Sample records for aquifer parameter estimation

  1. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    NASA Astrophysics Data System (ADS)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  2. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    USGS Publications Warehouse

    Heidari, M.; Moench, A.

    1997-01-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  3. Simple method for quick estimation of aquifer hydrogeological parameters

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  4. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    USGS Publications Warehouse

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  5. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  6. Geophysical Assessment of Groundwater Potential: A Case Study from Mian Channu Area, Pakistan.

    PubMed

    Hasan, Muhammad; Shang, Yanjun; Akhter, Gulraiz; Jin, Weijun

    2017-11-17

    An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five-layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology. © 2017, National Ground Water Association.

  7. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    USGS Publications Warehouse

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating piezometers and observation wells. Noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced a set of parameters that agrees very well with piezometer test data when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters decreased with increasing noise level.

  8. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a heterogeneous, highly conductive aquifer, we present some general findings that have applicability to slug testing. In particular, we find that aquifer hydraulic conductivity estimates obtained from larger slug heights tend to be lower on average (presumably due to non-linear wellbore losses) and tend to be less variable (presumably due to averaging over larger support volumes), supporting the notion that using the smallest slug heights possible to produce measurable water level changes is an important strategy when mapping aquifer heterogeneity. Finally, we present results specific to characterization of the aquifer at the Boise Hydrogeophysical Research Site. Specifically, we note that (1) K estimates obtained using a range of different slug heights give similar results, generally within ±20%; (2) correlations between estimated K profiles with depth at closely-spaced wells suggest that K values obtained from slug tests are representative of actual aquifer heterogeneity and not overly affected by near-well media disturbance (i.e., "skin"); (3) geostatistical analysis of K values obtained indicates reasonable correlation lengths for sediments of this type; and (4) overall, K values obtained do not appear to correlate well with porosity data from previous studies.

  9. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and <1 percent, respectively. These discrepancies are well within acceptable ranges of uncertainty for aquifer parameters estimation, when compared with other pumping test interpretation methods, which typically estimate uncertainty for the estimated parameters of 20 or 30 percent. Finally, the stream depletion rate was calculated as a function of stream-bank pumping. Unique to horizontally anisotropic aquifer, the stream depletion rate at any given pumping rate depends on the horizontal anisotropy ratio and the direction of the principle transmissivity. For example, when horizontal anisotropy ratios are 5 and 50 respectively, the corresponding depletion rate under pseudo steady-state condition are 86 m3/day and 91 m3/day. The results of this research fill a knowledge gap on predicting the response of horizontally anisotropic aquifers connected to streams. We further provide a method to estimate aquifer properties and predict stream depletion rates from observed drawdown. This new model can be used by water resources managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  10. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  11. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  12. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, A.F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2000-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table. The aquifer was pumped at a rate of 320 gallons per minute for 72-hours and drawdown measurements were made in the pumped well and in 20 piezometers located at various distances from the pumped well and depths below the land surface. To facilitate the analysis, an automatic parameter estimation algorithm was used to obtain relevant unconfined aquifer parameters, including the saturated thickness and a set of empirical parameters that relate to gradual drainage from the unsaturated zone. Drainage from the unsaturated zone is treated in this paper as a finite series of exponential terms, each of which contains one empirical parameter that is to be determined. It was necessary to account for effects of gradual drainage from the unsaturated zone to obtain satisfactory agreement between measured and simulated drawdown, particularly in piezometers located near the water table. The commonly used assumption of instantaneous drainage from the unsaturated zone gives rise to large discrepancies between measured and predicted drawdown in the intermediate-time range and can result in inaccurate estimates of aquifer parameters when automatic parameter estimation procedures are used. The values of the estimated hydraulic parameters are consistent with estimates from prior studies and from what is known about the aquifer at the site. Effects of heterogeneity at the site were small as measured drawdowns in all piezometers and wells were very close to the simulated values for a homogeneous porous medium. The estimated values are: specific yield, 0.26; saturated thickness, 170 feet; horizontal hydraulic conductivity, 0.23 feet per minute; vertical hydraulic conductivity, 0.14 feet per minute; and specific storage, 1.3x10-5 per foot. It was found that drawdown in only a few piezometers strategically located at depth near the pumped well yielded parameter estimates close to the estimates obtained for the entire data set analyzed simultaneously. If the influence of gradual drainage from the unsaturated zone is not taken into account, specific yield is significantly underestimated even in these deep-seated piezometers. This helps to explain the low values of specific yield often reported for granular aquifers in the literature. If either the entire data set or only the drawdown in selected deep-seated piezometers was used, it was found unnecessary to conduct the test for the full 72-hours to obtain accurate estimates of the hydraulic parameters. For some piezometer groups, practically identical results would be obtained for an aquifer test conducted for only 8-hours. Drawdowns measured in the pumped well and piezometers at distant locations were diagnostic only of aquifer transmissivity.

  13. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolong; Xiang, Yang; Shi, Zheming

    2018-05-01

    Groundwater flow models implemented to manage regional water resources require aquifer hydraulic parameters. Traditional methods for obtaining these parameters include laboratory experiments, field tests and model inversions, and each are potentially hindered by their unique limitations. Here, we propose a methodology for estimating hydraulic conductivity and storage coefficients using the spectral characteristics of the coseismic groundwater-level oscillations and seismic Rayleigh waves. The results from Well X10 are consistent with the variations and spectral characteristics of the water-level oscillations and seismic waves and present an estimated hydraulic conductivity of approximately 1 × 10-3 m s-1 and storativity of 15 × 10-6. The proposed methodology for estimating hydraulic parameters in confined aquifers is a practical and novel approach for groundwater management and seismic precursor anomaly analyses.

  14. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  15. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    NASA Astrophysics Data System (ADS)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.

  17. Applying spectral data analysis techniques to aquifer monitoring data in Belvoir Ranch, Wyoming

    NASA Astrophysics Data System (ADS)

    Gao, F.; He, S.; Zhang, Y.

    2017-12-01

    This study uses spectral data analysis techniques to estimate the hydraulic parameters from water level fluctuation due to tide effect and barometric effect. All water level data used in this study are collected in Belvoir Ranch, Wyoming. Tide effect can be not only observed in coastal areas, but also in inland confined aquifers. The force caused by changing positions of sun and moon affects not only ocean but also solid earth. The tide effect has an oscillatory pumping or injection sequence to the aquifer, and can be observed from dense water level monitoring. Belvoir Ranch data are collected once per hour, thus is dense enough to capture the tide effect. First, transforming de-trended data from temporal domain to frequency domain with Fourier transform method. Then, the storage coefficient can be estimated using Bredehoeft-Jacob model. After this, analyze the gain function, which expresses the amplification and attenuation of the output signal, and derive barometric efficiency. Next, find effective porosity with storage coefficient and barometric efficiency with Jacob's model. Finally, estimate aquifer transmissivity and hydraulic conductivity using Paul Hsieh's method. The estimated hydraulic parameters are compared with those from traditional pumping data estimation. This study proves that hydraulic parameter can be estimated by only analyze water level data in frequency domain. It has the advantages of low cost and environmental friendly, thus should be considered for future use of hydraulic parameter estimations.

  18. Suggested Operating Procedures for Aquifer Pumping Tests

    EPA Pesticide Factsheets

    This document is intended as a primer, describing the process for the design and performance of an “aquifer test” (how to obtain reliable data from a pumping test) to obtain accurate estimates of aquifer parameters.

  19. Developing a probability-based model of aquifer vulnerability in an agricultural region

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  20. Estimating Hydraulic Parameters When Poroelastic Effects Are Significant

    USGS Publications Warehouse

    Berg, S.J.; Hsieh, P.A.; Illman, W.A.

    2011-01-01

    For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated. ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  1. Hydrologic relations between lakes and aquifer in a recharge area near Orlando, Florida

    USGS Publications Warehouse

    Lichtler, William F.; Hughes, G.H.; Pfischner, F.L.

    1976-01-01

    The three lakes investigated in Orange County, Florida, gain water from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydraulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake and ground-water level is the same on all sides of the lake--with regard to each aquifer--and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer. (Woodard-USGS)

  2. Geoelectrohydraulic investigation of the surficial aquifer units and corrosivity in parts of Uyo L. G. A., Akwa Ibom State, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Ibuot, Johnson C.; Obiora, Daniel N.; Ekpa, Moses M. M.; Okoroh, Doris O.

    2017-12-01

    This study was carried out employing vertical electrical sounding (VES) with Schlumberger electrode configuration. The objectives were to investigate the distribution of the geohydraulic parameters and the corrosivity of the aquifer layer within the study area. The sand-to-coarse grain sands aquifer have resistivity ranging from 8.1 to 2204 Ωm, while the thickness ranged from 7.4 to 55.3 m. These parameters were used in computing the geohydraulic parameters. Hydraulic conductivity was estimated using the Heigold equation, and its values ranged from 1.42 to 54.90 m/day. Estimated hydraulic conductivity values were employed in determining the aquifer transmissivity which ranged from 11.28 to 812.00 m2/day, fractional porosities ranged from 0.0351 to 0.0598. The longitudinarl conductance also varies from 0.01 to 1.83 Ω-1. The contour plots generated from the SURFER software package show the variation of these parameters. The ranges of these estimated parameters indicate variation in grain sizes, magnitude of pore sizes and facies changes. The corrosivity rating indicates that most of the VES points were practically non-corrosive.

  3. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  4. Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Haggerty, R.

    2012-12-01

    A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.

  5. Estimating groundwater recharge uncertainty from joint application of an aquifer test and the water-table fluctuation method

    NASA Astrophysics Data System (ADS)

    Delottier, H.; Pryet, A.; Lemieux, J. M.; Dupuy, A.

    2018-05-01

    Specific yield and groundwater recharge of unconfined aquifers are both essential parameters for groundwater modeling and sustainable groundwater development, yet the collection of reliable estimates of these parameters remains challenging. Here, a joint approach combining an aquifer test with application of the water-table fluctuation (WTF) method is presented to estimate these parameters and quantify their uncertainty. The approach requires two wells: an observation well instrumented with a pressure probe for long-term monitoring and a pumping well, located in the vicinity, for the aquifer test. The derivative of observed drawdown levels highlights the necessity to represent delayed drainage from the unsaturated zone when interpreting the aquifer test results. Groundwater recharge is estimated with an event-based WTF method in order to minimize the transient effects of flow dynamics in the unsaturated zone. The uncertainty on groundwater recharge is obtained by the propagation of the uncertainties on specific yield (Bayesian inference) and groundwater recession dynamics (regression analysis) through the WTF equation. A major portion of the uncertainty on groundwater recharge originates from the uncertainty on the specific yield. The approach was applied to a site in Bordeaux (France). Groundwater recharge was estimated to be 335 mm with an associated uncertainty of 86.6 mm at 2σ. By the use of cost-effective instrumentation and parsimonious methods of interpretation, the replication of such a joint approach should be encouraged to provide reliable estimates of specific yield and groundwater recharge over a region of interest. This is necessary to reduce the predictive uncertainty of groundwater management models.

  6. A unique approach to estimating lateral anisotropy in complex geohydrologic environments

    USGS Publications Warehouse

    Halford, K.J.; Campbell, B.

    2004-01-01

    Aquifers in fractured rock or karstic settings are likely to have anisotropic transmissivity distributions. Aquifer tests that are performed in these settings also we frequently affected by leakage from adjacent confining units. Finite-difference models such as MODFLOW are convenient tools for estimating the hydraulic characteristics of the stressed aquifer and adjacent confining units but are poor tools for the estimation of lateral anisotropy. This limitation of finite-difference methods can be overcome by application of the spin method, a technique whereby the positions of the observation wells are rotated about the production well to estimate anisotropy and orientation. Formal parameter estimation is necessary to analyze aquifer tests because of the number of parameters that we estimated. As a test, transmissivity, anisotropy, and orientation were successfully estimated for a simple hypothetical problem with known properties. The technique also was applied to estimate hydraulic properties of the Santee Limestone/Black Mingo (SL/BM) aquifer and a leaky confining unit beneath Charleston, South Carolina. A 9-day aquifer test with an average discharge of 644 1/min was analyzed numerically. Drawdowns in the SL/BM aquifer and confining unit were simulated with a 12-layer MODFLOW model that was discretized into 81 rows of 81 columns. Simulated drawdowns at seven observation wells that ranged from 23 to 2700 m from the production well were matched to measured drawdowns. Transmissivity estimated along the minor axis ranged from 10 to 15 m2/day and along the major axis ranged from 80 to 100 m2/day. The major axis of transmissivity was oriented along compass heading 116?? (degrees clockwise from north), which agrees with geologic interpretations. Vertical hydraulic conductivity and specific storage estimates for the overlying confining unit were 4 ?? 10-5m/day and 2 ?? 10-4 1/m, respectively. ?? 2004 International Association of Hydraulic Engineering and Research.

  7. Assessment of spatial distrilbution of porosity and aquifer geohydraulic parameters in parts of the Tertiary - Quaternary hydrogeoresource of south-eastern Nigeria

    NASA Astrophysics Data System (ADS)

    George, N. J.; Akpan, A. E.; Akpan, F. S.

    2017-12-01

    An integrated attempt exploring information deduced from extensive surface resistivity study in three Local Government Areas of Akwa Ibom State, Nigeria and data from hydrogeological sources obtained from water boreholes have been explored to economically estimate porosity and coefficient of permeability/hydraulic conductivity in parts of the clastic Tertiary - Quaternary sediments of the Niger Delta region. Generally, these parameters are predominantly estimated from empirical analysis of core samples and pumping test data generated from boreholes in the laboratory. However, this analysis is not only costly and time consuming, but also limited in areal coverage. The chosen technique employs surface resistivity data, core samples and pumping test data in order to estimate porosity and aquifer hydraulic parameters (transverse resistance, hydraulic conductivity and transmissivity). In correlating the two sets of results, Porosity and hydraulic conductivity were observed to be more elevated near the riverbanks. Empirical models utilising Archie's, Waxman-Smits and Kozeny-Carman Bear relations were employed characterising the formation parameters with wonderfully deduced good fits. The effect of surface conduction occasioned by clay usually disregarded or ignored in Archie's model was estimated to be 2.58 × 10-5 Siemens. This conductance can be used as a corrective factor to the conduction values obtained from Archie's equation. Interpretation aided measures such as graphs, mathematical models and maps which geared towards realistic conclusions and interrelationship between the porosity and other aquifer parameters were generated. The values of the hydraulic conductivity estimated from Waxman-Smits model was approximately 9.6 × 10-5m/s everywhere. This revelation indicates that there is no pronounced change in the quality of the saturating fluid and the geological formations that serve as aquifers even though the porosities were varying. The deciphered parameter relations can be used to estimate geohydraulic parameters in other locations with little or no borehole data.

  8. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  9. WTAQ: A Computer Program for Calculating Drawdowns and Estimating Hydraulic Properties for Confined and Water-Table Aquifers

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    1999-01-01

    The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.

  10. Aquifer response to stream-stage and recharge variations. II. Convolution method and applications

    NASA Astrophysics Data System (ADS)

    Barlow, P. M.; DeSimone, L. A.; Moench, A. F.

    2000-05-01

    In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river-aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.

  11. Information fusion in regularized inversion of tomographic pumping tests

    USGS Publications Warehouse

    Bohling, Geoffrey C.; ,

    2008-01-01

    In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.

  12. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  13. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  14. Uncertainty Quantification and Assessment of CO2 Leakage in Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Carroll, S.; Mansoor, K.; Sun, Y.; Jones, E.

    2011-12-01

    Complexity of subsurface aquifers and the geochemical reactions that control drinking water compositions complicate our ability to estimate the impact of leaking CO2 on groundwater quality. We combined lithologic field data from the High Plains Aquifer, numerical simulations, and uncertainty quantification analysis to assess the role of aquifer heterogeneity and physical transport on the extent of CO2 impacted plume over a 100-year period. The High Plains aquifer is a major aquifer over much of the central United States where CO2 may be sequestered in depleted oil and gas reservoirs or deep saline formations. Input parameters considered included, aquifer heterogeneity, permeability, porosity, regional groundwater flow, CO2 and TDS leakage rates over time, and the number of leakage source points. Sensitivity analysis suggest that variations in sand and clay permeability, correlation lengths, van Genuchten parameters, and CO2 leakage rate have the greatest impact on impacted volume or maximum distance from the leak source. A key finding is that relative sensitivity of the parameters changes over the 100-year period. Reduced order models developed from regression of the numerical simulations show that volume of the CO2-impacted aquifer increases over time with 2 order of magnitude variance.

  15. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  16. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    NASA Astrophysics Data System (ADS)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  17. Aquifer response to stream-stage and recharge variations. II. Convolution method and applications

    USGS Publications Warehouse

    Barlow, P.M.; DeSimone, L.A.; Moench, A.F.

    2000-01-01

    In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river-aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.Analytical step-response functions, developed for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank seepage rates and bank storage.

  18. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.

    PubMed

    Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A

    2016-07-01

    Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.

  19. Remedial options for creosote-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.J.; Delshad, M.; Oolman, T.

    2000-03-31

    Free-phase DNAPL recovery operations are becoming increasingly prevalent at creosote-contaminated aquifer sites. This paper illustrates the potential of both classical and innovative recovery methods. The UTCHEM multiphase flow and transport numerical simulator was used to predict the migration of creosote DNAPL during a hypothetical spill event, during a long-term redistribution after the spill, and for a variety of subsequent free-phase DNAPL recovery operations. The physical parameters used for the DNAPL and the aquifer in the model are estimates for the DNAPL and the aquifer in the model are estimates for a specific creosote DNAPL site. Other simulations were also conductedmore » using physical parameters that are typical of a trichloroethene (TCE) DNAPL. Dramatic differences in DNAPL migration were observed between these simulations.« less

  20. Estimation of hectare-scale soil-moisture characteristics from aquifer-test data

    USGS Publications Warehouse

    Moench, A.F.

    2003-01-01

    Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions and even relatively small amounts of fine-grained material and heterogeneity can dominate the large-scale soil-moisture characteristics and aquifer response. ?? 2003 Elsevier B.V. All rights reserved.

  1. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  2. A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations.

    PubMed

    Zhang, Meijing; Burbey, Thomas J; Nunes, Vitor Dos Santos; Borggaard, Jeff

    2014-01-01

    Parameter estimation codes such as UCODE_2005 are becoming well-known tools in groundwater modeling investigations. These programs estimate important parameter values such as transmissivity (T) and aquifer storage values (Sa ) from known observations of hydraulic head, flow, or other physical quantities. One drawback inherent in these codes is that the parameter zones must be specified by the user. However, such knowledge is often unknown even if a detailed hydrogeological description is available. To overcome this deficiency, we present a discrete adjoint algorithm for identifying suitable zonations from hydraulic head and subsidence measurements, which are highly sensitive to both elastic (Sske) and inelastic (Sskv) skeletal specific storage coefficients. With the advent of interferometric synthetic aperture radar (InSAR), distributed spatial and temporal subsidence measurements can be obtained. A synthetic conceptual model containing seven transmissivity zones, one aquifer storage zone and three interbed zones for elastic and inelastic storage coefficients were developed to simulate drawdown and subsidence in an aquifer interbedded with clay that exhibits delayed drainage. Simulated delayed land subsidence and groundwater head data are assumed to be the observed measurements, to which the discrete adjoint algorithm is called to create approximate spatial zonations of T, Sske , and Sskv . UCODE-2005 is then used to obtain the final optimal parameter values. Calibration results indicate that the estimated zonations calculated from the discrete adjoint algorithm closely approximate the true parameter zonations. This automation algorithm reduces the bias established by the initial distribution of zones and provides a robust parameter zonation distribution. © 2013, National Ground Water Association.

  3. Contaminant point source localization error estimates as functions of data quantity and model quality

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Vesselinov, Velimir V.

    2016-10-01

    We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.

  4. Nonlinear-regression groundwater flow modeling of a deep regional aquifer system

    USGS Publications Warehouse

    Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.

    1986-01-01

    A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.

  5. Nonlinear-Regression Groundwater Flow Modeling of a Deep Regional Aquifer System

    NASA Astrophysics Data System (ADS)

    Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.

    1986-12-01

    A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.

  6. An analytical approach for the simulation of flow in a heterogeneous confined aquifer with a parameter zonation structure

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yeh, Hund-Der

    2016-11-01

    This study introduces an analytical approach to estimate drawdown induced by well extraction in a heterogeneous confined aquifer with an irregular outer boundary. The aquifer domain is divided into a number of zones according to the zonation method for representing the spatial distribution of a hydraulic parameter field. The lateral boundary of the aquifer can be considered under the Dirichlet, Neumann or Robin condition at different parts of the boundary. Flow across the interface between two zones satisfies the continuities of drawdown and flux. Source points, each of which has an unknown volumetric rate representing the boundary effect on the drawdown, are allocated around the boundary of each zone. The solution of drawdown in each zone is expressed as a series in terms of the Theis equation with unknown volumetric rates from the source points. The rates are then determined based on the aquifer boundary conditions and the continuity requirements. The estimated aquifer drawdown by the present approach agrees well with a finite element solution developed based on the Mathematica function NDSolve. As compared with the existing numerical approaches, the present approach has a merit of directly computing the drawdown at any given location and time and therefore takes much less computing time to obtain the required results in engineering applications.

  7. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.

  8. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  9. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  10. Application of the Aquifer Impact Model to support decisions at a CO 2 sequestration site: Modeling and Analysis: Application of the Aquifer Impact Model to support decisions at a CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Diana Holford; Locke II, Randall A.; Keating, Elizabeth

    The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brinemore » leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.« less

  11. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    NASA Astrophysics Data System (ADS)

    Kurtz, W.; Hendricks Franssen, H.-J.; Brunner, P.; Vereecken, H.

    2013-10-01

    River-aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river-aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river-aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland), where river-aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated-saturated subsurface hydrological flow problem including river-aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L) are perfectly known. Hydraulic head data (100 in the default scenario) are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF). For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones) gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream-aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high-resolution characterization of L fields with EnKF is still feasible. For less heterogeneous river bed hydraulic conductivities, a high-resolution characterization of L is less important. When uncertainties in the hydraulic parameters of the aquifer are also regarded in the assimilation, the errors in state and flux predictions increase, but the ensemble with a high spatial resolution for L still outperforms the ensembles with effective L values. We conclude that for strongly heterogeneous river beds the commonly applied simplified representation of the streambed, with spatially homogeneous parameters or constant parameters for a few zones, might yield significant biases in the characterization of the water balance. For strongly heterogeneous river beds, we suggest adopting a stochastic field approach to model the spatially heterogeneous river beds geostatistically. The paper illustrates that EnKF is able to calibrate such heterogeneous streambeds on the basis of hydraulic head measurements, outperforming zonation approaches.

  12. Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship

    NASA Astrophysics Data System (ADS)

    Viswanathan, M. N.

    1984-02-01

    The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.

  13. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  14. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Barrash, W.

    2011-12-01

    We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

  15. An investigation of hydraulic conductivity estimation in a ground-water flow study of Northern Long Valley, New Jersey

    USGS Publications Warehouse

    Hill, Mary C.

    1985-01-01

    The purpose of this study was to develop a methodology to be used to investigate the aquifer characteristics and water supply potential of an aquifer system. In particular, the geohydrology of northern Long Valley, New Jersey, was investigated. Geohydrologic data were collected and analyzed to characterize the site. Analysis was accomplished by interpreting the available data and by using a numerical simulation of the watertable aquifer. Special attention was given to the estimation of hydraulic conductivity values and hydraulic conductivity structure which together define the hydraulic conductivity of the modeled aquifer. Hydraulic conductivity and all other aspects of the system were first estimated using the trial-and-error method of calibration. The estimation of hydraulic conductivity was improved using a least squares method to estimate hydraulic conductivity values and by improvements in the parameter structure. These efforts improved the calibration of the model far more than a preceding period of similar effort using the trial-and-error method of calibration. In addition, the proposed method provides statistical information on the reliability of estimated hydraulic conductivity values, calculated heads, and calculated flows. The methodology developed and applied in this work proved to be of substantial value in the evaluation of the aquifer considered.

  16. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    PubMed

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  17. Contaminant point source localization error estimates as functions of data quantity and model quality

    DOE PAGES

    Hansen, Scott K.; Vesselinov, Velimir Valentinov

    2016-10-01

    We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulatemore » well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.« less

  18. Hydrostratigraphy and hydrogeology of the western part of Maira area, Khyber Pakhtunkhwa, Pakistan: a case study by using electrical resistivity.

    PubMed

    Farid, Asam; Jadoon, Khanzaib; Akhter, Gulraiz; Iqbal, Muhammad Asim

    2013-03-01

    Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.

  19. Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Berg, Steven J.; Illman, Walter A.

    2012-11-01

    SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.

  20. The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions

    NASA Astrophysics Data System (ADS)

    Loaiciga, Hugo A.; MariñO, Miguel A.

    1987-01-01

    The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.

  1. Conceptual and numerical models of groundwater flow in the Ogallala aquifer in Gregory and Tripp Counties, South Dakota, water years 1985--2009

    USGS Publications Warehouse

    Davis, Kyle W.; Putnam, Larry D.

    2013-01-01

    The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the smallest differences between simulated and observed values, within a given set of constraints. The potentiometric surface of the aquifer calculated during the 200-year initialization period established initial conditions for the transient simulation. Water levels for 38 observation wells were used to calibrate the 25-year simulation. Simulated hydraulic heads for the transient simulation were within plus or minus 20 feet of observed values for 95 percent of observation wells, and the mean absolute difference was 5.1 feet. Calibrated hydraulic conductivity ranged from 0.9 to 227 feet per day (ft/d). The annual recharge rates for the transient simulation (water years 1985–2009) ranged from 0.60 to 6.96 inches, with a mean of 3.68 inches for the Ogallala aquifer. This represents a mean recharge rate of 280.5 ft3/s for the model area. Discharge from the aquifer occurs through evapotranspiration, discharge to streams through river leakage and flow from springs and seeps, and well withdrawals. Water is withdrawn from wells for irrigation, public supply, domestic, and stock uses. Simulated mean discharge rates for water years 1985–2009 were about 185 cubic feet per second (ft3/s) for evapotranspiration, 66.7 ft3/s for discharge to streams, and 5.48 ft3/s for well withdrawals. Simulated annual evapotranspiration rates ranged from about 128 to 254 ft3/s, and outflow to streams ranged from 52.2 to 79.9 ft3/s. A sensitivity analysis was used to examine the response of the calibrated model to changes in model parameters for horizontal hydraulic conductivity, recharge, evapotranspiration, and spring and riverbed conductance. The model was most sensitive to recharge and maximum potential evapotranspiration and least sensitive to riverbed and spring conductances. Two potential future scenarios were simulated: a potential drought scenario and a potential increased pumping scenario. To simulate a potential drought scenario, a synthetic drought record was created, the mean of which was equal to 60 percent of the mean estimated recharge rate for the 25-year simulation period. Compared with the results of the calibrated model (non-drought simulation), the simulation representing a potential drought scenario resulted in water-level decreases of as much as 30 feet for the Ogallala aquifer. To simulate the effects of potential future increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 25-year simulation period. Compared with the results of the calibrated model, the simulation representing an increased pumping scenario resulted in water-level decreases of as much as 26 feet for the Ogallala aquifer. Groundwater budgets for the potential future scenario simulations were compared with the transient simulation representing water years 1985–2009. The simulation representing a potential drought scenario resulted in lower aquifer recharge from precipitation and decreased discharge from streams, springs, seeps, and evapotranspiration. The simulation representing a potential increased pumping scenario was similar to results from the transient simulation, with a slight increase in well withdrawals and a slight decrease in discharge from river leakage and evapotranspiration. This numerical model is suitable as a tool that could be used to better understand the flow system of the Ogallala aquifer, to approximate hydraulic heads in the aquifer, and to estimate discharge to rivers, springs, and seeps in the study area. The model also is useful to help assess the response of the aquifer to additional stresses, including potential drought conditions and increased well withdrawals.

  2. Is inversion based high resolution characterization of spatially heterogeneous river bed hydraulic conductivity needed and possible?

    NASA Astrophysics Data System (ADS)

    Kurtz, W.; Hendricks Franssen, H.-J.; Brunner, P.; Vereecken, H.

    2013-05-01

    River-aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river-aquifer exchange fluxes tend to be strongly spatially variable and it is an open research question to which degree river bed heterogeneity has to be represented in a~model in order to achieve reliable estimates of river-aquifer exchange fluxes. This research question is addressed in this paper with help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland), where river-aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated-saturated subsurface hydrological flow problem including river-aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L) are perfectly known. Hydraulic head data (100 in the default scenario) are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with help of the Ensemble Kalman Filter (EnKF). For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high resolution L-fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher resolution L-fields (i.e., fully heterogeneous or 5 zones) gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream-aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high resolution L-fields outperform the others. In case of less heterogeneous river bed hydraulic conductivities, a high-resolution characterization of L is less important. We conclude that for strongly heterogeneous river beds the commonly applied simplified representation of the streambed, with spatially homogeneous parameters or constant parameters for a few zones, might yield significant biases in the characterization of the water balance. For strongly heterogeneous river beds, we suggest to adopt a stochastic field approach to model the spatially heterogeneous river beds geostatistically. The paper illustrates that EnKF is able to calibrate such heterogeneous streambeds on the basis of hydraulic head measurements, outperforming classical approaches.

  3. Use of Numerical Groundwater Model and Analytical Empirical Orthogonal Function for Calibrating Spatiotemporal pattern of Pumpage, Recharge and Parameter

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.

    2016-12-01

    This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.

  4. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  5. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Estimation of Hydraulic Parameters and Aquifer Properties for a Managed Aquifer Recharge Pilot Study in The Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Ozeren, Y.; Rigby, J.; Holt, R. M.

    2017-12-01

    Mississippi River Valley Alluvial Aquifer (MRVAA) is the major irrigation water resource in the in the lower Mississippi River basin. MRVAA has been significantly depleted in the last two decades due to excessive pumping. A wide range of measures to ensure sustainable groundwater supply in the region is currently under investigation. One of the possible solution under consideration is to use Managed Aquifer Recharge (MAR) by artificial recharge. The proposed artificial recharge technique in this study is to collect water through bank filtration, transfer water via pipeline to the critically low groundwater areas by a set of injection wells. A pilot study in the area is underway to investigate the possibility of artificial recharge in the area. As part of this study, a pumping test was carried out on an existing irrigation well along banks of Tallahatchie River near Money, MS. Geophysical surveys were also carried out in the pilot study area. Hydraulic response of the observation wells was used to determine stream bed conductance and aquifer parameters. The collected hydraulic parameters and aquifer properties will provide inputs for small-scale, high-resolution engineering model for abstraction-injection hydraulics along river. Here, preliminary results of the pilot study is presented.

  7. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  8. Simulations of potential future conditions in the cache critical groundwater area, Arkansas

    USGS Publications Warehouse

    Rashid, Haveen M.; Clark, Brian R.; Mahdi, Hanan H.; Rifai, Hanadi S.; Al-Shukri, Haydar J.

    2015-01-01

    A three-dimensional finite-difference model for part of the Mississippi River Valley alluvial aquifer in the Cache Critical Groundwater Area of eastern Arkansas was constructed to simulate potential future conditions of groundwater flow. The objectives of this study were to test different pilot point distributions to find reasonable estimates of aquifer properties for the alluvial aquifer, to simulate flux from rivers, and to demonstrate how changes in pumping rates for different scenarios affect areas of long-term water-level declines over time. The model was calibrated using the parameter estimation code. Additional calibration was achieved using pilot points with regularization and singular value decomposition. Pilot point parameter values were estimated at a number of discrete locations in the study area to obtain reasonable estimates of aquifer properties. Nine pumping scenarios for the years 2011 to 2020 were tested and compared to the simulated water-level heads from 2010. Hydraulic conductivity values from pilot point calibration ranged between 42 and 173 m/d. Specific yield values ranged between 0.19 and 0.337. Recharge rates ranged between 0.00009 and 0.0006 m/d. The model was calibrated using 2,322 hydraulic head measurements for the years 2000 to 2010 from 150 observation wells located in the study area. For all scenarios, the volume of water depleted ranged between 5.7 and 23.3 percent, except in Scenario 2 (minimum pumping rates), in which the volume increased by 2.5 percent.

  9. Python-Based Applications for Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.

    2013-12-01

    Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The python wrapper invokes the underlying FORTRAN layer to compute transient groundwater elevations and processes this information to create time-series and 2D plots.

  10. Estimated drawdowns in the Floridan aquifer due to increased withdrawals, Duval County, Florida

    USGS Publications Warehouse

    Franks, Bernard J.; Phelps, G.G.

    1979-01-01

    Hydrologic investigations of the Floridan aquifer in Duval County, Florida, have shown that an appropriate simplified model of the aquifer system consists of a series of sub aquifers separated by semipermeable beds. Data from more than 20 aquifer tests were reanalyzed by the Hantush modified method, which takes into account leakance from all confining units. Transmissivity values range from 20,000 to 240,000 square feet per day. Leakance was estimated to be 2.5x10 to the minus 6th power and 3.3x10 to the minus 5th power per day for the upper and lower confining units, respectively. Families of steady-state distance-drawdown curves were constructed for three representative transmissivity values based on hypothetical withdrawals from a point source ranging from 5 to 50 million gallons per day. Transient effects were not considered because the system reaches steady-state conditions within the time ranges considered. Drawdown at any point can be estimated by summing the effects of any hypothetical configuration of pumping centers. The accuracy of the parameters was checked by comparing calculated drawdowns in selected observation wells to measured water-level declines. (Woodard-USGS)

  11. Delineation and Analysis of Uncertainty of Contributing Areas to Wells at the Southbury Training School, Southbury, Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway; Mullaney, John R.

    2000-01-01

    Contributing areas to public-supply wells at the Southbury Training School in Southbury, Connecticut, were mapped by simulating ground-water flow in stratified glacial deposits in the lower Transylvania Brook watershed. The simulation used nonlinear regression methods and informational statistics to estimate parameters of a ground-water flow model using drawdown data from an aquifer test. The goodness of fit of the model and the uncertainty associated with model predictions were statistically measured. A watershed-scale model, depicting large-scale ground-water flow in the Transylvania Brook watershed, was used to estimate the distribution of groundwater recharge. Estimates of recharge from 10 small basins in the watershed differed on the basis of the drainage characteristics of each basin. Small basins having well-defined stream channels contributed less ground-water recharge than basins having no defined channels because potential ground-water recharge was carried away in the stream channel. Estimates of ground-water recharge were used in an aquifer-scale parameter-estimation model. Seven variations of the ground-water-flow system were posed, each representing the ground-water-flow system in slightly different but realistic ways. The model that most closely reproduced measured hydraulic heads and flows with realistic parameter values was selected as the most representative of the ground-water-flow system and was used to delineate boundaries of the contributing areas. The model fit revealed no systematic model error, which indicates that the model is likely to represent the major characteristics of the actual system. Parameter values estimated during the simulation are as follows: horizontal hydraulic conductivity of coarse-grained deposits, 154 feet per day; vertical hydraulic conductivity of coarse-grained deposits, 0.83 feet per day; horizontal hydraulic conductivity of fine-grained deposits, 29 feet per day; specific yield, 0.007; specific storage, 1.6E-05. Average annual recharge was estimated using the watershed-scale model with no parameter estimation and was determined to be 24 inches per year in the valley areas and 9 inches per year in the upland areas. The parameter estimates produced in the model are similar to expected values, with two exceptions. The estimated specific yield of the stratified glacial deposits is lower than expected, which could be caused by the layered nature of the deposits. The recharge estimate produced by the model was also lower?about 32 percent of the average annual rate. This could be caused by the timing of the aquifer test with respect to the annual cycle of ground-water recharge, and by some of the expected recharge going to parts of the flow system that were not simulated. The data used in the calibration were collected during an aquifer test from October 30 to November 4, 1996. The model fit was very good, as indicated by the correlation coefficient (0.999) between the weighted simulated values and weighted observed values. The model also reproduced the general rise in ground-water levels caused by ground-water recharge and the cyclic fluctuations caused by pumping prior to the aquifer test. Contributing areas were delineated using a particle-tracking procedure. Hypothetical particles of water were introduced at each model cell in the top layer and were tracked to determine whether or not they reached the pumped well. A deterministic contributing area was calculated using the calibrated model, and a probabilistic contributing area was calculated using a Monte Carlo approach along with the calibrated model. The Monte Carlo simulation was done, using the parameter variance/covariance matrix generated by the regression model, to estimate probabilities associated with the contributing area to the wells. The probabilities arise from uncertainty in the estimated parameter values, which in turn arise from the adequacy of the data available to comprehensively describe the groundwater-flow sy

  12. Pumping Test Determination of Unsaturated Aquifer Properties

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum likelihood- based model selection criteria to compare the abilities of numerical models based on the STOMP code to reproduce observed drawdowns during the test when saturated and unsaturated aquifer parameters are estimated either in the above manner or by means of the inverse code PEST.

  13. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  14. Groundwater Evapotranspiration from Diurnal Water Table Fluctuation: a Modified White Based Method Using Drainable and Fillable Porosity

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Mylavarapu, R.; Jawitz, J. W.

