. Results show that the optimal NMR solvent differs for each fluorinated analyte. Cr(acac)3 was shown to have pronounced effects on the limits of detection of the analyte. Generally, the optimal sensitivity condition appears to be methanol-d4/2M DBU in the presence of 4 mg/mL of Cr-(acac)3. The method was validated through spike and recovery for five fluoro acids from environmentally relevant waters. Results are presented for the analysis of TFA in Toronto rainwater, which ranged from < 16 to 850 ng/L. The NMR results were confirmed by GC-MS selected-ion monitoring of the fluoroanalide derivative.
Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao
2014-12-01
Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2018-01-01
The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions ( h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.
Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1988-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
Chen, Liang; Xin, Xiulan; Lan, Rong; Yuan, Qipeng; Wang, Xiaojie; Li, Ye
2014-01-01
Blue honeysuckle fruits are rich in anthocyanins with many beneficial effects such as reduction of the risk of cardiovascular diseases, diabetes and cancers. High-speed counter-current chromatography (HSCCC) was used for the separation of anthocyanin on a preparative scale from blue honeysuckle fruit crude extract with a biphasic solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (2:2:1:5:0.01, v/v) for the first time in this paper. Each injection of 100 mg crude extract yielded 22.8 mg of cyanidin 3-glucoside (C3G) at 98.1% purity. The compound was identified by means of electro-spray ionisation mass (ESI/MS) and (1)H and (13)C nuclear magnetic resonance (NMR) spectra. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interaction between chlorhexidine digluconate and EDTA.
Rasimick, Brian J; Nekich, Michelle; Hladek, Megan M; Musikant, Barry L; Deutsch, Allan S
2008-12-01
The combination of chlorhexidine and EDTA produces a white precipitate. The aim of this study was to determine if the precipitate involves the chemical degradation of chlorhexidine. The precipitate was produced and redissolved in a known amount of dilute trifluoroacetic acid. The amount of chlorhexidine and EDTA present in the dissolved precipitate was determined by reverse-phase high performance liquid chromatography (HPLC) with ultraviolet detection at 288 nm. More than 90% of the precipitate's mass was found to be EDTA or chlorhexidine. The remainder is suspected to be water, gluconate, and sodium. Parachloroaniline, a potentially carcinogenic decomposition product of chlorhexidine, was not detected in the precipitate (the limit of detection was 1%). The molar ratio of chlorhexidine to EDTA in the precipitate was about 1.6 to 1. Based on the results, chlorhexidine forms a salt with EDTA rather than undergoing a chemical reaction.
Method for producing oxygen from lunar materials
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
1993-01-01
This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.
Solvent and process for recovery of hydroxide from aqueous mixtures
Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.
2001-01-01
Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.
Superlubricity of a Mixed Aqueous Solution
NASA Astrophysics Data System (ADS)
Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu
2011-05-01
A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction
Sarker, Satya Ranjan; Hokama, Ryosuke; Takeoka, Shinji
2014-01-06
An amino acid-based cationic lipid having a TFA counterion (trifluoroacetic acid counterion) in the lysine headgroup was used to deliver functional proteins into human cervical cancer cells, HeLa, in the presence of serum. Proteins used in the study were fluorescein isothiocyanate (FITC) labeled bovine serum albumin, mouse anti-F actin antibody [NH3], and goat anti mouse IgG conjugated with FITC. The formation of liposome/protein complexes was confirmed using native polyacrylamide gel electrophoresis. Furthermore, the complexes were characterized in terms of their size and zeta potential at different pH values and found to be responsive to changes in pH. The highest delivery efficiency of the liposome/albumin complexes was 99% at 37 °C. The liposomes effectively delivered albumin and antibodies as confirmed by confocal laser scanning microscopy (CLSM). Inhibition studies showed that the cellular uptake mechanism of the complexes was via caveolae-mediated endocytosis, and the proteins were subsequently released from either the early endosomes or the caveosomes as suggested by CLSM. Thus, lysine-based cationic liposomes can be a useful tool for intracellular protein delivery.
Indra, D; Ramalingam, K; Babu, Mary
2005-09-01
Collagenase (matrix metalloproteinase-1, EC:3.4.24.7) was isolated from the hepatopancreas of Achatina fulica and characterized for its enzymatic activity and immunological properties. Procollagenase was isolated using ammonium sulphate precipitation and gel filtration, followed by purification by reverse-phase high performance liquid chromatography in the presence of trifluoroacetic acid and by dialysis in neutral buffer. In the presence of SDS and beta-mercaptoethanol, the procollagenase resolved into two subunits with molecular masses of 63 and 28 kDa, respectively. The 63 kDa fragment retained its ability to bind and degrade gelatin, but the 28 kDa was inactive. Analysis by 2D gel electrophoresis revealed that the 63 kDa fragment was basic (pIs 7.6, 7.8 and 8.15), while the 28 kDa fragment was acidic (pI 4.7 and 5.1). Western blot analysis confirmed the identity of collagenase, as only matrix metalloproteinase-1 rabbit antibodies against human matrix metalloproteinase-1 (N-terminal region) recognized both the isolated procollagenase and the 63 kDa fragment.
Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings
NASA Astrophysics Data System (ADS)
Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.
2016-06-01
The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.
49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...
49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...
49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...
49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...
49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...
Process for the extraction of technetium from uranium
Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.
2010-12-21
A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.
Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj
2012-06-15
Novel pentacenequinone derivative 3 has been synthesized using the Suzuki-Miyaura coupling protocol which forms fluorescent nanoaggregates in aqueous media due to its aggregation-induced emission enhancement attributes and selectively senses picric acid with a detection limit of 500 ppb.
Starch-lipid inclusion complexes for aerogel formation
USDA-ARS?s Scientific Manuscript database
Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...
Kanakis, Menelaos G; Michelakakis, Helen; Petrou, Petros; Koutsandrea, Chrysanthi; Georgalas, Ilias
2016-10-03
Maple syrup urine disease (MSUD) is a rare metabolic disorder, affecting the metabolism of branched chain amino-acids (Valine, Leukine, Isoleukine). We present a rare case of rhegmatogenous retinal detachment (RRD) in a MSUD patient. We performed amino acid analysis of aqueous humour, vitreous and serum samples obtained during surgery from a 24 year old female MSUD patient successfully operated on RRD. Serum values for a-amino-butyric acid, valine, isoleucine, leucine, tyrosine, phenylalanine, ornithine and histidine were low, while values for citrulline, methionine and lysine were borderline low, all attributed to the patient's special diet. Serum glutamate was above normal, probably due to the breakdown of glutamine to glutamate. In the aqueous and vitreous the amino acids implicated in MSUD (Valine, Leukine Isoleukine), were within normal range. Glutamate was absent in the vitreous and presented low levels in the aqueous. Glutamate has been reported to play an important role in retinal damage. Elevated glutamate levels have been reported in vitreous specimens from patients subjected to vitrectomy or buckling surgery for RRD. In MSUD, glutamate has been implicated in the pathogenesis of brain damage. Low levels of glutamate have been observed in the cerebellum of experimental MSUD animals, as well as postmortem brain tissue from a child that died of leucine intoxication. The reduction was attributed to the elevation of a-ketoisocaproic which reverses the net direction of nitrogen flow. It could be argued that this could impact on amino acid concentration in aqueous and vitreous fluids. Although no definite conclusions can be drawn by this extremely rare case, the low vitreous and aqueous levels of Glutamate is an interesting finding. Further studies are needed to provide a better insight in the role of amino acids as neurotransmitters in the human eye in health and disease.
21 CFR 522.144 - Arsenamide sodium aqueous injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...
21 CFR 522.144 - Arsenamide sodium aqueous injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...
REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS
Hyman, M.L.; Savolainen, J.E.
1960-01-01
A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.
CESIUM RECOVERY FROM AQUEOUS SOLUTIONS
Schneider, R.A.
1961-06-20
Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.
Adsorption interactions of humic acids with biocides
NASA Astrophysics Data System (ADS)
Mal'Tseva, E. V.; Ivanov, A. A.; Yudina, N. V.
2009-11-01
The chemical composition of humic acids from brown coal (Aldrich) was determined by element analysis, 13C NMR spectroscopy, and potentiometric titration. The adsorption ability of humic acids with different biocides (cyproconasol, propiconasol, tebuconasol, irgarol 1051, and DCOIT) was studied. The adsorption ability of a mixture of biocides in aqueous solutions was higher than that of the individual components. The limiting concentration of humic acids at which adsorption of biocides was maximum was determined. Adsorption constants were calculated by the Freundlich equation for each biocide in aqueous solution.
Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in
We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less
Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping
Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX
2011-03-08
Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.
Hattori, Toshiaki; Anraku, Nobuhiro; Kato, Ryo
2010-02-01
Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 microM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC. 2009 Elsevier B.V. All rights reserved.
Schierz, A; Zänker, H
2009-04-01
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.
Maswal, Masrat; Dar, Aijaz Ahmad
2013-06-15
Citral is a flavour component widely used in food and cosmetic industries, but is chemically unstable and degrades over time in aqueous solutions due to acid-catalysed and oxidative reactions leading to loss of desirable flavour. The present study reveals the effect of non-ionic micellar solutions of Brij30 and Brij35 on the extent of solubilisation and stabilisation of citral. The rate of chemical degradation of citral in acidic aqueous solutions was found to be highest, which was subsequently reduced significantly within these studied surfactant systems, suggesting protection of citral from an acidic environment once it is incorporated into the micelles. The work concludes that polyoxyethylene alkylether surfactants with lower HLB value, less dense hydrophilic corona and more hydrophobic core volume are efficient in solubilising and stabilising citral against an acidic environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of Humic Acid and Sunlight on the Generation of aqu/C60
Little is known about the effect of sunlight and natural organic matter, such as humic acid, on the aqueous suspension of fullerene C60. This knowledge gap limits our ability to determine the environmental impact of potential environmental releases of these materials. Aqueous sus...
Density and viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, L.M.; Davis, R.A.
Aqueous solutions of alkanolamines such as N-methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP) have application in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The density and kinematic viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol were determined from experiments within the temperature range 10--60 C. The composition of the alkanolamines in water ranged from 5% to 50% by mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.A.; Pogainis, B.J.
1995-11-01
Aqueous solutions of alkanolamines have applications in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1 propanol was measured over the temperature range 10--60 C. The total composition of the alkanolamines in water ranged from 30 to 50 mass %. The experimental results were interpreted in terms of Henry`s constants.
Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.
1959-03-10
A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.
Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.
1959-03-10
A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.
SOLVENT EXTRACTION PROCESS FOR PLUTONIUM
Seaborg, G.T.
1959-04-14
The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.
Understanding the Nature of Marine Aerosols and Their Effects in the Coupled Ocean-Atmosphere System
2013-09-30
into aqueous- phase mechanistic relationships leading up to oxalate production. Monocarboxylic and dicarboxylic acids exhibited contrasting spatial...ocean surface. Three case flights show that oxalate (and no other organic acid ) concentrations drop by nearly an order of magnitude relative to...aerosol- cloud interactions. REFERENCES Crahan, K. K., D. Hegg, D. S. Covert, and H. Jonsson (2004), An exploration of aqueous oxalic acid
Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.
Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu
2014-12-25
The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.
Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.
Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo
2017-06-01
Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1 at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1 K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2009-01-01
The single-component equilibrium adsorption of the tripeptide Leucyl-Leucyl-Leucine (LLL) on a high-efficiency Jupiter Proteo column (C{sub 12}) was investigated experimentally and modeled theoretically. The experimental equilibrium isotherms of LLL for adsorption on a C{sub 12} packing material from an aqueous solution of methanol (48%) and trifluoroacetic acid (0.1%) were measured by frontal analysis (FA). The FA measurements were done with two solutions, one in which the pH was controlled, the other in which it was not. Two solutions of LLL in the mobile phase were prepared (4.3 and 5.4 g/L) and their pH measured (2.94 and 2.88), respectively. The firstmore » solution was titrated with TFA to match the pH of the mobile phase (2.03), so its pH was controlled. The pH of the other solution was left uncontrolled. In both cases the isotherms could be modeled by a bi-Langmuir equation, a choice consistent with the bimodal affinity energy distribution (AED) obtained for LLL. The isotherm parameters derived from the inverse method (IM) of isotherm determination under controlled pH conditions (by fitting calculated profiles to experimental breakthrough profiles) are in a good agreement with those derived from the FA data. Under uncontrolled pH conditions, the application of IM suggests the coexistence of two different adsorption mechanisms. According to the isotherm parameters found by these three methods (FA, AED and IM), the C{sub 12}-bonded silica can adsorb around 500 and 70 g/L of LLL under controlled and uncontrolled pH conditions, respectively. The adsorption of LLL on the C{sub 12} material strongly depends on the pH of the mobile phase and on the quantity of TFA added, which plays the role of an ion-pairing agent.« less
Shi, Yan
2014-02-01
Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.
Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua
2007-01-01
An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.
Flieger, J
2010-01-22
The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of beta-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the beta-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the beta-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic beta-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log k(w) values (extrapolated retention to pure water) were correlated with the molecular (log P(o/w)) and apparent (log P(app)) octanol-water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity. Copyright 2009 Elsevier B.V. All rights reserved.
Šedo, Ondrej; Nemec, Alexandr; Křížová, Lenka; Kačalová, Magdaléna; Zdráhal, Zbyněk
2013-12-01
MALDI-TOF MS is currently becoming the method of choice for rapid identification of bacterial species in routine diagnostics. Yet, this method suffers from the inability to differentiate reliably between some closely related bacterial species including those of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex, namely A. baumannii and Acinetobacter nosocomialis. In the present study, we evaluated a protocol which was different from that used in the Bruker Daltonics identification system (MALDI BioTyper) to improve species identification using a taxonomically precisely defined set of 105 strains representing the four validly named species of the ACB complex. The novel protocol is based on the change in matrix composition from alpha-cyano-4-hydroxycinnamic acid (saturated solution in water:acetonitrile:trifluoroacetic acid, 47.5:50:2.5, v/v) to ferulic acid (12.5mgml(-1) solution in water:acetonitrile:formic acid 50:33:17, v/v), while the other steps of sample processing remain unchanged. Compared to the standard protocol, the novel one extended the range of detected compounds towards higher molecular weight, produced signals with better mass resolution, and allowed the detection of species-specific signals. As a result, differentiation of A. nosocomialis and A. baumannii strains by cluster analysis was improved and 13 A. nosocomialis strains, assigned erroneously or ambiguously by using the standard protocol, were correctly identified. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Jing; Zhi, Guorui; Yu, Zhiqiang; Nie, Peng; Gligorovski, Sasho; Zhang, Yuzhe; Zhu, Like; Guo, Xixiang; Li, Pei; He, Tan; He, Youjiang; Sun, Jianzhong; Zhang, Yang
2018-07-01
Water soluble organic carbon (WSOC) can significantly influence the aerosol optical properties and the aqueous phase chemistry in cloudwater, fogwater and aerosol liquid water. Here, we examine how the changing pH (in acidic range) affects the absorption spectra of aqueous extracts from field biomass burning aerosols, under dark conditions and in presence of simulated sunlight illumination. The observation under dark conditions indicates that pH variation from 2 to 5 induces significantly enhanced light absorbance in the wavelength ranges of 235-270 nm and 300-550 nm, whereas the light absorbance decreased in the range of 270-300 nm, which might be partially ascribed to the deprotonation of carboxylic acids and phenols. During the extract photolysis, light absorption exhibits photo-bleaching below 380 nm and photo-enhancement above 380 nm, indicating that at acidic levels (pH = 2-5), the particle extracts could undergo a significant composition evolution leading to a modification of absorptive properties. Meanwhile, after 12 h-photolysis, the acidity ([H+]) normalized by WSOC concentration in aqueous extracts ([WSOCae]) increased with a variation of Δ[H+]/[WSOCae]=(3.7 ± 0.7) × 10-7 mol mgC-1 (mean ± standard deviation), suggesting the formation of new acidic substances. Although these findings were acquired in aqueous solutions more relevant to cloud and fog water, the similar evolution likely occurs in wetted aerosols. This calls more attention to the effect of acidity on the wetted aerosols in order to better estimate the aerosol radiative forcing.
Geomorphic and Aqueous Chemistry of a Portion of the Upper Rio Tinto System, Spain
NASA Technical Reports Server (NTRS)
Osburn, M. R.; Fernandez-Remolar, D. C.; Arvidson, R. E.; Morris, R. V.; Ming, D.; Prieto-Ballesteros, O.; Amils, R.; Stein, T. C.; Heil-Chapdelaine, V.; Friedlander, L. R.;
2007-01-01
Observations from the two Mars rovers, Spirit and Opportunity, combined with discoveries of extensive hydrated sulfate deposits from OMEGA and CRISM show that aqueous deposition and alteration involving acidic systems and sulfate deposition has been a key contributor to the martian geologic record. Rio Tinto, Spain, provides a process model for formation of sulfates on Mars by evaporation of acidic waters within shallow fluvial pools, particularly during dry seasons. We present results from a detailed investigation of an upper portion of the Rio Tinto, focusing on geomorphology, clastic sediment transport, and acidic aqueous processes. We also lay out lessons-learned for under-standing sulfate formation and alteration on Mars.
REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE
Healy, T.V.
1958-05-20
A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.
Fe(II) Oxidation and Sources of Acidity on Mars
NASA Technical Reports Server (NTRS)
Niles, P. B.; Peretyazkho, T. S.; Sutter, B.
2017-01-01
There is an apparent paradox be-tween the evidence that aqueous environments on Mars were predominantly acidic, and the fact that Mars is predominantly a basaltic (and olivine-rich) planet. The problem being that basalt and olivine will act to neutralize acidic solutions they come into contact with, and that there is a lot more basaltic crust on Mars than water or acid. This is especially true if there is an appreciable amount of water available to bring the acid in contact with the basaltic crust. Several hypotheses for ancient mar-tian environments call on long lived groundwater and aqueous systems.
SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION
Bohlmann, E.G.
1959-07-28
A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.
NASA Astrophysics Data System (ADS)
Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David
2018-06-01
In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.
NASA Astrophysics Data System (ADS)
Tilgner, A.; Herrmann, H.
2010-12-01
Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.
NASA Astrophysics Data System (ADS)
Guerra, Raul J.; Lezama, Jesus; Cordova-Sintjago, Tania; Chuchani, Gabriel
2018-05-01
The mechanisms of gas-phase elimination kinetics of 2,2-dimethoxypropane in the presence of hydrogen chloride, trifluoroacetic acid and acetic acid were studied using Moller Plesset, ab initio combined method Complete Basis Set (CBS)-QB3 and various density functional theory methods with 6-311G(d,p) and 6-311++G(d,p) basis sets. The M06-2X/6-311++G(d,p) method provided reasonable agreement with the experimental enthalpy and energy of activation. Formation of 2-methoxypropene and methanol products occurs through six-membered cyclic ring transition state (TS) structure. The TS was characterised by single imaginary frequency, and confirmed through intrinsic reaction coordinate (IRC) calculations. The IRC calculations suggest the development of a van der Waal complex between the 2, 2-dimethoxy propane and the acid catalyst, leading to the TS formation. The process of decomposition in the absence of the acid catalyst requires much higher temperature with an energy of activation above 200 kJ/mol. This fact appears to be a consequence of a four-membered cyclic TS-type of mechanism in the non-catalysed reaction. Structural parameters, analyses of natural bond orbital charges and bond orders of the acid-catalysed elimination reactions in this study suggest that the polarisation of the C-O bond, in the direction Cδ+-Oδ-, is rate-determining in the TS. These reactions are non-synchronous concerted polar in nature.
Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W
2004-01-01
Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.
NASA Astrophysics Data System (ADS)
Zampolli, M.; Sternberg, R.; Szopa, C.; Pietrogrande, M. C.; Buch, A.; Dondi, F.; Raulin, F.
The search for optical activity in extraterrestrial sample is an important key for the study of the origin of life With this aim detection of chemical biomarkers i e of organic molecules which play an important role in biochemistry will be one of the main goals of future space missions To reach this goal an investigation of a GC-MS method based on the derivatization of amino acids by using a mixture of perfluorinated alcohols and perfluorinated anhydrides has been performed Amino acids are converted in their N O S -perfluoroacyl perfluoroalkyl esters in a single step procedure using different combinations of the derivatization reagents trifluoroacetic anhydride TFAA - 2 2 2-trifluoro-1-ethanol TFE TFAA-2 2 3 3 4 4 4-heptafluoro-1-butanol HFB heptafluorobutyric anhydride HFBA -HFB The obtained derivatives are analyzed using two different chiral columns a Chirasil-L-Val and a gammat cyclodextrin Rt- gamma -DEXsa stationary phases which show different and complementary enantiomeric selectivity The mass spectra of the derivatized compounds are studied and mass fragmentation patterns are proposed significant fragment ions can be identified to detect amino acid derivatives The obtained results are compared in terms of the enantiomeric separation achieved and mass spectrometric response Linearity studies and the measurement of the limit of detection LOD prove that the proposed method is suitable for a quantitative determination of several amino acids enantiomers 1 The use of a PTV Programmed Temperature Vaporiser
Rossi, Fanny; Jullian, Valérie; Pawlowiez, Ralph; Kumar-Roiné, Shilpa; Haddad, Mohamed; Darius, H Taiana; Gaertner-Mazouni, Nabila; Chinain, Mireille; Laurent, Dominique
2012-08-30
Senescent leaves of Heliotropium foertherianum Diane & Hilger (Boraginaceae) are traditionally used in the Pacific region to treat Ciguatera Fish Poisoning. This plant contains rosmarinic acid that is known for its multiple biological activities. In the present study, H. foertherianum aqueous extract, rosmarinic acid and its derivatives were evaluated for their capacity to reduce the effect of ciguatoxins. Aqueous extract of H. foertherianum leaves was prepared and studied for its effects against a Pacific ciguatoxin (P-CTX-1B) in the neuroblastoma cell assay and the receptor binding assay. Rosmarinic acid and six derivatives were also evaluated by means of these bioassays. For this purpose, we have developed an improved synthetic route for caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE). Both the aqueous extract of H. foertherianum leaves and rosmarinic acid showed inhibitory activities against a Pacific ciguatoxin in the above bioassays. Among all the molecules that were evaluated, rosmarinic acid was the most active compound. These results confirm further the potential of H. foertherianum in the treatment of Ciguatera Fish Poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221
A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C
A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...
THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)
The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...
NASA Astrophysics Data System (ADS)
Tugay, A. V.; Zakordonskiy, V. P.
2006-06-01
The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.
Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes
NASA Technical Reports Server (NTRS)
Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.
2003-01-01
While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.
Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates
NASA Technical Reports Server (NTRS)
Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.
2016-01-01
Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.
Evaggelopoulou, Evaggelia N; Samanidou, Victoria F
2013-01-15
A confirmatory high pressure liquid chromatographic method for the determination of seven quinolone antibiotics in tissue of Atlantic salmon (Salmo salar L.) was developed. Ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL) and flumequine (FLU) were separated on a Perfectsil ODS-2 120 (250 mm × 4 mm, 5 μm) column by gradient elution with a mobile phase consisting of 0.1% trifluoroacetic acid (pH=1), acetonitrile and methanol at 25°C within 22 min. Analytes were monitored at 255 nm (for the determination of OXO, NAL and FLU) and 275 nm (for CIP, DAN, ENR and SAR) by means of photodiode array detector. Examined quinolones were isolated from salmon tissue by extraction with citrate buffer solution (pH=4.7) and purified by solid phase extraction using Oasis HLB (200mg/6 mL) cartridges. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity according to the European Union Decision 2002/657/EC. The accuracy of the method was additionally proved by its application to certified reference material of salmon tissue (BCR® 725). Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng
2018-01-07
A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.
RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS
Elson, R.E.
1959-07-14
The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.
NASA Astrophysics Data System (ADS)
Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho
2008-06-01
The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less
Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Migliardo, F.; Magazù, S.; Migliardo, P.
2001-07-01
Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.