    2012-12-01

    In shallow unconfined aquifers, the water table usually shows a distinct diurnal fluctuation pattern corresponding to the twenty-four hour solar radiation cycle. This diurnal water table fluctuation (DWTF) signal can be used to estimate the groundwater evapotranspiration (ETg) by vegetation, a method known as the White [1932] method. Water table fluctuations in shallow phreatic aquifers is controlled by two distinct storage parameters, drainable porosity (or specific yield) and the fillable porosity. Yet, it is implicitly assumed in most studies that these two parameters are equal, unless hysteresis effect is considered. The White based method available in the literature is also based on a single drainable porosity parameter to estimate the ETg. In this study, we present a modification of the White based method to estimate ETg from DWTF using separate drainable (λd) and fillable porosity (λf) parameters. Separate analytical expressions based on successive steady state moisture profiles are used to estimate λd and λf, instead of the commonly employed hydrostatic moisture profile approach. The modified method is then applied to estimate ETg using the DWTF data observed in a field in northeast Florida and the results are compared with ET estimations from the standard Penman-Monteith equation. It is found that the modified method resulted in significantly better estimates of ETg than the previously available method that used only a single, hydrostatic-moisture-profile based λd. Furthermore, the modified method is also used to estimate ETg even during rainfall events which produced significantly better estimates of ETg as compared to the single λd parameter method.

  15. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown records from a 7 day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada. We validate our parameter estimates against manually measured drawdown records in 14 other piezometers at Borden. We compare our estimates of aquifer parameters with those obtained on the basis of all these records by Moench (2008) and on the basis of 11 transducer-measured drawdown records by Endres et al. (2007), and we compare our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham (1992); finally, we compare our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well.

  16. Estimation of αL, velocity, Kd and confidence limits from tracer injection test data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  17. Estimation of αL, velocity, Kd, and confidence limits from tracer injection data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  18. Characterization of a high-transmissivity zone by well test analysis: Steady state case

    USGS Publications Warehouse

    Tiedeman, Claire; Hsieh, Paul A.; Christian, Sarah B.

    1995-01-01

    A method is developed to analyze steady horizontal flow to a well pumped from a confined aquifer composed of two homogeneous zones with contrasting transmissivities. Zone 1 is laterally unbounded and encloses zone 2, which is elliptical in shape and is several orders of magnitude more transmissive than zone 1. The solution for head is obtained by the boundary integral equation method. Nonlinear least squares regression is used to estimate the model parameters, which include the transmissivity of zone 1, and the location, size, and orientation of zone 2. The method is applied to a hypothetical aquifer where zone 2 is a long and narrow zone of vertical fractures. Synthetic data are generated from three different well patterns, representing different areal coverage and proximity to the fracture zone. When zone 1 of the hypothetical aquifer is homogeneous, the method correctly estimates all model parameters. When zone 1 is a randomly heterogeneous transmissivity field, some parameter estimates, especially the length of zone 2, become highly uncertain. To reduce uncertainty, the pumped well should be close to the fracture zone, and surrounding observation wells should cover an area similar in dimension to the length of the fracture zone. Some prior knowledge of the fracture zone, such as that gained from a surface geophysical survey, would greatly aid in designing the well test.

  19. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    USGS Publications Warehouse

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-01-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  20. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of approximately 326 square miles. For the most part, the model extent coincides with the 2005 revised extent of the Spokane Valley-Rathdrum Prairie aquifer as defined in a previous report. However, the model excludes Spirit and Hoodoo Valleys because of uncertainties about the ground-water flow directions in those valleys and the degree of hydraulic connection between the valleys and northern Rathdrum Prairie. The SVRP aquifer is considered to be a single hydrogeologic unit except in Hillyard Trough and the Little Spokane River Arm. In those areas, a continuous clay layer divides the aquifer into an upper, unconfined unit and a lower, confined unit. The model includes all known components of inflows to and outflows from the aquifer. Inflows to the SVRP aquifer include (1) recharge from precipitation, (2) inflows from tributary basins and adjacent uplands, (3) subsurface seepage and surface overflows from lakes that border the aquifer, (4) flow from losing segments of the Spokane River to the aquifer, (5) return percolation from irrigation, and (6) effluent from septic systems. Outflows from the SVRP aquifer include (1) ground-water withdrawals from wells, (2) flow from the aquifer to gaining segments of the Spokane River, (3) aquifer discharge to the Little Spokane River, and (4) subsurface outflow from the lower unit at the western limit of the model area near Long Lake. These inflow and outflow components are represented in the model by using MODFLOW-2000 packages. The parameter-estimation program PEST was used to calibrate the SVRP aquifer model. PEST implements a nonlinear least-squares regression method to estimate model parameters so that the differences between measured and simulated quantities are minimized with respect to an optimal criterion. Calibration data include 1,573 measurements of water levels and 313 measurements of streamflow gains and losses along segments of the Spokane and Little Spokane Rivers. Model parameters estimated during calib

  1. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  2. Two-Stage Parameter Estimation in Confined Costal Aquifers

    NASA Astrophysics Data System (ADS)

    Hsu, N.

    2003-12-01

    Using field observations of tidal level and piezometric head at an observation well, this research develops a two-stage parameter estimation approach for estimating the hydraulic conductivity (T) and storage coefficient (S) of a confined aquifer in a costal area. While the y-axis coincides with the coastline, the x-axis extends from zero to infinity and, therefore, the domain of the aquifer is assumed to be a half plane. Other assumptions include homogeneity, isotropy and constant thickness of the aquifer, and zero initial head distribution. In the first stage, fluctuations of the tidal level and piezometric head at the observation well are collected simultaneously without the influence of pumping. Fourier spectra analysis is used to find the autocorrelation and crosscorrelation of the two sets of observations as well as the phase vs. frequency function. The tidal efficiency and time delay can then be computed. The analytical solution of Ferris (1951) is then used to compute the ratio of T/S. In the second stage, the system is stressed with pumping and observations of the tidal level and piezometric head at the observation well are collected simultaneously. The effect of tide to the observation well without pumping can be computed by the analytical solution of Ferris (1951) based upon the identified ratio of T/S and is deducted from the piezometric head observations to obtain the updated piezometric head. Theis equation coupled with the method of image is then applied to the updated piezometric head to obtain the T and S values. The developed approach is applied to a hypothetical aquifer. The results obtained show convergence of the approach. The robustness of the developed approach is also demonstrated by using noise-corrupted observations.

  3. Analytical Models of the Transport of Deep-Well Injectate at the North District Wastewater Treatment Plant, Miami-Dade County, Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    King, J. N.; Walsh, V.; Cunningham, K. J.; Evans, F. S.; Langevin, C. D.; Dausman, A.

    2009-12-01

    The Miami-Dade Water and Sewer Department (MDWASD) injects buoyant effluent from the North District Wastewater Treatment Plant (NDWWTP) through four Class I injection wells into the Boulder Zone---a saline (35 parts per thousand) and transmissive (105 to 106 square meters per day) hydrogeologic unit located approximately 1000 meters below land surface. Miami-Dade County is located in southeast Florida, U.S.A. Portions of the Floridan and Biscayne aquifers are located above the Boulder Zone. The Floridan and Biscayne aquifers---underground sources of drinking water---are protected by U.S. Federal Laws and Regulations, Florida Statutes, and Miami-Dade County ordinances. In 1998, MDWASD began to observe effluent constituents within the Floridan aquifer. Continuous-source and impulse-source analytical models for advective and diffusive transport of effluent are used in the present work to test contaminant flow-path hypotheses, suggest transport mechanisms, and estimate dispersivity. MDWASD collected data in the Floridan aquifer between 1996 and 2007. A parameter estimation code is used to optimize analytical model parameters by fitting model data to collected data. These simple models will be used to develop conceptual and numerical models of effluent transport at the NDWWTP, and in the vicinity of the NDWWTP.

  4. Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer

    NASA Astrophysics Data System (ADS)

    Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael

    2014-12-01

    Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.

  5. The use of magnetic resonance sounding for quantifying specific yield and transmissivity in hard rock aquifers: The example of Benin

    NASA Astrophysics Data System (ADS)

    Vouillamoz, J. M.; Lawson, F. M. A.; Yalo, N.; Descloitres, M.

    2014-08-01

    Hundreds of thousands of boreholes have been drilled in hard rocks of Africa and Asia for supplying human communities with drinking water. Despite the common use of geophysics for improving the siting of boreholes, a significant number of drilled holes does not deliver enough water to be equipped (e.g. 40% on average in Benin). As compared to other non-invasive geophysical methods, magnetic resonance sounding (MRS) is selective to groundwater. However, this distinctive feature has not been fully used in previous published studies for quantifying the drainable groundwater in hard rocks (i.e. the specific yield) and the short-term productivity of aquifer (i.e. the transmissivity). We present in this paper a comparison of MRS results (i.e. the water content and pore-size parameter) with both specific yield and transmissivity calculated from long duration pumping tests. We conducted our experiments in six sites located in different hard rock groups in Benin, thus providing a unique data set to assess the usefulness of MRS in hard rock aquifers. We found that the MRS water content is about twice the specific yield. We also found that the MRS pore-size parameter is well correlated with the specific yield. Thus we proposed two linear equations for calculating the specific yield from the MRS water content (with an uncertainty of about 10%) and from the pore-size parameter (with an uncertainty of about 20%). The later has the advantage of defining a so-named MRS cutoff time value for indentifying non-drainable MRS water content and thus low groundwater reserve. We eventually propose a nonlinear equation for calculating the specific yield using jointly the MRS water content and the pore-size parameters, but this approach has to be confirmed with further investigations. This study also confirmed that aquifer transmissivity can be estimated from MRS results with an uncertainty of about 70%. We conclude that MRS can be usefully applied for estimating aquifer specific yield and transmissivity in weathered hard rock aquifers. Our result will contribute to the improvement of well siting and groundwater management in hard rocks.

  6. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    NASA Astrophysics Data System (ADS)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  7. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    PubMed

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  8. Water Residence Time estimation by 1D deconvolution in the form of a l2 -regularized inverse problem with smoothness, positivity and causality constraints

    NASA Astrophysics Data System (ADS)

    Meresescu, Alina G.; Kowalski, Matthieu; Schmidt, Frédéric; Landais, François

    2018-06-01

    The Water Residence Time distribution is the equivalent of the impulse response of a linear system allowing the propagation of water through a medium, e.g. the propagation of rain water from the top of the mountain towards the aquifers. We consider the output aquifer levels as the convolution between the input rain levels and the Water Residence Time, starting with an initial aquifer base level. The estimation of Water Residence Time is important for a better understanding of hydro-bio-geochemical processes and mixing properties of wetlands used as filters in ecological applications, as well as protecting fresh water sources for wells from pollutants. Common methods of estimating the Water Residence Time focus on cross-correlation, parameter fitting and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution, regularized, non-parametric inverse problem algorithm that enforces smoothness and uses constraints of causality and positivity to estimate the Water Residence Time curve. Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime per test case; compared to the popular and fast cross-correlation method, it produces a more precise Water Residence Time curve even in the case of noisy measurements. The algorithm needs only one regularization parameter to balance between smoothness of the Water Residence Time and accuracy of the reconstruction. We propose an approach on how to automatically find a suitable value of the regularization parameter from the input data only. Tests on real data illustrate the potential of this method to analyze hydrological datasets.

  9. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters estimated for the transient calibration included specific yield for five of the seven hydrogeologic zones. The zones represent five rock units and parts of four rock units with abundant interbedded sediment. All estimates of hydraulic conductivity were nearly within 2 orders of magnitude of the maximum expected value in a range that exceeds 6 orders of magnitude. The estimate of vertical anisotropy was larger than the maximum expected value. All estimates of specific yield and their confidence intervals were within the ranges of values expected for aquifers, the range of values for porosity of basalt, and other estimates of specific yield for basalt. The steady-state model reasonably simulated the observed water-table altitude, orientation, and gradients. Simulation of transient flow conditions accurately reproduced observed changes in the flow system resulting from episodic infiltration from the Big Lost River and facilitated understanding and visualization of the relative importance of historical differences in infiltration in time and space. As described in a conceptual model, the numerical model simulations demonstrate flow that is (1) dominantly horizontal through interflow zones in basalt and vertical anisotropy resulting from contrasts in hydraulic conductivity of various types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. The numerical models were reparameterized, recalibrated, and analyzed to evaluate alternative conceptualizations or implementations of the conceptual model. The analysis of the reparameterized models revealed that little improvement in the model could come from alternative descriptions of sediment content, simulated aquifer thickness, streamflow infiltration, and vertical head distribution on the downgradient boundary. Of the alternative estimates of flow to or from the aquifer, only a 20 percent decrease in

  10. Characterization of shallow unconsolidated aquifers in West Africa using different hydrogeological data sources as a contribution to the promotion of manual drilling and low cost techniques for groundwater exploration

    NASA Astrophysics Data System (ADS)

    Fussi, Fabio; Fumagalli, Letizia; Bonomi, Tullia; Kane, Cheikh H.; Fava, Francesco; Di Mauro, Biagio; Hamidou, Barry; Niang, Magatte; Wade, Souleye; Colombo, Roberto

    2016-04-01

    Manual drilling refers to several drilling methods that rely on human energy to construct a borehole and complete a water supply (Danert, 2015). It can be an effective strategy to increase access to groundwater in low income countries , but manual drilling can be applied only where shallow geological layers are relatively soft and water table is not too deep. It is important therefore to identify those zones where shallow hydrogeological conditions are suitable, investigating the characteristics of shallow porous aquifers. Existing hydrogeological studies are generally focused in the characterization of deep fractures aquifers, more productive and able to ensure water supply for large settlements. Information concerning shallow porous aquifers are limited. This research has been carried out in two different study areas in West Africa (North-Western Senegal and Eastern Guinea). Aim of the research is the characterization of shallow aquifer using different methods and the identification of hydrogeological condition suitable for manual drilling implementation. Three different methods to estimate geometry and hydraulic properties of shallow unconsolidated aquifers have been used: The first method is based on the analysis of stratigraphic data obtained from borehole logs of the national water point database in both countries. The following steps have been implemented on the original information using the software TANGAFRIC, specifically designed for this study: a) identification of most frequent terms used for hydrogeological description in Senegal and Guinea database; b) definition of standard categories and manual codification of data; c) automatic extraction of average distribution of textural classes at different depth intervals in the unconsolidated aquifer; d) estimation of hydraulic parameters using conversion tables between texture and hydraulic conductivity available in the literature. . The second method is based on the interpretation of pump and recovery test in large diameter wells. K values obtained from these tests provide direct information on hydraulic parameters of shallow porous aquifers (while pump tests data obtained from deep mechanized boreholes, exploiting fractured aquifers, cannot be considered representative for the target shallow aquifer of manual drilling). The third method is based on the interpretation of stratigraphic logs and simplified pump test from manual drilled wells carried out since 2012 in Guinea. In this country a standard and systematic procedure to collect hydrogeological data from these wells (therefore indicating properties of shallow aquifer) has been put in place in 2011; it is considered one of the best example worldwide about technical data collection and systematization from manual drilling activities, but its development has been stopped because of the outbreak of Ebola in this country. The integration of these 3 methods allow to estimate geometry and hydraulic behavior of shallow unconsolidated aquifer, identifying those areas where manual drilling is feasible and estimating potential yield that can be extracted. In the mean time this research provides relevant indications concerning the use of data obtained from low cost open hand dug or manually drilled wells (rarely used in hydrogeological research) for groundwater exploration of shallow aquifers.

  11. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, Richard M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  12. Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring

    NASA Astrophysics Data System (ADS)

    Abdullin, A.; Jonsson, S.

    2016-12-01

    Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.

  13. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2017-09-01

    Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  14. Evaluation of the groundwater-flow model for the Ohio River alluvial aquifer near Carrollton, Kentucky, updated to conditions in September 2010

    USGS Publications Warehouse

    Unthank, Michael D.

    2013-01-01

    The Ohio River alluvial aquifer near Carrollton, Ky., is an important water resource for the cities of Carrollton and Ghent, as well as for several industries in the area. The groundwater of the aquifer is the primary source of drinking water in the region and a highly valued natural resource that attracts various water-dependent industries because of its quantity and quality. This report evaluates the performance of a numerical model of the groundwater-flow system in the Ohio River alluvial aquifer near Carrollton, Ky., published by the U.S. Geological Survey in 1999. The original model simulated conditions in November 1995 and was updated to simulate groundwater conditions estimated for September 2010. The files from the calibrated steady-state model of November 1995 conditions were imported into MODFLOW-2005 to update the model to conditions in September 2010. The model input files modified as part of this update were the well and recharge files. The design of the updated model and other input files are the same as the original model. The ability of the updated model to match hydrologic conditions for September 2010 was evaluated by comparing water levels measured in wells to those computed by the model. Water-level measurements were available for 48 wells in September 2010. Overall, the updated model underestimated the water levels at 36 of the 48 measured wells. The average difference between measured water levels and model-computed water levels was 3.4 feet and the maximum difference was 10.9 feet. The root-mean-square error of the simulation was 4.45 for all 48 measured water levels. The updated steady-state model could be improved by introducing more accurate and site-specific estimates of selected field parameters, refined model geometry, and additional numerical methods. Collection of field data to better estimate hydraulic parameters, together with continued review of available data and information from area well operators, could provide the model with revised estimates of conductance values for the riverbed and valley wall, hydraulic conductivities for the model layer, and target water levels for future simulations. Additional model layers, a redesigned model grid, and revised boundary conditions could provide a better framework for more accurate simulations. Additional numerical methods would identify possible parameter estimates and determine parameter sensitivities.

  15. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  16. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sophocleous, Marios; Perkins, Samuel P.

    1993-12-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction.

  17. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    1993-01-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction. ?? 1993.

  18. Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model

    NASA Astrophysics Data System (ADS)

    Marçais, J.; de Dreuzy, J.-R.; Ginn, T. R.; Rousseau-Gueutin, P.; Leray, S.

    2015-06-01

    While central in groundwater resources and contaminant fate, Transit Time Distributions (TTDs) are never directly accessible from field measurements but always deduced from a combination of tracer data and more or less involved models. We evaluate the predictive capabilities of approximate distributions (Lumped Parameter Models abbreviated as LPMs) instead of fully developed aquifer models. We develop a generic assessment methodology based on synthetic aquifer models to establish references for observable quantities as tracer concentrations and prediction targets as groundwater renewal times. Candidate LPMs are calibrated on the observable tracer concentrations and used to infer renewal time predictions, which are compared with the reference ones. This methodology is applied to the produced crystalline aquifer of Plœmeur (Brittany, France) where flows leak through a micaschists aquitard to reach a sloping aquifer where they radially converge to the producing well, issuing broad rather than multi-modal TTDs. One, two and three parameters LPMs were calibrated to a corresponding number of simulated reference anthropogenic tracer concentrations (CFC-11, 85Kr and SF6). Extensive statistical analysis over the aquifer shows that a good fit of the anthropogenic tracer concentrations is neither a necessary nor a sufficient condition to reach acceptable predictive capability. Prediction accuracy is however strongly conditioned by the use of a priori relevant LPMs. Only adequate LPM shapes yield unbiased estimations. In the case of Plœmeur, relevant LPMs should have two parameters to capture the mean and the standard deviation of the residence times and cover the first few decades [0; 50 years]. Inverse Gaussian and shifted exponential performed equally well for the wide variety of the reference TTDs from strongly peaked in recharge zones where flows are diverging to broadly distributed in more converging zones. When using two sufficiently different atmospheric tracers like CFC-11 and 85Kr, groundwater renewal time predictions are accurate at 1-5 years for estimating mean transit times of some decades (10-50 years). 1-parameter LPMs calibrated on a single atmospheric tracer lead to substantially larger errors of the order of 10 years, while 3-parameter LPMs calibrated with a third atmospheric tracers (SF6) do not improve the prediction capabilities. Based on a specific site, this study highlights the high predictive capacities of two atmospheric tracers on the same time range with sufficiently different atmospheric concentration chronicles.

  19. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-08-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.

  20. Advances toward field application of 3D hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.

    2011-12-01

    Hydraulic tomography (HT) is a technique that shows great potential for aquifer characterization and one that holds the promise of producing 3D hydraulic property distributions, given suitable equipment. First suggested over 15 years ago, HT assimilates distributed aquifer pressure (head) response data collected during a series of multiple pumping tests to produce estimates of aquifer property variability. Unlike traditional curve-matching analyses, which assume homogeneity or "effective" parameters within the radius of influence of a hydrologic test, HT analysis relies on numerical models with detailed heterogeneity in order to invert for the highly resolved 3D parameter distribution that jointly fits all data. Several numerical and laboratory investigations of characterization using HT have shown that property distributions can be accurately estimated between observation locations when experiments are correctly designed - a property not always shared by other, simpler 1D characterization approaches such as partially-penetrating slug tests. HT may represent one of the best methods available for obtaining detailed 3D aquifer property descriptions, especially in deep or "hard" aquifer materials, where direct-push methods may not be feasible. However, to date HT has not yet been widely adopted at contaminated field sites. We believe that current perceived impediments to HT adoption center around four key issues: 1) A paucity in the scientific literature of proven, cross-validated 3D field applications 2) A lack of guidelines and best practices for performing field 3D HT experiments; 3) Practical difficulty and time commitment associated with the installation of a large number of high-accuracy sampling locations, and the running of a large number of pumping tests; and 4) Computational difficulty associated with solving large-scale inverse problems for parameter identification. In this talk, we present current results in 3D HT research that addresses these four issues, and thus bring HT closer to field practice. Topics to be discussed include: -Improving field efficiency through design and implementation of new modular, easily-installed equipment for 3D HT. -Validating field-scale 3D HT through application and cross-validation at the Boise Hydrogeophysical Research Site. -Developing guidelines for HT implementation based on field experience, numerical modeling, and a comprehensive literature review of the past 15 years of HT research. -Application of novel, fast numerical methods for large-scale HT data analysis. The results presented will focus on the application of 3D HT, but in general we also hope to provide insights on aquifer characterization that stimulate thought on the issue of continually updating aquifer characteristics estimates while recognizing uncertainties and providing guidance for future data collection.

  1. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  2. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.

    USGS Publications Warehouse

    Sophocleous, M.A.

    1984-01-01

    The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.

  3. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    USGS Publications Warehouse

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox Hills aquifer. The numerical model was constructed using a uniform grid with square cells that are about 1 mile (1,600 meters) on each side with a total of about 657,000 active cells.Model calibration was completed by linking Parameter ESTimation (PEST) software with MODFLOW–NWT. The PEST software uses statistical parameter estimation techniques to identify an optimum set of input parameters by adjusting individual model input parameters and assessing the differences, or residuals, between observed (measured or estimated) data and simulated values. Steady-state model calibration consisted of attempting to match mean simulated values to measured or estimated values of (1) hydraulic head, (2) hydraulic head differences between model layers, (3) stream infiltration, and (4) discharge to streams. Calibration of the transient model consisted of attempting to match simulated and measured temporally distributed values of hydraulic head changes, stream base flow, and groundwater discharge to artesian flowing wells. Hydraulic properties estimated through model calibration included hydraulic conductivity, vertical hydraulic conductivity, aquifer storage, and riverbed hydraulic conductivity in addition to groundwater recharge and well skin.The ability of the numerical model to accurately simulate groundwater flow in the Williston Basin was assessed primarily by its ability to match calibration targets for hydraulic head, stream base flow, and flowing well discharge. The steady-state model also was used to assess the simulated potentiometric surfaces in the upper Fort Union aquifer, the lower Fort Union aquifer, and the Fox Hills aquifer. Additionally, a previously estimated regional groundwater-flow budget was compared with the simulated steady-state groundwater-flow budget for the Williston Basin. The simulated potentiometric surfaces typically compared well with the estimated potentiometric surfaces based on measured hydraulic head data and indicated localized groundwater-flow gradients that were topographically controlled in outcrop areas and more generalized regional gradients where the aquifers were confined. The differences between the measured and simulated (residuals) hydraulic head values for 11,109 wells were assessed, which indicated that the steady-state model generally underestimated hydraulic head in the model area. This underestimation is indicated by a positive mean residual of 11.2 feet for all model layers. Layer 7, which represents the lower Hell Creek aquifer, is the only layer for which the steady-state model overestimated hydraulic head. Simulated groundwater-level changes for the transient model matched within plus or minus 2.5 feet of the measured values for more than 60 percent of all measurements and to within plus or minus 17.5 feet for 95 percent of all measurements; however, the transient model underestimated groundwater-level changes for all model layers. A comparison between simulated and estimated base flows for the steady-state and transient models indicated that both models overestimated base flow in streams and underestimated annual fluctuations in base flow.The estimated and simulated groundwater budgets indicate the model area received a substantial amount of recharge from precipitation and stream infiltration. The steady-state model indicated that reservoir seepage was a larger component of recharge in the Williston Basin than was previously estimated. Irrigation recharge and groundwater inflow from outside the Williston Basin accounted for a relatively small part of total groundwater recharge when compared with recharge from precipitation, stream infiltration, and reservoir seepage. Most of the estimated and simulated groundwater discharge in the Williston Basin was to streams and reservoirs. Simulated groundwater withdrawal, discharge to reservoirs, and groundwater outflow in the Williston Basin accounted for a smaller part of total groundwater discharge.The transient model was used to simulate discharge to 571 flowing artesian wells within the model area. Of the 571 established flowing artesian wells simulated by the model, 271 wells did not flow at any time during the simulation because hydraulic head was always below the land-surface altitude. As hydraulic head declined throughout the simulation, 68 of these wells responded by ceasing to flow by the end of 2005. Total mean simulated discharge for the 571 flowing artesian wells was 55.1 cubic feet per second (ft3/s), and the mean simulated flowing well discharge for individual wells was 0.118 ft3/s. Simulated discharge to individual flowing artesian wells increased from 0.039 to 0.177 ft3/s between 1961 and 1975 and decreased to 0.102 ft3/s by 2005. The mean residual for 34 flowing wells with measured discharge was 0.014 ft3/s, which indicates the transient model overestimated discharge to flowing artesian wells in the model area.Model limitations arise from aspects of the conceptual model and from simplifications inherent in the construction and calibration of a regional-scale numerical groundwater-flow model. Simplifying assumptions in defining hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater-flow system responds to changes in hydrologic stresses, particularly at the local scale; nevertheless, the steady-state model adequately simulated flow in the uppermost principal aquifer systems in the Williston Basin based on the comparison between the simulated and estimated groundwater-flow budget, the comparison between simulated and estimated potentiometric surfaces, and the results of the calibration process.

  4. Effects of model layer simplification using composite hydraulic properties

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  5. Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: the Lagrangian approach.

    PubMed

    Vanderborght, Jan; Vereecken, Harry

    2002-01-01

    The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.

  6. Field Measurements and Modeling of the Southeast Greenland Firn Aquifer

    NASA Astrophysics Data System (ADS)

    Miller, O. L.; Solomon, D. K.; Miège, C.; Voss, C. I.; Koenig, L.; Forster, R. R.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.; Ligtenberg, S.

    2016-12-01

    An extensive firn aquifer forms in southeast Greenland as surface meltwater percolates through the upper seasonal snow and firn layers to depth and saturates open pore spaces. The firn aquifer is found at depths from about 10 to 35 m below the snow surface in areas with high accumulation rates and high melt rates. The firn aquifer retains significant volume of meltwater and heat within the ice sheet. The first-ever hydrologic and geochemical measurements from several boreholes drilled into the aquifer have been made 50 km upstream of Helheim Glacier terminus in SE Greenland. This field data is used with a version of the SUTRA groundwater simulator that represents the freeze/thaw process to model the hydrologic and thermal conditions of the ice sheet, including aquifer water recharge, lateral flow, and discharge. Meltwater generation during the summer season is modeled using degree day methods, and meltwater recharge to the aquifer (10-70 cm/year) is calculated using water level fluctuations and volumetric flow measurements (3e-7 to 5e-6 m3/s). Aquifer hydrologic parameters, including hydraulic conductivity (2e-5 to 4e -4 m/s), storativity, and specific discharge (3e-7 to 5e-6 m/s), are estimated from aquifer pumping tests and tracer experiments. In situ measurements were obtained using a novel heated piezometer, which advances downward through the unsaturated and saturated zones of the aquifer by melting the surrounding firn. Innovative modeling approaches blending unsaturated and saturated groundwater flow modeling and ice thermodynamics indicate the importance of surface topography controls on fluid flow within the aquifer, and forecast the nature and volume of aquifer water discharge into crevasses at the edge of the ice sheet. This pioneering study is crucial to understanding the aquifer's influence on mass balance estimates of the ice sheet.

  7. Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing

    USGS Publications Warehouse

    Blainey, Joan B.; Ferré, Ty P.A.; Cordova, Jeffrey T.

    2007-01-01

    Pumping of an unconfined aquifer can cause local desaturation detectable with high‐resolution gravimetry. A previous study showed that signal‐to‐noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low‐quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high‐quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data.

  8. Response to Comment by H. Lough, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, on the Paper " Stream Depletion Predictions using Pumping Test Data from A Heterogeneous Stream-Aquifer System (A Case Study from the Gr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollet, S J; Zlotnik, V A

    2004-12-20

    We thank H. Lough for her interest in our data set and the attempt to re-analyze our results (Kollet and Zlotnik, 2003) using the recent model by Hunt (2003). We welcome others to share our unique data set of the pumping test from the Prairie Creek site, Nebraska, USA. Nevertheless we believe that this particular attempt failed, because H. Lough selected a wrong model of semi-confined aquifer conditions for the interpretation of the pumping test data, which was collected in an unconfined aquifer. H. Lough based her selection on the three distinct drawdown segments observed during the test. It ismore » well known that geologically distinct aquifers can yield a three-segment drawdown response under pumping conditions (e.g., Streltsova, 1988). Examples include unconfined aquifers (e.g., Neuman, 1972; Moench, 1997), aquifers with double porosity or fractures (e.g., Barenblatt et al., 1960; Boulton and Streltsova-Adams, 1978), and (semi-) confined aquifers in contact with aquitards (e.g. Cooley and Case, 1973; Moench, 1985). At the Prairie Creek site the aquifer is unconfined. The interpretation of the pumping test data collected at the site using type curves that are valid for an aquifer-aquitard system is a mistake. In fact, this approach illustrates a typical problem associated with inverse modeling: drastically different models can closely reproduce a system response and yield some parameter estimates, although the models do not represent the real system adequately. Here, the improper model yields some parameter estimates for an aquitard, although the aquitard does not exist at the Prairie Creek test site. We must also unequivocally state that the model by Hunt (2003) is clearly formulated and correct for stream-aquifer-aquitard systems within the stated limitations (pumping wells screened only in the lowest stratigraphic layer, etc.). However, the Hunt (1999) or BZT (Butler et al., 2001) models should be used for interpreting pumping tests near streams in non-leaky aquifers as outlined in our study (Kollet and Zlotnik, 2003). The purpose of the comment by H. Lough is to examine three drawdown segments and results from Kollet and Zlotnik (2003) using a newer analytical model of stream-aquifer interactions by Hunt (2003). We will address the key issues of this comment in this paper.« less

  9. Optimal estimation and scheduling in aquifer management using the rapid feedback control method

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric

    2017-12-01

    Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.

  10. Simulated groundwater flow in the Ogallala and Arikaree aquifers, Rosebud Indian Reservation area, South Dakota - Revisions with data through water year 2008 and simulations of potential future scenarios

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, Larry D.

    2010-01-01

    The Ogallala and Arikaree aquifers are important water resources in the Rosebud Indian Reservation area and are used extensively for irrigation, municipal, and domestic water supplies. Drought or increased withdrawals from the Ogallala and Arikaree aquifers in the Rosebud Indian Reservation area have the potential to affect water levels in these aquifers. This report documents revisions and recalibration of a previously published three-dimensional, numerical groundwater-flow model for this area. Data for a 30-year period (water years 1979 through 2008) were used in steady-state and transient numerical simulations of groundwater flow. In the revised model, revisions include (1) extension of the transient calibration period by 10 years, (2) the use of inverse modeling for steady-state calibration, (3) model calibration to base flow for an additional four surface-water drainage basins, (4) improved estimation of transient aquifer recharge, (5) improved delineation of vegetation types, and (6) reduced cell size near large capacity water-supply wells. In addition, potential future scenarios were simulated to assess the potential effects of drought and increased groundwater withdrawals.The model comprised two layers: the upper layer represented the Ogallala aquifer and the lower layer represented the Arikaree aquifer. The model’s grid had 168 rows and 202 columns, most of which were 1,640 feet (500 meters) wide, with narrower rows and columns near large water-supply wells. Recharge to the Ogallala and Arikaree aquifers occurs from precipitation on the outcrop areas. The average recharge rates used for the steady-state simulation were 2.91 and 1.45 inches per year for the Ogallala aquifer and Arikaree aquifer, respectively, for a total rate of 255.4 cubic feet per second (ft3/s). Discharge from the aquifers occurs through evapotranspiration, discharge to streams as base flow and spring flow, and well withdrawals. Discharge rates for the steady-state simulation were 171.3 ft3/s for evapotranspiration, 74.4 ft3/s for net outflow to streams and springs, and 11.6 ft3/s for well withdrawals. Estimated horizontal hydraulic conductivity used for the numerical model ranged from 0.2 to 84.4 feet per day (ft/d) in the Ogallala aquifer and from 0.1 to 4.3 ft/d in the Arikaree aquifer. A uniform vertical hydraulic conductivity value of 4.2x10-4 ft/d was estimated for the Ogallala aquifer. Vertical hydraulic conductivity was estimated for five zones in the Arikaree aquifer and ranged from 8.8x10-5 to 3.7 ft/d. Average rates of recharge, maximum evapotranspiration, and well withdrawals were included in the steady-state simulation, whereas the time-varying rates were included in the transient simulation.Inverse modeling techniques were used for steady-state model calibration. These methods were designed to estimate parameter values that are, statistically, the most likely set of values to result in the smallest differences between simulated and observed hydraulic heads and base-flow discharges. For the steady-state simulation, the root mean square error for simulated hydraulic heads for all 383 wells was 27.3 feet. Simulated hydraulic heads were within ±50 feet of observed values for 93 percent of the wells. The potentiometric surfaces of the two aquifers calculated by the steady-state simulation established initial conditions for the transient simulation. For the transient simulation, the difference between the simulated and observed means for hydrographs was within ±40 feet for 98 percent of 44 observation wells.A sensitivity analysis was used to examine the response of the calibrated steady-state model to changes in model parameters including horizontal and vertical hydraulic conductivity, evapotranspiration, recharge, and riverbed conductance. The model was most sensitive to recharge and maximum evapotranspiration and least sensitive to riverbed and spring conductances.To simulate a potential future drought scenario, a synthetic recharge record was created, the mean of which was equal to 64 percent of the average estimated recharge rate for the 30-year calibration period. This synthetic recharge record was used to simulate the last 20 years of the calibration period under drought conditions. Compared with results of the calibrated model, decreases in hydraulic-head values for the drought scenario at the end of the simulation period were as much as 39 feet for the Ogallala aquifer. To simulate the effects of potential increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 30-year calibration period for the last 20 years of the calibration period. Compared with results of the calibrated model, decreases in hydraulic-head values for the scenario of increased pumping at the end of the simulation period were as much as 13 feet for the Ogallala aquifer.This numerical model is suitable as a tool to help understand the flow system, to help confirm that previous estimates of aquifer properties were reasonable, and to estimate aquifer properties in areas without data. The model also is useful to help assess the effects of drought and increases in pumping by simulations of these scenarios, the results of which are not precise but may be considered when making water management decisions.

  11. Geostatistical Modeling of Sediment Abundance in a Heterogeneous Basalt Aquifer at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.

    2007-01-01

    The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the locally estimated CFDs and relative kriging uncertainty. A kriging-based methodology improves the spatial resolution of hydraulic property zones that can be considered during parameter estimation and should improve calibration performance and sensitivity by more accurately reflecting the nuances of sediment distribution within the aquifer.

  12. Use of time series and harmonic constituents of tidal propagation to enhance estimation of coastal aquifer heterogeneity

    USGS Publications Warehouse

    Hughes, Joseph D.; White, Jeremy T.; Langevin, Christian D.

    2010-01-01

    A synthetic two‐dimensional model of a horizontally and vertically heterogeneous confined coastal aquifer system, based on the Upper Floridan aquifer in south Florida, USA, subjected to constant recharge and a complex tidal signal was used to generate 15‐minute water‐level data at select locations over a 7‐day simulation period.   “Observed” water‐level data were generated by adding noise, representative of typical barometric pressure variations and measurement errors, to 15‐minute data from the synthetic model. Permeability was calibrated using a non‐linear gradient‐based parameter inversion approach with preferred‐value Tikhonov regularization and 1) “observed” water‐level data, 2) harmonic constituent data, or 3) a combination of “observed” water‐level and harmonic constituent data.    In all cases, high‐frequency data used in the parameter inversion process were able to characterize broad‐scale heterogeneities; the ability to discern fine‐scale heterogeneity was greater when harmonic constituent data were used.  These results suggest that the combined use of highly parameterized‐inversion techniques and high frequency time and/or processed‐harmonic constituent water‐level data could be a useful approach to better characterize aquifer heterogeneities in coastal aquifers influenced by ocean tides.

  13. Application of nonlinear least-squares regression to ground-water flow modeling, west-central Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    2000-01-01

    A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.

  14. Using Uncertainty Quantification to Guide Development and Improvements of a Regional-Scale Model of the Coastal Lowlands Aquifer System Spanning Texas, Louisiana, Mississippi, Alabama and Florida

    NASA Astrophysics Data System (ADS)

    Foster, L. K.; Clark, B. R.; Duncan, L. L.; Tebo, D. T.; White, J.

    2017-12-01

    Several historical groundwater models exist within the Coastal Lowlands Aquifer System (CLAS), which spans the Gulf Coastal Plain in Texas, Louisiana, Mississippi, Alabama, and Florida. The largest of these models, called the Gulf Coast Regional Aquifer System Analysis (RASA) model, has been brought into a new framework using the Newton formulation for MODFLOW-2005 (MODFLOW-NWT) and serves as the starting point of a new investigation underway by the U.S. Geological Survey to improve understanding of the CLAS and provide predictions of future groundwater availability within an uncertainty quantification (UQ) framework. The use of an UQ framework will not only provide estimates of water-level observation worth, hydraulic parameter uncertainty, boundary-condition uncertainty, and uncertainty of future potential predictions, but it will also guide the model development process. Traditionally, model development proceeds from dataset construction to the process of deterministic history matching, followed by deterministic predictions using the model. This investigation will combine the use of UQ with existing historical models of the study area to assess in a quantitative framework the effect model package and property improvements have on the ability to represent past-system states, as well as the effect on the model's ability to make certain predictions of water levels, water budgets, and base-flow estimates. Estimates of hydraulic property information and boundary conditions from the existing models and literature, forming the prior, will be used to make initial estimates of model forecasts and their corresponding uncertainty, along with an uncalibrated groundwater model run within an unconstrained Monte Carlo analysis. First-Order Second-Moment (FOSM) analysis will also be used to investigate parameter and predictive uncertainty, and guide next steps in model development prior to rigorous history matching by using PEST++ parameter estimation code.

  15. Inferring Aquifer Transmissivity from River Flow Data

    NASA Astrophysics Data System (ADS)

    Trichakis, Ioannis; Pistocchi, Alberto

    2016-04-01

    Daily streamflow data is the measurable result of many different hydrological processes within a basin; therefore, it includes information about all these processes. In this work, recession analysis applied to a pan-European dataset of measured streamflow was used to estimate hydrogeological parameters of the aquifers that contribute to the stream flow. Under the assumption that base-flow in times of no precipitation is mainly due to groundwater, we estimated parameters of European shallow aquifers connected with the stream network, and identified on the basis of the 1:1,500,000 scale Hydrogeological map of Europe. To this end, Master recession curves (MRCs) were constructed based on the RECESS model of the USGS for 1601 stream gauge stations across Europe. The process consists of three stages. Firstly, the model analyses the stream flow time-series. Then, it uses regression to calculate the recession index. Finally, it infers characteristics of the aquifer from the recession index. During time-series analysis, the model identifies those segments, where the number of successive recession days is above a certain threshold. The reason for this pre-processing lies in the necessity for an adequate number of points when performing regression at a later stage. The recession index derives from the semi-logarithmic plot of stream flow over time, and the post processing involves the calculation of geometrical parameters of the watershed through a GIS platform. The program scans the full stream flow dataset of all the stations. For each station, it identifies the segments with continuous recession that exceed a predefined number of days. When the algorithm finds all the segments of a certain station, it analyses them and calculates the best linear fit between time and the logarithm of flow. The algorithm repeats this procedure for the full number of segments, thus it calculates many different values of recession index for each station. After the program has found all the recession segments, it performs calculations to determine the expression for the MRC. Further processing of the MRCs can yield estimates of transmissivity or response time representative of the aquifers upstream of the station. These estimates can be useful for large scale (e.g. continental) groundwater modelling. The above procedure allowed calculating values of transmissivity for a large share of European aquifers, ranging from Tmin = 4.13E-04 m²/d to Tmax = 8.12E+03 m²/d, with an average value Taverage = 9.65E+01 m²/d. These results are in line with the literature, indicating that the procedure may provide realistic results for large-scale groundwater modelling. In this contribution we present the results in the perspective of their application for the parameterization of a pan-European bi-dimensional shallow groundwater flow model.

  16. Specific Yields Estimated from Gravity Change during Pumping Test

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Hwang, C.; Chang, L. C.

    2017-12-01

    Specific yield (Sy) is the most important parameter to describe available groundwater capacity in an unconfined aquifer. When estimating Sy by a field pumping test, aquifer heterogeneity and well performers will cause a large uncertainty. In this study, we use a gravity-based method to estimate Sy. At the time of pumping test, amounts of mass (groundwater) are forced to be taken out. If drawdown corn is big and close enough to high precision gravimeter, the gravity change can be detected. The gravity-based method use gravity observations that are independent from traditional flow computation. Only the drawdown corn should be modeled with observed head and hydrogeology data. The gravity method can be used in most groundwater field tests, such as locally pumping/injection tests initiated by active man-made or annual variations due to natural sources. We apply our gravity method at few sites in Taiwan situated over different unconfined aquifer. Here pumping tests for Sy determinations were also carried out. We will discuss why the gravity method produces different results from traditional pumping test, field designs and limitations of the gravity method.

  17. Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; White, Paul; Moore, Catherine

    2015-04-01

    Models of rainfall recharge to groundwater are challenged by the need to combine uncertain estimates of rainfall, evapotranspiration, terrain slope, and unsaturated zone parameters (e.g., soil drainage and hydraulic conductivity of the subsurface). Therefore, rainfall recharge is easiest to estimate on a local scale in well-drained plains, where it is known that rainfall directly recharges groundwater. In New Zealand, this simplified approach works in the policy framework of regional councils, who manage water allocation at the aquifer and sub-catchment scales. However, a consistent overview of rainfall recharge is difficult to obtain at catchment and national scale: in addition to data uncertainties, data formats are inconsistent between catchments; the density of ground observations, where these exist, differs across regions; each region typically uses different local models for estimating recharge components; and different methods and ground observations are used for calibration and validation of these models. The research described in this paper therefore presents a nation-wide approach to estimate rainfall recharge in New Zealand. The method used is a soil water balance approach, with input data from national rainfall and soil and geology databases. Satellite data (i.e., evapotranspiration, soil moisture, and terrain) aid in the improved calculation of rainfall recharge, especially in data-sparse areas. A first version of the model has been implemented on a 1 km x 1 km and monthly scale between 2000 and 2013. A further version will include a quantification of recharge estimate uncertainty: with both "top down" input error propagation methods and catchment-wide "bottom up" assessments of integrated uncertainty being adopted. Using one nation-wide methodology opens up new possibilities: it can, for example, help in more consistent estimation of water budgets, groundwater fluxes, or other hydrological parameters. Since recharge is estimated for the entire land surface, and not only the known aquifers, the model also identifies other zones that could potentially recharge aquifers, including large areas (e.g., mountains) that are currently regarded as impervious. The resulting rainfall recharge data have also been downscaled in a 200 m x 200 m calculation of a national monthly water table. This will lead to better estimation of hydraulic conductivity, which holds considerable potential for further research in unconfined aquifers in New Zealand.

  18. Finite-element simulation of ground-water flow in the vicinity of Yucca Mountain, Nevada-California

    USGS Publications Warehouse

    Czarnecki, J.B.; Waddell, R.K.

    1984-01-01

    A finite-element model of the groundwater flow system in the vicinity of Yucca Mountain at the Nevada Test Site was developed using parameter estimation techniques. The model simulated steady-state ground-water flow occurring in tuffaceous, volcanic , and carbonate rocks, and alluvial aquifers. Hydraulic gradients in the modeled area range from 0.00001 for carbonate aquifers to 0.19 for barriers in tuffaceous rocks. Three model parameters were used in estimating transmissivity in six zones. Simulated hydraulic-head values range from about 1,200 m near Timber Mountain to about 300 m near Furnace Creek Ranch. Model residuals for simulated versus measured hydraulic heads range from -28.6 to 21.4 m; most are less than +/-7 m, indicating an acceptable representation of the hydrologic system by the model. Sensitivity analyses of the model 's flux boundary condition variables were performed to assess the effect of varying boundary fluxes on the calculation of estimated model transmissivities. Varying the flux variables representing discharge at Franklin Lake and Furnace Creek Ranch has greater effect than varying other flux variables. (Author 's abstract)

  19. Assessment of Ground-Water Resources in the Seacoast Region of New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.

    2009-01-01

    Numerical ground-water-flow models were developed for a 160-square-mile area of coastal New Hampshire to provide insight into the recharge, discharge, and availability of ground water. Population growth and increasing water use prompted concern for the sustainability of the region's ground-water resources. Previously, the regional hydraulic characteristics of the fractured bedrock aquifer in the Seacoast region of New Hampshire were not well known. In the current study, the ground-water-flow system was assessed by using two different models developed and calibrated under steady-state seasonal low-flow and transient monthly conditions to ground-water heads and base-flow discharges. The models were, (1) a steady-state model representing current (2003-04) seasonal low-flow conditions used to simulate current and future projected water use during low-flow conditions; and (2) a transient model representing current average and estimated future monthly conditions over a 2-year period used to simulate current and future projected climate-change conditions. The analysis by the ground-water-flow models indicates that the Seacoast aquifer system is a transient flow system with seasonal variations in ground-water flow. A pseudosteady- state condition exists in the fall when the steady-state model was calibrated. The average annual recharge during the period analyzed, 2000-04, was approximately 51 percent of the annual precipitation. The average net monthly recharge rate between 2003 and 2004 varied from 5.5 inches per month in March, to zero in July, and to about 0.3 inches per month in August and September. Recharge normally increases to about 2 inches per month in late fall and early winter (November through December) and declines to about 1.5 inches per month in late winter (January and February). About 50 percent of the annual recharge coincides with snowmelt in the spring (March and April), and 20 percent occurs in the late fall and early winter (November through February). Net recharge, calculated as infiltration of precipitation minus evapotranspiration, can be negative during summer months (particularly July). Regional bulk hydraulic conductivities of the bedrock aquifer were estimated to be about 0.1 to 1.0 feet per day. Estimated hydraulic conductivities in model areas representing the Rye Complex and the Kittery Formation were higher (0.5 to 1 foot per day) than in areas representing the Eliot Formation, the Exeter Diorite, and the Newburyport Complex, which have estimated hydraulic conductivities of 0.1 to 0.2 foot per day. A northeast-southwest regional anisotropy of about 5:1 was estimated in some areas of the model; this pattern is parallel to the regional structural trend and predominant fracture orientation. In areas of the model with more observation data, the upper and lower 95-percent confidence intervals for the estimated bedrock hydraulic conductivity were about half an order of magnitude above and below the parameter, respectively, and the estimated confidence intervals for estimated specific storage were within an order of magnitude of the parameter. In areas of the model with few data points, or few stresses, confidence intervals were several orders of magnitude. Estimated model parameters and their confidence intervals are a function of the conceptual model design, observation data, and the weights placed on the data. The amount of recharge that enters the bedrock aquifer at a specific point depends on (1) the location of the point in the flow field; (2) the hydraulic conductivity of the bedrock (or the connectivity of fractures); and (3) the stresses within the bedrock aquifer. In addition, ground water stored in unconsolidated overburden sediments, including till and other fine-grained sediments, may constitute a large percentage of the water available from storage to the bedrock aquifer. Recharge into the bedrock aquifer at a point can range from zero to nearly all the recharge at the surface dependin

  20. A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK.

    PubMed

    Hartmann, S; Odling, N E; West, L J

    2007-12-07

    A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.

  1. The diagnostic plot analysis of artesian aquifers with case studies in Table Mountain Group of South Africa

    NASA Astrophysics Data System (ADS)

    Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang

    2015-05-01

    Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.

  2. Calibration of an Unsteady Groundwater Flow Model for a Complex, Strongly Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Curtis, Z. K.; Liao, H.; Li, S. G.; Phanikumar, M. S.; Lusch, D.

    2016-12-01

    Modeling of groundwater systems characterized by complex three-dimensional structure and heterogeneity remains a significant challenge. Most of today's groundwater models are developed based on relatively simple conceptual representations in favor of model calibratibility. As more complexities are modeled, e.g., by adding more layers and/or zones, or introducing transient processes, more parameters have to be estimated and issues related to ill-posed groundwater problems and non-unique calibration arise. Here, we explore the use of an alternative conceptual representation for groundwater modeling that is fully three-dimensional and can capture complex 3D heterogeneity (both systematic and "random") without over-parameterizing the aquifer system. In particular, we apply Transition Probability (TP) geostatistics on high resolution borehole data from a water well database to characterize the complex 3D geology. Different aquifer material classes, e.g., `AQ' (aquifer material), `MAQ' (marginal aquifer material'), `PCM' (partially confining material), and `CM' (confining material), are simulated, with the hydraulic properties of each material type as tuning parameters during calibration. The TP-based approach is applied to simulate unsteady groundwater flow in a large, complex, and strongly heterogeneous glacial aquifer system in Michigan across multiple spatial and temporal scales. The resulting model is calibrated to observed static water level data over a time span of 50 years. The results show that the TP-based conceptualization enables much more accurate and robust calibration/simulation than that based on conventional deterministic layer/zone based conceptual representations.

  3. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.

  4. Farm water budgets for semiarid irrigated floodplains of northern New Mexico: characterizing the surface water-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.

    2013-12-01

    KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.

  5. Microbial risk assessment in heterogeneous aquifers: 1. Pathogen transport

    NASA Astrophysics Data System (ADS)

    Molin, S.; Cvetkovic, V.

    2010-05-01

    Pathogen transport in heterogeneous aquifers is investigated for microbial risk assessment. A point source with time-dependent input of pathogens is assumed, exemplified as a simple on-site sanitation installation, intermingled with water supply wells. Any pathogen transmission pathway (realization) to the receptor from a postulated infection hazard is viewed as a random event, with the hydraulic conductivity varying spatially. For aquifers where VAR[lnK] < 1 and the integral scale is finite, we provide relatively simple semianalytical expressions for pathogen transport that incorporate the colloid filtration theory. We test a wide range of Damkohler numbers in order to assess the significance of rate limitations on the aquifer barrier function. Even slow immobile inactivation may notably affect the retention of pathogens. Analytical estimators for microbial peak discharge are evaluated and are shown to be applicable using parameters representative of rotavirus and Hepatitis A with input of 10-20 days duration.

  6. A closed form solution for constant flux pumping in a well under partial penetration condition

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Chiu, Pin-Yuan

    2006-05-01

    An analytical model for the constant flux pumping test is developed in a radial confined aquifer system with a partially penetrating well. The Laplace domain solution is derived by the application of the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to the vertical coordinates. A time domain solution is obtained using the inverse Laplace transforms, convolution theorem, and Bromwich integral method. The effect of partial penetration is apparent if the test well is completed with a short screen. An aquifer thickness 100 times larger than the screen length of the well can be considered as infinite. This solution can be used to investigate the effects of screen length and location on the drawdown distribution in a radial confined aquifer system and to produce type curves for the estimation of aquifer parameters with field pumping drawdown data.

  7. Estimation of groundwater recharge parameters by time series analysis

    USGS Publications Warehouse

    Naff, Richard L.; Gutjahr, Allan L.

    1983-01-01

    A model is proposed that relates water level fluctuations in a Dupuit aquifer to effective precipitaton at the top of the unsaturated zone. Effective precipitation, defined herein as that portion of precipitation which becomes recharge, is related to precipitation measured in a nearby gage by a two-parameter function. A second-order stationary assumption is used to connect the spectra of effective precipitation and water level fluctuations. Measured precipitation is assumed to be Gaussian, in order to develop a transfer function that relates the spectra of measured and effective precipitation. A nonlinear least squares technique is proposed for estimating parameters of the effective-precipitation function. Although sensitivity analyses indicate difficulties that may be encountered in the estimation procedure, the methods developed did yield convergent estimates for two case studies.

  8. Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin

    NASA Astrophysics Data System (ADS)

    Wei, Huai Fu; Ledoux, Emmanuel; De Marsily, Ghislain

    1990-12-01

    A hydrodynamic model which takes into account the aquitard storage effect was developed for the deep multilayered system including the Dogger aquifer and its surroundings in the Paris Basin. It provides a good explanation for a series of observations in the Dogger concerning, for instance, the hydraulic head, the salinity and the transmissivity. The calibration of the model also makes it possible to estimate some unmeasured parameters such as the aquifer and aquitard storage coefficients. Finally, the results of simulations of the transport of 4He and 14C strengthen the representativeness of the model. The Darcy average horizontal velocity in the Dogger, obtained with the model, is of the order of 0.33m year -1.

  9. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    USGS Publications Warehouse

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  10. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  11. Uncertainty in simulated groundwater-quality trends in transient flow

    USGS Publications Warehouse

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  12. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.The three-dimensional, groundwater flow model developed for this investigation used the numerical code MODFLOW–NWT to represent changes in groundwater pumping and aquifer recharge from predevelopment (before 1900) to future conditions, from 1900 to 2058. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the Northern Atlantic Coastal Plain aquifer system and was calibrated using an inverse modeling parameter-estimation (PEST) technique.The parameter estimation process was achieved through history matching, using observations of heads and flows for both steady-state and transient conditions. A total of 8,868 annual water-level observations from 644 wells from 1986 to 2008 were combined into 29 water-level observation groups that were chosen to focus the history matching on specific hydrogeologic units in geographic areas in which distinct geologic and hydrologic conditions were observed. In addition to absolute water-level elevations, the water-level differences between individual measurements were also included in the parameter estimation process to remove the systematic bias caused by missing hydrologic stresses prior to 1986. The total average residual of –1.7 feet was normally distributed for all head groups, indicating minimal bias. The average absolute residual value of 12.3 feet is about 3 percent of the total observed water-level range throughout the aquifer system.Streamflow observation data of base flow conditions were derived for 153 sites from the U.S. Geological Survey National Hydrography Dataset Plus and National Water Information System. An average residual of about –8 cubic feet per second and an average absolute residual of about 21 cubic feet per second for a range of computed base flows of about 417 cubic feet per second were calculated for the 122 sites from the National Hydrography Dataset Plus. An average residual of about 10 cubic feet per second and an average absolute residual of about 34 cubic feet per second were calculated for the 568 flow measurements in the 31 sites obtained from the National Water Information System for a range in computed base flows of about 1,141 cubic feet per second.The numerical representation of the hydrogeologic information used in the development of this regional flow model was dependent upon how the aquifer system and simulated hydrologic stresses were discretized in space and time. Lumping hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater flow system responds to changes in hydrologic stresses, particularly at the local scale.

  13. Estimated depth to the water table and estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas

    USGS Publications Warehouse

    Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.

    1996-01-01

    In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.

  14. Improving Land-Surface Model Hydrology: Is an Explicit Aquifer Model Better than a Deeper Soil Profile?

    NASA Technical Reports Server (NTRS)

    Gulden, L. E.; Rosero, E.; Yang, Z.-L.; Rodell, Matthew; Jackson, C. S.; Niu, G.-Y.; Yeh, P. J.-F.; Famiglietti, J. S.

    2007-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the storage and movement of water (including soil moisture, snow, evaporation, and runoff) after it falls to the ground as precipitation. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy. Hence LSMs have been developed to integrate the available information, including satellite observations, using powerful computers, in order to track water storage and redistribution. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. Recently, the models have begun to simulate groundwater storage. In this paper, we compare several possible approaches, and examine the pitfalls associated with trying to estimate aquifer parameters (such as porosity) that are required by the models. We find that explicit representation of groundwater, as opposed to the addition of deeper soil layers, considerably decreases the sensitivity of modeled terrestrial water storage to aquifer parameter choices. We also show that approximate knowledge of parameter values is not sufficient to guarantee realistic model performance: because interaction among parameters is significant, they must be prescribed as a harmonious set.

  15. Estimated ground-water use in Becker, Clay, Douglas, Grant, Otter Tail, and Wilkin Counties, Minnesota, for 2030 and 2050

    USGS Publications Warehouse

    Winterstein, Thomas A.

    2007-01-01

    The estimated recharge to the Buffalo aquifer, Otter Tail surficial aquifer, and Pelican River sand-plain aquifer is 3,707, 51,000, and 4,900–8,900 Mgal/yr, respectively. The range of the estimated 2050 ground-water withdrawals from the Buffalo, Otter Tail surficial, and Pelican River sand-plain aquifers is 1,234–1,776 Mgal/yr from the Buffalo aquifer, 11,728–14,820 Mgal/yr from the Otter Tail surficial aquifer, and 3,385–4,298 Mgal/yr from the Pelican River sand-plain aquifer.

  16. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-08-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  17. Seismic velocities to characterize the soil-aquifer continuum on the Orgeval experimental basin (France)

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.

    2013-12-01

    Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified. However, the computation of Vp/Vs ratios and derived parameters helps enhancing lithological contrasts.

  18. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average ET over the 1995 to 2006 period was 34.47 inches per year, compared to the calculated average ET rate of 36.39 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.58 inches per year, compared with the calculated average of 3.39 inches per year from the model-independent water-budget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 920 million gallons per day, which is equivalent to about 2 inches per year over the model area and slightly more than half of the simulated average net recharge to the surficial aquifer system over the same period. Annual net simulated recharge rates to the surficial aquifer system were less than the total groundwater withdrawals from the Floridan aquifer system only during the below-average rainfall years of 2000 and 2006.

  19. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The east-central Florida transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration, runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into evapotranspiration, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average evapotranspiration (ET) over the 1995 to 2006 period was 34.5 inches per year, compared to the calculated average ET rate of 36.6 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.6 inches per year, compared with the calculated average of 3.2 inches per year from the model-independent waterbudget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 800 million gallons per day, which is equivalent to about 2 inches per year over the model area and slightly more than half of the simulated average net recharge to the surficial aquifer system over the same period. Annual net simulated recharge rates to the surficial aquifer system were less than the total groundwater withdrawals from the Floridan aquifer system only during the below-average rainfall years of 2000 and 2006.

  20. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

    USGS Publications Warehouse

    Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.

    2013-01-01

    Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

  1. Enhancements to the Mississippi Embayment Regional Aquifer Study (MERAS) groundwater-flow model and simulations of sustainable water-level scenarios

    USGS Publications Warehouse

    Clark, Brian R.; Westerman, Drew A.; Fugitt, D. Todd

    2013-01-01

    Arkansas continues to be one of the largest users of groundwater in the Nation. As such, long-term planning and management are essential to ensure continued availability of groundwater and surface water for years to come. The Mississippi Embayment Regional Aquifer Study (MERAS) model was developed previously as a tool to evaluate groundwater availability within the Mississippi embayment, which encompasses much of eastern Arkansas where the majority of groundwater is used. The Arkansas Water Plan is being updated for the first time since 1990 and serves as the State’s primary, comprehensive water-resources planning and guidance document. The MERAS model was selected as the best available tool for evaluation of specific water-use pumping scenarios that are currently being considered by the State of Arkansas. The model, developed as part of the U.S. Geological Survey Groundwater Resources Program’s assessment of the Nation’s groundwater availability, is proving to be invaluable to the State as it works toward development of a sustained yield pumping strategy. One aspect of this investigation was to evaluate multiple methods to improve the match of observed to simulated groundwater levels within the Mississippi River Valley alluvial and middle Claiborne (Sparta) aquifers in the MERAS model. Five primary methods were evaluated: (1) explicit simulation of evapotranspiration (ET), (2) upgrade of the Multi-Node Well (MNW2) Package, (3) geometry improvement within the Streamflow Routing (SFR) Package, (4) parameter estimation of select aquifer properties with pilot points, and (5) modification of water-use estimates. For the planning purposes of the Arkansas Water Plan, three scenarios were developed to evaluate potential future conditions: (1) simulation of previously optimized pumping values within the Mississippi River Valley alluvial and the middle Claiborne aquifers, (2) simulated prolonged effects of pumping at average recent (2000–5) rates, and (3) simulation of drawdown constraints on most pumping wells. The explicit simulation of ET indicated little, if any, improvement of model fit at the expense of much longer simulation time and was not included in further simulations. Numerous attempts to fully utilize the MNW2 Package were unsuccessful in achieving model stability, though modifications made to the water-use dataset remained intact. Final improvements in the residual statistics may be attributed to a single method, or a cumulative effect of all other methods (geometry improvement with the SFR Package, parameter estimation with pilot points, and modification of water-use estimates) attempted. The root mean squared error (RMSE) for all observations in the model is 22.65 feet (ft) over a range in observed hydraulic head of 741.66 ft. The RMSE for water-level observations in the Mississippi River Valley alluvial aquifer is 14.14 ft (an improvement of almost 3 ft) over a range in observed hydraulic head of 297.25 ft. The RMSE for the Sparta aquifer is 32.02 ft (an improvement of approximately 3 ft) over a range in observed hydraulic head of 634.94 ft. Three scenarios were developed to utilize a steady-state version of the MERAS model. Scenario 1 was developed to use pumping values resulting from the optimization of baseline rates (typically 1997 pumping rates) from previous optimization modeling of the alluvial aquifer and the Sparta aquifer. Scenario 2 was developed to evaluate the prolonged effects of pumping from the alluvial aquifer at recent pumping rates. Scenario 3A was designed to evaluate withdrawal limits from the alluvial aquifer by utilizing drawdown constraints equal to an altitude of approximately 50 percent of the predevelopment saturated thickness of the alluvial aquifer or 30 ft above the bottom of the alluvial aquifer, whichever was greater. The results of scenario 1 indicate large water-level declines throughout the area of the alluvial aquifer, regardless of the substitution of the optimized pumping values from earlier model simulations. The results of scenario 2 also indicate large areas of water-level decline, as compared to half of the saturated thickness, throughout the alluvial aquifer. The results of scenario 3A reveal some effects from the inclusion of multiple aquifers in a single simulation. The initial configuration of scenario 3A resulted in water levels well below the defined drawdown constraint, and some areas of depleted aquifer (water levels that are near or below the bottom of the aquifer) in east-central Arkansas. A fourth simulation (scenario 3B) was configured to apply the same drawdown constraints from the alluvial aquifer wells to the Sparta aquifer wells in the depleted area. These drawdown constraints reduce leakage from the alluvial aquifer to the underlying Sparta aquifer. This configuration did not produce depleted areas within the alluvial aquifer. Scenarios 3A and 3B indicate that even when pumping is limited in the alluvial aquifer, water levels in the alluvial aquifer may continue to decline in some areas because of pumping in the underlying Sparta aquifer.

  2. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable-density ground-water flow simulations suggest that upconing is of utmost concern, and lateral encroachment is of second-most concern. This interpretation is uncertain, however, because the predominance of saltwater intrusion through leaky artesian wells with connection to deeper, more saline, and higher pressure aquifers was difficult to establish. Effective management of ground-water resources in southwestern Florida requires an understanding of the potential extent of saltwater intrusion in the lower Tamiami aquifer near Bonita Springs. Variable-density, ground-water flow simulations suggest that when saltwater is at dynamic equilibrium with 1996 seasonal stresses, the extent of saltwater intrusion is about 100 square kilometers areally and 70,000 hectare-meters volumetrically. The volumetric extent of saltwater intrusion was most sensitive to changes in recharge, ground-water pumpage, sea level, salinity of the Gulf of Mexico, and the potentiometric surface of the sandstone aquifer, respectively.

  3. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

    NASA Astrophysics Data System (ADS)

    Asfahani, Jamal

    2017-08-01

    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  4. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    NASA Astrophysics Data System (ADS)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on the aquifer inertia and climatic conditions. The groundwater levels variations during recharge (increase) are sensitive to the storage coefficient whereas the groundwater levels variations after recharge (decrease) are sensitive to the hydraulic conductivity. The performed model calibration on synthetic data sets shows that the parameters and recharge are estimated quite accurately.

  5. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

    PubMed

    Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima

    2016-01-01

    Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

  6. Geohydrology and simulation of ground-water flow in the aquifer system near Calvert City, Kentucky

    USGS Publications Warehouse

    Starn, J.J.; Arihood, L.D.; Rose, M.F.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet, constructed a two-dimensional, steady-state ground-water-flow model to estimate hydraulic properties, contributing areas to discharge boundaries, and the average linear velocity at selected locations in an aquifer system near Calvert City, Ky. Nonlinear regression was used to estimate values of model parameters and the reliability of the parameter estimates. The regression minimizes the weighted difference between observed and calculated hydraulic heads and rates of flow. The calibrated model generally was better than alternative models considered, and although adding transmissive faults in the bedrock produced a slightly better model, fault transmissivity was not estimated reliably. The average transmissivity of the aquifer was 20,000 feet squared per day. Recharge to two outcrop areas, the McNairy Formation of Cretaceous age and the alluvium of Quaternary age, were 0.00269 feet per day (11.8 inches per year) and 0.000484 feet per day (2.1 inches per year), respectively. Contributing areas to wells at the Calvert City Water Company in 1992 did not include the Calvert City Industrial Complex. Since completing the fieldwork for this study in 1992, the Calvert City Water Company discontinued use of their wells and began withdrawing water from new wells that were located 4.5 miles east-southeast of the previous location; the contributing area moved farther from the industrial complex. The extent of the alluvium contributing water to wells was limited by the overlying lacustrine deposits. The average linear ground-water velocity at the industrial complex ranged from 0.90 feet per day to 4.47 feet per day with a mean of 1.98 feet per day.

  7. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  8. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic diffusivity are derived from estimates of the streamflow recession index and drainage density for 75 drainage basins; values range from 3,300 to 130,000 ft^2/d (feet squared per day). Basin-specific and site-specific estimates of transmissivity are computed from estimates of hydraulic diffusivity and specific-capacity test data, respectively. Basin-specific, or areal, estimates of transmissivity range from 22 to 1,300 ft^2/d, with a mean of 240 ft^2/d In general, areal transmissivity is highest for basins underlain by the Cumberland Plateau aquifer (mean value 480 ft^2/d) and lowest for basins underlain by the Central Basin aquifer (mean value 79 ft^2/d). Mean transmissivity values for the Highland Rim, Valley and Ridge, and Blue Ridge aquifer are 320,140, and 120 ft^2/d respectively. Site-specific estimates of transmissivity, computed from specific-capacity data from 118 test wells in Middle and East Tennessee range from 2 to 93,000 ft^2/d with a mean of 2,600 ft^2/d Mean transmissivity values for the Cumberland Plateau, Highland Rim, Central Basin, Valley and Ridge, and Blue Ridge aquifers are 2,800,1,200, 7,800, 390, and 65Oft Id, respectively.

  9. OASIS: PARAMETER ESTIMATION SYSTEM FOR AQUIFER RESTORATION MODELS, USER'S MANUAL VERSION 2.0

    EPA Science Inventory

    OASIS, a decision support system for ground water contaminant modeling, has been developed for the CPA by Rice University, through the National Center for Ground Water Research. As a decision support system, OASIS was designed to provide a set of tools which will help scientists ...

  10. Estimate of aquifer properties by numerically simulating ground-water/surface-water interactions, Fort Wainwright, Alaska

    USGS Publications Warehouse

    Nakanishi, Allen S.; Lilly, Michael R.

    1998-01-01

    MODFLOW, a finite-difference model of ground-water flow, was used to simulate the flow of water between the aquifer and the Chena River at Fort Wainwright, Alaska. The model was calibrated by comparing simulated ground-water hydrographs to those recorded in wells during periods of fluctuating river levels. The best fit between simulated and observed hydrographs occurred for the following: 20 feet per day for vertical hydraulic conductivity, 400 feet per day for horizontal hydraulic conductivity, 1:20 for anisotropy (vertical to horizontal hydraulic conductivity), and 350 per feet for riverbed conductance. These values include a 30 percent adjustment for geometry effects. The estimated values for hydraulic conductivities of the alluvium are based on assumed values of 0.25 for specific yield and 0.000001 per foot for specific storage of the alluvium; the values assumed for bedrock are 0.1 foot per day horizontal hydraulic conductivity, 0.005 foot per day vertical hydraulic conductivity, and 0.0000001 per foot for specific storage. The resulting diffusivity for the alluvial aquifer is 1,600 feet per day. The estimated values of these hydraulic properties are nearly proportional to the assumed value of specific yield. These values were not found to be sensitive to the assumed values for bedrock. The hydrologic parameters estimated using the cross-sectional model are only valid when taken in context with the other values (both estimated and assumed) used in this study. The model simulates horizontal and vertical flow directions near the river during periods of varying river stage. This information is useful for interpreting bank-storage effects, including the flow of contaminants in the aquifer near the river.

  11. Application of a nonlinear slug test model

    USGS Publications Warehouse

    McElwee, C.D.

    2001-01-01

    Knowledge of the hydraulic conductivity distribution is of utmost importance in understanding the dynamics of an aquifer and in planning the consequences of any action taken upon that aquifer. Slug tests have been used extensively to measure hydraulic conductivity in the last 50 years since Hvorslev's (1951) work. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been implemented in this work. The nonlinear model has three parameters: ??, which is related primarily to radius changes in the water column; A, which is related to the nonlinear head losses; and K, the hydraulic conductivity. An additional parameter has been added representing the initial velocity of the water column at slug initiation and is incorporated into an analytical solution to generate the first time step before a sequential numerical solution generates the remainder of the time solution. Corrections are made to the model output for acceleration before it is compared to the experimental data. Sensitivity analysis and least squares fitting are used to estimate the aquifer parameters and produce some diagnostic results, which indicate the accuracy of the fit. Finally, an example of field data has been presented to illustrate the application of the model to data sets that exhibit nonlinear behavior. Multiple slug tests should be taken at a given location to test for nonlinear effects and to determine repeatability.

  12. Classifying zones of suitability for manual drilling using textural and hydraulic parameters of shallow aquifers: a case study in northwestern Senegal

    NASA Astrophysics Data System (ADS)

    Fussi, F. Fabio; Fumagalli, Letizia; Fava, Francesco; Di Mauro, Biagio; Kane, Cheik Hamidou; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto; Bonomi, Tullia

    2017-12-01

    A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.

  13. Fractional flow in fractured chalk; a flow and tracer test revisited.

    PubMed

    Odling, N E; West, L J; Hartmann, S; Kilpatrick, A

    2013-04-01

    A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2

  14. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  15. Slugtests in fractured aquifers - advantages and caveats

    NASA Astrophysics Data System (ADS)

    Sauter, Martin

    2017-04-01

    The hydraulic characterisation of fractured aquifers is a challenge due to the large contrast between conductive fractures and a relative low conductive rock matrix. Depending on the type of problem, spanning from water resources issues at catchment scale to contaminant transport at local, borehole scale, different methodological approaches are required. The employment of slugtests as a characterisation method has a major advantage above classical pumping tests since they provide information also for the lower end of the permeability spectrum and are less logistically demanding. However, the volume of investigation of slugtests is generally small and limited to the immediate borehole area. The application of slug tests to fractured systems was investigated by Barker and Black (1983); Dougherty and Babu (1984) and Karasaki et al. (1988). Barker and Black (1983) pointed out the non-uniqueness of type curves with re¬spect to determining reservoir parameters, apart from hydraulic conductivity and sto¬rage coefficients. The unknowns in¬clude fissure densities, apertures and the hy¬draulic parameters of the rock matrix. They found that the Cooper method syste¬matically overestimates aquifer transmis-sivities by a factor of up to three. This figure however applies to a fairly homogeneously fissured aquifer such as the English Chalk. Dougherty and Babu (1984) examined in detail the effects of partial penetration, dif¬ferent skin factors and mass exchange coef-ficients in a double porosity system. They did however not present any parameter estimation solu¬tion. Karasaki et al. (1988) developed type curves for heterogeneous aquifer systems and came to the conclusion that "slug tests suffer problems of non-uniqueness to a greater ex¬tent than other well tests". In this paper, this aspect of non-uniqueness is addressed in detail, based on slugtest data in a fractured and karstified aquifer from the Swabian Alb in the SW of Germany, explanations and models of interpretation are provided and assessed with respect to their relative importance.

  16. Using a physically-based transit time distribution function to estimate the hydraulic parameters and hydraulic transit times of an unconfined aquifer from tritium measurements

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Maloszewski, Piotr; Schneider, Wilfried; Gallé, Tom

    2014-05-01

    Groundwater transit time is of interest in environmental studies pertaining to the transport of pollutants from its source to the aquifer outlet (spring or pumping well) or to an observation well. Different models have been proposed to describe the distribution of transit times within groundwatersheds, the most common being the dispersion model, the exponential-piston-flow model (EPM) both proposed by Maloszewski and Zuber (Maloszewski and Zuber, 1982) and the (two or three parameter) gamma model (Amin and Campana, 1996; Kirchner et al., 1999). Choosing which function applies best is a recurrent and controversial problem in hydrogeology. The object of this study is to revisit the applicability of the EPM for unconfined aquifers, and to introduce an alternative model based explicitly on groundwater hydraulics. The alternative model is based on the transit time of water from any point at the groundwater table to the aquifer outlet, and is used to calculate inversely the hydraulic parameters of a fractured unconfined sandstone aquifer from tritium measurements made in a series of contact springs. This model is compared to the EPM, which is usually adopted to describe the transit time distribution of confined and unconfined aquifers alike. Both models are tested against observations, and it is shown that the EPM fails the test for some of the springs, and generally seems to overestimate the older water component. Amin, I. E., and M. E. Campana (1996), A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems, Journal of Hydrology, 179, 1-21, doi: 10.1016/0022-1694(95)02880-3. Kirchner, J. W., X. H. Feng, and C. Neal (1999), Fractal stream chemistry and its implications for contaminant transport in catchments, Nature physics, 403, 524-527, doi: 10.1038/35000537. Maloszewski, P., and A. Zuber (1982), Determining the turnover time of groundwater systems with the aid of environmental tracers, Journal of Hydrology, 57, 207-231, doi: 10.1016/0022-1694(82)90147-0.