Schubert, Birthe; Oberacher, Herbert
2011-06-03
In this study the impact of solvent conditions on the performance of μLC/MS for the analysis of basic drugs was investigated. Our aim was to find experimental conditions that enable high-performance chromatographic separation particularly at overloading conditions paired with a minimal loss of mass spectrometric detection sensitivity. A focus was put on the evaluation of the usability of different kinds of acidic modifiers (acetic acid (HOAc), formic acid (FA), methansulfonic acid (CH₃SO₃H), trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)). The test mixture consisted of eleven compounds (bunitrolol, caffeine, cocaine, codeine, diazepam, doxepin, haloperidol, 3,4-methylendioxyamphetamine, morphine, nicotine, and zolpidem). Best chromatographic performance was obtained with the perfluorinated acids. Particularly, 0.010-0.050% HFBA (v/v) was found to represent a good compromise in terms of chromatographic performance and mass spectrometric detection sensitivity. Compared to HOAc, on average a 50% reduction of the peak widths was observed. The use of HFBA was particularly advantageous for polar compounds such as nicotine; only with such a hydrophobic ion-pairing reagent chromatographic retention of nicotine was observed. Best mass spectrometric performance was obtained with HOAc and FA. Loss of detection sensitivity induced by HFBA, however, was moderate and ranged from 0 to 40%, which clearly demonstrates that improved chromatographic performance is able to compensate to a large extent the negative effect of reduced ionization efficiency on detection sensitivity. Applications of μLC/MS for the qualitative and quantitative analysis of clinical and forensic toxicological samples are presented. Copyright © 2011 Elsevier B.V. All rights reserved.
Ai, Guomin; Sun, Tong; Dong, Xiuzhu
2014-08-15
Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.
Stereoselective Syntheses of Soman Analog
1993-04-28
only one pseudorotatomer cycle exists. Surprisingly. la-f are hydrolytically stable in the absence of acid ; phosphorane lb, for example, remained...unchanged in CDCl3 for at least 2 weeks even in the presence of water or 0.1 N NaOH at room temperature. However, la-f are extremely labile to aqueous acids ...1 and 2 are hydrolytically stable in neutral and basic conditions, but extremely labile to aqueous acids : they remained unchanged for at least 3 days
Effect of Acidity of a Medium on Riboflavin Photodestruction
NASA Astrophysics Data System (ADS)
Astanov, S. Kh.; Turdiev, M.; Sharipov, M. Z.; Kurtaliev, É. N.; Nizomov, N. N.
2016-03-01
Effect of acidity of a medium on the spectroscopic characteristics of riboflavin aqueous solutions is investigated by the method of fluorescent and absorption spectroscopy. Significant deformation of the electronic spectra of riboflavin aqueous solutions irradiated with unfiltered light of a PRK-2 lamp is observed. It is established that riboflavin photostability in an acid medium is about twice as much as the photostability in a neutral medium, which is caused by the formation of a protonated species.
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
NASA Astrophysics Data System (ADS)
Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick
2018-02-01
The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.
Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A
2014-03-14
Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.
Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak
2016-03-01
Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Lingyun; Fang, Guipo; Cao, Derong
2014-11-01
A novel BODIPY-based probe 1 was designed and synthesized as a selective fluorescent and colorimetric chemosensor for fluoride. The spectral responses of 1 to fluoride in acetonitrile were studied: an approximately 118 nm red shift in absorption and 'turn-off' emission response was observed. The striking pink to indigo change in ambient light was thought to be due to the deprotonation of the phenol moiety by way of O-H · · · F hydrogen bonding interactions. Interestingly, when the nonfluorescent 1-F(-) solution treated with trifluoroacetic acid (TFA) resulted in color change from indigo to pink and a significant enhancement of fluorescence intensity (10-fold). Furthermore, the reversibility and reusability of probe 1 for the detection of F(-) ion was tested for four cycles indicating the probe 1 could be used in reversible manner.
Aqueous Alteration on Mars. Chapter 23
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.
2007-01-01
Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).
Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...
Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana
USDA-ARS?s Scientific Manuscript database
Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...
Selective extraction of metal ions with polymeric extractants by ion exchange/redox
Alexandratos, Spiro D.
1987-01-01
The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.
USDA-ARS?s Scientific Manuscript database
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...
Yagyu, Daisuke; Ohishi, Tetsuo; Igarashi, Takeshi; Okumura, Yoshikuni; Nakajo, Tetsuo; Mori, Yuichiro; Kobayashi, Shū
2013-03-01
We have developed a direct esterification of aqueous acetic acid with ethanol (molar ratio=1:1) catalyzed by polystyrene-supported or homogeneous sulfonic acids toward the recovery of acetic acid from wastewater in chemical plants. The equilibrium yield was significantly increased by the addition of toluene, which had a high ability to extract ethyl acetate from the aqueous phase. It was shown that low-loading and alkylated polystyrene-supported sulfonic acid efficiently accelerated the reaction. These results suggest that the construction of hydrophobic reaction environments in water was critical in improving the chemical yield. Addition of inorganic salts was also effective for the reaction under not only biphasic conditions (toluene-water) but also toluene-free conditions, because the mutual solubility of ethyl acetate and water was suppressed by the salting-out effect. Among the tested salts, CaCl(2) was found to be the most suitable for this reaction system. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skavdahl, R.E.; Mason, E.A.
1962-06-01
An investigation of the solvent extraction characteristics of the nitro and nitrato complexes of nitrosylruthenium in nitric acid- sodium nitrate aqueous media was conducted. As the organic extractant phase, a solution of trilaurylamine (TLA) in toluene was utilized. In addition to the usual process parameter variation tyne of experiment, a rapid dilution type of experiment was used extensively to determine qualitative and semiquantitative results regarding the degree of extractability and concentration of the more extractable species of the nitrato complexes of nitrosylruthenium. It was found that the acids of the tetra-nitrato and pentanitrato complexes were the more extractable species formore » that set of complexes and that the acid of the penta-nitrato complex was the more extractable of the two. It was observed that for freshly prepared solutions, the dinitro complex of nitrosylruthenium was much more extractable than the gross nitrato complexes solutions. Nitro complexes in general, and the dinitro complex in particular, may be the controlling agent in ruthenium decontamination of spent nuclear fuel processed by solvent extraction methods. The experimental results from both sets of complexes could be more meaningfully correlated on the basis of unbound nitric acid concentration in the organic phase than on the basis of nitric acid concentration in the aqueous phase. The extraction of nitric acid by TLA from nitric acid-sodium nitrate aqueous solutions was investigated and the results correlated on the basis of activity of the undissociated nitric acid in the aqueous phase. (auth)« less
Ng, Choong Hey; Yang, Kun-Lin
2016-01-01
Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.
Chemistry of 1,1,2,2,9,9,10,10-octafluoro-[2,2]-paracyclophane: Its synthesis and reactions
NASA Astrophysics Data System (ADS)
Duan, Jian-Xin
This dissertation describes the first example of the synthesis of 1,1,2,2,9,9,10,10-octafluoro[2.2]paracyclophane (AF4) under non-high-dilution conditions. Under very mild reaction conditions, bis-p-(chlorodifluoromethyl)benzene (TFPX dichloride) and its derivatives reacted with Zn dust in N,N-dimethyl acetamide (DMA) (Zinc method) affording the corresponding AF4 and its derivatives in moderate to good yields. Purification of products was also studied and an efficient purification process was developed. A new and very cheap method for preparation of TFPX dichloride is also disclosed. Using the very cheap fluorinating reagent, anhydrous hydrogen fluoride (AHF), 1,4-bis(trichloromethyl)benezene or its derivatives were converted to TFPX and its derivatives in high yields (F/Cl exchange reaction). With the success of the Zinc method and F/Cl exchange reaction, highly pure AF4 thus can be provided to the semiconductor industry and academy research scientists in large quantity and at a very low price. Starting from AF4, numerous AF4 derivatives were synthesized using convenient reaction conditions. Reaction of AF4 with fuming nitric acid at room temperature gave mono-nitroAF4 in almost quantitative yield. Reduction of the mono-nitroAF4 with iron powder in the presence of HCl in alcoholic solvent gave the aminoAF4 in 90% yield. Via the diazonium salt intermediate, iodoAF4 was also obtained in good yield. Under similar reaction conditions, disubstituted AF4 derivatives were also prepared in good yields. Heating a mixture of AF4, trifluoroacetyl peroxide and dichloromethane gave the trifluoromethylated dimeric AF4 as a mixture of diastereomers. When these products were heated to 170--180°C in the presence of I 2, 4-trifluoromethyl-AF4 was obtained in almost 87% yield. X-ray structural analysis showed that the C-C bond connecting the two cyclophane moieties to be longer than the normal C-C bond. Kinetic studies, conducted in the presence of excess amount of hydrogen donor, showed this bond to be quite weak. Oxidation of AF4 with HIO3 in the presence of catalytic amount of H2SO4 in trifluoroacetic acid gave AF4 quinone in one step. AF4 quinone can be easily reduced to the hydroquinone by Na 2S2O4 aqueous solution.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.
2013-08-01
The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2015-03-01
Integral enthalpies of dissolution Δsol H m of L-cysteine, L-serine, and L-asparagine in aqueous solutions of 1,3-propylene glycol at organic solvent concentrations of up to 0.26 mole fraction are measured via the thermochemistry of dissolution. Standard enthalpies of dissolution (Δsol H ○) and transfer (Δtr H ○) of amino acids from water to a mixed solvent are calculated. It is found that the calculated enthalpy coefficients of pair interactions of the amino acids with polyhydric alcohol molecules have positive values. The effect the arrangement of the hydroxyl group in the structure of polyhydric alcohols has on the enthalpy of interaction of amino acids in aqueous solutions is revealed. The effect of different types of interactions in solutions and the structural features of biomolecules and cosolvents on the enthalpy of dissolution of amino acids is analyzed.
Taddeo, Vito Alessandro; Epifano, Francesco; Fiorito, Serena; Genovese, Salvatore
2016-09-10
In this paper the presence of selected prenylated and unprenylated phenylpropanoids, namely ferulic acid 1, boropinic acid 2, 4'-geranyloxyferulic acid 3, umbelliferone 4, 7-isopentenyloxycoumarin 5, and auraptene 6, have been determined in Italian raw propolis after having been extracted with different methodologies. An aqueous solution of β-cyclodextrin was the best extraction method for ferulic acid 1, treatment with indifferently EtOH or aqueous β-cyclodextrin were the most effective one for umbelliferone 4, boropinic acid 2 gave the best yields either with H2O/β-cyclodextrin or olive oil treatment or in biphasic systems, maceration with biphasic mixtures of aqueous β-cyclodextrin and olive oil was seen to be the most effective procedure for 7-isopentenyloxycoumarin 5, the only method providing significant quantities of 4'-geranyloxyferulic acid 3 was the maceration of raw propolis with olive oil, and finally auraptene 4 was best extracted with absolute EtOH. "Classic" maceration in general performed better than ultrasound-assisted one. Copyright © 2016 Elsevier B.V. All rights reserved.
Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí
2007-01-05
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.
Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shoujie; Ye, Philip; Borole, Abhijeet P
Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less
Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction
Ren, Shoujie; Ye, Philip; Borole, Abhijeet P
2017-01-05
Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Callis, C.F.; Moore, R.L.
1959-09-01
>The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.
Radiation effects on eye components
NASA Astrophysics Data System (ADS)
Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.
1999-08-01
The most important water-soluble components of the vertebrate eye (lens proteins, aqueous humor, vitreous, hyaluronic acid, ascorbic acid) have been investigated in aqueous solution, after preceding X- or UV-irradiation. Spectroscopic, chromatographic, electrophoretic, hydrodynamic and analytic techniques have been applied, to monitor several radiation damages such as destruction of aromatic and sulfur-containing amino acids, aggregation, crosslinking, dissociation, fragmentation, and partial unfolding. Various substances were found which were able to protect eye components effectively against radiation, some of them being also of medical relevance.
NASA Astrophysics Data System (ADS)
Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb
2016-09-01
Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.
Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua
2016-03-01
Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.
A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...
Hussain, Sameer; Malik, Akhtar Hussain; Afroz, Mohammad Adil; Iyer, Parameswar Krishnan
2015-04-28
Picric acid (PA) detection at parts per trillion (ppt) levels is achieved by a conjugated polyelectrolyte (PMI) in 100% aqueous media and on a solid platform using paper strips and chitosan (CS) films. The unprecedented selectivity is accomplished via combination of ground state charge transfer and resonance energy transfer (RET) facilitated by favorable electrostatic interactions.
NASA Technical Reports Server (NTRS)
Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.
2015-01-01
Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.
Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids
2018-01-01
Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles. PMID:29806009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.
1993-01-01
Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.
Bidentate organophosphorus solvent extraction process for actinide recovery and partition
Schulz, Wallace W.
1976-01-01
A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.
Syntheses and crystal structures of "unligated" copper(I) and copper(II) trifluoroacetates.
Cotton, F A; Dikarev, E V; Petrukhina, M A
2000-12-25
Two extremely unstable copper trifluoroacetates with no exogenous ligands, namely, Cu(O2CCF3) (1) and Cu(O2CCF3)2 (2), are prepared for the first time and obtained in crystalline form by deposition from the vapor phase. Their structures are determined by X-ray crystallography. The crystallographic parameters are as follows: for 1, monoclinic space group P2(1)/c, with a = 9.7937(6) A, b = 15.322(1) A, c = 12.002(1) A, beta = 106.493(9) degrees, and Z = 4; for 2, orthorhombic space group Pcca, with a = 16.911(1) A, b = 10.5063(9) A, c = 9.0357(6) A, and Z = 4. Both structures are unique among other CuI and CuII carboxylates, as well as among metal carboxylates in general. Compound 1 consists of a planar rhombus of four copper atoms with sides of 2.719(1)-2.833(1) A and trifluoroacetate ligands bridging the pairs of adjacent metal atoms alternately above and below the plane. The tetrameric units are further aggregated in a polymeric zigzag ribbon [Cu4(O2CCF3)4]infinity by virtue of intermolecular Cu...O contacts. The structure of 2 is built on cis bis-bridged dimers in which every metal atom is also connected with two copper atoms of the neighboring units. The stacking planes in this extended chain are almost perpendicular to one another. The Cu...Cu distance inside the dimer is 3.086(2) A, indicating a nonbonding interaction.
A process for the preparation of cysteine from cystine
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1989-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqeous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In a preferred embodiment the present invention provides an improved process for the preparation (regeneration) of cysteine from cystine, which includes reacting an aqueous solution of cystine at a pH of between about 9 to 13 with a reducing agent selected from hydrogen sulfide or alkali metal sulfides, sulfur dioxide, an alkali metal sulfite or mixtures thereof for a time and at a temperature effective to cleave and reduce the cystine to cysteine with subsequent recovery of the cysteine. In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Maestre, M.F.; Fish, R.H.
We report what we believe is the first example of bioorganometallic hosts, 1-4, [Cp{sup *}Rh(9-methyladenine)]{sub 3}(OTf){sub 3} (1), [Cp{sup *}Rh(Me-5`-AMP)]{sub 3} (4), being able to recognize aromatic amino acid guests L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) in aqueous media at pH 7. Results show that the molecular recognition of aromatic amino acids with bioorganometallic hosts 1-4 in aqueous solution, as studied by {sup 1}H NMR and NOE techniques, occurs predominately via a {pi}-{pi} interaction, and, in the case of L-Trp, additional electronic/hydrophobic interactions with hosts are possible. 7 refs., 1 fig., 1 tab.
NASA Astrophysics Data System (ADS)
Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.
2017-10-01
For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.
Imino Acids in the Murchison Meteorite: Evidence of Strecker Reactions
NASA Technical Reports Server (NTRS)
Lerner, N. R.; Cooper, G. W.
2003-01-01
Both alpha-amino acids and alpha-hydroxy acids occur in aqueous extracts of the Murchison carbonaceous meteorite. The Strecker-cyanohydrin reaction, the reaction of carbonyl compounds, cyanide, and ammonia to produce amino and hydroxy acids, has been proposed as a source of such organic acids in meteorites. Such syntheses are consistent with the suggestion that interstellar precursors of meteoritic organic compounds accreted on the meteorite parent body together with other ices. Subsequent internal heating of the parent body melted these ices and led to the formation of larger compounds in synthetic reactions during aqueous alteration, which probably occurred at temperatures between 273K and 298K. In the laboratory, imino acids are observed as important by-products of the Strecker synthesis.
NASA Technical Reports Server (NTRS)
Fendler, J. H.; Nome, F.; Nagyvary, J.
1975-01-01
The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.
Chemical synthesis of membrane proteins by the removable backbone modification method.
Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei
2017-12-01
Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.
Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator.
Kartha, Kalathil K; Praveen, Vakayil K; Babu, Sukumaran Santhosh; Cherumukkil, Sandeep; Ajayaghosh, Ayyappanpillai
2015-10-01
An oligo(p-phenylenevinylene) (OPV) derivative connected to pyridyl end groups through an amide linkage (OPV-Py) resulted in a multistimuli-responsive π-gelator. When compared to the corresponding OPV π-gelator terminated by a phenyl-amide (OPV-Ph), the aggregation properties of OPV-Py were found to be significantly different, leading to multistimuli gelation and other morphological properties. The pyridyl moiety in OPV-Py initially interferes with the amide H-bonded assembly and gelation, however, protonation of the pyridyl moiety with trifluoroacetic acid (TFA) facilitated the formation of amide H-bonded assembly leading to gelation, which is reversible by the addition of N,N-diisopropyethylamine (DiPEA). Interestingly, addition of Ag(+) ions to a solution of OPV-Py facilitated the formation of a metallo-supramolecular assembly leading to gelation. Surprisingly, ultrasound-induced gelation was observed when OPV-Py was mixed with a dicarboxylic acid (A1). A detailed study using different spectroscopic and microscopic experimental techniques revealed the difference in the mode of assembly in the two molecules and the multistimuli-responsive nature of the OPV-Py gelation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva
2016-08-17
The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.
The modulator driven polymorphism of Zr(IV) based metal-organic frameworks
NASA Astrophysics Data System (ADS)
Drache, Franziska; Bon, Volodymyr; Senkovska, Irena; Getzschmann, Jürgen; Kaskel, Stefan
2017-01-01
The reaction of ZrCl4 and 2,5-thiophenedicarboxylic acid (H2tdc) in the presence of trifluoroacetic acid (Htfa) as modulator results in the formation of the new metal-organic framework (MOF) named DUT-126 (DUT = Dresden University of Technology). The nature and concentration of modulators are found to be decisive synthetic parameters affecting the topology of the formed product. DUT-126 (hbr) extends the series of polymorphs differing in topology, namely DUT-67 (reo), DUT-68 (bon) and DUT-69 (bct) to four, where DUT-67 and DUT-68 show the same eight-connected secondary building units as in DUT-126. In DUT-126, linker molecules have a peculiar orientation, resulting in hbr topology, which is described for the first time in this work for MOFs. DUT-126 contains three pore types, including two micropores surrounding mesoporous channels. DUT-126 is stable against hydrolysis and features permanent porosity with a specific surface area of 1297 m2 g-1 and a total pore volume of 0.48 cm3 g-1, calculated from the nitrogen physisorption isotherm measured at 77 K. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.
Mayans, Enric; Ballano, Gema; Sendros, Javier; Font-Bardia, Merçè; Campos, J Lourdes; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos
2017-07-19
A diphenylalanine (FF) amphiphile blocked at the C terminus with a benzyl ester (OBzl) and stabilized at the N terminus with a trifluoroacetate (TFA) anion was synthetized and characterized. Aggregation of peptide molecules was studied by considering a peptide solution in an organic solvent and adding pure water, a KCl solution, or another organic solvent as co-solvent. The choice of the organic solvent and co-solvent and the solvent/co-solvent ratio allowed the mixture to be tuned by modulating the polarity, the ionic strength, and the peptide concentration. Differences in the properties of the media used to dissolve the peptides resulted in the formation of different self-assembled microstructures (e.g. fibers, branched-like structures, plates, and spherulites). Furthermore, crystals of TFA⋅FF-OBzl were obtained from the aqueous peptide solutions for X-ray diffraction analysis. The results revealed a hydrophilic core constituted by carboxylate (from TFA), ester, and amide groups, and the core was found to be surrounded by a hydrophobic crown with ten aromatic rings. This segregated organization explains the assemblies observed in the different solvent mixtures as a function of the environmental polarity, ionic strength, and peptide concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
Gao, Liang; Bu, Yuxiang
2017-05-31
In this work, we present an ab initio molecular dynamics simulation study on the interaction of an excess electron (EE) with histidine in its aqueous solution. Two different configurations of histidine (imidazole group protonated or not) are considered to reflect its different existing forms in neutral or slightly acidic surroundings. The simulation results indicate that localizations of EEs in different aqueous histidine solutions are quite different and are strongly affected by protonation of the side chain imidazole group and are thus pH-controlled. In neutral aqueous histidine solution, an EE localizes onto the carboxyl anionic group of the amino acid backbone after a relatively lengthy diffuse state, performing just like in an aliphatic amino acid solution. But in weakly acidic solution in which the side chain imidazole group is protonated, an EE undergoes a short lifetime diffuse state and finally localizes on the protonated imidazole group. We carefully examine these two different localization dynamics processes and analyze the competition between different dominating groups in their corresponding electron localization mechanisms. To explain the difference, we investigate the frontier molecular orbitals of these two systems and find that their energy levels and compositions are important to determine these differences. These findings can provide helpful information to understand the interaction mechanisms of low energy EEs with amino acids and even oligopeptides, especially with aromatic rings.
Bruce, F.R.
1962-07-24
A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)
Beyond Hydrophobicity: Aqueous Interfaces, Interactions, and Reactions
NASA Astrophysics Data System (ADS)
Perkins, Russell James
Many important chemical reactions from all branches of chemistry occur with water as a solvent. Furthermore, in environmental chemistry, biochemistry, and synthetic chemistry, key reactions occur in heterogeneous aqueous systems, where interfacial effects are particularly important. Despite the importance of aqueous environments and the tremendous amount of work done to study them, there are aspects that require further explanation and remain controversial. I have performed experimental studies to help elucidate the fundamental characteristics of aqueous systems, while examining specific phenomena across several fields. The genetic disorder phenylketonuria (PKU) can result in increased levels of the aromatic amino acid phenylalanine in human serum. Much of my work has focused on the driving forces behind partitioning of aromatic small molecules, including phenylalanine, into air-water or membrane-water interfacial regions, and the consequences of partitioning on interfacial properties. Drastically different behaviors for structurally similar aromatic molecules are observed, differences that cannot be explained by hydrophobic effects. These observations can be explained, however, through the development of a more detailed picture of interactions and partitioning, including the formation of interfacial aggregates. For phenylalanine, this partitioning appears to result in drastic changes in membrane morphology and permeability. This is a likely molecular-level cause for the damage associated with the disease state of PKU. Aqueous systems are further complicated by the reactivity of water. It often serves not only the role of a solvent, but also a reactant, a product, and/or a catalyst. I explore this reactivity using an organic molecule with relevance to environmental chemistry, zymonic acid. Zymonic acid forms spontaneously from pyruvic acid, an important atmospheric species. While zymonic acid exists as a single species in solid form when dissolved in DMSO, once in aqueous solution it quickly reacts with water and equilibrates with at least four other forms. I studied the details and kinetics of these equilibria via time-dependent NMR. Several surprising mechanistic details were uncovered, including a direct enol to geminal diol conversion and base-catalyzed lactone ring formation. The consequences of zymonic acid's behavior are investigated in the context of environmental and prebiotic chemistry.
SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION
Kuhlman, C.W. Jr.; Lang, G.P.
1961-12-19
A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)
Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra
2012-01-01
A bottleneck in crosstalk and QC research has been the quantification of diverse chemotypes in small amounts of tissue. An LC-UV method for estimating 28 selected metabolites of the regulatory network underlying growth, development, maintenance, vital functions, defense reactions, and food quality is reported. The method was based on binary gradient resolutions of the analytes in an RP C18 column. The mobile phase comprised solvent A [water+0.1% trifluoroacetic acid (TFA)] and B (acetonitrile + 0.085% TFA at a flow rate of 1 ml/min. Twenty-three metabolites (selected amino acids, coenzymes, growth regulators, phenolic antioxidant, and water-soluble vitamins) were detected at 254 nm, and four fat-soluble vitamins at 280 nm. Jasmonic acid was quantified at 210 nm. The RSDs of peak area and retention time for each metabolite were <5.8%. The calibration graphs were linear with R2 values ranging from 0.98 to 0.99. The LODs (microg/mL) were about 0.01-1.0 for 23 metabolites quantified at 254 nm, 0.1-0.2 for fat-soluble vitamins, and 0.1 for jasmonic acid. The recoveries ranged from 80 to 105%, with RSDs of 2.8 to 11.2%. The method has been satisfactorily applied for determination of 28 metabolites from Cicer arietinum (L.) and Solanum lycopersicum (L.). It could be an alternative and competitive method of choice that can cheaply and easily perform routine analysis for food quality and targeted metabolomics of chickpea and tomato in response to stressors.
NASA Astrophysics Data System (ADS)
Shock, Everetr L.; Koretsky, Carla M.
1995-04-01
Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.