  17. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    NASA Astrophysics Data System (ADS)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  18. Coupling of hydrogeological models with hydrogeophysical data to characterize seawater intrusion and shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Beaujean, J.; Kemna, A.; Engesgaard, P. K.; Hermans, T.; Vandenbohede, A.; Nguyen, F.

    2013-12-01

    While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy is increasingly being used to hinder global warming. To study these issues, we need both robust measuring technologies and reliable predictions based on numerical models. SWI models are currently calibrated using borehole observations. Similarly, geothermal models depend mainly on the temperature field at few locations. Electrical resistivity tomography (ERT) can be used to improve these models given its high sensitivity to TDS and temperature and its relatively high lateral resolution. Inherent geophysical limitations, such as the resolution loss, can affect the overall quality of the ERT images and also prevent the correct recovery of the desired hydrochemical property. We present an uncoupled and coupled hydrogeophysical inversion to calibrate SWI and thermohydrogeologic models using ERT. In the SWI models, we demonstrate with two synthetic benchmarks (homogeneous and heterogeneous coastal aquifers) the ability of cumulative sensitivity-filtered ERT images using surface-only data to recover the hydraulic conductivity. Filtering of ERT-derived data at depth, where resolution is poorer, and the model errors make the dispersivity more difficult to estimate. In the coupled approach, we showed that parameter estimation is significantly improved because regularization bias is replaced by forward modeling only. Our efforts are currently focusing on applying the uncoupled/coupled approaches on a real life case study using field data from the site of Almeria, SE Spain. In the thermohydrogeologic models, the most sensitive hydrologic parameters responsible for heat transport are estimated from surface ERT-derived temperatures and ERT resistance data. A real life geothermal experiment that took place on the Campus De Sterre of Ghent University, Belgium and a synthetic case are tested. They consist in a thermal injection and storage of water in a shallow sandy aquifer. The use of a physically-based constraint accounting for the difference in conductivity between the formation and the tap injected water and based on the hydrogeological model calibrated first on temperatures is necessary to improve the parameter estimation. Results suggest that time-lapse ERT data may be limited but useful information for estimating groundwater flow and transport parameters for both the convection and conduction phases.

  19. Application of digital profile modeling techniques to ground-water solute transport at Barstow, California

    USGS Publications Warehouse

    Robson, Stanley G.

    1978-01-01

    This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.

  20. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    NASA Astrophysics Data System (ADS)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  1. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  2. Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data

    NASA Astrophysics Data System (ADS)

    Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2014-08-01

    Permeability and porosity are two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. The intrinsic attenuation is another important parameter since it is related to porosity, permeability, oil and gas saturation and these parameters significantly affect the seismic signature of a reservoir. We apply Artificial Neural Network (ANN) models to predict permeability (k) and porosity (ϕ) for a carbonate aquifer in southeastern Florida and to predict intrinsic attenuation (1/Q) for a sand-shale oil reservoir in northeast Texas. In this study, the Gamma test (a revolutionary estimator of the noise in a data set) has been used as a mathematically non-parametric nonlinear smooth modeling tool to choose the best input combination of seismic attributes to estimate k and ϕ, and the best combination of well-logs to estimate 1/Q. This saves time during the construction and training of ANN models and also sets a lower bound for the mean squared error to prevent over-training. The Neural Network method successfully delineates a highly permeable zone that corresponds to a high water production in the aquifer. The Gamma test found nonlinear relations that were not visible to linear regression allowing us to generalize the ANN estimations of k, ϕ and 1/Q for their respective sets of patterns that were not used during the learning phase.

  3. Simulation of groundwater flow in the shallow aquifer system of the Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.; Selnick, David L.; Stumvoll, Ryan F.

    2012-01-01

    Estimating future loadings of nitrogen to the Chesapeake Bay requires knowledge about the groundwater flow system and the traveltime of water and chemicals between recharge at the water table and the discharge to streams and directly to the bay. The Delmarva Peninsula has a relatively large proportion of its land devoted to agriculture and a large associated nitrogen load in groundwater that has the potential to enter the bay in discharging groundwater. To better understand the shallow aquifer system with respect to this loading and the traveltime to the bay, the U.S. Geological Survey constructed a steady-state groundwater flow model for the region. The model is based on estimates of recharge calculated using recently developed regression equations for evapotranspiration and surface runoff. The hydrogeologic framework incorporated into the model includes unconfined surficial aquifer sediments, as well as subcropping confined aquifers and confining beds down to 300 feet below land surface. The model was calibrated using 48 water-level measurements and 24 tracer-based ages from wells located across the peninsula. The resulting steady-state flow solution was used to estimate ages of water in the shallow aquifer system through the peninsula and the distribution and magnitude of groundwater traveltime from recharge at the water table to discharge in surface-water bodies (referred to as return time). Return times vary but are typically less than 10 years near local streams and greater than 100 years near the stream divides. The model can be used to calculate nitrate transport parameters in various local watersheds and predict future trends in nitrate loadings to Chesapeake Bay for different future nitrogen application scenarios.

  4. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    USGS Publications Warehouse

    Wellman, Tristan P.; Poeter, Eileen P.

    2006-01-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.

  5. The Importance of Behavioral Thresholds and Objective Functions in Contaminant Transport Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Kang, M.; Thomson, N. R.

    2007-12-01

    The TCE release from The Lockformer Company in Lisle Illinois resulted in a plume in a confined aquifer that is more than 4 km long and impacted more than 300 residential wells. Many of the wells are on the fringe of the plume and have concentrations that did not exceed 5 ppb. The settlement for the Chapter 11 bankruptcy protection of Lockformer involved the establishment of a trust fund that compensates individuals with cancers with payments being based on cancer type, estimated TCE concentration in the well and the duration of exposure to TCE. The estimation of early arrival times and hence low likelihood events is critical in the determination of the eligibility of an individual for compensation. Thus, an emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of possible arrival times at a well. The estimation of TCE arrival time, using a three-dimensional analytical solution, involved parameter estimation and uncertainty analysis. Parameters in the model included TCE source parameters, groundwater velocities, dispersivities and the TCE decay coefficient for both the confining layer and the bedrock aquifer. Numerous objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and M-estimators), penalty functions, and dead zones, were incorporated in the parameter estimation process to treat insufficiencies in both the model and observational data due to errors, biases, and limitations. The concept of equifinality was adopted and multiple maximum likelihood parameter sets were accepted if pre-defined physical criteria were met. The criteria ensured that a valid solution predicted TCE concentrations for all TCE impacted areas. Monte Carlo samples are found to be inadequate for uncertainty analysis of this case study due to its inability to find parameter sets that meet the predefined physical criteria. Successful results are achieved using a Dynamically-Dimensioned Search sampling methodology that inherently accounts for parameter correlations and does not require assumptions regarding parameter distributions. For uncertainty analysis, multiple parameter sets were obtained using a modified Cauchy's M-estimator. Penalty functions had to be incorporated into the objective function definitions to generate a sufficient number of acceptable parameter sets. The combined effect of optimization and the application of the physical criteria perform the function of behavioral thresholds by reducing anomalies and by removing parameter sets with high objective function values. The factors that are important to the creation of an uncertainty envelope for TCE arrival at wells are outlined in the work. In general, greater uncertainty appears to be present at the tails of the distribution. For a refinement of the uncertainty envelopes, the application of additional physical criteria or behavioral thresholds is recommended.

  6. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  7. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  8. Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers

    USGS Publications Warehouse

    Hudson, J.D.

    1996-01-01

    The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.

  9. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  10. Water planning in a mixed land use Mediterranean area: point-source abstraction and pollution scenarios by a numerical model of varying stream-aquifer regime.

    PubMed

    Du, Mingxuan; Fouché, Olivier; Zavattero, Elodie; Ma, Qiang; Delestre, Olivier; Gourbesville, Philippe

    2018-02-22

    Integrated hydrodynamic modelling is an efficient approach for making semi-quantitative scenarios reliable enough for groundwater management, provided that the numerical simulations are from a validated model. The model set-up, however, involves many inputs due to the complexity of both the hydrological system and the land use. The case study of a Mediterranean alluvial unconfined aquifer in the lower Var valley (Southern France) is useful to test a method to estimate lacking data on water abstraction by small farms in urban context. With this estimation of the undocumented pumping volumes, and after calibration of the exchange parameters of the stream-aquifer system with the help of a river model, the groundwater flow model shows a high goodness of fit with the measured potentiometric levels. The consistency between simulated results and real behaviour of the system, with regard to the observed effects of lowering weirs and previously published hydrochemistry data, confirms reliability of the groundwater flow model. On the other hand, accuracy of the transport model output may be influenced by many parameters, many of which are not derived from field measurements. In this case study, for which river-aquifer feeding is the main control, the partition coefficient between direct recharge and runoff does not show a significant effect on the transport model output, and therefore, uncertainty of the hydrological terms such as evapotranspiration and runoff is not a first-rank issue to the pollution propagation. The simulation of pollution scenarios with the model returns expected pessimistic outputs, with regard to hazard management. The model is now ready to be used in a decision support system by the local water supply managers.

  11. Hydraulic Properties of the Magothy and Upper Glacial Aquifers at Centereach, Suffolk County, New York

    USGS Publications Warehouse

    Misut, Paul E.; Busciolano, Ronald J.

    2010-01-01

    Horizontal and vertical hydraulic conductivity, transmissivity, and storativity of the aquifer system at Centereach, New York, were estimated using analytical multiple-well aquifer test models and compared with results of numerical regional flow modeling and hydrogeologic framework studies. During the initial operation of production well S125632 in May 2008, continuous water-level and temperature data were collected at a cluster of five partially penetrating observation wells, located about 100 feet (ft) from S125632, and at observation well S33380, located about 10,000 ft from S125632. Data collection intervals ranged from 30 seconds to 30 minutes and analytical model calibration was conducted using visual trial-and-error techniques with time series parsed to 30-minute intervals. The following assumptions were applied to analytical models: (1) infinite aerial extent, (2) homogeneity, (3) uniform 600-ft aquifer thickness, (4) unsteady flow, (5) instantaneous release from storage with the decline in head, (6) no storage within pumped wells, (7) a constant-head plane adjacent to bounding confining units, and (8) no horizontal component of flow through confining units. Preliminary estimates of horizontal and vertical hydraulic conductivity of 50 ft per day horizontal and 0.5 ft per day vertical were extrapolated from previous flow modeling and hydrogeologic framework studies of the Magothy aquifer. Two applications were then developed from the Hantush analytical model. Model A included only the pumping stress of S125632, whereas model B included the concurrent pumping stresses from two other production well fields (wells S66496 and S32551). Model A provided a sufficient match to the observed water-level responses from pumping, whereas model B more accurately reproduced water levels similar to those observed during non-pumping of S125632, as well as some effects of interference from the concurrent pumping nearby. In both models, storativity was estimated to be 0.003 (dimensionless) and the Hantush leakage parameter '1/B' was estimated to be 0.00083 ft-1. Representation of leakage across the overlying confining layer was likely complicated by: (1) irregularities in surface altitude and (2) groundwater recharge due to rainfall during the aquifer test.

  12. Hydrogeology and simulation of flow between the alluvial and bedrock aquifers in the upper Black Squirrel Creek basin, El Paso County, Colorado

    USGS Publications Warehouse

    Watts, K.R.

    1995-01-01

    Anticipated increases in pumping from the bedrock aquifers in El Paso County potentially could affect the direction and rate of flow between the alluvial and bedrock aquifers and lower water levels in the overlying alluvial aquifer. The alluvial aquifer underlies about 90 square miles in the upper Black Squirrel Creek Basin of eastern El Paso County. The alluvial aquifer consists of unconsolidated alluvial deposits that unconformably overlie siltstones, sandstones, and conglomerate (bedrock aquifers) and claystone, shale, and coal (bedrock confining units) of the Denver Basin. The bedrock aquifers (Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers) are separated by confining units (upper and lower Denver and the Laramie confining units) and overlie a relatively thick and impermeable Pierre confining unit. The Pierre confining unit is assumed to be a no-flow boundary at the base of the alluvial/ bedrock aquifer system. During 1949-90, substantial water-level declines, as large as 50 feet, in the alluvial aquifer resulted from withdrawals from the alluvial aquifer for irrigation and municipal supplies. Average recharge to the alluvial aquifer from infiltration of precipitation and surface water was an estimated 11.97 cubic feet per second and from the underlying bedrock aquifers was an estimated 0.87 cubic foot per second. Water-level data from eight bedrock observation wells and eight nearby alluvial wells indicate that, locally, the alluvial and bedrock aquifers probably are hydraulically connected and that the alluvial aquifer in the upper Black Squirrel Creek Basin receives recharge from the Denver and Arapahoe aquifers but-locally recharges the Laramie-Fox Hills aquifer. Subsurface-temperature profiles were evaluated as a means of estimating specific discharge across the bedrock surface (the base of the alluvial aquifer). However, assumptions of the analytical method were not met by field conditions and, thus, analyses of subsurface-temperature profiles did not reliably estimate specific discharge across the bedrock surface. The vertical hydraulic diffusivity of a siltstone and sandstone in the lower Denver confining unit was estimated, by an aquifer test, to be about 8 x 10'4 square foot per day. Physical and chemical characteristics of water from the bedrock aquifers in the study area generally differ from the physical and chemical characteristics of water from the alluvial aquifer, except for the physical and chemical characteristics of water from one bedrock well, which is completed in the Laramie-Fox Hills aquifer. In the southern part of the study area, physical and chemical characteristics of ground water indicate downward flow of water from the alluvial aquifer to the Laramie-Fox Hills aquifer. A three-dimensional numerical model was used to evaluate flow of water between the alluvial aquifer and underlying bedrock. Simulation of steady-state conditions indicates that flow from the bedrock aquifers to the alluvial aquifer was about 7 percent of recharge to the alluvial aquifer, about 0.87 cubic foot per second. The potential effects of withdrawal from the alluvial and bedrock aquifers at estimated (October 1989 to September 1990) rates and from the bedrock aquifers at two larger hypothetical rates were simulated for a 50-year projection period. The model simulations indicate that water levels in the alluvial aquifer will decline an average of 8.6 feet after 50 years of pumping at estimated October 1989 to September 1990 rates. Increases in withdrawals from the bedrock aquifers in El Paso County were simulated to: (1) Capture flow that currently discharges from the bedrock aquifers to springs and streams in upland areas and to the alluvial aquifer, (2) induce flow downward from the alluvial aquifer, and (3) accelerate the rate of waterlevel decline in the alluvial aquifer.

  13. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Shih-Kai

    2015-04-01

    Groundwater nitrate-N contamination occurs frequently in agricultural regions, primarily resulting from surface agricultural activities. The focus of this study is to establish groundwater protection zones based on indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N in the Choushui River alluvial fan in Taiwan. The groundwater protection zones are determined by univariate indicator kriging (IK) estimation, aquifer vulnerability assessment using logistic regression (LR), and integration of the IK estimation and aquifer vulnerability using simple IK with local prior means (sIKlpm). First, according to the statistical significance of source, transport, and attenuation factors dominating the occurrence of nitrate-N pollution, a LR model was adopted to evaluate aquifer vulnerability and to characterize occurrence probability of nitrate-N exceeding 0.5 mg/L. Moreover, the probabilities estimated using LR were regarded as local prior means. IK was then used to estimate the actual extent of nitrate-N pollution. The integration of the IK estimation and aquifer vulnerability was obtained using sIKlpm. Finally, groundwater protection zones were probabilistically determined using the three aforementioned methods, and the estimated accuracy of the delineated groundwater protection zones was gauged using a cross-validation procedure based on observed nitrate-N data. The results reveal that the integration of the IK estimation and aquifer vulnerability using sIKlpm is more robust than univariate IK estimation and aquifer vulnerability assessment using LR for establishing groundwater protection zones. Rigorous management practices for fertilizer use should be implemented in orchards situated in the determined groundwater protection zones.

  14. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  15. Net-infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    USGS Publications Warehouse

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    As populations grow in the arid southwestern United States and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration and recharge becomes critically important for inventorying groundwater resources and mapping contamination vulnerability. A Geographic Information System (GIS)-based model utilizing readily available soils, topographic, precipitation, and outcrop data has been developed for predicting net infiltration to exposed and soil-covered areas of the Navajo Sandstone outcrop of southwestern Utah. The Navajo Sandstone is an important regional bedrock aquifer. The GIS model determines the net-infiltration percentage of precipitation by using an empirical equation. This relation is derived from least squares linear regression between three surficial parameters (soil coarseness, topographic slope, and downgradient distance from outcrop) and the percentage of estimated net infiltration based on environmental tracer data from excavations and boreholes at Sand Hollow Reservoir in the southeastern part of the study area.Processed GIS raster layers are applied as parameters in the empirical equation for determining net infiltration for soil-covered areas as a percentage of precipitation. This net-infiltration percentage is multiplied by average annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data to obtain an infiltration rate for each model cell. Additionally, net infiltration on exposed outcrop areas is set to 10 percent of precipitation on the basis of borehole net-infiltration estimates. Soils and outcrop net-infiltration rates are merged to form a final map.Areas of low, medium, and high potential for ground-water recharge have been identified, and estimates of net infiltration range from 0.1 to 66 millimeters per year (mm/yr). Estimated net-infiltration rates of less than 10 mm/yr are considered low, rates of 10 to 50 mm/yr are considered medium, and rates of more than 50 mm/yr are considered high. A comparison of estimated net-infiltration rates (determined from tritium data) to predicted rates (determined from GIS methods) at 12 sites in Sand Hollow and at Anderson Junction indicates an average difference of about 50 percent. Two of the predicted values were lower, five were higher, and five were within the estimated range. While such uncertainty is relatively small compared with the three order-of-magnitude range in predicted net-infiltration rates, the net-infiltration map is best suited for evaluating relative spatial distribution rather than for precise quantification of recharge to the Navajo aquifer at specific locations. An important potential use for this map is land-use zoning for protecting high net-infiltration parts of the aquifer from potential surface contamination.

  16. Hydraulic head applications of flow logs in the study of heterogeneous aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    2001-01-01

    Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.

  17. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  18. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  19. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  20. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    USGS Publications Warehouse

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately 75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.

  1. Aquifer Hydrogeologic Layer Zonation at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelieva-Trofimova, Elena A.; Kanevski, Mikhail; timonin, v.

    2003-09-10

    Sedimentary aquifer layers are characterized by spatial variability of hydraulic properties. Nevertheless, zones with similar values of hydraulic parameters (parameter zones) can be distinguished. This parameter zonation approach is an alternative to the analysis of spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic properties. The current work is devoted to the problem of zonation of the Hanford formation, the uppermost sedimentary aquifer unit (U1) included in hydrogeologic models at the Hanford site. U1 is characterized by 5 zonesmore » with different hydraulic properties. Each sampled location is ascribed to a parameter zone by an expert. This initial classification is accompanied by a measure of quality (also indicated by an expert) that addresses the level of classification confidence. In the current study, the coneptual zonation map developed by an expert geologist was used as an a priori model. The parameter zonation problem was formulated as a multiclass classification task. Different geostatistical and machine learning algorithms were adapted and applied to solve this problem, including: indicator kriging, conditional simulations, neural networks of different architectures, and support vector machines. All methods were trained using additional soft information based on expert estimates. Regularization methods were used to overcome possible overfitting. The zonation problem was complicated because there were few samples for some zones (classes) and by the spatial non-stationarity of the data. Special approaches were developed to overcome these complications. The comparison of different methods was performed using qualitative and quantitative statistical methods and image analysis. We examined the correspondence of the results with the geologically based interpretation, including the reproduction of the spatial orientation of the different classes and the spatial correlation structure of the classes. The uncertainty of the classification task was examined using both probabilistic interpretation of the estimators and by examining the results of a set of stochastic realizations. Characterization of the classification uncertainty is the main advantage of the proposed methods.« less

  2. Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi site, Las Vegas, Nevada

    USGS Publications Warehouse

    Pavelko, Michael T.

    2004-01-01

    Land subsidence related to aquifer-system compaction and ground-water withdrawals has been occurring in Las Vegas Valley, Nevada, since the 1930's, and by the late 1980's some areas in the valley had subsided more than 5 feet. Since the late 1980's, seasonal artificial-recharge programs have lessened the effects of summertime pumping on aquifer-system compaction, but the long-term trend of compaction continues in places. Since 1994, the U.S. Geological Survey has continuously monitored water-level changes in three piezometers and vertical aquifer-system deformation with a borehole extensometer at the Lorenzi site in Las Vegas, Nevada. A one-dimensional, numerical, ground-water flow model of the aquifer system below the Lorenzi site was developed for the period 1901-2000, to estimate aquitard vertical hydraulic conductivity, aquitard inelastic skeletal specific storage, and aquitard and aquifer elastic skeletal specific storage. Aquifer water-level data were used in the model as the aquifer-system stresses that controlled simulated vertical aquifer-system deformation. Nonlinear-regression methods were used to calibrate the model, utilizing estimated and measured aquifer-system deformation data to minimize a weighted least-squares objective function, and estimate optimal property values. Model results indicate that at the Lorenzi site, aquitard vertical hydraulic conductivity is 3 x 10-6 feet per day, aquitard inelastic skeletal specific storage is 4 x 10-5 per foot, aquitard elastic skeletal specific storage is 5 x 10-6 per foot, and aquifer elastic skeletal specific storage is 3 x 10-7 per foot. Regression statistics indicate that the model and data provided sufficient information to estimate the target properties, the model adequately simulated observed data, and the estimated property values are accurate and unique.

  3. Aquifer thermal-energy-storage costs with a seasonal-chill source

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  4. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  5. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  6. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    USGS Publications Warehouse

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin storage area compared to metered recharge of 1,796 acre-ft indicates some loss of metered recharge. Increased storage outside of the basin storage area of 183 acre-ft accounts for all but 6 acre-ft or 0.33 percent of the total. Previously estimated recharge credits for 2007 and 2008 are 1,018 and 600 acre-ft, respectively, and a total estimated recharge credit of 1,618 acre-ft. Storage changes calculated for this study are 4.42 percent less for 2007 and 5.67 percent more for 2008 than previous estimates. Total storage change for 2007 and 2008 is 0.68 percent less than previous estimates. The small difference between the increase in storage from artificial recharge estimated with the groundwater-flow model and metered recharge indicates the groundwater model correctly accounts for the additional water recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project. Small percent differences between inflows and outflows for all stress periods and all index cells in the basin storage area, improved calibration compared to the previous model, and a reasonable match between simulated and measured long-term base flow indicates the groundwater model accurately simulates groundwater flow in the study area. The change in groundwater level through recent years compared to the August 1940 groundwater level map has been documented and used to assess the change of storage volume of the Equus Beds aquifer in and near the Wichita well field for three different areas. Two methods were used to estimate changes in storage from simulation results using simulated change in groundwater levels in layer 1 between stress periods, and using ZONEBUDGET to calculate the change in storage in the same way the effects of artificial recharge were estimated within the basin storage area. The three methods indicate similar trends although the magnitude of storage changes differ. Information about the change in storage in response to hydrologic stresses is important for managing groundwater resources in the study area. The comparison between the three methods indicates similar storage change trends are estimated and each could be used to determine relative increases or decreases in storage. Use of groundwater level changes that do not include storage changes that occur in confined or semi-confined parts of the aquifer will slightly underestimate storage changes; however, use of specific yield and groundwater level changes to estimate storage change in confined or semi-confined parts of the aquifer will overestimate storage changes. Using only changes in shallow groundwater levels would provide more accurate storage change estimates for the measured groundwater levels method. The value used for specific yield is also an important consideration when estimating storage. For the Equus Beds aquifer the reported specific yield ranges between 0.08 and 0.35 and the storage coefficient (for confined conditions) ranges between 0.0004 and 0.16. Considering the importance of the value of specific yield and storage coefficient to estimates of storage change over time, and the wide range and substantial overlap for the reported values for specific yield and storage coefficient in the study area, further information on the distribution of specific yield and storage coefficient within the Equus Beds aquifer in the study area would greatly enhance the accuracy of estimated storage changes using both simulated groundwater level, simulated groundwater budget, or measured groundwater level methods.

  7. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling

    NASA Astrophysics Data System (ADS)

    Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.

    2018-03-01

    Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.

  8. SlugIn 1.0: A Free Tool for Automated Slug Test Analysis.

    PubMed

    Martos-Rosillo, Sergio; Guardiola-Albert, Carolina; Padilla Benítez, Alberto; Delgado Pastor, Joaquín; Azcón González, Antonio; Durán Valsero, Juan José

    2018-05-01

    The correct characterization of aquifer parameters is essential for water-supply and water-quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user-friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy-to-use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large-diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates. © 2018, National Ground Water Association.

  9. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    USGS Publications Warehouse

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  10. Recent Advances in the Area of Groundwater

    NASA Astrophysics Data System (ADS)

    Bahr, J. M.

    2017-12-01

    Groundwater related papers published in Water Resources Research in the last year range from experimental and modeling studies of pore scale flow and reactive transport to assessments of changes in water storage at the scale of regional aquifers enabled by satellite observations. Important societal needs motivating these studies include sustainability of groundwater resources of suitable quantity and quality for human use, protection of groundwater-dependent ecosystems in streams, wetlands, lakes and coastal areas, and assessment of the feasibility of subsurface sequestration of carbon dioxide and long-lived radioactive wastes. Eight general areas that generated ten or more papers within the period July 2016 to June 2017 are the following: aquifer heterogeneity (including geostatistical and inverse methods for parameter estimation), flow and transport in the unsaturated zone (including recharge to and evaporative losses from aquifers), multiphase flow and transport (including processes relevant to carbon sequestration), groundwater-surface water interactions (particularly hyporheic exchange), flow and transport in fractured media, novel remote sensing and geophysical techniques for aquifer characterization and assessment of groundwater dynamics, freshwater-saltwater interactions (particularly in coastal aquifers), and reactive solute transport. This presentation will highlight selected findings in each of these areas.

  11. Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissmann, Gary S

    2013-12-06

    The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether establishedmore » dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.« less

  12. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  13. New Approach For Prediction Groundwater Depletion

    NASA Astrophysics Data System (ADS)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  14. Rates of microbial metabolism in deep coastal plain aquifers

    USGS Publications Warehouse

    Chapelle, F.H.; Lovley, D.R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  15. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard

    2011-01-01

    Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  16. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  17. Analysis of methods to estimate spring flows in a karst aquifer.

    PubMed

    Sepúlveda, Nicasio

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, C.A.; Mignerey, A.C.; Helz, G.R.

    The recent conclusion of a study of groundwater from the Magothy Formation, Maryland allows for an examination of processes occurring in this aquifer system. Water samples were gathered from a wide area along flow paths estimated from hydrological parameters and analyzed for the major cations and anions, nutrients, and {sup 87}Sr/{sup 86}Sr ratios, in addition to {sup 36}Cl, {delta}{sup 18}O, and {delta}{sup 2}H. Also, three samples that contained anomalously high {sup 36}Cl/Cl ratios were analyzed for {sup 3}H in an attempt to determine possible sources for those readings. A comparison of the results of this study to those of amore » previous study conducted by this group of the overlying Aquia Aquifer will also be given. The potential of inter-aquifer mixing between the two systems in some areas and of matching {sup 36}Cl and Cl{sup -} values to sea level rise and fall will be discussed.« less

  19. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  20. Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Morris, Alan P.; Mohanty, Sitakanta

    2009-07-01

    Estimated parameter distributions in groundwater models may contain significant uncertainties because of data insufficiency. Therefore, adaptive uncertainty reduction strategies are needed to continuously improve model accuracy by fusing new observations. In recent years, various ensemble Kalman filters have been introduced as viable tools for updating high-dimensional model parameters. However, their usefulness is largely limited by the inherent assumption of Gaussian error statistics. Hydraulic conductivity distributions in alluvial aquifers, for example, are usually non-Gaussian as a result of complex depositional and diagenetic processes. In this study, we combine an ensemble Kalman filter with grid-based localization and a Gaussian mixture model (GMM) clustering techniques for updating high-dimensional, multimodal parameter distributions via dynamic data assimilation. We introduce innovative strategies (e.g., block updating and dimension reduction) to effectively reduce the computational costs associated with these modified ensemble Kalman filter schemes. The developed data assimilation schemes are demonstrated numerically for identifying the multimodal heterogeneous hydraulic conductivity distributions in a binary facies alluvial aquifer. Our results show that localization and GMM clustering are very promising techniques for assimilating high-dimensional, multimodal parameter distributions, and they outperform the corresponding global ensemble Kalman filter analysis scheme in all scenarios considered.

  1. An inverse modeling approach to estimate groundwater flow and transport model parameters at a research site at Vandenberg AFB, CA

    NASA Astrophysics Data System (ADS)

    Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.

    2009-12-01

    A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.

  2. Quantifying the water storage volume of major aquifers in the US

    NASA Astrophysics Data System (ADS)

    Jame, S. A.; Bowling, L. C.

    2017-12-01

    Groundwater is one of our most valuable natural resources which affects not only the food and energy nexus, but ecosystem and human health, through the availability of drinking water. Quantification of current groundwater storage is not only required to better understand groundwater flow and its role in the hydrologic cycle, but also sustainable use. In this study, a new high resolution map (5' minutes) of groundwater properties is created for US major aquifers to provide an estimate of total groundwater storage. The estimation was done using information on the spatial extent of the principal aquifers of the US from the USGS Groundwater Atlas, the average porosity of different hydrolithologic groups and the current saturated thickness of each aquifer. Saturated thickness varies within aquifers, and has been calculated by superimposing current water-table contour maps over the base aquifer altitude provided by USGS. The average saturated thickness has been computed by interpolating available data on saturated thickness for an aquifer using the kriging method. Total storage of aquifers in each cell was then calculated by multiplying the spatial extent, porosity, and thickness of the saturated layer. The resulting aquifer storage estimates was compared with current groundwater withdrawal rates to produce an estimate of how many years' worth of water are stored in the aquifers. The resulting storage map will serve as a national dataset for stakeholders to make decisions for sustainable use of groundwater.

  3. Aquifer Characterization from Surface Geo-electrical Method, western coast of Maharashtra, India

    NASA Astrophysics Data System (ADS)

    DAS, A.; Maiti, D. S.

    2017-12-01

    Knowledge of aquifer parameters are necessary for managing groundwater amenity. These parameters are evaluated through pumping tests bring off from bore wells. But it is quite expensive as well as time consuming to carry out pumping tests at various sites and sometimes it is difficult to find bore hole at every required site. Therefore, an alternate method is put forward in which the aquifer parameters are evaluated from surface geophysical method. In this method, vertical electrical sounding (VES) with Schlumberger configuration were accomplished in 85 stations over Sindhudurg district. Sindhudurg district is located in the Konkan region of Maharashtra state, India. The district is located between north latitude 15°37' and 16° 40' and east longitude 73° 19' and 74° 13'. The area is having hard rock and acute groundwater problem. In this configuration, we have taken the maximum current electrode spacing of 200 m for every vertical electrical sounding (VES). Geo-electrical sounding data (true resistivity and thickness) is interpreted through resistivity inversion approach. The required parameters are achieved through resistivity inversion technique from which the aquifer variables (D-Z parameters, mean resistivity, hydraulic conductivity, transmissivity, and coefficient of anisotropy) are calculated by using some empirical formulae. Cross-correlation investigation has been done between these parameters, which eventually used to characterize the aquifer over the study area. At the end, the contour plot for these aquifer parameters has been raised which reveals the detailed distribution of aquifer parameters throughout the study area. From contour plot, high values of longitudinal conductance, hydraulic conductivity and transmissivity are demarcate over Kelus, Vengurle, Mochemar and Shiroda villages. This may be due to intrusion of saline water from Arabian sea. From contour trends, the aquifers are characterized from which the groundwater resources could be assess and manage properly in western Maharashtra. The current method which include DC resistivity inversion could be applicable further in hydrological characterization in tangled coastal parts of India.

  4. Steady-State Groundwater Flow Model for Great Neck, Long Island, New York

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Klinger, D.; Sallemi, B. M.

    2001-12-01

    This paper describes a comprehensive groundwater flow model for the Great Neck section of Long Island, New York. The hydrogeology of this section of Long Island is dominated by a buried erosional valley consisting of sediments comparable to the North Shore Confining Unit. This formation cross-cuts, thus is in direct hydraulic connection with the Upper Glacial, North Shore Confining Unit, Raritan Clay, and Lloyd aquifers. The Magothy aquifer is present only in remote southern sections of the model area. In addition, various lenses of coarser material from the overlying Upper Glacial aquifer are dispersed throughout the area. Data collection consisted of gathering various parameter values from existing USGS reports. Hydraulic conductivity, porosity, estimated recharge values, evapotranspiration, well locations, and water level data have all been gathered from the USGS Office located in Coram, New York. Appropriate modeling protocol was followed throughout the modeling process. The computer code utilized for solving this numerical model is Visual MODFLOW as manufactured by Waterloo Hydrogeologic. Calibration and a complete sensitivity analysis were conducted. Modeled results indicate that the groundwater flow direction is consistent with what is viewed onsite. In addition, the model is consistent in returning favorable parameter results to historical data.

  5. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  6. Estimated predevelopment discharge to streams from the High Plains Aquifer in northwestern Oklahoma, southwestern Kansas, and northwestern Texas

    USGS Publications Warehouse

    Luckey, R.R.; Becker, M.F.

    1998-01-01

    A study of the High Plains aquifer in Okla homa was initiated in 1996 to: (1) provide the information needed by the Oklahoma Water Resources Board to manage the quantity of water produced from the aquifer; and (2) provide base line water-chemistry data. The approach used to meet the first objective is to develop a digital ground-water flow model. The model will be cali brated, in part, by comparing simulated and esti mated predevelopment discharge from the aquifer to streams and cross-boundary flow. This report presents the estimated predevelopment discharge to streams from the High Plains aquifer. Streamflow data were the primary source of information used to estimate predevelopment dis charge from the High Plains aquifer. Data from 30 streamflow stations between the Arkansas and Canadian Rivers were considered in the analysis, and winter low-flow frequencies for 7-, 14-, and 30-day periods were determined for 25 stations. The 14-day low flow with a recurrence interval of 2 years was the primary value used to estimate pre development discharge from the aquifer. The streams that drain the eastern part of the High Plains aquifer in Kansas (generally east of 99.5 longitude) are estimated to have had large predevelopment discharge from the aquifer, and most of them received discharge from near their headwaters. For streams with more than one streamflow gage, the upper perennial reaches appeared to have gained more discharge from the aquifer than the lower reaches. The total predevel opment discharge from the aquifer in this area to several streams is estimated to have been about 312 cubic feet per second, not including discharge that probably went directly to the Arkansas River. The Cimarron River and its tributaries are estimated to have gained about 78 cubic feet per second, but nearly one-half that amount was lost in the lower reaches of the river. The cause of the loss in the lower reaches is unknown. The Beaver River and its tributaries are estimated to have gained a net of about 10 cubic feet per second above Wolf Creek with the upper reaches gaining more than the lower reaches. Wolf Creek is estimated to have gained 30 cubic feet per second over its total length.

  7. Hydrological Parameter Estimations from a Conservative Tracer Test With Variable-Density Effects at the Boise Hydrogeophysical Research Site

    DTIC Science & Technology

    2011-12-15

    the measured porosity values can be taken as equivalent to effective porosity values for this aquifer with the risk of only very limited overestimation...information to constrain/control an increasingly ill-posed problem, and (3) risk estimation of a model with more heterogeneity than is needed to explain...coarse fluvial deposits: Boise Hydrogeophysical Research Site, Geological Society of America Bulletin, 116(9–10), 1059–1073. Barrash, W., T. Clemo

  8. Estimation of stream depletion using values of capacitance

    NASA Astrophysics Data System (ADS)

    Baldenkov, Mikhail; Filimonova, Elena

    2014-05-01

    Compensation pumping is used to alleviate deficiencies in streamflow discharge during dry seasons. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Stream-aquifer interactions are the key component of the hydrologic budgets and estimation of stream depletion has top-priority when evaluating the effectiveness of application of seasonal compensation pumping. Numerous analytical equations have been developed to assess the influence of groundwater pumping on nearby streams (C.V. Theis, R.E. Glover, C.G. Balmer, M.S. Hantush, C.T. Jenkins, B. Hunt, J. Bredehoeft, V.A. Zlotnik, E.L. Minkin, N.N. Lapshin, F.M. Bochever and other researchers). R.B. Wallace and Y. Darama obtained solution for cyclic conditions groundwater pumping. Numerical model approaches used in difficult hydrogeological conditions. It is offered to estimate stream depletion by seasonal pumping using values of capacitance (complex, dimensionless parameter of an aquifer system that defines the delayed effect on steamflow when there is groundwater pumping). Capacitance (C) is determined by the following equation: ( ) L* C = f( °---) , TS-Δt where S and T are the aquifer specific yield (or storage coefficient for a confined aquifer) and transmissivity, respectively; Δt is the pumping time inside one cycle, L* is the summarizing distance between the compensation well and stream edge; in some cases it can involve a function of the stream leakance and vertical leakance of the impermeable layer. Three typical hydraulic cases of compensation pumping were classified depending on their capacitance structure (i.e. the relationship between surface water and groundwater): (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The form of capacitance was obtained for all three cases and is a function of aquifer hydraulic characteristics, pumping time and distance between the well and stream edge. The distance in the first and the second cases is the sum of the shortest distance between stream edge and the well and the stream leakance; in case; and in the third case, it is the sum of real distance, stream leakance and vertical leakance through the impermeable layer. A regression test between unit stream depletion (i.e. the ratio of stream reduction to pumping rate stream depletion and capacitance was performed, and power dependences were obtained in the form of Y = a + bC-0.5 The drained storage cannot be absolutely recovered by natural processes that cause 'residual' stream depletion (RSD) even in condition of perfect hydraulic connection between the stream and aquifer. The impact of various hydraulic characteristics and engineering factors on RSD was examined by numerical modeling. It was realized lack of correlation between capacitance and RSD, but exponential dependences between capacitance and the annual amplitudes of stream depletion (A) were obtained in the form of: A = 0.95 exp(- 0.776C ) Although this approach cannot assess stream-aquifer interactions to the same degree of accuracy as analytical equations of detail as a numerical model, it can provide forecast estimation with the level of primary available data.

  9. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (±10 mm in change of land surface elevation) were developed for a groundwater basin (∼103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993–1995) subsidence patterns and those detected historically (1926–1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  10. A Transient Groundwater Flow Model for Evaluating River-Aquifer Exchange

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Chelli, A.; Pecoraro, R.; Celico, F.

    2014-12-01

    The study area is an industrial site (in the North of Italy) contaminated through heavy metal and chlorinated hydrocarbons. The site presents an area of about 5 km2 and a complex geology. During 2013 and 2014 the hydrogeological conceptual model was reviewed and the result was a main unconfined aquifer that presents an impervious bottom at about 30 m below ground. A small portion of the aquifer is split by a non-continuous aquitard. Below the impervious bottom, there are confined aquifers that are not polluted. The boundary conditions of the aquifer are constant head upstream (obtained from a regional piezometry) and constant head downstream that represents a lake stage. Moreover a river inside the study area, that could feed or dry the aquifer depending on its stage, manages the groundwater head levels. The study area presents more than 100 pumping wells that have the objective of realizing a hydraulic barrier and to prevent the flow of pollutants downstream. The area is monitored with about 120 monitoring wells, which are used, through a periodic sampling and monitoring, to control the pollution and to estimate the flow direction. During the last year a numerical flow model has been developed by means of MODFLOW 2000 (Harbaugh, 2000) with the aim at becoming a management tool of the hydraulic barrier. The calibration procedure, initially, was performed in steady state condition using the PEST procedure (Doherty, 2007). The goal was to reproduce the monthly observations at the monitoring wells varying the hydraulic conductivity of the main aquifer and of the aquitard. The second step of the calibration was the extension of the calibration to transient data. The period from September 1st 2013 to June 31st 2014 was reproduced. In order to avoid problem with the starting conditions only the observations collected in 2014 were used to estimate the aquifer parameters. The period September 1st 2013 to December 31st was used as warm up in order to obtain reliable starting conditions for the 2014. The result of the work was a model that allows to reproduce with high reliability the collected observations and to understand the groundwater flow direction depending on the river stage.

  11. Field, laboratory, and modeling investigation of the skin effect at wells with slotted casing, Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Barrash, Warren; Clemo, Tom; Fox, Jessica J.; Johnson, Timothy C.

    2006-07-01

    Understanding and quantification of wellbore skin improves our ability to accurately measure or estimate hydrologic parameters with tests at wells such as pumping tests, flowmeter tests, and slug tests. This paper presents observations and results from a series of field, laboratory, and modeling tests which, together, explain the source of wellbore skin at wells at a research wellfield and which support estimation of skin thickness ( ds) and skin hydraulic conductivity ( Ks). Positive wellbore skin effects were recognized at wells in the shallow, unconfined, coarse-grained fluvial aquifer at the Boise Hydrogeophysical Research Site (BHRS). Well development efforts at the BHRS removed residual drilling fines but only marginally reduced the skin effect. Likely causes for the remaining wellbore skin effect were examined; partial clogging of screen slots with sand is consistent with field observations and can account for the magnitude of wellbore skin effect observed. We then use the WTAQ code ( Barlow and Moench, 1999) with a redefinition of the term for delayed observation well response to include skin effects at observation wells (in addition to pumping wells) in order to analyze aquifer tests at the BHRS for average Ks values at individual wells. Systematic differences in Ks values are recognized in results at pumping ( Ks_Q) and observation ( Ks_obs) wells: larger values are seen at observation wells (average Ks_obs=0.0023 cm/s) than pumping wells. Two possible causes are recognized for the occurrence of higher Ks values at observation wells than pumping wells: (1) flow diversion between aquifer layers on approach to a pumping well with positive skin; and (2) larger portion of flow passing through lower-K zones in the heterogeneous aquifer near the pumping well than the observation wells due to strongly radially convergent flow near the pumping well. For the well-aquifer system at the BHRS, modeling analyses of drawdown vs time at observation wells provide better Ks estimates than those from pumping wells.

  12. Development of a process-oriented vulnerability concept for water travel time in karst aquifers-case study of Tanour and Rasoun springs catchment area.

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Ptak, Thomas; Wiegand, Bettina; Margane, Armin; Toll, Mathias

    2017-04-01

    Key words: Karst aquifer, water travel time, vulnerability assessment, Jordan. The understanding of the groundwater pathways and movement through karst aquifers, and the karst aquifer response to precipitation events especially in the arid to semi-arid areas is fundamental to evaluate pollution risks from point and non-point sources. In spite of the great importance of the karst aquifer for drinking purposes, karst aquifers are highly sensitive to contamination events due to the fast connections between the land-surface and the groundwater (through the karst features) which is makes groundwater quality issues within karst systems very complicated. Within this study, different methods and approaches were developed and applied in order to characterise the karst aquifer system of the Tanour and Rasoun springs (NW-Jordan) and the flow dynamics within the aquifer, and to develop a process-oriented method for vulnerability assessment based on the monitoring of different multi-spatially variable parameters of water travel time in karst aquifer. In general, this study aims to achieve two main objectives: 1. Characterization of the karst aquifer system and flow dynamics. 2. Development of a process-oriented method for vulnerability assessment based on spatially variable parameters of travel time. In order to achieve these aims, different approaches and methods were applied starting from the understanding of the geological and hydrogeological characteristics of the karst aquifer and its vulnerability against pollutants, to using different methods, procedures and monitored parameters in order to determine the water travel time within the aquifer and investigate its response to precipitation event and, finally, with the study of the aquifer response to pollution events. The integrated breakthrough signal obtained from the applied methods and procedures including the using of stable isotopes of oxygen and hydrogen, the monitoring of multi qualitative and quantitative parameters using automated probes and data loggers, and the development of travel time physics-based vulnerability assessment method shows good agreement as an applicable methods to determine the water travel time in karst aquifers, and to investigate its response to precipitation and pollution events.

  13. Ground-water data for the alluvial, buried channel, Basel Pleistocene and Dakota aquifer in West-Central Iowa

    USGS Publications Warehouse

    Hunt, Pamela K.B.; Runkle, Donna L.

    1985-01-01

    The purpose of this investigation was to determine the availability, quantity and quality of groundwater from three principal aquifers in West-Central Iowa, the alluvial, buried channel, Basal Pleistocene and the Dakota aquifers. Specific objectives were to: (1) determine the location, extent and the nature of these aquifers; (2) evaluate the occurrence and movement of groundwater, including the sources of recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the aquifers; (5) estimate the water use; and (6) describe the chemical quality of the groundwater. This report is the compilation of the data collected during the investigation and has the purpose of providing a reference for an interpretive report describing groundwater resources and a bedrock topography map of the study area.

  14. Development and Calibration of a Variable-Density Numerical Model of a Deep-well Injection Site near the Southeastern Florida Coast

    NASA Astrophysics Data System (ADS)

    Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.

    2006-12-01

    The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.

  15. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    USGS Publications Warehouse

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Recharge rates estimated from environmental tracer data are dependent upon several hydrogeologic variables and have inherent uncertainties. By using the recharge estimates derived from samples collected from 14 wells completed in the Chicot aquifer for which apparent groundwater ages could be determined, recharge to the Chicot aquifer ranged from 0.2 to 7.2 inches (in.) per year (yr). Based on data from one well, estimated recharge to the unconfined zone of the Evangeline aquifer (outcrop) was 0.1 in./yr. Based on data collected from eight wells, estimated rates of recharge to the confined zone of the Evangeline aquifer ranged from less than 0.1 to 2.8 in./yr. Based on data from one well, estimated recharge to the unconfined zone of the Jasper aquifer (outcrop) was 0.5 in./yr. Based on data collected from nine wells, estimated rates of recharge to the confined zone of the Jasper aquifer ranged from less than 0.1 to 0.1 in./yr. The complexity of the hydrogeology in the area, uncertainty in the conceptual model, and numerical assumptions required in the determination of the recharge rates all pose limitations and need to be considered when evaluating these data on a countywide or regional scale. The estimated recharge rates calculated for this study are specific to each well location and should not be extrapolated or inferred as a countywide average. Local variations in the hydrogeology and surficial conditions can affect the recharge rate at a local scale.

  16. A new powerful parameterization tool for managing groundwater resources and predicting land subsidence in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nunes, V. D.; Burbey, T. J.; Borggaard, J.

    2012-12-01

    More than 1.5 m of subsidence has been observed in Las Vegas Valley since 1935 as a result of groundwater pumping that commenced in 1905 (Bell, 2002). The compaction of the aquifer system has led to several large subsidence bowls and deleterious earth fissures. The highly heterogeneous aquifer system with its variably thick interbeds makes predicting the magnitude and location of subsidence extremely difficult. Several numerical groundwater flow models of the Las Vegas basin have been previously developed; however none of them have been able to accurately simulate the observed subsidence patterns or magnitudes because of inadequate parameterization. To better manage groundwater resources and predict future subsidence we have updated and developed a more accurate groundwater management model for Las Vegas Valley by developing a new adjoint parameter estimation package (APE) that is used in conjunction with UCODE along with MODFLOW and the SUB (subsidence) and HFB (horizontal flow barrier) packages. The APE package is used with UCODE to automatically identify suitable parameter zonations and inversely calculate parameter values from hydraulic head and subsidence measurements, which are highly sensitive to both elastic (Ske) and inelastic (Skv) storage coefficients. With the advent of InSAR (Interferometric synthetic aperture radar), distributed spatial and temporal subsidence measurements can be obtained, which greatly enhance the accuracy of parameter estimation. This automation process can remove user bias and provide a far more accurate and robust parameter zonation distribution. The outcome of this work yields a more accurate and powerful tool for managing groundwater resources in Las Vegas Valley to date.

  17. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    USGS Publications Warehouse

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time-varying drawdown in an open well with periodic pressure-head oscillations in the aquifer, but the applicability of such methods might be limited in studies of the Floridan aquifer system.

  18. Prediction, time variance, and classification of hydraulic response to recharge in two karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Mahler, Barbara J.

    2013-01-01

    Many karst aquifers are rapidly filled and depleted and therefore are likely to be susceptible to changes in short-term climate variability. Here we explore methods that could be applied to model site-specific hydraulic responses, with the intent of simulating these responses to different climate scenarios from high-resolution climate models. We compare hydraulic responses (spring flow, groundwater level, stream base flow, and cave drip) at several sites in two karst aquifers: the Edwards aquifer (Texas, USA) and the Madison aquifer (South Dakota, USA). A lumped-parameter model simulates nonlinear soil moisture changes for estimation of recharge, and a time-variant convolution model simulates the aquifer response to this recharge. Model fit to data is 2.4% better for calibration periods than for validation periods according to the Nash–Sutcliffe coefficient of efficiency, which ranges from 0.53 to 0.94 for validation periods. We use metrics that describe the shapes of the impulse-response functions (IRFs) obtained from convolution modeling to make comparisons in the distribution of response times among sites and between aquifers. Time-variant IRFs were applied to 62% of the sites. Principal component analysis (PCA) of metrics describing the shapes of the IRFs indicates three principal components that together account for 84% of the variability in IRF shape: the first is related to IRF skewness and temporal spread and accounts for 51% of the variability; the second and third largely are related to time-variant properties and together account for 33% of the variability. Sites with IRFs that dominantly comprise exponential curves are separated geographically from those dominantly comprising lognormal curves in both aquifers as a result of spatial heterogeneity. The use of multiple IRF metrics in PCA is a novel method to characterize, compare, and classify the way in which different sites and aquifers respond to recharge. As convolution models are developed for additional aquifers, they could contribute to an IRF database and a general classification system for karst aquifers.

  19. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2015-03-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  20. Aquifer Tests and Characterization of Transmissivity, Ada-Vamoosa Aquifer on the Osage Reservation, Osage County, Oklahoma, 2006

    USGS Publications Warehouse

    Abbott, Marvin M.; DeHay, Kelli

    2008-01-01

    The Ada-Vamoosa aquifer of northeastern Oklahoma is a sedimentary bedrock aquifer of Pennsylvanian age that crops out over 800 square miles of the Osage Reservation. The Osage Nation needed additional information regarding the production potential of the aquifer to aid them in future development planning. To address this need, the U.S. Geological Survey, in cooperation with the Osage Nation, conducted a study of aquifer properties in the Ada-Vamoosa aquifer. This report presents the results of the aquifer tests from 20 wells in the Ada-Vamoosa aquifer and one well in a minor aquifer east of the Ada-Vamoosa outcrop on the Osage Reservation. Well information for 17 of the 21 wells in this report was obtained from the Indian Health Service. Data collected by the U.S. Geological Survey during this investigation are pumping well data from four domestic wells collected during the summer of 2006. Transmissivity values were calculated from well pumping data or were estimated from specific capacity values depending on the reliability of the data. The estimated transmissivity values are 1.1 to 4.3 times greater than the calculated transmissivity values. The calculated and estimated transmissivity values range from 5 to 1,000 feet squared per day.

  1. A multitracer approach to estimate groundwater residence time distributions at a managed aquifer recharge site

    NASA Astrophysics Data System (ADS)

    Popp, Andrea; Kipfer, Rolf

    2017-04-01

    Managed aquifer recharge (MAR) has become a common water management tool and serves various purposes such as improving the quality of groundwater (GW). At the study site, the Hardwald in Muttenz (Switzerland), MAR has been implemented in the mid-1950s to overcome increasing water demands. GW is artificially recharged with water from the river Rhine through a system of channels and ponds. The area is surrounded by potential contamination sites such as chemical industry, former landfills, a highway and a freight depot. Furthermore, the area shows a complex hydrogeologic setting with several fault zones and two main aquifers, the Quaternary Rhine gravel aquifer overlying a karstified Upper Muschelkalk limestone aquifer. Water from the deeper limestone aquifer is suspected to contain contaminants originating from the landfills. The fractures might serve as a hydraulic connection between the upper and lower aquifer. Further, groundwater pumping might enhance the mixing of recently infiltrated water with older water from the lower aquifer. Hence, the proximity to potential contamination sites and the complex geologic setting both pose risks for GW pollution and challenge the drinking water production in this area. To guarantee a safe drinking water supply, it is crucial to know the mixing patterns of young and old GW abstracted from the pumping wells. With this study we aim to determine the spatial variability of GW residence time distributions to differentiate between recently infiltrated river water and older groundwater. To reach our objectives, we use a combination of the following tracers to cover a wide range of possible GW ages: (1) radiogenic 222Rn (young water := <3 weeks); (2) tritium (3H) in combination with its tritiogenic decay product 3He (old water := 0.5-50 years); and (3) radiogenic 4He (very old water := 100-1000 years). Additionally, we analysed other dissolved (noble) gases (O2, N2, Ar, Kr) to estimate the amount of excess air and to derive the equilibration temperature. We also sampled for physico-chemical parameters such as water temperature, electrical conductivity, alkalinity, total hardness, DOC, Na+, Mg2+, Ca2+, K+, Cl-, NO3-, SO42- and H4SiO4 concentrations to complement the interpretation of the age tracers. All parameters were analysed at 20 observation and pumping wells distributed throughout the study area. First results indicate that GW abstracted in the vicinity to the area with the highest recharge rates exhibits young water only. Wells further away from these high recharge areas contain a mixture of young and old GW. However, only one pumping well showed a mixture of very young, old and very old GW. Some wells within the fracture zones show higher 3H/3He ages which supports our hypothesis of a hydraulic connection between the deeper and the upper aquifer. As a next step, we plan on using a mixing model to quantify the fractions of young and (very) old groundwater.

  2. Multi-scale approach for 3D hydrostratigraphic and groundwater flow modelling of Milan (Northern Italy) urban aquifers.

    NASA Astrophysics Data System (ADS)

    De Caro, Mattia; Crosta, Giovanni; Frattini, Paolo; Perico, Roberta

    2017-04-01

    During the last century, urban groundwater was heavily exploited for public and industrial supply. As the water demands of industry have fallen, many cities are now experiencing rising groundwater levels with consequent concerns about localized flooding of basements, reduction of soil bearing capacities under foundations, soil internal erosion and the mobilization of contaminants. The city of Milan (Northern Italy) draws water for domestic and industrial purposes from aquifers beneath the urban area. The rate of abstraction has been varying during the last century, depending upon the number of inhabitants and the development of industrial activities. The groundwater abstraction raised to a maximum of about 350x106 m3/yr in the middle 1970s and has successively decreased to a value of about 230x106 m3/yr at present days. This caused a water table raise at an average rate of about 1 m/yr inducing infiltrations and flooding of deep constructions (e.g. building foundations and basements, underground subway excavations). Starting from a large hydrostratigraphic database (8628 borehole logs), a multi-scale approach for the reconstruction of the aquifers geometry (unconfined and semi-confined) at regional-scale has been used. First, a three-level hierarchical classification of the lithologies (lithofacies, hydrofacies, aquifer groups) has been adopted. Then, the interpretation of several 2D cross-sections was attained with Target for ArcGIS exploration software. The interpretation of cross-sections was based on the characteristics of depositional environments of the analysed aquifers (from meandering plain to proximal outwash deposits), on the position of quaternary deposits, and on the distribution of geochemical parameters (i.e. indicator contaminants and major ions). Finally, the aquifer boundary surfaces were interpolated with standard algorithms. The hydraulic properties of analysed aquifers were estimated through the analyses of available step-drawdown tests (Theis with the superimposition solution) and use of empirical relationships from grain-size distribution data, respectively for semi-confined and unconfined aquifers. Finally, 3D Finite Element groundwater flow models have been developed both at regional and local "metropolitan" scale. The regional model covers an area of 3,135.15 km2, while the local model comprises the Milan metropolitan area with an extension of 457 km2. Both models were discretized into a triangular finite element mesh with local refinement in proximity of pumping wells. The element size ranges from 350 to 30 meters and from 200 to 2 meters, respectively for regional and local model. The calibration was done by the comparison with the available water level data for different years (from 1994 to 2016). The calibrated permeability values are consistent with the estimated ones and the sensitivity analysis on hydraulic parameters suggests a minor influence of the aquiclude layer separating the two aquifers. The challenge is to provide the basis for new types of applied outputs so that they may better inform strategic planning options, ground investigation, and abstraction strategies.

  3. Determination of aquifer roof extending under the sea from variable-density flow modelling of groundwater response to tidal loading: case study of the Jahe River Basin, Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jianmei; Chen, Chongxi; Ji, Menrui

    The main task of studies on salt-water intrusion into coastal confined aquifers is to predict the position of the fresh- salt-water interface, which can be determined from the length of the aquifer roof extending under the sea. Records of groundwater level affected by tides can be used to infer hydrological conditions and determine hydraulic parameters of an aquifer extending under the sea. In this paper, a three-dimensional, variable-density groundwater flow model has been developed to determine the equivalent roof length of an aquifer extending under the sea from the tidal-effected data of groundwater level in the Jahe River Basin, Shandong Province, China. The seaward boundary is obtained by converging hydraulic head fluctuations observed in drill holes with calculated values, and the aquifer parameters in the extending zone are estimated. The impacts of aquifer roof length and aquifer parameters on the fluctuation of tidal groundwater are studied. It is concluded that the length of the aquifer roof extending under the sea should correspond with certain aquifer parameters in the extrapolation zone. Therefore, the seaward boundary determined from tidal-effect information is the equivalent boundary in hydrodynamic characteristics rather than the true boundary of the confined aquifer Les sujets principaux des études d'instrusion saline dans les aquifères confinés en zone côtière sont la prédiction de la position de l'interface entre l'eau salée et l'eau fraîche, qui peut être déterminée à partir de l'extention du toit de l'aquifère sous la mer. Les enregistrements des niveaux des eaux souterraines influencés par les marées peuvent être utilisés pour préciser les conditions hydrologiques et déterminer les paramètres hydrauliques d'un aquifère possédant une extension sous la mer. Dans cet article, un modèle tridimensionnel comprenant des eaux souterraines de densité variable a été développé pour déterminer la longueur équivalente du toit d'un aquifère qui s'étend sous la mer à partir des données concernant les effets de marée sur les eaux souterraines dans le bassin de la rivière Jahe, dans la province de Shandong, Chine. La limite de salinité est déterminée en faisant converger les fluctuations des hauteurs piézométriques avec les valeurs calculées, et les paramètres de l'aquifère sont estimés dans la zone s'étendant sous la mer. L'incidence de la longueur de l'aquifère sous la mer sur les fluctuations des niveaux est étudiée. On en conclut que la longueur du toit de l'aquifère sous la mer peut correspondre à certains aquifères paramètres dans la zone d'extrapolation. Par conséquent, la limite de salinité déterminée à partir des effets de marée est l'équivalent d'une limite hydrodynamique plutôt que la véritable limite de l'aquifère. El principal objetivo de los estudios sobre intrusiones de agua salada en acuíferos costeros confinados es predecir la posición de la interfase agua dulce-agua salada, la cual puede determinarse a partir de la longitud del techo del acuífero que se extiende por debajo del mar. Los registros de niveles de agua subterránea afectados por las mareas puede utilizarse para inferir las condiciones hidrológicas y determinar los parámetros hidráulicos de un acuífero que se extiende por debajo del mar. En este artículo se ha desarrollado un modelo de flujo tri-dimensional de agua subterránea de densidad variable para determinar la longitud del techo equivalente de un acuífero que se extiende por debajo del mar a partir de datos, afectados por la marea, de niveles de agua subterránea en la Cuenca del Río Jahe, Provincia Shandong, China. El límite hacia el océano se obtiene por convergencia de fluctuaciones de presiones hidráulicas observadas en pozos con valores calculados, y se estiman los parámetros del acuífero en la zona extendida. Se estudian los impactos de la longitud del techo del acuífero y los parámetros del acuífero en la fluctuación del agua subterránea afectada por las mareas. Se concluye que la longitud del techo del acuífero que se extiende por debajo del mar debería corresponder con ciertos parámetros del acuífero en la zona de extrapolación. Por lo tanto, el límite hacia el océano determinado a partir de información de efectos de marea es el límite equivalente en características hidrodinámicas más que el límite real del acuífero confinado.

  4. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic

  5. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  6. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  7. Conditioning geostatistical simulations of a heterogeneous paleo-fluvial bedrock aquifer using lithologs and pumping tests

    NASA Astrophysics Data System (ADS)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2016-12-01

    Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.

  8. Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers

    NASA Astrophysics Data System (ADS)

    Pauw, P. S.; Oude Essink, G. H. P.; Leijnse, A.; Vandenbohede, A.; Groen, J.; van der Zee, S. E. A. T. M.

    2014-09-01

    This paper considers the impact of tidal forcing on regional groundwater flow in an unconfined coastal aquifer. Numerical models are used to quantify this impact for a wide range of hydrogeological conditions. Both a shallow and a deep aquifer are investigated with regard to three dimensionless parameter groups that determine the groundwater flow to a large extent. Analytical expressions are presented that allow for a quick estimate of the regional scale effect of tidal forcing under the same conditions as used in the numerical models. Quantitatively, the results in this paper are complementary to previous studies by taking into account variable density groundwater flow, dispersive salt transport and a seepage face in the intertidal area. Qualitatively, the results are in line with previous investigations. The time-averaged hydraulic head at the high tide mark increases upon a decrease of each of the three considered dimensionless parameter groups: R (including the ratio of the hydraulic conductivity and the precipitation excess), α (the slope of the intertidal area) and AL (the ratio of the width of the fresh water lens and the tidal amplitude). The relative change of the location and the hydraulic head of the groundwater divide, which together characterize regional groundwater flow, increase as α and AL decrease, but decrease as R decreases. The difference between the analytical solutions and numerical results is small. Therefore, the presented analytical solutions can be used to estimate the bias that is introduced in a numerical model if tidal forcing is neglected. The results should be used with caution in case of significant wave forcing, as this was not considered.

  9. Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR)

    NASA Astrophysics Data System (ADS)

    Ahani Amineh, Zainab Banoo; Hashemian, Seyyed Jamal Al-Din; Magholi, Alireza

    2017-08-01

    Hamoon-Jazmoorian plain is located in southeast of Iran. Overexploitation of groundwater in this plain has led to water level decline and caused serious problems such as land subsidence, aquifer destruction and water quality degradation. The increasing population and agricultural development along with drought and climate change, have further increased the pressure on water resources in this region over the last years. In order to overcome such crisis, introduction of surface water into an aquifer at particular locations can be a suitable solution. A wide variety of methods have been developed to recharge groundwater, one of which is aquifer storage and recovery (ASR). One of the fundamental principles of making such systems is delineation of suitable areas based on scientific and natural facts in order to achieve relevant objectives. To that end, the Multi Criteria Decision Making (MCDM) in conjunction with the Geographic Information Systems (GIS) was applied in this study. More specifically, nine main parameters including depth of runoff as the considered source of water, morphology of the earth surface features such as geology, geomorphology, land use and land cover, drainage and aquifer characteristics along with quality of water in the aquifer were considered as the main layers in GIS. The runoff water available for artificial recharge in the basin was estimated through Soil Conservation Service (SCS) curve number method. The weighted curve number for each watershed was derived through spatial intersection of land use and hydrological soil group layers. Other thematic layers were extracted from satellite images, topographical map, and other collateral data sources, then weighed according to their influence in locating process. The Analytical Hierarchy Process (AHP) method was then used to calculate weights of individual parameters. The normalized weighted layers were then overlaid to build up the recharge potential map. The results revealed that 34% of the total area is suitable and very suitable for groundwater recharge.

  10. Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR

    NASA Astrophysics Data System (ADS)

    Scher, C.; Saah, D.

    2017-12-01

    Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.

  11. Estimate of ground water in storage in the Great Lakes basin, United States, 2006

    USGS Publications Warehouse

    Coon, William F.; Sheets, Rodney A.

    2006-01-01

    Hydrogeologic data from Regional Aquifer System Analyses (RASA) studies by the U.S. Geological Survey in the Great Lakes Basin, United States, during 1978-95, were compiled and used to estimate the total volume of water that is stored in the many aquifers of the basin. These studies focused on six regional aquifer systems: the Cambrian-Ordovician aquifer system in Wisconsin, Illinois, and Indiana; the Silurian- Devonian aquifers in Wisconsin, Michigan, Illinois, Indiana, and Ohio; the surficial aquifer system (aquifers of alluvial and glacial origin) found throughout the Great Lakes Basin; and the Pennsylvanian sandstone and carbonate-rock aquifers and the Mississippian sandstone aquifer in Michigan. Except for the surficial aquifers, all of these aquifer systems are capable of yielding substantial quantities of water and are not small aquifers with only local importance. Individual surficial aquifers, although small in comparison to the bedrock aquifers, collectively represent large potential sources of ground water and therefore have been treated as a regional system. Summation of ground-water volumes in the many regional aquifers of the basin indicates that about 1,340 cubic miles of water is in storage; of this, about 984 cubic miles is considered freshwater (that is, water with dissolved-solids concentration less than 1,000 mg/L). These volumes should not be interpreted as available in their entirety to meet water-supply needs; complete dewatering of any aquifer is environmentally undesirable. The amount of water that is considered available on the basis of water quality and environmental, economic, and legal constraints has not been determined. The effect of heavy pumping in the Chicago, Ill., and Milwaukee, Wis., areas, which has caused the regional ground-water divide in the Cambrian-Ordovician aquifer system to shift westward, has been included in the above estimates. This shift in the ground-water divide has increased the amount of water in storage in the deep-bedrock aquifers of the Great Lakes Basin by about 36 cubic miles; however, this water is removed by wells and, after use, is mostly discharged to the Mississippi River Basin rather than to the Great Lakes Basin. The corresponding decrease in ground-water storage that has resulted from lowering of the potentiometric surface due to this heavy pumping (0.059 cubic miles) is negligible compared to the total estimated storage.

  12. Analytical and numerical analyses of an unconfined aquifer test considering unsaturated zone characteristics

    USGS Publications Warehouse

    Moench, A.F.

    2008-01-01

    A 7-d, constant rate aquifer test conducted by University of Waterloo researchers at Canadian Forces Base Borden in Ontario, Canada, is useful for advancing understanding of fluid flow processes in response to pumping from an unconfined aquifer. Measured data include not only drawdown in the saturated zone but also volumetric soil moisture measured at various times and distances from the pumped well. Analytical analyses were conducted with the model published in 2001 by Moench and colleagues, which allows for gradual drainage but does not include unsaturated zone characteristics, and the model published in 2006 by Mathias and Butler, which assumes that moisture retention and relative hydraulic conductivity (RHC) in the unsaturated zone are exponential functions of pressure head. Parameters estimated with either model yield good matches between measured and simulated drawdowns in piezometers. Numerical analyses were conducted with two versions of VS2DT: one that uses traditional Brooks and Corey functional relations and one that uses a RHC function introduced in 2001 by Assouline that includes an additional parameter that accounts for soil structure and texture. The analytical model of Mathias and Butler and numerical model of VS2DT with the Assouline model both show that the RHC function must contain a fitting parameter that is different from that used in the moisture retention function. Results show the influence of field-scale heterogeneity and suggest that the RHC at the Borden site declines more rapidly with elevation above the top of the capillary fringe than would be expected if the parameters were to reflect local- or core-scale soil structure and texture.

  13. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less

  15. Development of unconfined conditions in multi-aquifer flow systems: a case study in the Rajshahi Barind, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; Zaman, M. Asaduz

    2017-01-01

    Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.

  16. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds together) occurs as streamflow channel infiltration. Diffuse recharge (direct infiltration of rainfall to the aquifer) accounts for the remaining 23 percent of recharge. For the Hondo Creek watershed, the HSPF recharge estimates for 1992–2003 averaged about 22 percent less than those estimated by the Puente method, a method the U.S. Geological Survey has used to compute annual recharge to the Edwards aquifer since 1978. HSPF recharge estimates for the Verde Creek watershed average about 40 percent less than those estimated by the Puente method.

  17. Simulation of a long-term aquifer test conducted near the Rio Grande, Albuquerque, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.

    2001-01-01

    A long-term aquifer test was conducted near the Rio Grande in Albuquerque during January and February 1995 using 22 wells and piezometers at nine sites, with the City of Albuquerque Griegos 1 production well as the pumped well. Griegos 1 discharge averaged about 2,330 gallons per minute for 54.4 days. A three-dimensional finite-difference ground-water-flow model was used to estimate aquifer properties in the vicinity of the Griegos well field and the amount of infiltration induced into the aquifer system from the Rio Grande and riverside drains as a result of pumping during the test. The model was initially calibrated by trial-and-error adjustments of the aquifer properties. The model was recalibrated using a nonlinear least-squares regression technique. The aquifer system in the area includes the middle Tertiary to Quaternary Santa Fe Group and post-Santa Fe Group valley- and basin-fill deposits of the Albuquerque Basin. The Rio Grande and adjacent riverside drains are in hydraulic connection with the aquifer system. The hydraulic-conductivity values of the upper part of the Santa Fe Group resulting from the model calibrated by trial and error varied by zone in the model and ranged from 12 to 33 feet per day. The hydraulic conductivity of the inner-valley alluvium was 45 feet per day. The vertical to horizontal anisotropy ratio was 1:140. Specific storage was 4 x 10-6 per foot of aquifer thickness, and specific yield was 0.15 (dimensionless). The sum of squared errors between the observed and simulated drawdowns was 130 feet squared. Not all aquifer properties could be estimated using nonlinear regression because of model insensitivity to some aquifer properties at observation locations. Hydraulic conductivity of the inner-valley alluvium, middle part of the Santa Fe Group, and riverbed and riverside-drain bed and specific yield had low sensitivity values and therefore could not be estimated. Of the properties estimated, hydraulic conductivity of the upper part of the Santa Fe Group was estimated to be 12 feet per day, the vertical to horizontal anisotropy ratio was estimated to be 1:82, and specific storage was estimated to be 1.2 x 10-6 per foot of aquifer thickness. The overall sum of squared errors between the observed and simulated drawdowns was 87 feet squared, a significant improvement over the model calibrated by trial and error. At the end of aquifer-test pumping, induced infiltration from the Rio Grande and riverside drains was simulated to be 13 percent of the total amount of water pumped. The remainder was water removed from aquifer storage. After pumping stopped, induced infiltration continued to replenish aquifer storage. Simulations estimated that 5 years after pumping began (about 4.85 years after pumping stopped), 58 to 72 percent of the total amount of water pumped was replenished by induced infiltration from the Rio Grande surface-water system.

  18. Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium

    NASA Astrophysics Data System (ADS)

    Coetsiers, Marleen; Blaser, Petra; Martens, Kristine; Walraevens, Kristine

    2009-05-01

    Aquifers from the same typology can have strongly different groundwater chemistry. Deducing the groundwater quality of less well-characterized aquifers from well-documented aquifers belonging to the same typology should be done with great reserve, and can only be considered as a preliminary approach. In the EU’s 6th FP BRIDGE project “Background cRiteria for the IDentification of Groundwater thrEsholds”, a methodology for the derivation of threshold values (TV) for groundwater bodies is proposed. This methodology is tested on four aquifers in Flanders of the sand and gravel typology. The methodology works well for all but the Ledo-Paniselian aquifer, where the subdivision into a fresh and saline part is disproved, as a gradual natural transition from fresh to saline conditions in the aquifer is observed. The 90 percentile is proposed as natural background level (NBL) for the unconfined Pleistocene deposits, ascribing the outliers to possible influence of pollution. For the Tertiary aquifers, high values for different parameters have a natural origin and the 97.7 percentile is preferred as NBL. The methodology leads to high TVs for parameters presenting low NBL, when compared to the standard used as a reference. This would allow for substantial anthropogenic inputs of these parameters.

  19. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our new solution was used to analyze field data from a pumping test conducted by Moench et al. (2001) in a glacial outwash deposit at Cape Cod, Massachusetts. The solution was fitted individually and simultaneously to time-drawdown data from 20 piezometers and observation wells and simultaneously to data from three piezometers in each of two clusters at various depths and distances from the pumping well, with very good results. Our parameter estimates of hydraulic conductivities from the simultaneous fit are similar to those obtained previously by Moench (2004), but our estimates of specific yield and storage are smaller and larger, respectively, while our estimate of κ is not comparable with his estimates of three empirical parameters.

  20. Simulation of ground-water flow in the Saginaw Aquifer, Clinton, Eaton, and Ingham counties, Michigan

    USGS Publications Warehouse

    Holtschlag, David J.; Luukkonen, Carol L.; Nicholas, J.R.

    1996-01-01

    A numerical model was developed to simulate ground-water flow in the Tri-County region, which consists of Clinton, Eaton, and Ingham Counties, Michigan. This region includes a nine-township area surrounding Lansing, Michigan. The model simulates the regional response of the Saginaw aquifer to major groundwater withdrawals associated with public-supply wells. The Saginaw aquifer, which is in the Grand River and Saginaw Formations of Pennsylvanian age, is the primary source of ground water for Tri-County residents. The Saginaw aquifer is overlain by glacial deposits, which also are important ground-water sources in some locations. Flow in the Saginaw aquifer and the glacial deposits is simulated by discretizing the flow system into model cells arranged in two layers. Each cell, which corresponds to a land area of 0.0625 square mile, represents the locally averaged properties of the system. The spatial variation of hydraulic properties controlling ground-water flow was estimated by geostatistical analysis of 4,947 well logs. Parameter estimation, a form of nonlinear regression, was used to calibrate the flow model. Results of steady-state ground-water-flow simulations show close agreement between water flowing into and out of the model area for 1992 pumping conditions; standard error of the difference between simulated and measured heads is 14.7 feet. Simulation results for three alternative pumping scenarios for the year 2020 show that the glacial aquifer could be dewatered in places if hypothetical increases in pumping are not distributed throughout the Tri-County region. Contributing areas to public-supply wells in the nine-township area were delineated by a particle-tracking analysis. These areas cover about 121 square miles. Contributing areas for particles having travel times of 40 years or less cover about 42 square miles. Results of tritium sampling support results of model simulations to delineate contributing areas.

  1. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  2. Hindcast of water availability in regional aquifer systems using MODFLOW Farm Process

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Faunt, Claudia C.; Phillips, Steven P.