NASA Astrophysics Data System (ADS)
Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus
1984-12-01
Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.
Recovering oil by injecting aqueous alkali, cosurfactant and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisberg, J.; Bielmowicz, L. J.; Thigpen, D. R.
1985-01-15
A process of recovering oil from a subterranean reservoir in which the oil is acidic but forms monovalent cation soaps of only relatively low interfacial activity when reacted with aqueous alkaline solutions, comprises displacing the oil toward a production location with a mixture of gas and cosurfactant-containing aqueous alkaline solution.
The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.
Slater, Anthony Michael
2014-10-01
Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.
The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases
NASA Astrophysics Data System (ADS)
Slater, Anthony Michael
2014-10-01
Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.
WET FLUORIDE SEPARATION METHOD
Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.
1958-11-25
The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.
Why is hydrofluoric acid a weak acid?
Ayotte, Patrick; Hébert, Martin; Marchand, Patrick
2005-11-08
The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.
Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid
NASA Astrophysics Data System (ADS)
Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.
2013-05-01
The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.
Lay, Wesley K.; Miller, Mark S.
2018-01-01
AMBER/GLYCAM and CHARMM are popular force fields for simulations of amino acids and sugars. Here we report excessively attractive amino acid-sugar interactions in both force fields, and corrections to nonbonded interactions that match experimental osmotic pressures of mixed aqueous solutions of diglycine and sucrose. The modified parameters also improve the ΔGtrans of diglycine from water to aqueous sucrose and, with AMBERff99SB/GLYCAM06, eliminate a caging effect seen in previous simulations of the protein ubiquitin with glucose. PMID:28437100
METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION
James, R.A.; Thompson, S.G.
1959-11-01
A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.
The effects of parent body processes on amino acids in carbonaceous chondrites
NASA Astrophysics Data System (ADS)
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.
2010-12-01
To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the γ- and δ-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α-aminoisobutyric acid (α-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.
The Effects of Parent Body Processes on Amino Acids in Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.
2010-01-01
To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered Cl, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultrahigh performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (C11), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from -1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the gamma- and delta-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by a-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, a-aminoisobutyric acid ((alpha-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, non-racemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.
The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C
Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.
1988-01-01
The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.
Mellouk, Zoheir; Benammar, Ilhem; Krouf, Djamil; Goudjil, Makhlouf; Okbi, Meriem; Malaisse, Willy
2017-01-01
The aim of the present study was to evaluate the total phenolic and lipid content, fatty acids profiles and in vitro antioxidant activities of aqueous and solvent extracts of the red seaweed Asparagopsis taxiformis, through six different investigations. The present study demonstrated that phenol contents (mg gallic acid/g dry weight) were highest in the aqueous and methanolic extracts, followed by the ethanolic, hydroethanolic and hydromethanolic extracts. The lowest phenol contents were identified in the three remaining extracts: Butanolic, petroleum ether and acetone extracts. Furthermore, the total lipid content of the algae powder amounted to 2.85% of dry weight. The fatty acid methyl ester profiles analysed by gas-liquid chromatography represented indicated that fatty acids comprised 91.0±0.3% of total algae lipids. The saturated to unsaturated fatty acid contents amounted to 23.2±0.1 and 67.9±0.4% respectively. C13:0 (tridecanoate), C15:0 (pentadecanoate) and C17:0 (heptadecanoate) represented 47.4% of the total saturated fatty acids. Notably, the two most abundant unsaturated fatty acids, C15:1 (pentadecenoate) and C18:2 (octadecadienoate) represented 13.4 and 11.4% respectively, of the total unsaturated fatty acid content. Furthermore, the results of the antioxidant screening performed at 1.0 mg/ml, revealed that aqueous and methanolic extracts exhibited higher inhibition against superoxide and nitric oxide radicals and excellent radical scavenging activity [with half maximal inhibitory concentration (IC50) values 5.1 and 15.0 µg/ml, respectively], demonstrating improved antioxidant behavior when compared with standard ascorbic acid (which has an IC50 value of 3.7 µg/ml). Scavenging activity of the aqueous and methanolic extracts exhibited a strong peroxidation inhibition against linoleic acid emulsion system at a concentration of 300 µg/ml in comparison to the butylated hydroxyltoluene. Although all the studied extracts exhibited ferric reducing power, the aqueous and methanolic extracts had greater hydrogen donating ability. By contrast, hydromethanolic, ethanolic, hydroethanolic, butanolic, acetone and petroleum ether extracts exhibited weak antioxidant behavior. The antioxidant activity of potent seaweed species identified in the current study means that as well as being used as a functional food, they may be developed as novel pharmaceutical compounds and may be used as anti-ageing agents. PMID:28587401
Method of repressing the precipitation of calcium fluozirconate
Newby, B.J.; Rhodes, D.W.
1973-12-25
Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)
Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.
Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F
2015-01-01
Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Norwood, D.L.; Christman, R.F.; Hatcher, P.G.
1987-01-01
The complementary techniques of solid-state 13G nuclear magnetic resonance spectroscopy and chemical degradation were utilized to examine the lignin/phenolic substructure of an isolated aquatic fulvic acid capable of producing upon aqueous chlorination a number of organohalides typically found in municipal drinking water. Results indicate that while phenolic moieties are present in the fulvic acid, they account for only a minor fraction of the total carbon. A sequential chemical degradation experiment utilizing aqueous chlorine and CuO demonstrated that the lignin/phenolic substructure was attacked by the chlorine. It is concluded that while phenolic ring rupture mechanisms appear to be important in organohalide generation, other aqueous chlorination mechanisms involving aliphatic and other types of aromatic structures should also be considered. ?? 1987 American Chemical Society.
NASA Astrophysics Data System (ADS)
Nemoto, Shimpei; Ueno, Tomonaga; Watthanaphanit, Anyarat; Hieda, Junko; Bratescu, Maria Antoaneta; Saito, Nagahiro
2017-09-01
A simple method of fabricating carboxyl-terminated multiwalled carbon nanotubes (MWCNTs) with alkyl spacers was developed to improve the dispersion quality of MWCNTs in aqueous solutions using solution plasma (SP) in a 6-aminocaproic acid solution. The formation of SP in the solution led to better dispersion of MWCNTs in aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) results indicate that a carboxyl group with an alkyl spacer can be introduced by SP treatment in the 6-aminocaproic acid solution. Sedimentation tests show that the SP-treated MWCNTs in the 6-aminocaproic acid solution retained their good dispersion quality in aqueous solutions of pHs 5, 6, and 9. The alkyl spacer plays an important role in the preservation of dispersion states particularly at pH 6.
SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF
Crandall, H.W.; Thomas, J.R.
1959-06-30
The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.
CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS
Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.
1959-12-01
A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.
Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj
2003-04-01
Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Aoshima, Yumiko; Hokama, Ryosuke; Sou, Keitaro; Sarker, Satya Ranjan; Iida, Kabuto; Nakamura, Hideki; Inoue, Takafumi; Takeoka, Shinji
2013-12-18
The delivery of specific genes into neurons offers a potent approach for treatment of diseases as well as for the study of neuronal cell biology. Here we investigated the capabilities of cationic amino acid based lipid assemblies to act as nonviral gene delivery vectors in primary cultured neurons. An arginine-based lipid, Arg-C3-Glu2C14, and a lysine-based lipid, Lys-C3-Glu2C14, with two different types of counterion, chloride ion (Cl-) and trifluoroacetic acid (TFA-), were shown to successfully mediate transfection of primary cultured neurons with plasmid DNA encoding green fluorescent protein. Among four types of lipids, we optimized their conditions such as the lipid-to-DNA ratio and the amount of pDNA and conducted a cytotoxicity assay at the same time. Overall, Arg-C3-Glu2C14 with TFA- induced a rate of transfection in primary cultured neurons higher than that of Lys-C3-Glu2C14 using an optimal weight ratio of lipid-to-plasmid DNA of 1. Moreover, it was suggested that Arg-C3-Glu2C14 with TFA- showed the optimized value higher than that of Lipofectamine2000 in experimental conditions. Thus, Arg-C3-Glu2C14 with TFA- is a promising candidate as a reliable transfection reagent for primary cultured neurons with a relatively low cytotoxicity.
2013-01-01
The delivery of specific genes into neurons offers a potent approach for treatment of diseases as well as for the study of neuronal cell biology. Here we investigated the capabilities of cationic amino acid based lipid assemblies to act as nonviral gene delivery vectors in primary cultured neurons. An arginine-based lipid, Arg-C3-Glu2C14, and a lysine-based lipid, Lys-C3-Glu2C14, with two different types of counterion, chloride ion (Cl–) and trifluoroacetic acid (TFA–), were shown to successfully mediate transfection of primary cultured neurons with plasmid DNA encoding green fluorescent protein. Among four types of lipids, we optimized their conditions such as the lipid-to-DNA ratio and the amount of pDNA and conducted a cytotoxicity assay at the same time. Overall, Arg-C3-Glu2C14 with TFA– induced a rate of transfection in primary cultured neurons higher than that of Lys-C3-Glu2C14 using an optimal weight ratio of lipid-to-plasmid DNA of 1. Moreover, it was suggested that Arg-C3-Glu2C14 with TFA– showed the optimized value higher than that of Lipofectamine2000 in experimental conditions. Thus, Arg-C3-Glu2C14 with TFA– is a promising candidate as a reliable transfection reagent for primary cultured neurons with a relatively low cytotoxicity. PMID:24087930
Duncan, M W; Smythe, G A; Clezy, P S
1985-03-01
Synthesis of deuterated (2H4)salsolinol from (2H4)dopamine via a Pictet-Spengler condensation is described. This (2H4)salsolinol is an ideal internal standard to determine picomole (ng) amounts of salsolinol (SAL) in a variety of sample types including urine, plasma, beverages and fruits. The deuterated standard is completely free of contamination by the non-deuterated species. The extraction procedure described is fast, highly efficient and does not lead to artifactual salsolinol formation even in the face of high dopamine concentrations. As well as SAL the method described allows simultaneous determination of norepinephrine (NE), dopamine (DA) and its two metabolites dihydroxyphenylacetic acid (DOPAC) and dihydroxyphenylethanol (DOPET). Each of the analytes is measured as its trifluoroacetyl derivative. Using trifluoroacetic anhydride in conjunction with trifluoroethanol allows simultaneous one-step derivatization of the acid function of DOPAC. All compounds were measured in the single ion monitoring (SIM) mode and quantified using appropriate deuterated internal standards. SAL, DA, DOPET, DOPAC and NE have been quantified in a variety of food and beverage sources. Soy sauce and dried banana have been identified as rich dietary sources of SAL. These data suggest diet should be considered a potentially important source of 'mammalian alkaloids' such as SAL, and the presence of SAL in mammalian systems is not necessarily evidence for an in vivo Pictet-Spengler condensation.
Zou, Hui; Ma, Yan; Xu, Zhenzhen; Liao, Xiaojun; Chen, Ailiang; Yang, Shuming
2018-05-01
Three anthocyanins were isolated from strawberry extract by high-speed counter-current chromatography, using a biphasic mixture of tert-butyl methyl ether, n-butanol, acetonitrile, water and trifluoroacetic acid (2.5:2.0:2.5:5.0:1.0%). The anthocyanins were identified as pelargonidin-3-rutinoside, cyanidin-3-glucoside and pelargonidin-3-glucoside with purity of 95.6%, 96.2% and 99.3% respectively. Additionally, the copigmentation reaction rates between pelargonidin-3-glucoside and phenolic acids (catechin or epicatechin) at pH 1.5 and 3.6, pressure 0.1 and 500 MPa, and temperature 60 °C were calculated. The absorbance of pelargonidin-3-glucoside at pH 3.6, with high quantity of phenolic acids was significantly increased by high pressure. The complex of pelargonidin-3-glucoside/catechin has a binding energy of 78.64 kJ/mol at pH 3.6, and 39.13 kJ/mol at pH 1.5; pelargonidin-3-glucoside/epicatechin has a binding energy of 75.34 kJ/mol at pH 1.5 and 54.47 kJ/mol at pH 3.6. The hydrogen bond and van der Waals interaction were the main forces contributing to the structures of complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method for selectively reducing plutonium values by a photochemical process
Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.
1978-01-01
The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.
Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.
Pesek, Joseph J; Matyska, Maria T
2015-07-03
The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.
Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance
NASA Technical Reports Server (NTRS)
Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.
1980-01-01
The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.
Theoretical Study of pKa Values for Trivalent Rare-Earth Metal Cations in Aqueous Solution.
Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang; Xu, Shengming; Rong, Chunying; Liu, Shubin
2018-01-18
Molecular acidity of trivalent rare-earth metal cations in aqueous solution is an important factor dedicated to the efficiency of their extraction and separation processes. In this work, the aqueous acidity of these metal ions has been quantitatively investigated using a few theoretical approaches. Our computational results expressed in terms of pK a values agree well with the tetrad effect of trivalent rare-earth ions extensively reported in the extraction and separation of these elements. Strong linear relationships have been observed between the acidity and quantum electronic descriptors such as the molecular electrostatic potential on the acidic nucleus and the sum of the valence natural atomic orbitals energies of the dissociating proton. Making use of the predicted pK a values, we have also predicted the major ionic forms of these species in the aqueous environment with different pH values, which can be employed to rationalize the behavior difference of different rare-earth metal cations during the extraction process. Our present results should provide needed insights not only for the qualitatively understanding about the extraction and separation between yttrium and lanthanide elements but also for the prediction of novel and more efficient rare-earth metal extractants in the future.
Predicting the pKa and stability of organic acids and bases at an oil-water interface.
Andersson, M P; Olsson, M H M; Stipp, S L S
2014-06-10
We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.
Atmospheric photochemistry at a fatty acid-coated air-water interface
NASA Astrophysics Data System (ADS)
Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian
2016-08-01
Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.
NASA Astrophysics Data System (ADS)
Riyazuddeen, Imran Khan; Afrin, Sadaf
2012-12-01
Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.
Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna
2016-11-01
Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.
Abiotic Organic Chemistry in Hydrothermal Systems.
NASA Astrophysics Data System (ADS)
Simoneit, B. R.; Rushdi, A. I.
2004-12-01
Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.
Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C
2012-01-01
Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.
Del Valle-Mojica, Lisa M; Ayala-Marín, Yoshira M; Ortiz-Sanchez, Carmen M; Torres-Hernández, Bianca A; Abdalla-Mukhaimer, Safa; Ortiz, José G
2011-01-01
Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [(3)H]Glutamate. Aqueous valerian extract increased [(3)H]Glutamate binding from 1 × 10(-7) to 1 × 10(-3) mg/mL. In the presence of (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2'R,3'R)-2-(2',3'-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [(3)H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [(3)H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [(3)H]Glutamate binding after 1.6 × 10(-2) mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant.
NASA Astrophysics Data System (ADS)
Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.
Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.
Sheikhian, Leila; Bina, Sedigheh
2016-01-15
In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
CH 4/NH 3/H 2O spark tholin: Chemical analysis and interaction with Jovian aqueous clouds
NASA Astrophysics Data System (ADS)
McDonald, Gene D.; Khare, Bishun N.; Reid Thompson, W.; Sagan, Carl
1991-12-01
The organic solid (tholin) produced by spark discharge in a CH 4 + NH 3 + H 2O atmosphere is investigated, along with the separable components of its water-soluble fraction. The chemistry of this material serves as a provisional model for the interaction of Jovian organic heteropolymers with the deep aqueous clouds of Jupiter. Intact (unhydrolyzed) tholin is resolved into four chemically distinct fractions by high-pressure liquid chromatography (HPLC). Gel filtration chromatography reveals abundant components at molecular weights ⋍600-700 and 200-300 Da. Gas chromatography/mass spectrometry of derivatized hydrolysis products of unfractionated tholin shows about 10% by mass protein and nonprotein amino acids, chiefly glycine, alanine, aspartic acid, β-alanine, and β-aminobutyric acid, and 12% by mass other organic acids and hydroxy acids. The stereospecificity of alanine is investigated and shown to be racemic. The four principal HPLC fractions yield distinctly different proportions of amino acids. Chemical tests show that small peptides or organic molecules containing multiple amino acid precursors are a possibility in the intact tholins, but substantial quantities of large peptides are not indicated. Candidate 700-Da molecules have a central unsaturated, hydrocarbon- and nitrile-rich core, linked by acid-labile (ester or amide) bonds to amino acid and carboxylic acid side groups. The core is probably not HCN "polymer." The concentration of amino acids from tholin hydrolysis in the lower aqueous clouds of Jupiter, about 0.1 μ M, is enough to maintain small populations of terrestrial microorganisms even if the amino acids must serve as the sole carbon source.
Akinrinde, Akinleye Stephen; Afolayan, Anthony Jide; Bradley, Graeme
2018-01-01
Inhabitants of the Eastern Cape Province of South Africa use the roots of Dianthus thunbergii and corms of Hypoxis argentea to treat diabetes mellitus and other ailments. The objective of this study was to analyze the phytochemical composition and antioxidant activities of the aqueous and ethanol extracts of the roots and corms of two plants. Total phenolics, flavonoids, flavonols, proanthocyanidins, tannins, and alkaloids were determined by standard methods. The scavenging activities of the extracts against 1,1 diphenyl-2-picrylhydrazyl (DPPH), 2'-azino-bis (3-ethylbenthiazoline-6-sulfonic acid (ABTS), nitric oxide (NO), hydrogen peroxide (H 2 O 2 ), and their ferric-reducing antioxidant potentials (FRAPs) were measured. The ethanol extract of H. argentea had the highest content of phenolics (66.71 ± 2.71 mg gallic acid equivalent/g) and tannins (1.18 ± 0.07 mg TAE/g), while the ethanol extract of D. thunbergii gave higher contents of flavonoids and proanthocyanidins (62.21 ± 1.75 mg Qe/g and 432.62 ± 2.43 mg Ca/g, respectively). Flavonols were the most predominant in the aqueous extract of H. argentea (25.51 ± 1.92 mg Qe/g). We observed a concentration-dependent response in the ABTS- and H 2 O 2 -scavenging activities and FRAP values of the extracts and standards (Vitamin C, butylated hydroxytoluene, and rutin). The ethanol extracts of both plants generally demonstrated better antioxidant activities against H 2 O 2 , NO, and ABTS while also possessing better reducing power than the aqueous extracts. The aqueous extract of D. thunbergii , however, showed the best DPPH scavenging activity. The higher content of phytochemicals and antioxidant capacity obtained for the ethanol extracts of D. thunbergii and H. argentea may prove to be valuable information in selecting suitable extraction solvents for the medicinal applications of both plants. Ethanol extracts of Hypoxis argentea had the highest levels of phenolics and tanninsEthanol extracts of Dianthus thunbergii had the highest levels of flavonoids and proanthocyanidinsEthanol extracts of both plants possess better antioxidant activityagainst hydrogen peroxide, nitric oxide, and ABTS as well as higher reducingpower than the aqueous extractsAqueous extract of Dianthus thunbergii had the highest free radical scavenging activity as measured with DPPH. Abbreviations used: ABTS: 2'-azino-bis (3-ethylbenthiazoline-6-sulfonic acid); BHT: Butylated hydroxytoluene; DPPH: 1,1 diphenyl-2-picrylhydrazyl; DTA: Dianthus thunbergii aqueous extract (16.6%); DTE: Dianthus thunbergii ethanol extract (2.4%); Fe 3+ -TPTZ: Ferric tripyridyltriazine; FRAP: Ferric-reducing antioxidant potentials; GAE: Gallic acid equivalent; HAA: Hypoxis argentea aqueous extract (3.2%); HAE: Hypoxis argentea ethanol extract (1.8%); Qe: Quercetin equivalence; ROS: Reactive oxygen species; TBA: Thiobarbituric acid;TCA: Trichloroacetic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Luo, Wensui
2008-01-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less
Haapakorva, E; Holmbom, T; von Wright, A
2018-01-01
The aim of this study was to examine the antimicrobial properties of novel aqueous natural rapeseed oil/saline emulsions containing different soluble components of spruce resin. The composition of aqueous resin emulsions was analysed by GC-MS and their antimicrobial properties were studied with challenge tests and with turbidometric assays. The emulsions were strongly antimicrobial against common Gram-positive and Gram-negative bacteria (including MRSA) as well as common yeasts. Furthermore, they inhibited the biofilm formation and eradicated the microbial biofilms on tested microbes. Characteristic for the emulsions was the presence of oxidized resin acids. Other main components present in emulsions, such as lignans and coumaric acids, were not antimicrobial, when tested separately. The results indicated that the oxidized resin acids were the antimicrobial components in the emulsions. Also, there appears to be a stoichiometric relationship between the number of resin acid molecules and the number microbe cells in the antimicrobial action. The fact that these solutions do not contain abietic acid, which is the main allergenic compound in resins, suggests that these solutions would be suitable, well-tolerated antimicrobials for various medical applications. The aqueous formulation will also allow the expansion of the use of these emulsions in from medical applications to the food preservatives and disinfectants. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of the Society for Applied Microbiology.
Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D
2016-03-10
Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.
Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne
2016-03-01
Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2) > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.
NASA Astrophysics Data System (ADS)
Putschögl, M.; Zirak, P.; Penzkofer, A.
2008-01-01
The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.
1983-02-01
subsequently established that potassium benzoate crystallizes from water at 293 - 298 K (20-25*C) and also precipitates from aqueous alcohol as colourless...benzoic acid and potassium bicarbonate or benzoic acid and potassium hydroxide, recrystallizes from water and also precipitates from aqueous alcohol...and a copious white precipitate was formed. The mixture was taken to dryness under reduced pressure and water (100 ml) added to the mixture, which
SEPARATING HAFNIUM FROM ZIRCONIUM
Lister, B.A.J.; Duncan, J.F.
1956-08-21
A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1998-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1999-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
NASA Astrophysics Data System (ADS)
McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.
2014-12-01
Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.
Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu
2006-09-18
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.
Tsai, Hung-Sheng; Tsai, Teh-Hua
2012-01-04
The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.
SEPARATION OF THORIUM FROM URANIUM
Bane, R.W.
1959-09-01
A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh
2017-12-01
Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.
SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION
Voiland, E.E.
1958-05-01
A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.
Oxidative acylation using thioacids
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.
1997-01-01
Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.
Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.
Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin
2018-03-27
Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ < 0.01) as an additive in polyethylene glycol (PEG) aqueous solution at the Si 3 N 4 /SiO 2 interfaces. The superlow and steady friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.
NASA Astrophysics Data System (ADS)
Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath
2017-11-01
Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.
Vibrational studies in aqueous solutions. Part II. The acid oxalate ion and oxalic acid
NASA Astrophysics Data System (ADS)
Shippey, T. A.
1980-08-01
Assignments for oxalic acid in solution are re-examined. A detailed assignment of the IR and Raman spectra of the acid oxalate ion is presented for the first time. Raman spectroscopy is used to study the first ionization of oxalic acid.
RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS
Hansford, D.L.; Raabe, E.W.
1963-08-20
Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)
Germanium films by polymer-assisted deposition
Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu
2013-01-15
Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.
Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica
2014-01-01
The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent
NASA Astrophysics Data System (ADS)
Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku
2018-03-01
In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.
Suaveolic Acid: A Potent Phytotoxic Substance of Hyptis suaveolens
Islam, A. K. M. Mominul; Ohno, Osamu; Suenaga, Kiyotake; Kato-Noguchi, Hisashi
2014-01-01
Hyptis suaveolens (Lamiaceae) is an exotic invasive plant in many countries. Earlier studies reported that the aqueous, methanol, and aqueous methanol extract of H. suaveolens and its residues have phytotoxic properties. However, to date, the phytotoxic substances of this plant have not been reported. Therefore, the objectives of this study were isolation and identification of phytotoxic substances of H. suaveolens. Aqueous methanol extract of this plant was purified by several chromatographic runs through bioassay guided fractionation using garden cress (Lepidium sativum) as a test plant. Final purification of a phytotoxic substance was achieved by reverse phase HPLC and characterized as 14α-hydroxy-13β-abiet-8-en-18-oic acid (suaveolic acid) by high-resolution ESI-MS, 1H-,13C-NMR, CD, and specific rotation. Suaveolic acid inhibited the shoot growth of garden cress, lettuce (Lactuca sativa), Italian ryegrass (Lolium multiflorum), and barnyard grass (Echinochloa crus-galli) at concentrations greater than 30 µM. Root growth of all but lettuce was also inhibited at concentrations greater than 30 µM. The inhibitory activities were concentration dependent. Concentrations required for 50% growth inhibition of suaveolic acid for those test plant species were ranged from 76 to 1155 µM. Therefore, suaveolic acid is phytotoxic and may be responsible for the phytotoxicity of H. suaveolens plant extracts. PMID:25405221
Adsorptive separation in bioprocess engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, E.W.Y.