    2015-01-01

    Coupled groundwater and surface-water components of the hydrologic cycle can be simulated by the Farm Process for MODFLOW (MF-FMP) in both irrigated and non-irrigated areas and aquifer-storage and recovery systems. MF-FMP is being applied to three productive agricultural regions of different scale in the State of California, USA, to assess the availability of water and the impacts of alternative management decisions. Hindcast simulations are conducted for similar periods from the 1960s to near recent times. Historical groundwater pumpage is mostly unknown in one region (Central Valley) and is estimated by MF-FMP. In another region (Pajaro Valley), recorded pumpage is used to calibrate model-estimated pumpage. Multiple types of observations are used to estimate uncertain parameters, such as hydraulic, land-use, and farm properties. MF-FMP simulates how climate variability and water-import availability affect water demand and supply. MF-FMP can be used to predict water availability based on anticipated changes in anthropogenic or natural water demands. Keywords groundwater; surface-water; irrigation; water availability; response to climate variability/change

  3. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Christ, John A.; Goltz, Mark N.

    2010-08-01

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.

  4. Summary of U.S. Geological Survey studies conducted in cooperation with the Citizen Potawatomi Nation, central Oklahoma, 2011–14

    USGS Publications Warehouse

    Andrews, William J.; Becker, Carol J.; Ryter, Derek W.; Smith, S. Jerrod

    2016-01-19

    Numerical groundwater-flow models were created to characterize flow systems in aquifers underlying this study area and areas of particular interest within the study area. Those models were used to estimate sustainable groundwater yields from parts of the North Canadian River alluvial aquifer, characterize groundwater/surface-water interactions, and estimate the effects of a 10-year simulated drought on streamflows and water levels in alluvial and bedrock aquifers. Pumping of wells at the Iron Horse Industrial Park was estimated to cause negligible infiltration of water from the adjoining North Canadian River. A 10-year simulated drought of 50 percent of normal recharge was tested for the period 1990–2000. For this period, the total amount of groundwater in storage was estimated to decrease by 8.6 percent in the North Canadian River alluvial aquifer and approximately 0.2 percent in the Central Oklahoma aquifer, and groundwater flow to streams was estimated to decrease by 28–37 percent. This volume of groundwater loss showed that the Central Oklahoma aquifer is a bedrock aquifer that has relatively low rates of recharge from the land surface. The simulated drought decreased simulated streamflow, composed of base flow, in the North Canadian River at Shawnee, Okla., which did not recover to predrought conditions until the relatively wet year of 2007 after the simulated drought period.

  5. Aquifer-storage change in the lower Canada del Oro Subbasin, Pima County, Arizona, 1996-98

    USGS Publications Warehouse

    Pool, D.R.

    1999-01-01

    Aquifer storage was monitored using gravity methods in the Lower Canada del Oro subbasin from 1996 through 1998 to determine areas of infiltration and amounts of recharge along the Canada del Oro Wash after major surface flow and to estimate aquifer-storage change and specific-yield values for the regional aquifer.  Both purposes were addressed by periodic monitoring of changes in aquifer storage and water levels at a network of gravity stations and monitor wells.  Water levels and gravity were also monitored near an active withdrawal well for several months for the purpose of estimating specific yield of the aquifer within the cone of water-leel depression at the well.

  6. Estimates of the volume of water in five coal aquifers, Northern Cheyenne Indian Reservation, southeastern Montana

    USGS Publications Warehouse

    Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.

    2013-01-01

    The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to define the volume of water were sparse, only conservative estimates of the volume of water in the five coal aquifers are presented in this report. These estimates need to be used with caution and mindfulness of the uncertainty associated with them.

  7. Geochemical evidence for groundwater behavior in an unconfined aquifer, south Florida

    NASA Astrophysics Data System (ADS)

    Meyers, Jayson B.; Swart, Peter K.; Meyers', Janet L.

    1993-07-01

    Five well sites have been investigated along an east-west transect across the surfical aquifer system (SAS) of south Florida. Differences between rainfall during wet seasons (June-October) and evaporation during dry seasons (November-May) give surface waters of this region isotopically light ( δ 18O -22‰ and δ D -7.6‰ ) and heavy ( δ 18O +4.2‰ ) compositions, respectively. Surface waters and shallow groundwaters are enriched in 18O and D to the west, which is consistent with westward decrease in equal excess of rainfall. In the shallow portion of the SAS (less than 20 m, Biscayne sub-aquifer) heterogeneous stable isotopic compositions occur over short spans of time (less than 90 days), reflecting seasonal changes in the isotopic composition of recharge and rapid flushing. Homogeneous stable isotopic compositions occur below the Biscayne sub-aquifer, marking the zone of delayed circulation. Surface evaporation calculated from a stable isotope evaporation model agrees with previously published estimates of 75-95% by physical evaporation measurements and water budget calculations. This model contains many parameters that are assumed to be mean values, but short-term variability in some of these parameters may make this model unsuitable for the application of yearly mean values. For the Everglades, changes in the isotopic composition of atmospheric vapor during the dry season may cause the model to yield anomalous results when annual mean values are used. Chloride-enriched waters (more than 280 mg 1 -1) form a plume emanating from the bottom central portion of the transect. Elevated chloride concentration and light stable isotopic composition ( δ 18O ≈ -2‰ , δ D ≈ -8‰ ) suggest this plume is probably caused not by salinity of residual seawater in the aquifer, but by leakage from the minor artesian water-bearing zone of the Floridan aquifer system. Stable isotope values from Floridan aquifer groundwater plot close to the meteoric water line, in the same area as Everglades rainfall. These Floridan waters are interpreted to have originated in central Florida some 25 000-132 000 years ago, indicating that meteoric conditions in the Florida peninsula have changed little since late Pleistocene time.

  8. Uncertainties in simulating river/groundwater exchanges over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Habets, Florence

    2014-05-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for an effective management of water resources. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on choices made to represent the river water stage in the model as well as on the hydrogeological parameters. Recently, a coupled surface-subsurface model has been applied to the whole aquifer basin (Thierion et al., 2012). The present study aims at improving the estimation of the river/groundwater exchange, and thus, of the hydrodynamic of the alluvial aquifer, and at getting an idea of the associated uncertainty by performing a set of simulations that best take advantage of the different kinds of observed data. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources quantity and quality in small to regional scale river basins. In this study, Eau-Dyssée includes the ISBA surface scheme that estimates the water balance, the RAPID river routing model and the SAM hydrogeological model. In addition, the QtoZ module (Saleh et al., 2011) is used to calculate the river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river, according to three different approaches that are compared: a control experiment with constant river water stage, a rating curves approach derived from observed river discharges and river stages, and the Manning's formula, for which Manning's parameters are defined according to geomorphological parameterizations and topographic data based on Digital Elevation Model (DEM). Supplementary sensitivity tests are also performed by using different hydrogeological parameter datasets (porosity and transmissivity). Two sources of DEM were used for this part. Additionally, sensitivity to the time step of the estimation (daily versus monthly) was studied. The evaluation is made against observed water levels and river discharges collected both from the french and german riversides of the alluvial plain. A heavy network of water table depth observations is also available to evaluate the simulated piezometric heads. Preliminary results show that the primary source of errors when simulating river stage - and hence groundwater-river interactions - is the uncertainties associated with the topographic data used to define the riverbed elevation. It confirms the need to access to more accurate DEM for estimating riverbed elevation and studying groundwater-river interactions, at least at regional scale. References Saleh, F., Flipo, N., Habets, F., Ducharne, A., Oudin, L., Viennot, P., Ledoux, E. Modeling the impact of in-stream water level fluctuations on stream-aquifer interactions at the regional scale (2011)Journal of Hydrology, 400 (3-4) pp 490-500 Thierion C., Longuevergne L., Habets F. Ledoux E., Ackerer P., Majdalani S., Leblois E., Lecluse S., Martin E, Queguiner S., Viennot P., Assessing the water balance of the Upper Rhine Graben hydrosystem, Journal of Hydrology 424-425 , pp. 68-83

  9. Hydraulic parameters estimation by using an approach based on vertical electrical soundings (VES) in the semi-arid Khanasser valley region, Syria

    NASA Astrophysics Data System (ADS)

    Asfahani, Jamal

    2016-05-01

    A new alternative approach based on using Vertical electrical sounding (VES) technique is proposed for computing the hydraulic conductivity K of an aquifer. The approach takes only the salinity of the groundwater into consideration. VES measurements in the locations, where available water samples exist, are required in such an approach, in order to calibrate and establish empirical relationships between transverse resistance Dar-Zarrouck TR parameter and modified transverse resistance MTR, and between MTR and transmissivity T. Those relationships are thereafter used to extrapolate the transmissivity even in the VES points where no water samples exist. This approach is tested and practiced in the Khanasser valley, Northern Syria, where the hydraulic conductivity of the Quaternary aquifer is computed. An acceptable agreement is found between the hydraulic conductivity values obtained by the proposed approach and those obtained by the pumping test which range between 0.864 and 8.64 m/day (10-5 and 10-4 m/s). The Quaternary aquifer transmissivity of the Khanasser Valley, has been characterized by using this approach and by adapting the MTR parameter. The transmissivity varies between a minimum of 79 m2/day and a maximum of 814 m2/day, with an average of 283 m2/day and a standard deviation of 145 m2/day. The easy and inexpensive approach proposed in this paper can be applied in other semi arid regions.

  10. Microbial risk assessment in heterogeneous aquifers: 2. Infection risk sensitivity

    NASA Astrophysics Data System (ADS)

    Molin, S.; Cvetkovic, V.; StenströM, T. A.

    2010-05-01

    The entire chain of events of human disease transmitted through contaminated water, from pathogen introduction into the source (E. coli, rotavirus, and Hepatitis A), pathogen migration through the aquifer pathway, to ingestion via a supply well, and finally, the potential infection in the human host, is investigated. The health risk calculations are based on a relevant hazardous event with safe setback distances estimated by considering the infection risk from peak exposure in compliance with an acceptable level defined by a regulatory agency. A site-specific hypothetical scenario is illustrated for an aquifer with similar characteristics as the Cape Cod site, Massachusetts (United States). Relatively large variation of safe distances for the three index pathogens is found; individually, none of the index pathogens could predict the safe distance under the wide range of conditions investigated. It is shown that colloid filtration theory (CFT) with spatially variable attachment-detachment rates yields significantly different results from the effective CFT model (i.e., assuming spatially constant parameters).

  11. A New Boundary for the High Plains - Ogallala Aquifer Complex

    NASA Astrophysics Data System (ADS)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more widely understood could help drive further regulatory action in this critical water resource region.

  12. Using environmental tracers and transient hydraulic heads to estimate groundwater recharge and conductivity

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Cirpka, Olaf A.

    2017-04-01

    Regional groundwater flow strongly depends on groundwater recharge and hydraulic conductivity. While conductivity is a spatially variable field, recharge can vary in both space and time. None of the two fields can be reliably observed on larger scales, and their estimation from other sparse data sets is an open topic. Further, common hydraulic-head observations may not suffice to constrain both fields simultaneously. In the current work we use the Ensemble Kalman filter to estimate spatially variable conductivity, spatiotemporally variable recharge and porosity for a synthetic phreatic aquifer. We use transient hydraulic-head and one spatially distributed set of environmental tracer observations to constrain the estimation. As environmental tracers generally reside for a long time in an aquifer, they require long simulation times and carries a long memory that makes them highly unsuitable for use in a sequential framework. Therefore, in this work we use the environmental tracer information to precondition the initial ensemble of recharge and conductivities, before starting the sequential filter. Thereby, we aim at improving the performance of the sequential filter by limiting the range of the recharge to values similar to the long-term annual recharge means and by creating an initial ensemble of conductivities that show similar pattern and values to the true field. The sequential filter is then used to further improve the parameters and to estimate the short term temporal behavior as well as the temporally evolving head field needed for short term predictions within the aquifer. For a virtual reality covering a subsection of the river Neckar it is shown that the use of environmental tracers can improve the performance of the filter. Results using the EnKF with and without this preconditioned initial ensemble are evaluated and discussed.

  13. Using direct current resistivity sounding and geostatistics to aid in hydrogeological studies in the Choshuichi alluvial fan, Taiwan.

    PubMed

    Yang, Chieh-Hou; Lee, Wei-Feng

    2002-01-01

    Ground water reservoirs in the Choshuichi alluvial fan, central western Taiwan, were investigated using direct-current (DC) resistivity soundings at 190 locations, combined with hydrogeological measurements from 37 wells. In addition, attempts were made to calculate aquifer transmissivity from both surface DC resistivity measurements and geostatistically derived predictions of aquifer properties. DC resistivity sounding data are highly correlated to the hydraulic parameters in the Choshuichi alluvial fan. By estimating the spatial distribution of hydraulic conductivity from the kriged well data and the cokriged thickness of the correlative aquifer from both resistivity sounding data and well information, the transmissivity of the aquifer at each location can be obtained from the product of kriged hydraulic conductivity and computed thickness of the geoelectric layer. Thus, the spatial variation of the transmissivities in the study area is obtained. Our work is more comparable to Ahmed et al. (1988) than to the work of Niwas and Singhal (1981). The first "constraint" from Niwas and Singhal's work is a result of their use of linear regression. The geostatistical approach taken here (and by Ahmed et al. [1988]) is a natural improvement on the linear regression approach.

  14. Subsurface storage of freshwater in South Florida; a digital analysis of recoverability

    USGS Publications Warehouse

    Merritt, Michael L.

    1983-01-01

    As part of a feasibility study of cyclic freshwater injection, digital models were implemented to analyze the relation of recovery efficiency to various hydrogeologic conditions which could prevail in brackish aquifers and to various management regimes. The analyses implemented an approach in which the control for sensitivity testing was a hypothetical aquifer representative of potential injection zones in south Florida, and parameter variations in sensitivity tests represented possible variations in aquifer conditions in the area. The permeability of the aquifer determined whether buoyancy stratification could reduce recovery efficiency. The range of permeability leading to buoyancy stratification became lower as resident fluid salinity increased. Thus, recovery efficiency was optimized by both low permeability and low resident fluid density. High levels of simulated hydrodynamic dispersion led to the lowest estimates of recovery efficiency. Advection by regional flow within the artesian injection zone could significantly affect recovery efficiency, depending upon the storage period, the volume injected, and site-specific hydraulic characteristics. Recovery efficiency was unrelated to the rate of injection or withdrawal or to the degree of penetration of permeable layers, and improved with successive cycles of injection and recovery. (USGS)

  15. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    NASA Astrophysics Data System (ADS)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  16. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.

    PubMed

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates (katt) that were determined by applying the model to the breakthrough data, filter factors (f) were calculated and compared with f values estimated from the slopes of log (cmax/co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log (cmax/co) m(-1), are consistently in the order of 10(-2) for clean coarse gravel aquifers, 10(-3) for contaminated coarse gravel aquifers, and generally 10(-1) for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10(4) pfu/l for enteroviruses and 10(6) cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking water standards for the downgradient wells under natural gradient conditions. Based on the results of this study, a 7-log reduction would require 125-280 m travel in clean coarse gravel aquifers, 1.7-3.9 km travel in contaminated coarse gravel aquifers, 33-61 m travel in clean sandy fine gravel aquifers, 33-129 m travel in contaminated sandy fine gravel aquifers, and 37-44 m travel in contaminated river and coastal sand aquifers. These recommended setback distances are for a worst-case scenario, assuming direct discharge of raw effluent into the saturated zone of an aquifer. Filtration theory was applied to calculate collision efficiency (alpha) from model-derived attachment rates (katt), and the results are compared with those reported in the literature. The calculated alpha values vary by two orders-of-magnitude, depending on whether collision efficiency is estimated from the effective particle size (d10) or the mean particle size (d50). Collision efficiency values for MS-2 are similar to those previously reported in the literature (e.g. ) [DeBorde, D.C., Woessner, W.W., Kiley, QT., Ball, P., 1999. Rapid transport of viruses in a floodplain aquifer. Water Res. 33 (10), 2229-2238]. However, the collision efficiency values calculated for Bacillus subtilis spores were unrealistic, suggesting that filtration theory is not appropriate for theoretically estimating filtration capacity for poorly sorted coarse gravel aquifer media. This is not surprising, as filtration theory was developed for uniform sand filters and does not consider particle size distribution. Thus, we do not recommend the use of filtration theory to estimate the filter factor or setback distances. Either of the methods applied in this work (BTC or concentration vs. distance analyses), which takes into account aquifer heterogeneities and site-specific conditions, appear to be most useful in determining filter factors and setback distances.

  17. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: Implications in the estimation of setback distances

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates ( katt) that were determined by applying the model to the breakthrough data, filter factors ( f) were calculated and compared with f values estimated from the slopes of log ( cmax/ co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log ( cmax/ co) m -1, are consistently in the order of 10 -2 for clean coarse gravel aquifers, 10 -3 for contaminated coarse gravel aquifers, and generally 10 -1 for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10 4 pfu/l for enteroviruses and 10 6 cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking water standards for the downgradient wells under natural gradient conditions. Based on the results of this study, a 7-log reduction would require 125-280 m travel in clean coarse gravel aquifers, 1.7-3.9 km travel in contaminated coarse gravel aquifers, 33-61 m travel in clean sandy fine gravel aquifers, 33-129 m travel in contaminated sandy fine gravel aquifers, and 37-44 m travel in contaminated river and coastal sand aquifers. These recommended setback distances are for a worst-case scenario, assuming direct discharge of raw effluent into the saturated zone of an aquifer. Filtration theory was applied to calculate collision efficiency ( α) from model-derived attachment rates ( katt), and the results are compared with those reported in the literature. The calculated α values vary by two orders-of-magnitude, depending on whether collision efficiency is estimated from the effective particle size ( d10) or the mean particle size ( d50). Collision efficiency values for MS-2 are similar to those previously reported in the literature (e.g. DeBorde et al., 1999) [DeBorde, D.C., Woessner, W.W., Kiley, QT., Ball, P., 1999. Rapid transport of viruses in a floodplain aquifer. Water Res. 33 (10), 2229-2238]. However, the collision efficiency values calculated for Bacillus subtilis spores were unrealistic, suggesting that filtration theory is not appropriate for theoretically estimating filtration capacity for poorly sorted coarse gravel aquifer media. This is not surprising, as filtration theory was developed for uniform sand filters and does not consider particle size distribution. Thus, we do not recommend the use of filtration theory to estimate the filter factor or setback distances. Either of the methods applied in this work (BTC or concentration vs. distance analyses), which takes into account aquifer heterogeneities and site-specific conditions, appear to be most useful in determining filter factors and setback distances.

  18. Quantifying effects of humans and climate on groundwater resources through modeling of volcanic-rock aquifers of Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2015-12-01

    The volcanic-rock aquifers of Kauai, Oahu, and Maui are heavily developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and streamflow. A numerical modeling analysis using the most recently available data (e.g., information on recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) will substantially advance current understanding of groundwater flow and provide insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed relatively fast model run times without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), automated-parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and current (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and preliminary results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, reduction in stream base flow, and rise of the freshwater-saltwater interface.

  19. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley

    PubMed Central

    Podgorski, Joel E.; Eqani, Syed Ali Musstjab Akber Shah; Khanam, Tasawar; Ullah, Rizwan; Shen, Heqing; Berg, Michael

    2017-01-01

    Arsenic-contaminated aquifers are currently estimated to affect ~150 million people around the world. However, the full extent of the problem remains elusive. This is also the case in Pakistan, where previous studies focused on isolated areas. Using a new data set of nearly 1200 groundwater quality samples throughout Pakistan, we have created state-of-the-art hazard and risk maps of arsenic-contaminated groundwater for thresholds of 10 and 50 μg/liter. Logistic regression analysis was used with 1000 iterations, where surface slope, geology, and soil parameters were major predictor variables. The hazard model indicates that much of the Indus Plain is likely to have elevated arsenic concentrations, although the rest of the country is mostly safe. Unlike other arsenic-contaminated areas of Asia, the arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, resulting from alkaline topsoil and extensive irrigation of unconfined aquifers, although pockets of reductive dissolution are also present. We estimate that approximately 50 million to 60 million people use groundwater within the area at risk, with hot spots around Lahore and Hyderabad. This number is alarmingly high and demonstrates the urgent need for verification and testing of all drinking water wells in the Indus Plain, followed by appropriate mitigation measures. PMID:28845451

  20. Evaluation of the fate of arsenic-contaminated groundwater at different aquifers of Thar coalfield Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Ullah, Naeem; Brahman, Kapil D; Arain, Sadaf S; Panhwar, Abdul H

    2015-12-01

    In present study, the ground water at different aquifers was evaluated for physicochemical parameters, iron, total arsenic, total inorganic arsenic and arsenic species (arsenite and arsenate). The samples of groundwater were collected at different depths, first aquifer (AQ1) 50-60 m, second aquifer (AQ2) 100-120 m, and third aquifer (AQ3) 200-250 m of Thar coalfield, Pakistan. Total inorganic arsenic was determined by solid phase extraction using titanium dioxide as an adsorbent. The arsenite was determined by cloud point extraction using ammonium pyrrolidinedithiocarbamate as a chelating reagent, and resulted complex was extracted by Triton X-114. The resulted data of groundwater were reported in terms of basic statistical parameters, principal component, and cluster analysis. The resulted data indicated that physicochemical parameters of groundwater of different aquifers were exceeded the World Health Organization provisional guideline for drinking water except pH and SO4(2-). The positive correlation was observed between arsenic species and physicochemical parameters of groundwater except F(-) and K(+), which might be caused by geochemical minerals. Results of cluster analysis indicated that groundwater samples of AQ1 was highly contaminated with arsenic species as compared to AQ2 and AQ3 (p > 0.05).

  1. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1985-01-01

    The ground-water system was studied in the Trail Mountain area in order to provide hydrologic information needed to assess the hydrologic effects of underground coal mining. Well testing and spring data indicate that water occurs in several aquifers. The coal-bearing Blackhawk-Star Point aquifer is regional in nature and is the source of most water in underground mines in the region. One or more perched aquifers overlie the Blackhawk-Star Point aquifer in most areas of Trail Mountain.Aquifer tests indicate that the transmissivity of the Blackhawk-Star Point aquifer, which consists mainly of sandstone, siltstone, and shale, ranges from about 20 to 200 feet squared per day in most areas of Trail Mountain. The specific yield of the aquifer was estimated at 0.05, and the storage coefficient is about IxlO"6 per foot of aquifer where confined.The main sources of recharge to the multiaquifer system are snowmelt and rain, and water is discharged mainly by springs and by leakage along streams. Springs that issue from perched aquifers are sources of water for livestock and wildlife on Trail Mountain.Water in all aquifers is suitable for most uses. Dissolved solids concentrations range from about 250 to 700 milligrams per liter, and the predominant dissolved constituents generally are calcium, magnesium, and bicarbonate. Future underground coal mines will require dewatering when they penetrate the Blackhawk-Star Point aquifer. A finitedifference, three-dimensional computer model was used to estimate the inflow of water to various lengths and widths of a hypothetical dewatered mine and to estimate drawdowns of potentiometric surfaces in the partly dewatered aquifer. The estimates were made for a range of aquifer properties and premining hydraulic gradients that were similar to those on Trail Mountain. The computer simulations indicate that mine inflows could be several hundred gallons per minute and that potentiometric surfaces of the partly dewatered aquifer could be drawn down by several hundred feet during a reasonable life span of a mine. Because the Blackhawk-Star Point aquifer is separated from overlying perched aquifers by an unsaturated zone, mine dewatering alone would not affect perched aquifers. Mine dewatering would not significantly change water quality in the Blackhawk-Star Point aquifer. Subsidence will occur above future underground mines, but the effects on the ground-water system cannot be quantified. Subsidence fractures possibly could extend from the roof of a mine into a perched aquifer several hundred feet above. Such fractures would increase down ward percolation of water through the perching bed, and spring discharge from the perched aquifer could decrease. Flow through subsidence fractures also could increase recharge to the Blackhawk-Star Point aquifer and increase inflows to underground mines.

  2. Measurements of aquifer-storage change and specific yield using gravity surveys

    USGS Publications Warehouse

    Pool, D.R.; Eychaner, J.H.

    1995-01-01

    Pinal Creek is an intermittent stream that drains a 200-square-mile alluvial basin in central Arizona. Large changes in water levels and aquifer storage occur in an alluvial aquifer near the stream in response to periodic recharge and ground-water withdrawals. Outflow components of the ground-water budget and hydraulic properties of the alluvium are well-defined by field measurements; however, data are insufficient to adequately describe recharge, aquifer-storage change, and specific-yield values. An investigation was begun to assess the utility of temporal-gravity surveys to directly measure aquifer-storage change and estimate values of specific yield.The temporal-gravity surveys measured changes in the differences in gravity between two reference stations on bedrock and six stations at wells; changes are caused by variations in aquifer storage. Specific yield was estimated by dividing storage change by water-level change. Four surveys were done between February 21, 1991, and March 31, 1993. Gravity increased as much as 158 microGal ± 1 to 6 microGal, and water levels rose as much as 58 feet. Average specific yield at wells ranged from 0.16 to 0.21, and variations in specific yield with depth correlate with lithologic variations. Results indicate that temporal-gravity surveys can be used to estimate aquifer-storage change and specific yield of water-table aquifers where significant variations in water levels occur. Direct measurement of aquifer-storage change can eliminate a major unknown from the ground-water budget of arid basins and improve residual estimates of recharge.

  3. Groundwater-flow model of the northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    USGS Publications Warehouse

    Peterson, Steven M.; Flynn, Amanda T.; Traylor, Jonathan P.

    2016-12-13

    The High Plains aquifer is a nationally important water resource underlying about 175,000 square miles in parts of eight states: Colorado, Kansas, Oklahoma, Nebraska, New Mexico, South Dakota, Texas, and Wyoming. Droughts across much of the Northern High Plains from 2001 to 2007 have combined with recent (2004) legislative mandates to elevate concerns regarding future availability of groundwater and the need for additional information to support science-based water-resource management. To address these needs, the U.S. Geological Survey began the High Plains Groundwater Availability Study to provide a tool for water-resource managers and other stakeholders to assess the status and availability of groundwater resources.A transient groundwater-flow model was constructed using the U.S. Geological Survey modular three-dimensional finite-difference groundwater-flow model with Newton-Rhapson solver (MODFLOW–NWT). The model uses an orthogonal grid of 565 rows and 795 columns, and each grid cell measures 3,281 feet per side, with one variably thick vertical layer, simulated as unconfined. Groundwater flow was simulated for two distinct periods: (1) the period before substantial groundwater withdrawals, or before about 1940, and (2) the period of increasing groundwater withdrawals from May 1940 through April 2009. A soil-water-balance model was used to estimate recharge from precipitation and groundwater withdrawals for irrigation. The soil-water-balance model uses spatially distributed soil and landscape properties with daily weather data and estimated historical land-cover maps to calculate spatial and temporal variations in potential recharge. Mean annual recharge estimated for 1940–49, early in the history of groundwater development, and 2000–2009, late in the history of groundwater development, was 3.3 and 3.5 inches per year, respectively.Primary model calibration was completed using statistical techniques through parameter estimation using the parameter estimation suite of software with Tikhonov regularization. Calibration targets for the groundwater model included 343,067 groundwater levels measured in wells and 10,820 estimated monthly stream base flows at streamgages. A total of 1,312 parameters were adjusted during calibration to improve the match between calibration targets and simulated equivalents. Comparison of calibration targets to simulated equivalents indicated that, at the regional scale, the model correctly reproduced groundwater levels and stream base flows for 1940–2009. This comparison indicates that the model can be used to examine the likely response of the aquifer system to potential future stresses.Mean calibrated recharge for 1940–49 and 2000–2009 was smaller than that estimated with the soil-water-balance model. This indicated that although the general spatial patterns of recharge estimated with the soil-water-balance model were approximately correct at the regional scale of the Northern High Plains aquifer, the soil-water-balance model had overestimated recharge, and adjustments were needed to decrease recharge to improve the match of the groundwater model to calibration targets. The largest components of the simulated groundwater budgets were recharge from precipitation, recharge from canal seepage, outflows to evapotranspiration, and outflows to stream base flow. Simulated outflows to irrigation wells increased from 7 percent of total outflows in 1940–49 to 38 percent of 1970–79 total outflows and 49 percent of 2000–2009 total outflows.

  4. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests

    USGS Publications Warehouse

    Halford, K.J.; Yobbi, D.

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.

  5. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.

    PubMed

    Halford, Keith J; Yobbi, Dann

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.

  6. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Harter, T.; Sivakumar, B.

    2005-12-01

    Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.

  7. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range examined, the third moment of the traveltime pdf varies from negatively skewed to strongly positively skewed. We also show that the Markov chain approach may give significantly different traveltime distributions when compared to the more commonly used Gaussian random field approach, even when the first- and second-order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport, and uncertainty about that choice must be considered in evaluating the results.

  8. Modelling water table drawdown and recovery during tunnel excavation in fractured rock: estimating environmental impacts and characterizing uncertainties in a heterogeneous domain

    NASA Astrophysics Data System (ADS)

    Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.

    2015-12-01

    This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.

  9. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains aquifer system from March to June 2009. The groundwater levels were used to construct a map of the potentiometric surface of the High Plains aquifer system. In addition, depth to water and estimated saturated-thickness maps of the aquifer system were constructed using the potentiometric-surface map.

  10. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    The High Plains aquifer underlying the semiarid Southern High Plains of Texas and New Mexico, USA was used to illustrate solute and isotopic methods for evaluating recharge fluxes, runoff, and spatial and temporal distribution of recharge. The chloride mass-balance method can provide, under certain conditions, a time-integrated technique for evaluation of recharge flux to regional aquifers that is independent of physical parameters. Applying this method to the High Plains aquifer of the Southern High Plains suggests that recharge flux is approximately 2% of precipitation, or approximately 11 ± 2 mm/y, consistent with previous estimates based on a variety of physically based measurements. The method is useful because long-term average precipitation and chloride concentrations in rain and ground water have less uncertainty and are generally less expensive to acquire than physically based parameters commonly used in analyzing recharge. Spatial and temporal distribution of recharge was evaluated by use of δ2H, δ18O, and tritium concentrations in both ground water and the unsaturated zone. Analyses suggest that nearly half of the recharge to the Southern High Plains occurs as piston flow through playa basin floors that occupy approximately 6% of the area, and that macropore recharge may be important in the remaining recharge. Tritium and chloride concentrations in the unsaturated zone were used in a new equation developed to quantify runoff. Using this equation and data from a representative basin, runoff was found to be 24 ± 3 mm/y; that is in close agreement with values obtained from water-balance measurements on experimental watersheds in the area. Such geochemical estimates are possible because tritium is used to calculate a recharge flux that is independent of precipitation and runoff, whereas recharge flux based on chloride concentration in the unsaturated zone is dependent upon the amount of runoff. The difference between these two estimates yields the amount of runoff to the basin.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, K.R.; Schneider, B.J.

    This study obtained estimates of the hydraulic properties of the upper glacial and Magothy aquifers in the East Meadow area for use in analyzing the movement of reclaimed waste water through the aquifer system. This report presents drawdown and recovery data form the two aquifer tests of 1978 and 1985, describes the six methods of analysis used, and summarizes the results of the analyses in tables and graphs. The drawdown and recovery data were analyzed through three simple analytical equations, two curve-matching techniques, and a finite-element radial-flow model. The resulting estimates of hydraulic conductivity, anisotropy, and storage characteristics were usedmore » as initial input values to the finite-element radial-flow model (Reilly, 1984). The flow model was then used to refine the estimates of the aquifer properties by more accurately representing the aquifer geometry and field conditions of the pumping tests.« less

  12. Using environmental tracers to determine the relative importance of travel times in the unsaturated and saturated zones for the delay of nitrate reduction measures

    NASA Astrophysics Data System (ADS)

    Gerber, Christoph; Purtschert, Roland; Hunkeler, Daniel; Hug, Rainer; Sültenfuss, Jürgen

    2018-06-01

    Groundwater quality in many regions with intense agriculture has deteriorated due to the leaching of nitrate and other agricultural pollutants. Modified agricultural practices can reduce the input of nitrate to groundwater bodies, but it is crucial to determine the time span over which these measures become effective at reducing nitrate levels in pumping wells. Such estimates can be obtained from hydrogeological modeling or lumped-parameter models (LPM) in combination with environmental tracer data. Two challenges in such tracer-based estimates are (i) accounting for the different modes of transport in the unsaturated zone (USZ), and (ii) assessing uncertainties. Here we extend a recently published Bayesian inference scheme for simple LPMs to include an explicit USZ model and apply it to the Dünnerngäu aquifer, Switzerland. Compared to a previous estimate of travel times in the aquifer based on a 2D hydrogeological model, our approach provides a more accurate assessment of the dynamics of nitrate concentrations in the aquifer. We find that including tracer measurements (3H/3He, 85Kr, 39Ar, 4He) reduces uncertainty in nitrate predictions if nitrate time series at wells are not available or short, but does not necessarily lead to better predictions if long nitrate time series are available. Additionally, the combination of tracer data with nitrate time series allows for a separation of the travel times in the unsaturated and saturated zone.

  13. Impact of global change on ground subsidence related to aquifer exploitation. The case of the Vega de Granada aquifer (SE Spain)

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, David; María Mateos, Rosa; Rueda, Ramon; Pegalajar-Cuellar, Manuel; Ezquerro, Pablo; Béjar, Marta; Herrera, Gerardo; Collados-Lara, Antonio-Juan

    2017-04-01

    In this research, we intend to develop a methodology to assess the impact of potential global change scenarios on land subsidence. Subsidence rates in wide areas could be estimated by using remote sensing techniques, such as DInSAR and specifically the new radar information obtained by the Sentinel set of satellites from the European Space Agency (ESA). A symbolic regression method will be developed to obtain an explicit quantitative relationship between subsidence, hydraulic head changes and other physical variables (e.g. percentage of clay and silt in the ground, load of buildings and constructions, fill-in works etc.). Different ensemble and downscaling techniques will be used to define potential future global change scenarios for the test-regions based on the data coming from simulations with different Regional Circulation Models (RCMs). Future drawdowns can be estimated from these global change scenarios under different management options. The regression approach will be employed to simulate the impacts of these drawdowns, in terms of land-subsidence, taking into account the estimated hydraulic head changes. It will allow to assess sustainable management of detrital aquifers taking into account subsidence issues. Classic regression analysis attempts to postulate a hypothesis function f, and the regression is reduced to the problem of finding the optimal parameters w of the hypothesis y=f(x, w), to explain a set of dependent variables y from the values of independent variables x, where x and y are known input/output data. Symbolic regression generalizes this process by assuming that f is also unknown in advance, so that the problem is formulated as finding the optimal analytical expression and its parameters that best approximate the data y considering the data in x. To achieve that purpose, in this work Straight Line Programs (SLP) will be used to represent analytical expressions, and a genetic programming approach will be used to find an optimal SLP that better explains the relationship between subsidence, hydraulic changes and the remaining independent variables. This methodology has been applied to the Vega de Granada aquifer system (Granada, SE Spain). The Vega de Granada detrital aquifer (with an extension of 200 km2) is one of the largest groundwater reservoirs in Andalusia and it is considered as strategic for the economy of this semi-arid region. Ground motion was monitored by exploiting SAR images from ENVISAT (2003-2009), Cosmo-SkyMed (2011-2014) and Sentinel-1A (2015-2016). PSInSAR results show an inelastic deformation in the aquifer and land surface displacements values up to -55 mm. The most widespread land subsidence is detected for the ENVISAT period (2003-2009), which coincided with a dry, long period in the region. The highest recorded data accounts up to 10 mm/yr in surface displacement velocity, which were detected in the central part of the aquifer, where many villages are located. For this period, a good correlation between groundwater level depletion and the augmentation of the subsidence average velocity is obtained, and light hydraulic head changes (< 2 m) have a rapid ground motion response. This research will contribute to assess a sustainable management plan of this vital aquifer, taking into account critical levels of groundwater level depletion to avoid land subsidence on the identified vulnerable areas and during drought critical scenarios. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) project.

  14. An analytical formulation of two‐dimensional groundwater dispersion induced by surficial recharge variability

    USGS Publications Warehouse

    Swain, Eric D.; Chin, David A.

    2003-01-01

    A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.

  15. Hydrogeological Conditions of a Crystalline Aquifer: Simulation of Optimal Abstraction Rates under Scenarios of Reduced Recharge

    PubMed Central

    Fynn, Obed Fiifi; Chegbeleh, Larry Pax; Nude, Prosper M.; Asiedu, Daniel K.

    2013-01-01

    A steady state numerical groundwater flow model has been calibrated to characterize the spatial distribution of a key hydraulic parameter in a crystalline aquifer in southwestern Ghana. This was to provide an initial basis for characterizing the hydrogeology of the terrain with a view to assisting in the large scale development of groundwater resources for various uses. The results suggest that the structural entities that control groundwater occurrence in the area are quite heterogeneous in their nature and orientation, ascribing hydraulic conductivity values in the range of 4.5 m/d to over 70 m/d to the simulated aquifer. Aquifer heterogeneities, coupled possibly with topographical trends, have led to the development of five prominent groundwater flowpaths in the area. Estimated groundwater recharge at calibration ranges between 0.25% and 9.13% of the total annual rainfall and appears to hold significant promise for large-scale groundwater development to support irrigation schemes. However, the model suggests that with reduced recharge by up to 30% of the current rates, the system can only sustain increased groundwater abstraction by up to 150% of the current abstraction rates. Prudent management of the resource will require a much more detailed hydrogeological study that identifies all the aquifers in the basin for the assessment of sustainable basin yield. PMID:24453882

  16. A half-decade of field research on the Greenland firn aquifers - major advances and looming questions.

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Forster, R. R.; Miller, O. L.; Solomon, D. K.; Miège, C.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.

    2017-12-01

    In 2011, researchers first drilled into an unknown firn aquifer in Southeast, Greenland. Over the past half-decade our team has conducted field work instrumenting, modeling and remote sensing the aquifer and surrounding snow/firn/ice to get a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal change, and connections with the larger ice sheet system. This work summarizes recently published work on the firn aquifer providing our best estimates on the spatial extents, depths and water volumes for the purpose of estimating available water that could reach the en- or subglacial hydrologic network. To do this we reconcile and explain the differences in water volume estimates from three methods, ice core measurements, magnetic resonance and dilution tests. We present measurements of the hydrologic conductivities within a Greenland firn aquifer from two methods, at multiple locations showing that water can flow more freely in ice sheet aquifers than mountain glaciers and attribute this difference to the longer duration of water retained in ice sheet aquifers. While connections of the aquifer water to the glacier bed have been hypothesized and are supported by surface velocity measurements, we still lack direct observations. We show the surface velocity for most aquifer regions ranges from a few meters to 300 m a year with substantial spatial and temporal variability. Given possible aquifer water input scenarios, derived from our field measurements, to the glacier bed, we compare and contrast the seasonal surface velocities and variability of surface velocity for different outlet glaciers that are both connected and not connected to firn aquifers.

  17. Estimated discharge and chemical-constituent loading from the upper Floridan aquifer to the lower St John's River, northeastern Florida, 1990-91

    USGS Publications Warehouse

    Spechler, R.M.

    1995-01-01

    The lower St. Johns River, a 101-mile long segment of the St. Johns River, begins at the confluence of the Ocklawaha River and ends where the river discharges into the Atlantic Ocean at Mayport. The St. Johns River is affected by tides as far upstream as Lake George, 106 miles from the mouth. Saltwater from the ocean advances inland during each incoming tide and recedes during each outgoing tide. The chemical quality of the lower St. Johns River is highly variable primarily because of the inflow of saltwater from the ocean, and in some areas, from the discharge of mineralized ground water. Three hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The surficial aquifer system overlies the intermediate confining unit and consists of deposits containing sand, clay, shell, and some limestone and dolomite. The intermediate confining unit underlies all of the study area and retards the vertical movement of water between the surficial aquifer system and the Floridan aquifer system. The intermediate confining unit consists of beds of relatively low permeability sediments that vary in thickness and areal extent and can be breached by sinkholes, fractures, and other openings. The Floridan aquifer system primarily consists of limestone and dolomite. The quality of water in the Upper Floridan aquifer varies throughout the study area. Dissolved solids in water range from about 100 to more than 5,000 milligrams per liter. Chloride and sulfate concentrations in water from the Upper Floridan aquifer range from about 4 to 3,700 milligrams per liter and from 1 to 1,300 milligrams per liter, respectively. The rate of leakage through the intermediate confining unit is controlled by the leakance coefficient of the intermediate confining unit and by the head difference between the Upper Floridan aquifer and the surficial aquifer system. The total ground-water discharge from the Upper Floridan aquifer to the St. Johns River within the lower St. Johns River drainage basin, based on the potentiometric surface of the Upper Floridan aquifer in September 1990, was estimated to be 86 cubic feet per second. Total estimated ground-water discharge to the lower St. Johns River in September 1991, when heads in the Upper Floridan aquifer averaged about 4 feet higher than in 1990, was 133 cubic feet per second. The load of dissolved-solids that discharged from the Upper Floridan aquifer into the lower St. Johns River on the basis of September 1990 heads is estimated to be 47,000 tons per year. Estimated chloride and sulfate loads are 18,000 and 9,500 tons per year, respectively. Dissolved-solids, chloride, and sulfate loads discharging into the lower St. Johns River are estimated to be 81,000, 39,000, and 15,000 tons per year, respectively, on the basis of September 1991 heads.

  18. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  19. Reconsideration at Field Scale of the Relationship between Hydraulic Conductivity and Porosity: The Case of a Sandy Aquifer in South Italy

    PubMed Central

    2014-01-01

    To describe flow or transport phenomena in porous media, relations between aquifer hydraulic conductivity and effective porosity can prove useful, avoiding the need to perform expensive and time consuming measurements. The practical applications generally require the determination of this parameter at field scale, while most of the empirical and semiempirical formulas, based on grain size analysis and allowing determination of the hydraulic conductivity from the porosity, are related to the laboratory scale and thus are not representative of the aquifer volumes to which one refers. Therefore, following the grain size distribution methodology, a new experimental relation between hydraulic conductivity and effective porosity, representative of aquifer volumes at field scale, is given for a confined aquifer. The experimental values used to determine this law were obtained for both parameters using only field measurements methods. The experimental results found, also if in the strict sense valid only for the investigated aquifer, can give useful suggestions for other alluvial aquifers with analogous characteristics of grain-size distribution. Limited to the investigated range, a useful comparison with the best known empirical formulas based on grain size analysis was carried out. The experimental data allowed also investigation of the existence of a scaling behaviour for both parameters considered. PMID:25180202

  20. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    USGS Publications Warehouse

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  1. Hydrologic budgets for the Madison and Minnelusa aquifers, Black Hills of South Dakota and Wyoming, water years 1987-96

    USGS Publications Warehouse

    Carter, Janet M.; Driscoll, Daniel G.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2001-01-01

    The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area of South Dakota and Wyoming. Quantification and evaluation of various hydrologic budget components are important for managing and understanding these aquifers. Hydrologic budgets are developed for two scenarios, including an overall budget for the entire study area and more detailed budgets for subareas. Budgets generally are combined for the Madison and Minnelusa aquifers because most budget components cannot be quantified individually for the aquifers. An average hydrologic budget for the entire study area is computed for water years 1987-96, for which change in storage is approximately equal to zero. Annual estimates of budget components are included in detailed budgets for nine subareas, which consider periods of decreasing storage (1987-92) and increasing storage (1993-96). Inflow components include recharge, leakage from adjacent aquifers, and ground-water inflows across the study area boundary. Outflows include springflow (headwater and artesian), well withdrawals, leakage to adjacent aquifers, and ground-water outflow across the study area boundary. Leakage, ground-water inflows, and ground-water outflows are difficult to quantify and cannot be distinguished from one another. Thus, net ground-water flow, which includes these components, is calculated as a residual, using estimates for the other budget components. For the overall budget for water years 1987-96, net ground-water outflow from the study area is computed as 100 ft3/s (cubic feet per second). Estimates of average combined budget components for the Madison and Minnelusa aquifers are: 395 ft3/s for recharge, 78 ft3/s for headwater springflow, 189 ft3/s for artesian springflow, and 28 ft3/s for well withdrawals. Hydrologic budgets also are quantified for nine subareas for periods of decreasing storage (1987-92) and increasing storage (1993-96), with changes in storage assumed equal but opposite. Common subareas are identified for the Madison and Minnelusa aquifers, and previous components from the overall budget generally are distributed over the subareas. Estimates of net ground-water flow for the two aquifers are computed, with net ground-water outflow exceeding inflow for most subareas. Outflows range from 5.9 ft3/s in the area east of Rapid City to 48.6 ft3/s along the southwestern flanks of the Black Hills. Net groundwater inflow exceeds outflow for two subareas where the discharge of large artesian springs exceeds estimated recharge within the subareas. More detailed subarea budgets also are developed, which include estimates of flow components for the individual aquifers at specific flow zones. The net outflows and inflows from the preliminary subarea budgets are used to estimate transmissivity of flow across specific flow zones based on Darcy?s Law. For estimation purposes, it is assumed that transmissivities of the Madison and Minnelusa aquifers are equal in any particular flow zone. The resulting transmissivity estimates range from 90 ft2/d to about 7,400 ft2/d, which is similar to values reported by previous investigators. The highest transmissivity estimates are for areas in the northern and southwestern parts of the study area, and the lowest transmissivity estimates are along the eastern study area boundary. Evaluation of subarea budgets provides confidence in budget components developed for the overall budget, especially regarding precipitation recharge, which is particularly difficult to estimate. Recharge estimates are consistently compatible with other budget components, including artesian springflow, which is a dominant component in many subareas. Calculated storage changes for subareas also are consistent with other budget components, specifically artesian springflow and net ground-water flow, and also are consistent with water-level fluctuations for observation wells. Ground-water budgets and flowpaths are especially complex i

  2. Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.

    2011-12-01

    Karst springs may reverse flow when allogenic runoff increases river stage faster than groundwater heads and may exchange of surface water with groundwater in the surrounding aquifer matrix. Recharged flood water is rich in nutrients, metals, and organic matter and is undersaturated with respect to calcite. Understanding the physical processes controlling this exchange of water is critical to understanding metal cycling, redox chemistry and dissolution in the subsurface. Ultimately the magnitude of conduit-matrix exchange should be governed by head gradients between the conduit and the aquifer which are affected by the hydraulic conductivity of the matrix, conduit properties and antecedent groundwater heads. These parameters are interrelated and it is unknown which ones exert the greatest control over the magnitude of exchange. This study uses MODFLOW-2005 coupled with the Conduit Flow Processes (CFP) package to determine how physical properties of conduits and aquifers influence the magnitude of surface water-groundwater exchange. We use hydraulic data collected during spring reversals in a mapped underwater cave that sources Madison Blue Spring in north-central Florida to explore which factors are most important in governing exchange. The simulation focused on a major flood in 2009, when river stage increased by about 10 meters over 9 days. In a series of simulations, we varied hydraulic conductivity, conduit diameter, roughness height and tortuosity in addition to antecedent groundwater heads to estimate the relative effects of each parameter on the magnitude of conduit-matrix exchange. Each parameter was varied across plausible ranges for karst aquifers. Antecedent groundwater heads were varied using well data recorded through wet and dry seasons throughout the spring shed. We found hydraulic conductivity was the most important factor governing exchange. The volume of exchange increased by about 61% from the lowest value (1.8x10-6 m/d) to the highest value (6 m/d) of matrix hydraulic conductivity. Other factors increased the amount of exchange by 1% or less, with tortuosity (which varied from 1 to 2) being most significant with a 1% increase, followed by conduit diameter (1 to 5 m) and roughness height (0.1 to 5m) with increases in exchange of 0.4% and 0.3% respectively. Antecedent aquifer conditions were also seen to exert important controls on influencing exchange with greater exchange occurring in floods following dry periods than during wet periods. These preliminary results indicate that heterogeneity of the hydraulic conductivity across karst aquifers will control the distribution of flood waters that enter into the aquifer matrix. Because flood waters are typically undersaturated with respect to the carbonate minerals, the location of this infiltrated water into the highest hydraulic conductivity zones should enhance dissolution, thereby increasing hydraulic conductivity in a feedback loop that will enhance future infiltration of floodwater. Portions of the aquifer prone to infiltrating flood water and dissolution will also be most sensitive to contamination from surface water infiltration.

  3. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques

    NASA Astrophysics Data System (ADS)

    Gemitzi, Alexandra; Petalas, Christos; Tsihrintzis, Vassilios A.; Pisinaras, Vassilios

    2006-03-01

    The assessment of groundwater vulnerability to pollution aims at highlighting areas at a high risk of being polluted. This study presents a methodology, to estimate the risk of an aquifer to be polluted from concentrated and/or dispersed sources, which applies an overlay and index method involving several parameters. The parameters are categorized into three factor groups: factor group 1 includes parameters relevant to the internal aquifer system’s properties, thus determining the intrinsic aquifer vulnerability to pollution; factor group 2 comprises parameters relevant to the external stresses to the system, such as human activities and rainfall effects; factor group 3 incorporates specific geological settings, such as the presence of geothermal fields or salt intrusion zones, into the computation process. Geographical information systems have been used for data acquisition and processing, coupled with a multicriteria evaluation technique enhanced with fuzzy factor standardization. Moreover, besides assigning weights to factors, a second set of weights, i.e., order weights, has been applied to factors on a pixel by pixel basis, thus allowing control of the level of risk in the vulnerability determination and the enhancement of local site characteristics. Individual analysis of each factor group resulted in three intermediate groundwater vulnerability to pollution maps, which were combined in order to produce the final composite groundwater vulnerability map for the study area. The method has been applied in the region of Eastern Macedonia and Thrace (Northern Greece), an area of approximately 14,000 km2. The methodology has been tested and calibrated against the measured nitrate concentration in wells, in the northwest part of the study area, providing results related to the aggregation and weighting procedure.

  4. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect abandoned mine workings in the Pocahontas No. 3 coal seam and underlying strata in various structural settings of the Turkey Gap and adjacent down-dip mines. Geophysical logging and aquifer testing were conducted on the boreholes to locate the coal- mine aquifers, characterize fracture geometry, and define permeable zones within strata overlying and underlying the Pocahontas No. 3 coal-mine aquifer. Water levels were measured monthly in the wells and showed a relatively static phreatic zone within subsided strata a few feet above the top of or within the Pocahontas No. 3 coal-mine aquifer (PC3MA). A groundwater-flow model was developed to verify and refine the conceptual understanding of groundwater flow and to develop groundwater budgets for the study area. The model consisted of four layers to represent overburden strata, the Pocahontas No. 3 coal-mine aquifer, underlying fractured rock, and fractured rock below regional drainage. Simulation of flow in the flooded abandoned mine entries using highly conductive layers or zones within the model, was unable to realistically simulate interbasin transfer of water. Therefore it was necessary to represent the coal-mine aquifer as an internal boundary condition rather than a contrast in aquifer properties. By representing the coal-mine aquifer with a series of drain nodes and optimizing input parameters with parameter estimation software, model errors were reduced dramatically and discharges for Elkhorn Creek, Johns Knob Branch, and other tributaries were more accurately simulated. Flow in the Elkhorn Creek and Johns Knob Branch watersheds is dependent on interbasin transfer of water, primarily from up dip areas of abandoned mine workings in the Pocahontas No. 3 coal-mine aquifer within the Bluestone River watershed to the east. For the 38th, 70th, and 87th percentile flow duration of streams in the region, mean measured groundwater discharge was estimated to be 1.30, 0.47, and 0.39 cubic feet per square mile (ft3/s/mi2

  5. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  6. Interpretation of Nonlinear Well Loss Coefficients for Rorabaugh (1953) Method.

    NASA Astrophysics Data System (ADS)

    Kurtulus, B.; Yaylım, T. N.; Avşar

    2016-12-01

    Step drawdown test (SDT) are essential for hydrogeologist to determine aquifer loss and well loss parameters. In a SDT, different series of constant-discharges with incremental rates are conducted to obtain incremental drawdown into the pumping well. Pumping well efficiency (if the well is properly developed and designed), aquifer characteristics (transmissivity, storativity) and discharge-drawdown relationship can be derived from SDT. The well loss parameter directly associate with the well efficiency. The main problem is to determine the correct well loss parameter in order to estimate aquifer characteristics. Walton (1962) stated that the interpretation of the well efficiency is possible to determine the nonlinear head loss coefficient (C) with p equals to 2 and Walton (1962) presented a criteria that suggested the following terms: If C is less than 1800 m2/s5, the is properly developed and designed, If C is ranged from 1800 m2/s5 to 3600 m2/s5, the well has a mild deterioration, If C is greater than 3600 m2/s5, the well has a severe clogging. Until now, several well-known computer techniques such as Aqutesolv, AquiferWin32 , AquifertestPro can be found in the literature to evaluate well efficiency when exponential parameter (p) equals to 2. However, there exist a lack of information to evaluate well efficiency for different number of exponential parameter (p). Strategic Water Storage & Recovery (SWSR) Project in Liwa, Abu Dhabi is the leading and unique hydrogeology project in the world because of its both financial and scientific dimension. A total of 315 recovery wells have been drilled in pursuance of the scope of the SWSR project. A Universal Well Efficiency Criteria (UWEC) is developed using 315 Step Drawdown Test (SDT). UWEC is defined for different number of head loss equation coefficients. The results reveal that there is a strong correlation between non-linear well loss coefficient (C) and exponential parameter (p) up to a coefficient of determination (R2) equal to 0.97 using Rorabaugh method. According to the calculated results, p and C value are calculated between 1 to 9 and 100 sp/m3p-1 to 2.3 x 1011 sp/m3p-1 respectively. We are very grateful for financial support and providing us the data to ZETAS-Dubai Inc.

  7. Joining direct and indirect inverse calibration methods to characterize karst, coastal aquifers

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio

    2016-04-01

    Parameter estimation is extremely relevant for accurate simulation of groundwater flow. Parameter values for models of large-scale catchments are usually derived from a limited set of field observations, which can rarely be obtained in a straightforward way from field tests or laboratory measurements on samples, due to a number of factors, including measurement errors and inadequate sampling density. Indeed, a wide gap exists between the local scale, at which most of the observations are taken, and the regional or basin scale, at which the planning and management decisions are usually made. For this reason, the use of geologic information and field data is generally made by zoning the parameter fields. However, pure zoning does not perform well in the case of fairly complex aquifers and this is particularly true for karst aquifers. In fact, the support of the hydraulic conductivity measured in the field is normally much smaller than the cell size of the numerical model, so it should be upscaled to a scale consistent with that of the numerical model discretization. Automatic inverse calibration is a valuable procedure to identify model parameter values by conditioning on observed, available data, limiting the subjective evaluations introduced with the trial-and-error technique. Many approaches have been proposed to solve the inverse problem. Generally speaking, inverse methods fall into two groups: direct and indirect methods. Direct methods allow determination of hydraulic conductivities from the groundwater flow equations which relate the conductivity and head fields. Indirect methods, instead, can handle any type of parameters, independently from the mathematical equations that govern the process, and condition parameter values and model construction on measurements of model output quantities, compared with the available observation data, through the minimization of an objective function. Both approaches have pros and cons, depending also on model complexity. For this reason, a joint procedure is proposed by merging both direct and indirect approaches, thus taking advantage of their strengths, first among them the possibility to get a hydraulic head distribution all over the domain, instead of a zonation. Pros and cons of such an integrated methodology, so far unexplored to the authors' knowledge, are derived after application to a highly heterogeneous karst, coastal aquifer located in southern Italy.

  8. The Impact of the Degree of Aquifer Confinement and Anisotropy on Tidal Pulse Propagation.

    PubMed

    Shuai, Pin; Knappett, Peter S K; Hossain, Saddam; Hosain, Alamgir; Rhodes, Kimberly; Ahmed, Kazi Matin; Cardenas, M Bayani

    2017-07-01

    Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (D PT ); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob-Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m 2 /d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m 2 /d and 1 to 5 × 10 -4 , respectively with D PT ranging from 9 to 40 × 10 5  m 2 /d. In contrast, D estimated from the Jacob-Ferris model ranged from 0.5 to 9 × 10 4  m 2 /d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob-Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob-Ferris model. Moderately confined (K top /K aquifer  < 0.01) or anisotropic aquifers (K x /K z  > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob-Ferris model at our site argues for little confinement or anisotropy. © 2017, National Ground Water Association.

  9. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spane, F.A. Jr.; Vermeul, V.R.

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated usingmore » recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.« less

  10. An assessment of the Nguyen and Pinder method for slug test analysis. [In situ estimates of ground water contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J.J. Jr.; Hyder, Z.

    The Nguyen and Pinder method is one of four techniques commonly used for analysis of response data from slug tests. Limited field research has raised questions about the reliability of the parameter estimates obtained with this method. A theoretical evaluation of this technique reveals that errors were made in the derivation of the analytical solution upon which the technique is based. Simulation and field examples show that the errors result in parameter estimates that can differ from actual values by orders of magnitude. These findings indicate that the Nguyen and Pinder method should no longer be a tool in themore » repertoire of the field hydrogeologist. If data from a slug test performed in a partially penetrating well in a confined aquifer need to be analyzed, recent work has shown that the Hvorslev method is the best alternative among the commonly used techniques.« less

  11. Representation of multiaquifer well effects in three-dimensional ground-water flow simulation

    USGS Publications Warehouse

    Bennett, Gordon D.; Kontis, Angelo L.; Larson, Steven P.

    1982-01-01

    The presence of multiaquifer or multilayer wells changes the nature of the equations which must be solved in a three-dimensional ground-water flow simulation and, in effect, alters the stencil of computation. A method has been devised which takes this change into consideration by allowing simulation of the hydraulic effects of a multiaquifer well on the aquifer system. It also allows for calculation of the water level and individual aquifer discharges in such a well. The method is valid for the case of a single well located at the center of a square node block. Where more than one well per node is involved, the effects of the stencil alteration still must be considered, although difficulties arise in estimating and justifying the parameters to be utilized.

  12. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Baeumer, Boris

    2014-01-01

    Time-nonlocal transport models can describe non-Fickian diffusion observed in geological media, but the physical meaning of parameters can be ambiguous, and most applications are limited to curve-fitting. This study explores methods for predicting the parameters of a temporally tempered Lévy motion (TTLM) model for transient sub-diffusion in mobile–immobile like alluvial settings represented by high-resolution hydrofacies models. The TTLM model is a concise multi-rate mass transfer (MRMT) model that describes a linear mass transfer process where the transfer kinetics and late-time transport behavior are controlled by properties of the host medium, especially the immobile domain. The intrinsic connection between the MRMT and TTLM models helps to estimate the main time-nonlocal parameters in the TTLM model (which are the time scale index, the capacity coefficient, and the truncation parameter) either semi-analytically or empirically from the measurable aquifer properties. Further applications show that the TTLM model captures the observed solute snapshots, the breakthrough curves, and the spatial moments of plumes up to the fourth order. Most importantly, the a priori estimation of the time-nonlocal parameters outside of any breakthrough fitting procedure provides a reliable “blind” prediction of the late-time dynamics of subdiffusion observed in a spectrum of alluvial settings. Predictability of the time-nonlocal parameters may be due to the fact that the late-time subdiffusion is not affected by the exact location of each immobile zone, but rather is controlled by the time spent in immobile blocks surrounding the pathway of solute particles. Results also show that the effective dispersion coefficient has to be fitted due to the scale effect of transport, and the mean velocity can differ from local measurements or volume averages. The link between medium heterogeneity and time-nonlocal parameters will help to improve model predictability for non-Fickian transport in alluvial settings.

  13. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  14. Improving Conceptual Models Using AEM Data and Probability Distributions

    NASA Astrophysics Data System (ADS)

    Davis, A. C.; Munday, T. J.; Christensen, N. B.

    2012-12-01

    With emphasis being placed on uncertainty in groundwater modelling and prediction, coupled with questions concerning the value of geophysical methods in hydrogeology, it is important to ask meaningful questions of hydrogeophysical data and inversion results. For example, to characterise aquifers using electromagnetic (EM) data, we ask questions such as "Given that the electrical conductivity of aquifer 'A' is less than x, where is that aquifer elsewhere in the survey area?" The answer may be given by examining inversion models, selecting locations and layers that satisfy the condition 'conductivity <= x', and labelling them as aquifer 'A'. One difficulty with this approach is that the inversion model result often be considered to be the only model for the data. In reality it is just one image of the subsurface that, given the method and the regularisation imposed in the inversion, agrees with measured data within a given error bound. We have no idea whether the final model realised by the inversion satisfies the global minimum error, or whether it is simply in a local minimum. There is a distribution of inversion models that satisfy the error tolerance condition: the final model is not the only one, nor is it necessarily the correct one. AEM inversions are often linearised in the calculation of the parameter sensitivity: we rely on the second derivatives in the Taylor expansion, thus the minimum model has all layer parameters distributed about their mean parameter value with well-defined variance. We investigate the validity of the minimum model, and its uncertainty, by examining the full posterior covariance matrix. We ask questions of the minimum model, and answer them in a probabilistically. The simplest question we can pose is "What is the probability that all layer resistivity values are <= a cut-off value?" We can calculate through use of the erf or the erfc functions. The covariance values of the inversion become marginalised in the integration: only the main diagonal is used. Complications arise when we ask more specific questions, such as "What is the probability that the resistivity of layer 2 <= x, given that layer 1 <= y?" The probability then becomes conditional, calculation includes covariance terms, the integration is taken over many dimensions, and the cross-correlation of parameters becomes important. To illustrate, we examine the inversion results of a Tempest AEM survey over the Uley Basin aquifers in the Eyre Peninsula, South Australia. Key aquifers include the unconfined Bridgewater Formation that overlies the Uley and Wanilla Formations, which contain Tertiary clays and Tertiary sandstone. These Formations overlie weathered basement which define the lower bound of the Uley Basin aquifer systems. By correlating the conductivity of the sub-surface Formation types, we pose questions such as: "What is the probability-depth of the Bridgewater Formation in the Uley South Basin?", "What is the thickness of the Uley Formation?" and "What is the most probable depth to basement?" We use these questions to generate improved conceptual hydrogeological models of the Uley Basin in order to develop better estimates of aquifer extent and the available groundwater resource.

  15. Modeling complex aquifer systems: a case study in Baton Rouge, Louisiana (USA)

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2017-05-01

    This study targets two challenges in groundwater model development: grid generation and model calibration for aquifer systems that are fluvial in origin. Realistic hydrostratigraphy can be developed using a large quantity of well log data to capture the complexity of an aquifer system. However, generating valid groundwater model grids to be consistent with the complex hydrostratigraphy is non-trivial. Model calibration can also become intractable for groundwater models that intend to match the complex hydrostratigraphy. This study uses the Baton Rouge aquifer system, Louisiana (USA), to illustrate a technical need to cope with grid generation and model calibration issues. A grid generation technique is introduced based on indicator kriging to interpolate 583 wireline well logs in the Baton Rouge area to derive a hydrostratigraphic architecture with fine vertical discretization. Then, an upscaling procedure is developed to determine a groundwater model structure with 162 layers that captures facies geometry in the hydrostratigraphic architecture. To handle model calibration for such a large model, this study utilizes a derivative-free optimization method in parallel computing to complete parameter estimation in a few months. The constructed hydrostratigraphy indicates the Baton Rouge aquifer system is fluvial in origin. The calibration result indicates hydraulic conductivity for Miocene sands is higher than that for Pliocene to Holocene sands and indicates the Baton Rouge fault and the Denham Springs-Scotlandville fault to be low-permeability leaky aquifers. The modeling result shows significantly low groundwater level in the "2,000-foot" sand due to heavy pumping, indicating potential groundwater upward flow from the "2,400-foot" sand.

  16. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, F.S.; Crawford, R.L.; Sorenson, K.

    2005-09-01

    Acceptance of monitored natural attenuation (MNA) as a preferred treatment technology saves significant site restoration costs for DOE. However, in order to be accepted MNA requires direct evidence of which processes are responsible for the contaminant loss and also the rates of the contaminant loss. Our proposal aims to: 1) provide evidence for one example of MNA, namely the disappearance of the dissolved trichloroethylene (TCE) from the Snake River Plain aquifer (SRPA) at the Idaho National Laboratory’s Test Area North (TAN) site, 2) determine the rates at which aquifer microbes can co-metabolize TCE, and 3) determine whether there are othermore » examples of natural attenuation of chlorinated solvents occurring at DOE sites. To this end, our research has several objectives. First, we have conducted studies to characterize the microbial processes that are likely responsible for the co-metabolic destruction of TCE in the aquifer at TAN (University of Idaho and INL). Second, we are investigating realistic rates of TCE co-metabolism at the low catabolic activities typical of microorganisms existing under aquifer conditions (INL). Using the co-metabolism rate parameters derived in low-growth bioreactors, we will complete the models that predict the time until background levels of TCE are attained in the aquifer at TAN and validate the long-term stewardship of this plume. Coupled with the research on low catabolic activities of co-metabolic microbes we are determining the patterns of functional gene expression by these cells, patterns that may be used to diagnose the co-metabolic activity in the SRPA or other aquifers.« less

  17. Estimating aquifer transmissivity from specific capacity using MATLAB.

    PubMed

    McLin, Stephen G

    2005-01-01

    Historically, specific capacity information has been used to calculate aquifer transmissivity when pumping test data are unavailable. This paper presents a simple computer program written in the MATLAB programming language that estimates transmissivity from specific capacity data while correcting for aquifer partial penetration and well efficiency. The program graphically plots transmissivity as a function of these factors so that the user can visually estimate their relative importance in a particular application. The program is compatible with any computer operating system running MATLAB, including Windows, Macintosh OS, Linux, and Unix. Two simple examples illustrate program usage.

  18. Geochemistry of the Madison and Minnelusa aquifers in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Naus, Cheryl A.; Driscoll, Daniel G.; Carter, Janet M.

    2001-01-01

    The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area because of utilization for water supplies and important influences on surface-water resources resulting from large springs and streamflow- loss zones. Examination of geochemical information provides a better understanding of the complex flow systems within these aquifers and interactions between the aquifers. Major-ion chemistry in both aquifers is dominated by calcium and bicarbonate near outcrop areas, with basinward evolution towards various other water types. The most notable differences in major-ion chemistry between the Madison and Minnelusa aquifers are in concentrations of sulfate within the Minnelusa aquifer. Sulfate concentrations increase dramatically near a transition zone where dissolution of anhydrite is actively occurring. Water chemistry for the Madison and Minnelusa aquifers is controlled by reactions among calcite, dolomite, and anhydrite. Saturation indices for gypsum, calcite, and dolomite for most samples in both the Madison and Minnelusa aquifers are indicative of the occurrence of dedolomitization. Because water in the Madison aquifer remains undersaturated with respect to gypsum, even at the highest sulfate concentrations, upward leakage into the overlying Minnelusa aquifer has potential to drive increased dissolution of anhydrite in the Minnelusa Formation. Isotopic information is used to evaluate ground-water flowpaths, ages, and mixing conditions for the Madison and Minnelusa aquifers. Distinctive patterns exist in the distribution of stable isotopes of oxygen and hydrogen in precipitation for the Black Hills area, with isotopically lighter precipitation generally occurring at higher elevations and latitudes. Distributions of 18O in ground water are consistent with spatial patterns in recharge areas, with isotopically lighter 18O values in the Madison aquifer resulting from generally higher elevation recharge sources, relative to the Minnelusa aquifer. Three conceptual models, which are simplifications of lumped-parameter models, are considered for evaluation of mixing conditions and general ground-water ages. For a simple slug-flow model, which assumes no mixing, measured tritium concentrations in ground water can be related through a first-order decay equation to estimated concentrations at the time of recharge. Two simplified mixing models that assume equal proportions of annual recharge over a range of years also are considered. An ?immediate-arrival? model is used to conceptually represent conditions in outcrop areas and a ?time-delay? model is used for locations removed from outcrops, where delay times for earliest arrival of ground water generally would be expected. Because of limitations associated with estimating tritium input and gross simplifying assumptions of equal annual recharge and thorough mixing conditions, the conceptual models are used only for general evaluation of mixing conditions and approximation of age ranges. Headwater springs, which are located in or near outcrop areas, have the highest tritium concentrations, which is consistent with the immediate-arrival mixing model. Tritium concentrations for many wells are very low, or nondetectable, indicating general applicability of the timedelay conceptual model for locations beyond outcrop areas, where artesian conditions generally occur. Concentrations for artesian springs generally are higher than for wells, which indicates generally shorter delay times resulting from preferential flowpaths that typically are associated with artesian springs. In the Rapid City area, a distinct division of isotopic values for the Madison aquifer corresponds with distinguishing 18O signatures for nearby streams, where large streamflow recharge occurs. Previous dye testing in this area documented rapid ground-water flow (timeframe of weeks) from a streamflow loss zone to sites located several miles away. These results are used to ill

  19. How Well Does Fracture Set Characterization Reduce Uncertainty in Capture Zone Size for Wells Situated in Sedimentary Bedrock Aquifers?

    NASA Astrophysics Data System (ADS)

    West, A. C.; Novakowski, K. S.

    2005-12-01

    Regional groundwater flow models are rife with uncertainty. The three-dimensional flux vector fields must generally be inferred using inverse modelling from sparse measurements of hydraulic head, from measurements of hydraulic parameters at a scale that is miniscule in comparison to that of the domain, and from none to a very few measurements of recharge or discharge rate. Despite the inherent uncertainty in these models they are routinely used to delineate steady-state or time-of-travel capture zones for the purpose of wellhead protection. The latter are defined as the volume of the aquifer within which released particles will arrive at the well within the specified time and their delineation requires the additional step of dividing the magnitudes of the flux vectors by the assumed porosity to arrive at the ``average linear groundwater velocity'' vector field. Since the porosity is usually assumed constant over the domain one could be forgiven for thinking that the uncertainty introduced at this step is minor in comparison to the flow model calibration step. We consider this question when the porosity in question is fracture porosity in flat-lying sedimentary bedrock. We also consider whether or not the diffusive uptake of solute into the rock matrix which lies between the source and the production well reduces or enhances the uncertainty. To evaluate the uncertainty an aquifer cross section is conceptualized as an array of horizontal, randomly-spaced, parallel-plate fractures of random aperture, with adjacent horizontal fractures connected by vertical fractures again of random spacing and aperture. The source is assumed to be a continuous concentration (i.e. a dirichlet boundary condition) representing a leaking tank or a DNAPL pool, and the receptor is a fully pentrating well located in the down-gradient direction. In this context the time-of-travel capture zone is defined as the separation distance required such that the source does not contaminate the well beyond a threshold concentration within the specified time. Aquifers are simulated by drawing the random spacings and apertures from specified distributions. Predictions are made of capture zone size assuming various degrees of knowledge of these distributions, with the parameters of the horizontal fractures being estimated using simulated hydraulic tests and a maximum likelihood estimator. The uncertainty is evaluated by calculating the variance in the capture zone size estimated in multiple realizations. The results show that despite good strategies to estimate the parameters of the horizontal fractures the uncertainty in capture zone size is enormous, mostly due to the lack of available information on vertical fractures. Also, at realistic distances (less than ten kilometers) and using realistic transmissivity distributions for the horizontal fractures the uptake of solute from fractures into matrix cannot be relied upon to protect the production well from contamination.

  20. Documentation of a spreadsheet for time-series analysis and drawdown estimation

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    Drawdowns during aquifer tests can be obscured by barometric pressure changes, earth tides, regional pumping, and recharge events in the water-level record. These stresses can create water-level fluctuations that should be removed from observed water levels prior to estimating drawdowns. Simple models have been developed for estimating unpumped water levels during aquifer tests that are referred to as synthetic water levels. These models sum multiple time series such as barometric pressure, tidal potential, and background water levels to simulate non-pumping water levels. The amplitude and phase of each time series are adjusted so that synthetic water levels match measured water levels during periods unaffected by an aquifer test. Differences between synthetic and measured water levels are minimized with a sum-of-squares objective function. Root-mean-square errors during fitting and prediction periods were compared multiple times at four geographically diverse sites. Prediction error equaled fitting error when fitting periods were greater than or equal to four times prediction periods. The proposed drawdown estimation approach has been implemented in a spreadsheet application. Measured time series are independent so that collection frequencies can differ and sampling times can be asynchronous. Time series can be viewed selectively and magnified easily. Fitting and prediction periods can be defined graphically or entered directly. Synthetic water levels for each observation well are created with earth tides, measured time series, moving averages of time series, and differences between measured and moving averages of time series. Selected series and fitting parameters for synthetic water levels are stored and drawdowns are estimated for prediction periods. Drawdowns can be viewed independently and adjusted visually if an anomaly skews initial drawdowns away from 0. The number of observations in a drawdown time series can be reduced by averaging across user-defined periods. Raw or reduced drawdown estimates can be copied from the spreadsheet application or written to tab-delimited ASCII files.

  1. Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer.

    PubMed

    Guardiola-Albert, Carolina; Martos-Rosillo, Sergio; Pardo-Igúzquiza, Eulogio; Durán Valsero, Juan José; Pedrera, Antonio; Jiménez-Gavilán, Pablo; Liñán Baena, Cristina

    2015-01-01

    Management of water resources, implying their appropriate protection, calls for a sound evaluation of recharge. Such assessment is very complex in karst aquifers. Most methods are developed for application to detrital aquifers, without taking into account the extraordinary heterogeneity of porosity and permeability of karst systems. It is commonly recommended to estimate recharge using multiple methods; however, differences inherent to the diverse methods make it difficult to clarify the accuracy of each result. In this study, recharge was estimated in a karst aquifer working in a natural regime, in a Mediterranean-type climate, in the western part of the Sierra de las Nieves (southern Spain). Mediterranean climate regions are characterized by high inter-annual rainfall variability featuring long dry periods and short intense wet periods, the latter constituting the most important contribution to aquifer water input. This paper aims to identify the methods that provide the most plausible range of recharge rate during wet periods. Six methods were tested: the classical method of Thornthwaite-Mather, the Visual Balan code, the chloride balance method, and spatially distributed methods such as APLIS, a novel spatiotemporal estimation of recharge, and ZOODRM. The results help determine valid methods for application in the rest of the unit of study and in similar karst aquifers. © 2014, National Ground Water Association.