1987-01-01
The invention and development of an energy-efficient separation technique for recovery of desired chemicals from biomass conversion would greatly enhance the economic viability of this bioprocess. Adsorptive separation of several chemicals from aqueous solution was studied in this thesis. The desired species were recovered from the dilute aqueous solution by using crosslinked polyvinylpyridine resin to effect selective sorption. The sorbed chemicals were then removed from the resin by either thermal regeneration or elution with some appropriate desorbents. The effects of temperature, pH value, and solute concentration on resin swelling were investigated. The adsorption equilibrium isotherms, resin capacities and resin selectivitiesmore » of methanol, ethanol, 1-propanol, isopropanol, glycerol, acetone, 1-butanol, tert-butanol, and 2,3-butanediol were determined to study the homologies. Furthermore, acetic acid, butyric acid, hydrochloric acid, lactic acid, and sulfuric acid were recovered from very dilute aqueous solutions. The concentration of the sorbed chemical in the stationary phase can be many times higher than in the mobile phase for some acids. Finally, different types of equilibrium isotherms were used to fit the experimental data. A mathematical model was developed by using the theory of interference to predict the breakthrough curves and the process efficiency to provide information for large-scale process design and development.« less
Aqueous Phase Non Enzymatic Chemistry of Cyanide, Formaldehyde and RNH2
NASA Technical Reports Server (NTRS)
Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)
1994-01-01
It is postulated that amino acids were produced on the early earth from dilute aqueous solution of cyanide, carbonyls and ammonia (the Strecker synthesis RNH2 + R"R""C=O + KCN yields H-N(R)-C(R")(R"")-CO2H. We have studied the products obtained from dilute aqueous solutions of cyanide, formaldehyde (R"=R""=H), ammonia (R=H) and amino acids. Solutions in the pH range from 8 to 10. at room temperature and at reactant concentrations from 0.001 M to 0.3 M have been studied. With R= H product yields were low (less than 3%). Only with R"=R""=H and R represented by the following: CH2CO2H (glycine); CH(CH3)CO2H (alanine); CH(CH2CH3)CO2H (a-amino n=butyric acids); C(CH3)2(CO2H) (a-aminoisobutyric acid); CH(CH(CH3)2)CO2H (valine); and CH(CH2CO2H)CO2H (aspartic acid), were product yields high (greater than 10%). The yields of glycine were larger with R not equal to H. The prebiotic implications of these findings will be discussed.
Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite
NASA Technical Reports Server (NTRS)
Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.
1990-01-01
The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.
Recovery of sugars from ionic liquid biomass liquor by solvent extraction
Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.
2015-10-13
The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.
Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS.
Zunjar, V; Mammen, D; Trivedi, B M
2015-01-01
This article deals with the comparison of the antioxidant activity of aqueous extracts of various parts of Carica papaya L. The evaluation of total phenolic content and total flavonoid content revealed high antioxidant potential of the seeds and fruits. The free radical-scavenging potential of the aqueous extracts indicated the seeds to have better DPPH-scavenging activity than fruits. The results were augmented by the FRAP activity as well. The phenolics present in the extracts were separated and identified as 5-hydroxy feruloyl quinic acid, acetyl p-coumaryl quinic acid, quercetin-3-O-rhamnoside, syringic acid hexoside, 5-hydroxy caffeic quinic acid, peonidin-3-O-glucoside, sinapic acid-O-hexoside, cyaniding-3-O-glucose and methyl feruloyl glycoside by LCMS-MS technique.
Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida
2012-01-01
This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.
Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida
2014-01-01
This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.
Stability of Medium-Bridged Twisted Amides in Aqueous Solutions
Szostak, Michal; Yao, Lei; Aubé, Jeffrey
2012-01-01
“Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2007-03-27
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2004-06-22
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya
2016-01-01
Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129
Small molecules as tracers in atmospheric secondary organic aerosol
NASA Astrophysics Data System (ADS)
Yu, Ge
Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and increasing aerosol mass. Finally, we built a containerless apparatus to study aqueous processing reactions using an acoustic levitator paired with a mass spectrometer. The levitator is capable of trapping droplets with the size of 80-500 mum in diameter for over eight hours. The apparatus is also capable of drying and wetting the droplet in a controllable manner. We performed am example reaction between glyoxal and ammonium sulfate using this instrument, and showed that it could qualitatively monitor aqueous processing reactions.
Torres-Hernández, Bianca A; Del Valle-Mojica, Lisa M; Ortíz, José G
2015-07-14
Anticonvulsant properties have been attributed to extracts of the herbal medicine Valeriana officinalis. Our aims were to examine the anticonvulsant properties of valerenic acid and valerian extracts and to determine whether valerian preparations interact with the activity of other anti-epileptic drugs (phenytoin or clonazepam). To achieve these goals, we validated the adult zebrafish, Danio rerio, as an animal model for studying anticonvulsant drugs. All drug treatments were administered by immersion in water containing the drug. For assays of anticonvulsant activity, zebrafish were pretreated with: anti-epileptic drugs, valerenic acid, aqueous or ethanolic valerian extracts, or mixtures (phenytoin or clonazepam with valerenic acid or valerian extracts). Seizures were then induced with pentylenetetrazole (PTZ). A behavioral scale was developed for scoring PTZ-induced seizures in adult zebrafish. The seizure latency was evaluated for all pretreatments and control, untreated fish. Valerenic acid and both aqueous and ethanolic extracts of valerian root were also evaluated for their ability to improve survival after pentylenetetrazole-challenge. The assay was validated by comparison with well-studied anticonvulsant drugs (phenytoin, clonazepam, gabapentin and valproate). One-way ANOVA followed by Tukey post-hoc test was performed, using a p < 0.05 level of significance. All treatments were compared with the untreated animals and with the other pretreatments. After exposure to pentylenetetrazole, zebrafish exhibited a series of stereotypical behaviors prior to the appearance of clonic-like movements--convulsions. Both valerenic acid and valerian extracts (aqueous and ethanolic) significantly extended the latency period to the onset of seizure (convulsion) in adult zebrafish. The ethanolic valerian extract was a more potent anticonvulsant than the aqueous extract. Valerenic acid and both valerian extracts interacted synergistically with clonazepam to extended the latency period to the onset of seizure. Phenytoin showed interaction only with the ethanolic valerian extracts. Valerenic acid and valerian extracts have anticonvulsant properties in adult zebrafish. Valerian extracts markedly enhanced the anticonvulsant effect of both clonazepam and phenytoin, and could contribute to therapy of epileptic patients.
Frank, Thomas; Netzel, Gabriele; Kammerer, Dietmar R; Carle, Reinhold; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard; Bitsch, Roland; Netzel, Michael
2012-08-15
To evaluate health benefits attributed to Hibiscus sabdariffa L. a randomized, open-label, two-way crossover study was undertaken to compare the impact of an aqueous H. sabdariffa L. extract (HSE) on the systemic antioxidant potential (AOP; assayed by ferric reducing antioxidant power (FRAP)) with a reference treatment (water) in eight healthy volunteers. The biokinetic variables were the areas under the curve (AUC) of plasma FRAP, ascorbic acid and urate that are above the pre-dose concentration, and the amounts excreted into urine within 24 h (Ae(0-24) ) of antioxidants as assayed by FRAP, ascorbic acid, uric acid, malondialdehyde (biomarker for oxidative stress), and hippuric acid (metabolite and potential biomarker for total polyphenol intake). HSE caused significantly higher plasma AUC of FRAP, an increase in Ae(0-24) of FRAP, ascorbic acid and hippuric acid, whereas malondialdehyde excretion was reduced. Furthermore, the main hibiscus anthocyanins as well as one glucuronide conjugate could be quantified in the volunteers' urine (0.02% of the administered dose). The aqueous HSE investigated in this study enhanced the systemic AOP and reduced the oxidative stress in humans. Furthermore, the increased urinary hippuric acid excretion after HSE consumption indicates a high biotransformation of the ingested HSE polyphenols, most likely caused by the colonic microbiota. Copyright © 2012 Society of Chemical Industry.
Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan
2016-02-01
Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...
2016-01-29
Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less
Morais, Eduarda S; Mendonça, Patrícia V; Coelho, Jorge F J; Freire, Mara G; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D
2018-02-22
This work contributes to the development of integrated lignocellulosic-based biorefineries by the pioneering exploitation of hardwood xylans by solubilization and extraction in deep eutectic solvents (DES). DES formed by choline chloride and urea or acetic acid were initially evaluated as solvents for commercial xylan as a model compound. The effects of temperature, molar ratio, and concentration of the DES aqueous solutions were evaluated and optimized by using a response surface methodology. The results obtained demonstrated the potential of these solvents, with 328.23 g L -1 of xylan solubilization using 66.7 wt % DES in water at 80 °C. Furthermore, xylans could be recovered by precipitation from the DES aqueous media in yields above 90 %. The detailed characterization of the xylans recovered after solubilization in aqueous DES demonstrated that 4-O-methyl groups were eliminated from the 4-O-methylglucuronic acids moieties and uronic acids (15 %) were cleaved from the xylan backbone during this process. The similar M w values of both pristine and recovered xylans confirmed the success of the reported procedure. DES recovery in four additional extraction cycles was also demonstrated. Finally, the successful extraction of xylans from Eucalyptus globulus wood by using aqueous solutions of DES was demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira
Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less
Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.
1957-10-29
A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.
Lithium-Ion Electrolytes with Fluoroester Co-Solvents
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor)
2014-01-01
An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.
Del Valle-Mojica, Lisa M.; Ayala-Marín, Yoshira M.; Ortiz-Sanchez, Carmen M.; Torres-Hernández, Bianca A.; Abdalla-Mukhaimer, Safa; Ortiz, José G.
2011-01-01
Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [3H]Glutamate. Aqueous valerian extract increased [3H]Glutamate binding from 1 × 10−7 to 1 × 10−3 mg/mL. In the presence of (2S,1′S,2′S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2′R,3′R)-2-(2′,3′-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [3H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [3H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [3H]Glutamate binding after 1.6 × 10−2 mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant. PMID:21584239
Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R
2015-01-01
Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC
Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut
2013-05-15
The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.
Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj
2015-08-21
Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Yan; Wu, Yinliang; Hu, Jiye; Wang, Hongwei; Pan, Canping; Liu, Fengmao
2008-01-01
A method was developed for the determination of emamectin benzoate residue in cabbage and mushroom using solid-phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. The sample was extracted with ethyl acetate. Further cleanup was performed on a propylsulfonic acid solid phase extraction cartridge, followed by the derivatization with trifluoroacetic anhydride in the presence of N-methylimidazole. The amount of derivatized emamectin benzoate was determined by fluorescence detector after separation by HPLC. The detection limit was 0.10 microg/kg for cabbage and mushroom samples. The recoveries of emamectin benzoate in cabbage and mushroom samples were 78.6%-84.9%. The inter-day relative standard deviation (RSD) and intra-day RSD were 2.7%-6.0% and 3.1%-8.9%, respectively, at the fortified levels of 1.0-20.0 microg/kg. The calibration curve of emamectin benzoate in vegetables at the concentration range of 0.002 mg/L to 0.10 mg/L was linear (r = 0.9999).
Characterization of pigments from different high speed countercurrent chromatography wine fractions.
Salas, Erika; Dueñas, Montserrat; Schwarz, Michael; Winterhalter, Peter; Cheynier, Véronique; Fulcrand, Hélène
2005-06-01
A red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water.
Optimization and validation of a minicolumn method for determining aflatoxins in copra meal.
Arim, R H; Aguinaldo, A R; Tanaka, T; Yoshizawa, T
1999-01-01
A minicolumn (MC) method for determining aflatoxins in copra meal was optimized and validated. The method uses methanol-4% KCl solution as extractant and CuSO4 solution as clarifying agent. The chloroform extract is applied to an MC that incorporates "lahar," an indigenous material, as substitute for silica gel. The "lahar"-containing MC produces a more distinct and intense blue fluoresence on the Florisil layer than an earlier MC. The method has a detection limit of 15 micrograms total aflatoxins/kg sample. Confirmatory tests using 50% H2SO4 and trifluoroacetic acid in benzene with 25% HNO3 showed that copra meal samples contained aflatoxins and no interfering agents. The MC responses of the copra meal samples were in good agreement with their behavior in thin-layer chromatography. This modified MC method is accurate, giving linearity-valid results; rapid, being done in 15 min; economical, using low-volume reagents; relatively safe, having low-exposure risk of analysts to chemicals; and simple, making its field application feasible.
Preparation of dibenzo[e,g]isoindol-1-ones via Scholl-type oxidative cyclization reactions.
van Loon, Amy A; Holton, Maeve K; Downey, Catherine R; White, Taryn M; Rolph, Carly E; Bruening, Stephen R; Li, Guanqun; Delaney, Katherine M; Pelkey, Sarah J; Pelkey, Erin T
2014-09-05
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki-Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization.
Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions
2015-01-01
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638
NASA Astrophysics Data System (ADS)
Lieser, Georg; Winkler, Volker; Geßwein, Holger; de Biasi, Lea; Glatthaar, Sven; Hoffmann, M. J.; Ehrenberg, Helmut; Binder, Joachim R.
2015-10-01
Lithium transition metal fluorides (Li3MF6; M = Fe, V) with cryolite structure are investigated as positive electrode materials for lithium-ion batteries. A novel sol-gel process with trifluoroacetic acid as fluorine source was used to synthesize monoclinic and orthorhombic Li3CrF6. A ball milling process with Li3CrF6, binder, and conductive agent was applied to form a Li3CrF6 composite, which was electrochemically characterized against lithium metal for the first time. The electrochemical properties of two different modifications are quite similar, with a reversible specific capacity of 111 mAhg-1 for monoclinic Li3CrF6 and 106 mAhg-1 for orthorhombic Li3CrF6 (1 eq. Li ≙ 143 mAhg-1). The electrochemically active redox couple CrIII/CrII was confirmed by X-ray photoelectron spectroscopy.
Sun, Xiaomei; Wang, Haohao; Han, Xiaofeng; Chen, Shangwei; Zhu, Song; Dai, Jun
2014-12-19
A fingerprint analysis method has been developed for characterization and discrimination of polysaccharides from different Ganoderma by high performance liquid chromatography (HPLC) coupled with chemometrics means. The polysaccharides were extracted under ultrasonic-assisted condition, and then partly hydrolyzed with trifluoroacetic acid. Monosaccharides and oligosaccharides in the hydrolyzates were subjected to pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and HPLC analysis, which will generate unique fingerprint information related to chemical composition and structure of polysaccharides. The peak data were imported to professional software in order to obtain standard fingerprint profiles and evaluate similarity of different samples. Meanwhile, the data were further processed by hierarchical cluster analysis and principal component analysis. Polysaccharides from different parts or species of Ganoderma or polysaccharides from the same parts of Ganoderma but from different geographical regions or different strains could be differentiated clearly. This fingerprint analysis method can be applied to identification and quality control of different Ganoderma and their products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui
2016-11-05
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.
Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent
2015-04-24
Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. Copyright © 2015, American Association for the Advancement of Science.
Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.
Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente
2016-06-01
Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.
Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution
NASA Astrophysics Data System (ADS)
Kamarudin, Sabariah; Mohammad, Masita
2018-04-01
A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.
Rosowsky, A; Bader, H; Freisheim, J H
1991-01-01
Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.
Ouyang, Zhen; Zhao, Ming; Tang, Jianming; Pan, Lulin
2012-01-01
Background: Nao-De-Sheng decoction (NDS), a traditional Chinese medicine (TCM) prescription containing Radix puerariae lobatae, Floscarthami, Radix et Rhizoma Notoginseng, Rhizoma chuanxiong and Fructus crataegi, is effective in the treatment of cerebral arteriosclerosis, ischemic cerebral stroke and apoplexy linger effect. Ferulic acid and puerarin are the main absorbed effective ingredients of NDS. Objective: To assess the affection of other components in medical material and compound recipe compatibility on the pharmacokinetics of ferulaic acid and puerarin, of ferulic acid from the monomer Rhizoma chuanxiong aqueous extract and NDS were studied. And pharmacokinetics comparisons of puerarin from the monomer Radix puerariae extract and NDS decoction were investigated simultaneously. Materials and Methods: At respective different time points after oral administration of the monomer, medicinal substance aqueous extract and NDS at the same dose in rats, plasma concentrations of ferulic acid and puerarin in rats were determined by RP-HPLC, and the main pharmacokinetic parameters were estimated with 3P97 software. Results: The plasma concentration-time curves of ferulaic acid and puerarin were both best fitted with a two-compartment model. AUC0−t, AUC0→∞, Tmax, and Cmax of ferulic acid in the monomer and NDS decoction were increased significantly (P < 0.05) compared with that in Rhizoma chuanxiong aqueous extract. And statistically significant increase (P < 0.05) in pharmacokinetic parameters of puerarin including AUC0−t, AUC0→∞, CL, Tmax and Cmax were obtained after oral administration of puerarin monomer compared with Radix puerariae extract. Although the changes of AUC0−t, AUC0→∞ and CL had no statistically significant, Cmax of puerarin in NDS was increased remarkably (P < 0.05) compared with that in single puerarin. Conclusions: Some ingredients of Rhizoma chuanxiong and Radix puerariae may be suggested to remarkably influence plasma concentrations of ferulaic acid and puerarin. Some ingredients in NDS may increase dissolution and absorption of ferulaic acid and puerarin, delay elimination, and subsequently enhance bioavailability of ferulaic acid and puerarin in rats after compatibility. PMID:24082627
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing; ...
2017-12-27
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
Ochoa-Herrera, Valeria; Field, Jim A; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes
2016-09-14
Perfluorooctane sulfonate (PFOS) and related perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been widely applied in consumer and industrial applications for decades. However, PFOS has raised public concern due to its high bioaccumulative character, environmental persistence, and toxicity. Shorter PFASs such as perfluorobutane sulfonate (PFBS) and polyfluoroalkyl compounds have been proposed as alternatives to PFOS but it is unclear whether these fluorinated substances pose a risk for public health and the environment. The objective of this research was to investigate the microbial toxicity and the susceptibility to microbial degradation of PFOS and several related fluorinated compounds, i.e., short-chain perfluoroalkyl and polyfluoroalkyl sulfonic and carboxylic acids. None of the compounds tested were toxic to the methanogenic activity of anaerobic wastewater sludge even at very high concentrations (up to 500 mg L -1 ). All PFASs evaluated were highly resistant to microbial degradation. PFOS was not reductively dehalogenated by the anaerobic microbial consortium even after very long periods of incubation (3.4 years). Similarly, the tested short chain perfluoroalkyl substances (i.e., PFBS and trifluoroacetic acid) and a polyfluoroalkyl PFOS analogue, 6 : 2 fluorotelomer sulfonic acid (FTSA) were also resistant to anaerobic biodegradation. Likewise, no conclusive evidence of microbial degradation was observed under aerobic conditions for any of the short-chain perfluoroalkyl and polyfluoroalkyl carboxylic acids tested after 32 weeks of incubation. Collectively, these results indicate that PFOS and its alternatives such as short chain perfluoroalkyl sulfonates and carboxylates and their polyfluorinated homologues are highly resistant to microbial degradation.
Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions
NASA Astrophysics Data System (ADS)
Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.
2011-05-01
The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.
Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne
2009-01-01
Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083
Acid-Catalyzed Isomerization of Carvone to Carvacrol
ERIC Educational Resources Information Center
Kjonaas, Richard A.; Mattingly, Shawn P.
2005-01-01
The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.
alpha-(Phenylazo)-4-nitrobenzyl cyanide, a new acid-base indicator.
Légrádi, L
1970-02-01
A new acid-base indicator, alpha-(phenylazo)-4-nitrobenzyl cyanide, is proposed. The indicator changes colour from yellow to violet in the presence of alkali owing to the formation of a nitronic acid structure. This indicator is applicable for the titration of weak acids in acetone and ethanol media or in a mixture of these organic solvents and water, with 0.1M aqueous sodium hydroxide as titrant. The absorption spectra have been recorded for the indicator in 25%, 50% and 75% aqueous ethanol and acetone. By means of the spectra the dissociation constants in these media have been determined. The pK value of alpha-(phenylazo)-4-nitrobenzyl cyanide is 12.10 in water, and is decreased considerably in acetone but only slightly in ethanol. This behaviour is similar to that of positively charged weak acids and irregular for a weak acid carrying no charge or a negative charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J.A.
This document presents an evaluation of the reproductive and developmental effects of boric acid, H3BO3 (CAS Registry No. 10043-35-3) and disodium tetraborate decahydrate or borax, Na2B4O2O(CAS Registry No. 1303-96-4). The element, boron, does not exist naturally. In dilute aqueous solution and at physiological pH (7.4), the predominant species in undissociated boric acid (greater than 98%), irrespective of whether the initial material was boric acid of borax. Therefore, it is both useful and correct to compare exposures and dosages to boric acid and borax in terms of `boron equivalents`, since both materials form equivalent species in dilute aqueous solution with similarmore » systemic effects. In order to be clear in this document, the term `boron` will refer to `boron equivalents` or percent boron in boric acid and borax.« less
Singh, Gurpreet; Mohanty, B P; Saini, G S S
2016-02-15
Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.
Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature.
Sordakis, Katerina; Tsurusaki, Akihiro; Iguchi, Masayuki; Kawanami, Hajime; Himeda, Yuichiro; Laurenczy, Gábor
2016-10-24
Carbon dioxide may constitute a source of chemicals and fuels if efficient and renewable processes are developed that directly utilize it as feedstock. Two of its reduction products are formic acid and methanol, which have also been proposed as liquid organic chemical carriers in sustainable hydrogen storage. Here we report that both the hydrogenation of carbon dioxide to formic acid and the disproportionation of formic acid into methanol can be realized at ambient temperature and in aqueous, acidic solution, with an iridium catalyst. The formic acid yield is maximized in water without additives, while acidification results in complete (98 %) and selective (96 %) formic acid disproportionation into methanol. These promising features in combination with the low reaction temperatures and the absence of organic solvents and additives are relevant for a sustainable hydrogen/methanol economy. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mincher, Bruce J.; Precek, Martin; Paulenova, Alena
2015-10-17
The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincher, Bruce J.; Precek, Martin; Paulenova, Alena
The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less
Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study
NASA Astrophysics Data System (ADS)
Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.
2018-05-01
The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.
Stabilized aqueous foam systems and concentrate and method for making them
Rand, Peter B.
1984-01-01
This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, R.H.; Dingman, J.C.; Cronin, D.B.
1997-09-01
New data are reported on the heat capacity of CO{sub 2}-loaded, aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), and aqueous MDEA-based blends with MEA and DEA. The work reported here was motivated by the need to quantify the effect of acid gas loading on the important physical properties of gas-sweetening solvents.
Bomba, Francis Desire Tatsinkou; Wandji, Bibiane Aimee; Piegang, Basile Nganmegne; Awouafack, Maurice Ducret; Sriram, Dharmarajan; Yogeeswari, Perumal; Kamanyi, Albert; Nguelefack, Telesphore Benoit
2015-11-04
Aqueous maceration from the stem barks of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) is taken orally in the central Africa for the management of various ailments, including pain. This work was carried out to evaluate in mice, the antinociceptive effects of the aqueous and methanol extracts of the stem bark of P. macrocarpus. The chemical composition of the aqueous and methanol extracts prepared as cold macerations was determined by high performance liquid chromatography coupled with mass spectrometry (LCMS). The antinociceptive effects of these extracts administered orally at the doses of 100, 200 and 400 mg/kg were evaluated using behavioral pain model induced by acetic acid, formalin, hot-plate, capsaicin and glutamate. The rotarod test was also performed at the same doses. The oral acute toxicity of both extracts was studied at the doses of 800, 1600, 3200 and 6400 mg/kg in mice. The LCMS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts of P. macrocarpus significantly and dose dependently reduced the time and number of writhing induced by acetic acid. They also significantly inhibited the two phases of formalin-induced pain. These effects were significantly inhibited by a pretreatment with naloxone, except for the analgesic activity of the methanol extract at the earlier phase. In addition, nociception induced by hot plate, intraplantar injection of capsaicin or glutamate was significantly inhibited by both extracts. Acute toxicity test showed no sign of toxicity. These results demonstrate that aqueous and methanol extracts of P. macrocarpus are none toxic substances with good central and peripheral antinociceptive effects that are at least partially due to the presence of ellagic acid. These extracts may induce their antinociceptive effect by interfering with opioid, capsaicin and excitatory amino acid pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.