  2. Ground water in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present i n val ley-f i 11 deposits of six major drainages. Consolidated-rock aquifers include the birds's-nest aquifer i n the Parachute Creek Member of the G reen River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area.The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute.Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to evaluate the effects of oil-shale development on the bird's-nest aquifer at the Federal lease tracts Ua and Ub. Results of model simulations indicate that during construction of a vertical access shaft, a pumping rate of about 900 gallons per minute would be required to dewaterthe aquifer. The model also indicates that the construction of a proposed reservoir on the White River may raise water levels in the bird's-nest aquifer near the reservoir site by as much as 45 feet.The flow model was used to evaluate the potential ground-water supply available for oil-shale development in the vicinity of the Federal lease tracts Ua and Ub. The results of the simulation indicate that bird's-nest aquifer could supply about 10,000 acre-feet of water per year at that site, for a period of 20 years. Downdraw after 20 years of pumping would exceed 250 feet near the simulated well field. Based on the results of the model simulation, it is estimated that the aquifer could simultaneously supply another 10,000 acre-feet of water per year in the northern part of the study area, but some interference between well fields could be expected.The Douglas Creek aquifer is recharged by precipitation and stream infiltration at an average rate of about 20.000 acre-feet per year. Discharge is estimated to be about the same and is primarily through springs and diffuse seepage. The estimated volume of recoverable water in storage is 16 million acre-feet. Maximum yields to individual wells are estimated to be less than 500 gallons per minute.A model of the flow system in the Douglas Creek aquifer indicates that the aquifer could supply about 700 acre-feet of water per year for oil-shale development at Federal lease tracts Ua and Ub and at the TOSCO Corp. site. After 20 years of pumping, water levels in production wells would be near the base of the aquifer. Based on the results of the model simulation, it is estimated that the aquifer could supply another 700 acre-feet of water per year in the southern part of the modeled area, but some interference between wells could be expected. Chemical quality of the ground water in the southeastern Uinta Basin varies considerably. Water from alluvial wells ranges from about 440 to 27,800 milligrams per liter of dissolved solids. Water from two consolidated-rock aquifers has dissolved-solids concentrations ranging from 870 to 5,810 milligrams per liter in the bird's-nest aquifer, and from 640 to 6,100 milligrams per liter in the Douglas Creek aquifer. Water from alluvial wells generally is a sodium sulfate type, whereas water in both the consolidated-rock aquifers generally changes from a sodium sulfate type to a sodium bicarbonate type. All ground water is very alkaline, and the alluvial aquifers contain very hard water. None of the water is suitable for public supply, but all the water could be used for industrial purposes such as washing and cooling.Changes in chemical composition of the ground water can be attributed to several physiochemical processes, including mineral precipitation and dissolution, oxidation and reduction, mixing, ion exchange, and evaporative concentration. Mass-transfer modeling of these processes shows how they can account for the variability in the ground-water quality. The mass-transfer model of the Bitter Creek alluvial aquifer shows that evaporative concentration, combined with precipitation of calcite, dolomite, gypsum, and release of carbon dioxide to the atmosphere results in the documented changes in the pH and dissolved solids in the water. The water-quality changes in the consolidated-rock aquifers are a result of precipitation of calcium carbonate and perhaps dolomite (calcium magnesium carbonate) with the reduction of sulfate by organic carbon, as well as ion exchange of magnesium for sodium. These processes result in large values of pH and alkalinity in the water.

  3. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  4. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    USGS Publications Warehouse

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  5. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany.

    PubMed

    Vonberg, David; Vanderborght, Jan; Cremer, Nils; Pütz, Thomas; Herbst, Michael; Vereecken, Harry

    2014-03-01

    Atrazine was banned in Germany in 1991 due to findings of atrazine concentrations in ground- and drinking waters exceeding threshold values. Monitoring of atrazine concentrations in the groundwater since then provides information about the resilience of the groundwater quality to changing agricultural practices. In this study, we present results of a monitoring campaign of atrazine concentrations in the Zwischenscholle aquifer. This phreatic aquifer is exposed to intensive agricultural land use and susceptible to contaminants due to a shallow water table. In total 60 observation wells (OWs) have been monitored since 1991, of which 15 are sampled monthly today. Descriptive statistics of monitoring data were derived using the "regression on order statistics" (ROS) data censoring approach, estimating values for nondetects. The monitoring data shows that even 20 years after the ban of atrazine, the groundwater concentrations of sampled OWs remain on a level close to the threshold value of 0.1 μg l(-1) without any considerable decrease. The spatial distribution of atrazine concentrations is highly heterogeneous with OWs exhibiting permanently concentrations above the regulatory threshold on the one hand and OWs were concentrations are mostly below the limit of quantification (LOQ) on the other hand. A deethylatrazine-to-atrazine ratio (DAR) was used to distinguish between diffuse - and point-source contamination, with a global mean value of 0.84 indicating mainly diffuse contamination. Principle Component Analysis (PCA) of the monitoring dataset demonstrated relationships between the metabolite desisopropylatrazine, which was found to be exclusively associated with the parent compound simazine but not with atrazine, and between deethylatrazine, atrazine, nitrate, and the specific electrical conductivity. These parameters indicate agricultural impacts on groundwater quality. The findings presented in this study point at the difficulty to estimate mean concentrations of contamination for entire aquifers and to evaluate groundwater quality based on average parameters. However, analytical data of monthly sampled single observation wells provide adequate information to characterize local contamination and evolutionary trends of pollutant concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  7. A closed form slug test theory for high permeability aquifers.

    PubMed

    Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph

    2005-01-01

    We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.

  8. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.

  9. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  10. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.

  11. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    NASA Astrophysics Data System (ADS)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  12. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    USDA-ARS?s Scientific Manuscript database

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  13. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    USGS Publications Warehouse

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential evapotranspiration, calculated in soil-water-balance analysis, ranged from 21.8 inches in WY 1983 to 27.0 inches in WY 1985, with a mean of 24.6 inches. Water use from the glacial aquifer system primarily was from the Elm aquifer for irrigation, municipal, and suburban water supplies, and the annual rate ranged from 1.0 to 2.4 cubic feet per second (ft3/s). The MODFLOW-2005 numerical model represented the Elm aquifer, the Middle James aquifer, and the Deep James aquifer with model layers 1-3 respectively separated by confining layers 1-2 respectively. Groundwater flow was simulated with 75 stress periods beginning October 1, 1974, and ending September 30, 2009. Model grid spacing was 200 by 200 ft and boundaries were represented by specified-head boundaries and no-flow boundaries. The model used parameter estimation that focused on minimizing the difference between 954 observed and simulated hydraulic heads for 135 wells. Calibrated mean horizontal hydraulic conductivity values for model layers 1-3 were 94, 41, and 30 ft/d respectively. Vertical hydraulic conductivity values for confining layers 1 and 2 were 0.0002 and 0.0003 ft/d, respectively. Calibrated specific yield for model layer 1was 0.1 and specific storage ranged from 0.0003 to 0.0005 per foot. Calibrated mean recharge rates ranged from 2.5 in/yr where glacial till thickness was less than 10 ft to 0.8 in/yr where glacial till thickness was greater than 30 ft. Calibrated mean annual evapotranspiration rate was 8.8 in/yr. Simulated net streamflow gain from model layer 1 was 3.1 ft3/s.

  14. Screening Models of Aquifer Heterogeneity Using the Flow Dimension

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.

    2007-12-01

    Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.

  15. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    NASA Astrophysics Data System (ADS)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a 2D, cross-borehole electrical resistivity tomography (ERT) in a fractured aquifer at the UB Environmental Geophysics Imaging Site, with tomograms validated with gamma and caliper logs obtained from the two ERT wells.

  16. Influence of the Redundant Verification and the Non-Redundant Verification on the Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2016-12-01

    In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward

  17. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 12

    USGS Publications Warehouse

    Scott, J.C.; Cobb, R.H.

    1988-01-01

    This report delineates and describes the geohydrology and susceptibility of major aquifers to contamination in Coffee, Dale, Henry, Houston, and Geneva Counties, Alabama. The major aquifers are the Upper Floridan, Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers. Estimated groundwater withdrawals for public water supplies are about 42 million gal/day. Maximum withdrawals for irrigation are 15 to 20 million gal/day. Withdrawals for self-supplied industrial and domestic uses are estimated to be 3 and 2.5 million gal/day, respectively. Long-term withdrawals of water from the Nanafalia-Clayton aquifer have resulted in significant declines in the potentiometric surface in Coffee, Dale, and Houston Counties. Significant declines in the potentiometric surfaces of the other major aquifers are not apparent. Recharge areas for all major aquifers are susceptible to contamination, but the probability of contamination of the Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers is low because the recharge areas are remote from areas of withdrawal. The recharge area for the Floridan aquifer, which consists largely of flat, sandy farmland , coincides with the area of use. This area is highly susceptible to contamination from insecticides and herbicides. (USGS)

  18. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way, there are no scale relationships to be found that link the laboratory and the field scale, accurately incorporating the additional processes, phenomena and characteristics, such as a) advective and dispersive transport of one or more contaminants, b) advective and dispersive transport and availability of electron acceptors, c) mass transfer limitations and d) spatial heterogeneities, at the larger scale and applying well defined lab scale parameters should accurately describe field scale processes.

  19. Flow-system analysis of the Madison and Minnelusa aquifers in the Rapid City area, South Dakota--conceptual model

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, Larry D.

    2002-01-01

    The conceptual model of the Madison and Minnelusa aquifers in the Rapid City area synthesizes the physical geography, hydraulic properties, and ground-water flow components of these important aquifers. The Madison hydrogeologic unit includes the karstic Madison aquifer, which is defined as the upper, more permeable 100 to 200 ft of the Madison Limestone, and the Madison confining unit, which consists of the lower, less permeable part of the Madison Limestone and the Englewood Formation. Overlying the Madison hydrogeologic unit is the Minnelusa hydrogeologic unit, which includes the Minnelusa aquifer in the upper, more permeable 200 to 300 ft and the Minnelusa confining unit in the lower, less permeable part. The Madison and Minnelusa hydrogeologic units outcrop in the study area on the eastern flank of the Black Hills where recharge occurs from streamflow losses and areal recharge. The conceptual model describes streamflow recharge, areal recharge, ground-water flow, storage in aquifers and confining units, unsaturated areas, leakage between aquifers, discharge from artesian springs, and regional outflow. Effective transmissivities estimated for the Madison aquifer range from 500 to 20,000 ft2/d and for the Minnelusa aquifer from 500 to 10,000 ft2/d. Localized anisotropic transmissivity in the Madison aquifer has tensor ratios as high as 45:1. Vertical hydraulic conductivities for the Minnelusa confining unit determined from aquifer tests range from 1.3x10-3 to 3.0x10-1 ft/d. The confined storage coefficient of the Madison and Minnelusa hydrogeologic units was estimated as 3x10-4 ft/d. Specific yield was estimated as 0.09 for the Madison and Minnelusa aquifers and 0.03 for the Madison and Minnelusa confining units. Potentiometric surfaces for the Madison and Minnelusa aquifers have a general easterly gradient of about 70 ft/mi with local variations. Temporal change in hydraulic head in the Madison and Minnelusa aquifers ranged from about 5 to 95 ft in water years 1988-97. The unconfined areas were estimated at about 53 and 36 mi2 for the Madison and Minnelusa hydrogeologic units, respectively, in contrast to an aquifer analysis area of 629 mi2. Dye-tracer tests, stable isotopes, and hydrogeologic features were analyzed conjunctively to estimate generalized ground-water flowpaths in the Madison aquifer and their influences on the Minnelusa aquifer. The western Rapid City area between Boxelder Creek and Spring Creek was characterized as having undergone extensive tectonic activity, greater brecciation in the Minnelusa Formation, large transmissivities, generally upward hydraulic gradients from the Madison aquifer to the Minnelusa aquifer, many karst springs, and converging flowpaths. Water-budget analysis included: (1) a dry-period budget for declining water levels; October 1, 1987, to March 31, 1993; (2) a wet-period budget for rising water levels, April 1, 1993, to September 30, 1997; and (3) a full 10-year period budget for water years 1988-97. By simultaneously balancing these water budgets, initial estimates of recharge, discharge, change in storage, and hydraulic properties were refined. Inflow rates for the 10-year budget included streamflow recharge of about 45 ft3/s or 61 percent of the total budget and areal recharge of 22 ft3/s or 30 percent. Streamflow recharge to the Madison hydrogeologic unit was about 86 percent of the total streamflow recharge. Outflow for the 10-year budget included springflow of 31 ft3/s or 42 percent of the total budget, water use of about 10 ft3/s or 14 percent, and regional outflow of 22 ft3/s or 30 percent. Ground-water storage increased 9 ft3/s during the 10-year period, and net ground-water movement from the Madison to Minnelusa hydrogeologic unit was about 8 ft3/s.

  20. Estimation of aquifer scale proportion using equal area grids: assessment of regional scale groundwater quality

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Landon, Matthew K.; Fram, Miranda S.; Johnson, Tyler D.

    2010-01-01

    The proportion of an aquifer with constituent concentrations above a specified threshold (high concentrations) is taken as a nondimensional measure of regional scale water quality. If computed on the basis of area, it can be referred to as the aquifer scale proportion. A spatially unbiased estimate of aquifer scale proportion and a confidence interval for that estimate are obtained through the use of equal area grids and the binomial distribution. Traditionally, the confidence interval for a binomial proportion is computed using either the standard interval or the exact interval. Research from the statistics literature has shown that the standard interval should not be used and that the exact interval is overly conservative. On the basis of coverage probability and interval width, the Jeffreys interval is preferred. If more than one sample per cell is available, cell declustering is used to estimate the aquifer scale proportion, and Kish's design effect may be useful for estimating an effective number of samples. The binomial distribution is also used to quantify the adequacy of a grid with a given number of cells for identifying a small target, defined as a constituent that is present at high concentrations in a small proportion of the aquifer. Case studies illustrate a consistency between approaches that use one well per grid cell and many wells per cell. The methods presented in this paper provide a quantitative basis for designing a sampling program and for utilizing existing data.

  1. Ground-Water Flow in the Vicinity of the Ho-Chunk Nation Communities of Indian Mission and Sand Pillow, Jackson County, Wisconsin

    USGS Publications Warehouse

    Dunning, Charles P.; Mueller, Gregory D.; Juckem, Paul F.

    2008-01-01

    An analytic element ground-water-flow model was constructed to help understand the ground-water-flow system in the vicinity of the Ho-Chunk Nation communities of Indian Mission and Sand Pillow in Jackson County, Wisconsin. Data from interpretive reports, well-drillers' construction reports, and an exploratory augering program in 2003 indicate that sand and gravel of varying thickness (0-150 feet[ft]) and porous sandstone make up a composite aquifer that overlies Precambrian crystalline rock. The geometric mean values for horizontal hydraulic conductivity were estimated from specific-capacity data to be 61.3 feet per day (ft/d) for sand and gravel, 6.6 ft/d for sandstone, and 12.0 ft/d for the composite aquifer. A ground-water flow model was constructed, the near field of which encompassed the Levis and Morrison Creeks Watershed. The flow model was coupled to the parameter-estimation program UCODE to obtain a best fit between simulated and measured values of ground-water levels and estimated Q50 flow duration (base flow). Calibration of the model with UCODE provided a ground-water recharge rate of 9 inches per year and a horizontal hydraulic conductivity of 13 ft/d for the composite aquifer. Using these calibrated parameter values, simulated heads from the model were on average within 5 ft of the measured water levels. In addition, these parameter values provided an acceptable base-flow calibration for Hay, Dickey, and Levis Creeks; the calibration was particularly close for Levis Creek, which was the most frequently measured stream in the study area. The calibrated model was used to simulate ground-water levels and to determine the direction of ground-water flow in the vicinity of Indian Mission and Sand Pillow communities. Backward particle tracking was conducted for Sand Pillow production wells under two pumping simulations to determine their 20-year contributing areas. In the first simulation, new production wells 6, 7, and 8 were each pumped at 50 gallons per minute (gal/min). In the second simulation, new production wells 6, 7, and 8 and existing production well 5 were each pumped at 50 gal/min. The second simulation demonstrated interference between the existing production well 5 and the new production wells when all were pumping at 50 gal/min.

  2. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T

  3. Estimating Aquifer Properties in the San Joaquin Basin, California, through the Analysis of InSAR Data

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Knight, R. J.; Zebker, H. A.; Farr, T. G.; Liu, Z.; Chen, J.; Crews, J.; Reeves, J.

    2015-12-01

    Increased groundwater withdrawal in the San Joaquin Valley, California, due to recent droughts has over-stressed many parts of the aquifer system, resulting in widespread aquifer compaction and land subsidence. Using Interferometric Synthetic Aperture Radar, or InSAR, we measure the magnitude of land subsidence to be as much as 20 cm/year for the period from 2007-2011. By comparing the observed subsidence with current and historic groundwater levels, we estimate that 90% of the observed subsidence is inelastic, or not recoverable. Due to delayed drainage in thick aquitards, we find that the majority (>95%) of compaction is caused by thin clay lenses within the upper and lower aquifers, which agrees with previous studies in the area. We use representative skeletal storage coefficients from previous studies in conjunction with observed subsidence and groundwater levels in a 1-dimensional vertical diffusion model to estimate the effective vertical hydraulic conductivity of the aquifer, and determine it is on the order of 1×10-6 cm/second.

  4. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    USGS Publications Warehouse

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan J.

    2017-10-12

    Groundwater resources information was needed to understand regional aquifer systems and water available to wells and springs for rearing important Lake Michigan fish species at the Kettle Moraine Springs State Fish Hatchery in Sheboygan County, Wisconsin. As a basis for estimating the groundwater resources available, an existing groundwater-flow model was refined, and new groundwater-flow models were developed for the Kettle Moraine Springs State Fish Hatchery area using the U.S. Geological Survey (USGS) finite-difference code MODFLOW. This report describes the origin and construction of these groundwater-flow models and their use in testing conceptual models and simulating the hydrogeologic system.The study area is in the Eastern Ridges and Lowlands geographical province of Wisconsin, and the hatchery property is situated on the southeastern edge of the Kettle Moraine, a north-south trending topographic high of glacial origin. The bedrock units underlying the study area consist of Cambrian, Ordovician, and Silurian units of carbonate and siliciclastic lithology. In the Sheboygan County area, the sedimentary bedrock sequence reaches a thickness of as much as about 1,600 feet (ft).Two aquifer systems are present at the Kettle Moraine Springs State Fish Hatchery. A shallow system is made up of Silurian bedrock, consisting chiefly of dolomite, overlain by unconsolidated Quaternary-age glacial deposits. The glacial deposits of this aquifer system are the typical source of water to local springs, including the springs that have historically supplied the hatchery. The shallow aquifer system, therefore, consists of the unconsolidated glacial aquifer and the underlying bedrock Silurian aquifer. Most residential wells in the area draw from the Silurian aquifer. A deeper confined aquifer system is made up of Cambrian- and Ordovician-age bedrock units including sandstone formations. Because of its depth, very few wells are completed in the Cambrian-Ordovician aquifer system (COAS) near the Kettle Moraine Springs State Fish Hatchery.Three groundwater-flow models were used to estimate the water resources available to the hatchery from bedrock aquifers under selected scenarios of well placement and seasonal water requirements and subject to constraints on the effects of pumping on neighboring wells, local springs, and creeks. Model input data (recharge, water withdrawal, and boundary conditions) for these models were compiled from a number of data and information sources.The first model, named the “KMS model,” (KMS stands for Kettle Moraine Springs) is an inset model derived from a published USGS regional Lake Michigan Basin model and was constructed to simulate groundwater pumping from the semiconfined Silurian aquifer. The second model, named the “Pumping Test model,” was constructed to evaluate an aquifer pumping test conducted in the COAS as part of this project. The Pumping Test model was also used to simulate the local effects of 20 years of groundwater pumping from this deep bedrock aquifer for future hatchery operations. The third model, named the “LMB modified model,” is a version of the published Lake Michigan Basin (LMB) model that was modified with aquifer parameters refined in an area around the hatchery (approximately a 5-mile radius circle, corresponding to the area stressed by the aquifer pumping test). This LMB modified model was applied to evaluate regional effects of pumping from the confined COAS.The available Silurian aquifer groundwater resource was estimated using the KMS model with three scenarios—named “AllConstraints,” “Constraints2,” and “Constraints3”—that specified local water-level and flow constraints such as drawdown at nearby household wells, water levels inside pumping well boreholes, and flow in local streams and springs. Each scenario utilized the MODFLOW Groundwater Management Process (GWM) to select three locations from six candidate locations that provided the greatest combined flow while satisfying the constraints. The three constraint scenarios provided estimates of 430 gallons per minute (gal/min), 480 gal/min, and 520 gal/min pumping from three wells—AllConstraints, Constraints2, and Constraints3, respectively. The same three wells were selected for the scenarios that estimated 480 gal/min and 520 gal/min; the scenario that estimated 430 gal/min shared two of these same wells, but the third selected well was different.The available COAS groundwater resource was estimated by two scenarios with each conducted over a period of 20 years with the Pumping Test model and the LMB modified model. The Pumping Test model was used to simulate local effects of pumping, and the LMB modified model was used to simulate regional effects of pumping. The scenarios simulate a range of total and seasonal pumping rates potentially linked to site activities. Scenario 1 simulates two wells completed in the Cambrian-Ordovician aquifer system, each pumping for 8 months at 300 gal/min, followed by pumping for 4 months at 600 gal/min. The average yearly pumping rate of Scenario 1 is 800 gal/min. Scenario 2 simulates three wells completed in the Cambrian-Ordovician aquifer system pumping for 8 months at 200 gal/min, followed by pumping for 4 months at 500 gal/min. The average yearly pumping rate of Scenario 2 is 900 gal/min. The Pumping Test model simulations confirmed that drawdown in the boreholes of the pumping wells at the selected 2-well or 3-well rates will meet the desired condition that the pumping water level remains at least 100 ft above the highest Cambrian-Ordovician unit open to the well.The LMB modified model was used to evaluate the regional drawdown of the pumping from the confined COAS under the same 2-well and 3-well scenarios. At the nearest known existing COAS well, Campbellsport production well #4, the simulated drawdown for Scenario 1 after 20 years of cyclical pumping with two pumping wells averaging a total of 800 gal/min is 16.9 ft, whereas the simulated drawdown for Scenario 2 after 20 years of pumping with three pumping wells averaging a total of 900 gal/min is 19.0 ft. The total deep aquifer thickness at the Campbellsport location is on the order of 620 ft, meaning that the simulated drawdown for either scenario is about 3 percent of the confined aquifer thickness.The models developed as part of this project are archived in the project data release. The archive includes the model input and output files as well as MODFLOW source code and executables. (Haserodt and others, 2017).

  5. Compressed-air energy-storage preliminary design and site-development program in an aquifer. Volume 9: Cost estimate and schedule

    NASA Astrophysics Data System (ADS)

    1982-12-01

    The behavior and suitability of aquifers as compressed-air energy-storage sites is discussed. The engineering and construction schedule, facilities capital-cost estimate, and corresponding cash-flow requirements are given.

  6. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    USGS Publications Warehouse

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  7. Determination of hydraulic properties in the vicinity of a landfill near Antioch, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Earle, John D.

    1990-01-01

    A hydrogeologic investigation was conducted in and around a landfill near Antioch, Illinois, in December 1987. The investigation consisted, in part, of an aquifer test that was designed to determine the hydraulic connection between the hydrogeologic units in the area. The hydrogeologic units consist of a shallow, unconfined, sand and gravel aquifer of variable thickness that overlies an intermediate confining unit of variable thickness composed predominantly of till. Underlying the till is a deep, confined, sand and gravel aquifer that serves as the water supply for the village of Antioch. The aquifer test was conducted in the confined aquifer. Aquifer-test data were analyzed using the Hantush and Jacob method for a leaky confined aquifer with no storage in the confining unit. Calculated transmissivity of the confined aquifer ranged from 1.96x10^4 to 2.52x10^4 foot squared per day and storativity ranged from 2.10x10^-4 to 8.71x10^-4. Leakage through the confining unit ranged from 1.29x10^-4 to 7.84x10^-4 foot per day per foot, and hydraulic conductivity of the confining unit ranged from 3.22x10^-3 to 1.96x10^-2 foot per day. The Hantush method for analysis of a leaky confined aquifer with storage in the confining unit also was used to estimate aquifer and confining-unit properties. Transmissivity and storativity values calculated using the Hantush method are in good agreement with the values calculated from the Hantush and Jacob method. Properties of the confining unit were estimated using the ratio method of Neuman and Witherspoon. The estimated diffusivity of the confining unit ranged from 50.36 to 68.13 feet squared per day, A value for the vertical hydraulic conductivity of the confining unit calculated from data obtained using both the Hantush and the Neuman and Witherspoon methods was within the range of values calculated by the Hantush and Jacob method. The aquifer-test data clearly showed that the confining unit is hydraulically connected to the confined aquifer. The aquifer-test data also indicated that the unconfined aquifer becomes hydraulically connected to the deep sand and gravel aquifer within 24 hours after the start of pumping in the confined aquifer.

  8. Multitracer test for the determination of transport and in-situ degradation of organic micro-contaminants in karst aquifers on the example of caffeine

    NASA Astrophysics Data System (ADS)

    Hillebrand, O.; Nödler, K.; Licha, T.; Geyer, T.

    2012-04-01

    The application of organic micro-contaminants as indicators for contamination sources in aquifers and surface-water bodies has been increasingly discussed in the literature over the last years. One of the proposed substances was caffeine. It served as indicator for wastewater-leakage to various systems. As well, wastewater volumes could be estimated from caffeine concentrations. Although caffeine is known to be degradable, the degradation rates are normally only determined from mass balances or laboratory experiments. Degradation rates obtained from mass balances are relatively uncertain, as the input-function is difficult to be assessed. Laboratory experiments are hardly capable to consider the full complexity of natural systems and can rarely be transferred to those. To solve this problem, in-situ degradation rates of reactive indicators have to be determined. Especially multitracer tests can be used to access compound-specific transport parameters and degradation rates, relative to conservative tracers. A multitracer test with caffeine and uranine has been performed in a karst system (catchment of the Gallusquelle spring, SW Germany). From the breakthrough curves of the tracers, the transport behavior and the in-situ degradation rate of caffeine could be deduced. The tracers were injected into a sinkhole with a linear distance of 3000 m to the spring. The mean residence time of the tracers was found to be 84 h at a flow velocity of 35 m/h. Throughout the whole experiment, the spring discharge was constant at 187 L/s. Uranine served as conservative reference-tracer for the calibration of a one-dimensional transport model with respect to solute-unspecific parameters. Relative to that, the tracer breakthrough curve of caffeine was interpreted. As solute-specific parameters the retardation coefficient as well as degradation rate of caffeine in the investigated karst aquifer could be determined. The results indicate, that caffeine is slightly retarded in the investigated aquifer (R= 1.031-1.046) and is readily degradable (half-life t1/2= 90-105 h; temperature of the spring water T= 8-9 °C). The degradation rate is surprisingly high. In general, no significant degradation is believed to occur, during the rapid transport in karst systems. The high degradation rates of caffeine illustrate the potential to use this substance as reactive tracer to indicate biological activity within the aquifer. Due to the good degradability of caffeine it does not pose a threat as long-time contamination and can therefore safely be used as reactive tracer in aquifer systems.

  9. Enhanced Preliminary Assessment Report: Rocky Point Army Housing Units, Rocky Point, New York

    DTIC Science & Technology

    1979-11-01

    underlying Magothy aquifer; no water is obtained from the Lloyd (deep) aquifer in this area. (Withdrawal from the Lloyd aquifer is restricted to use by the...the Magothy aquifer. Pumpage from private wells used for farm and golf-course irrigation is unknown, but is estimated to be less than 0.5 million gal/d

  10. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.

  11. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site

    USGS Publications Warehouse

    Essaid, Hedeff I.; Bekins, Barbara A.; Godsy, E. Michael; Warren, Ean; Baedecker, Mary Jo; Cozzarelli, Isabelle M.

    1995-01-01

    A two-dimensional, multispecies reactive solute transport model with sequential aerobic and anaerobic degradation processes was developed and tested. The model was used to study the field-scale solute transport and degradation processes at the Bemidji, Minnesota, crude oil spill site. The simulations included the biodegradation of volatile and nonvolatile fractions of dissolved organic carbon by aerobic processes, manganese and iron reduction, and methanogenesis. Model parameter estimates were constrained by published Monod kinetic parameters, theoretical yield estimates, and field biomass measurements. Despite the considerable uncertainty in the model parameter estimates, results of simulations reproduced the general features of the observed groundwater plume and the measured bacterial concentrations. In the simulation, 46% of the total dissolved organic carbon (TDOC) introduced into the aquifer was degraded. Aerobic degradation accounted for 40% of the TDOC degraded. Anaerobic processes accounted for the remaining 60% of degradation of TDOC: 5% by Mn reduction, 19% by Fe reduction, and 36% by methanogenesis. Thus anaerobic processes account for more than half of the removal of DOC at this site.

  12. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    USGS Publications Warehouse

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  13. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  14. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  15. Characterizating Multi-layered Coastal Aquifer using Pneumatic Slug Tests

    NASA Astrophysics Data System (ADS)

    Malama, B.; Abere, M.; Mikenna, M.

    2016-12-01

    Results of pneumatic slug tests conducted in a monitoring wells of a shallow aquifer on the California Central Coast are presented. The aquifer is in the Los Osos groundwater basin on the California Central Coast, a semi-closed near-triangular groundwater basin bounded to the north and south by impermeable igneousbed rock and to the west by the Pacific Ocean. The groundwater basin is a multi-layered system comprising a perched, near-surface semi-confined, and a deep confined aquifer. The unincorporated community of Los Osos is wholly dependent on the groundwater basin that is threatened with seawater intrusion and nitratecontamination. The slug tests reported here were performed in the perched and semi-confined aquifers as part of a seawater intrusion characterization study. The semi-confined and confined aquifers show evidence of seawater intrusion with upconing in some deep aquifer municipal wells. The upconing has beeninterpreted by previous studies as evidence of preferential flow through a high permeability channel. The objective of the work was to test this hypothesis by mapping the horizontal and vertical spatial variability of hydraulic parameters across the basin and establish the extent of the high permeability unit.Here only preliminary results of slug tests conducted across the basin for vertically averaged hydraulic parameters are reported. The results provide an indication of the horizontal variability of hydraulic parameters. An additional study will be performed to characterize the vertical variability to investigate the probableexistsence of a high permeability channel.

  16. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  17. Comparing flowmeter, aquifer test, and surface nuclear magnetic resonance data in Central Nebraska

    NASA Astrophysics Data System (ADS)

    Irons, T.; Abraham, J. D.; Cannia, J. C.; Steele, G.; Hobza, C. M.; Li, Y.; McKenna, J. R.

    2011-12-01

    Traditionally the only means of estimating the hydraulic properties of aquifers has involved drilling boreholes. The logistical and economic requirements of aquifer tests has limited the ability of hydrologists to construct the detailed groundwater models needed for resource management. As such, water policy decisions are often based on sparse aquifer tests combined with geologic interpretation and extrapolation. When dealing with complicated groundwater systems these extrapolations are often not accurate at the scale required to characterize the groundwater system, and additional information is needed to make better informed resource decisions. Surface nuclear magnetic resonance (SNMR) is a geophysical technique which allows for non-invasive estimates of hydraulic permeability and transmissivity. Protons in a volume of liquid water form a weak bulk magnetic moment as they align and precess about the earth's magnetic field. This moment is too small to be measured directly but may be observed by tipping it away from equilibrium using radio-frequency pulses oscillating at the same frequency as its precession (the Larmor frequency). After a short tipping pulse, the moment continues to precess around the static field, although at a tipped angle, slowly returning to its equilibrium state. The decay of these spinning magnetic moments can be observed inductively using loops of wire on the surface of the earth. In the simplest experiment a time series is recorded after a single tipping pulse. By varying the strength of the tipping pulse, different regions of the subsurface can be probed. The amplitude of the signal is directly proportional to the amount of water in the investigated volume. The decay rate of the signal is related to pore geometry and interconnectivity and can be used to estimate hydraulic conductivity. However, this relationship cannot be universally defined as it is affected by additional factors including the mineralogy of the host rock and homogeneity of the earth's magnetic field. This necessitates locally calibrating the SNMR data against aquifer tests in order to derive a relation of the SNMR data to the local aquifers. After calibration, additional SNMR data can be used at sites with the same aquifer units to produce estimates of hydraulic properties. To test this methodology, SNMR, aquifer tests and flowmeter measurements were conducted at two sites within the High Plains Aquifer in Central Nebraska. A novel compressive inversion scheme was developed that simultaneously processes the entire SNMR dataset and accounts for electrical conductivity. The inverted porosity and decay times were then regressed against the aquifer and flowmeter tests to derive local calibration coefficients. Using this calibration, the SNMR derived hydraulic conductivity estimates were in good agreement with the aquifer test-derived estimates. Since the same calibration was appropriate at both sites, SNMR data can now be collected at additional sites in the area and used to estimate hydraulic properties.

  18. Estimated withdrawals from principal aquifers in the United States, 2000

    USGS Publications Warehouse

    Maupin, Molly A.; Barber, Nancy L.

    2005-01-01

    Fresh ground-water withdrawals from 66 principal aquifers in the United States were estimated for irrigation, public-supply, and self-supplied industrial water uses for the year 2000. Total ground-water withdrawals were 76,500 million gallons per day, or 85,800 thousand acre-feet per year for these three uses. Irrigation used the largest amount of ground water, 56,900 million gallons per day, followed by public supply with 16,000 million gallons per day, and self-supplied industrial with 3,570 million gallons per day. These three water uses represented 92 percent of the fresh groundwater withdrawals for all uses in the United States, the remaining 8 percent included self-supplied domestic, aquaculture, livestock, mining, and thermoelectric power uses. Aquifer withdrawals were categorized by five lithologic groups: unconsolidated and semiconsolidated sand and gravel aquifers, carbonate-rock aquifers, igneous and metamorphic-rock aquifers, sandstone aquifers, and sandstone and carbonate-rock aquifers. Withdrawals from aquifers that were not included in one of the 66 principal aquifers were reported in an “Other” aquifers group. The largest withdrawals in the United States were from unconsolidated and semiconsolidated sand and gravel aquifers, which accounted for 80 percent of total withdrawals from all aquifers. Carbonate-rock aquifers provided 8 percent of the withdrawals, and igneous and metamorphic-rock aquifers, 6 percent. Withdrawals from sandstone aquifers, from sandstone and carbonate-rock aquifers, and from the “Other” aquifers category each constituted about 2 percent of the total withdrawals reported.Fifty-five percent of the total withdrawals for irrigation, public-supply, and self-supplied industrial water uses were provided by the High Plains aquifer, California Central Valley aquifer system, the Mississippi River Valley alluvial aquifer, and the Basin and Range basin-fill aquifers. These aquifers provided most of the withdrawals for irrigation. The High Plains aquifer was the most intensively used aquifer in the United States. This aquifer provided 23 percent of the total withdrawals from all aquifers for irrigation, public-supply, and self-supplied industrial water uses combined, and 30 percent of the total withdrawals from all aquifers for irrigation. The primary aquifers used for public supply were the glacial sand and gravel aquifers of the Northeastern and North-Central States, the California Coastal Basin aquifers, the Floridan aquifer system, the Basin and Range basin-fill aquifers, and the Coastal lowlands aquifer system along the Gulf Coast. These five aquifers provided 43 percent of the total withdrawals from all aquifers for public supply. The glacial sand and gravel aquifers, Coastal lowlands aquifer system, Floridan aquifer system, and Cambrian-Ordovician aquifer system were the primary sources of water for self-supplied industrial use; these aquifers provided 46 percent of the total ground-water withdrawals for that use.

  19. Heat and solute tracers: how do they compare in heterogeneous aquifers?

    PubMed

    Irvine, Dylan J; Simmons, Craig T; Werner, Adrian D; Graf, Thomas

    2015-04-01

    A comparison of groundwater velocity in heterogeneous aquifers estimated from hydraulic methods, heat and solute tracers was made using numerical simulations. Aquifer heterogeneity was described by geostatistical properties of the Borden, Cape Cod, North Bay, and MADE aquifers. Both heat and solute tracers displayed little systematic under- or over-estimation in velocity relative to a hydraulic control. The worst cases were under-estimates of 6.63% for solute and 2.13% for the heat tracer. Both under- and over-estimation of velocity from the heat tracer relative to the solute tracer occurred. Differences between the estimates from the tracer methods increased as the mean velocity decreased, owing to differences in rates of molecular diffusion and thermal conduction. The variance in estimated velocity using all methods increased as the variance in log-hydraulic conductivity (K) and correlation length scales increased. The variance in velocity for each scenario was remarkably small when compared to σ2 ln(K) for all methods tested. The largest variability identified was for the solute tracer where 95% of velocity estimates ranged by a factor of 19 in simulations where 95% of the K values varied by almost four orders of magnitude. For the same K-fields, this range was a factor of 11 for the heat tracer. The variance in estimated velocity was always lowest when using heat as a tracer. The study results suggest that a solute tracer will provide more understanding about the variance in velocity caused by aquifer heterogeneity and a heat tracer provides a better approximation of the mean velocity. © 2013, National Ground Water Association.

  20. Intermediate Scale Experimental Design to Validate a Subsurface Inverse Theory Applicable to Date-sparse Conditions

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.

    2017-12-01

    Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.

  1. Hydrogeologic framework and characterization of the Truxton Aquifer on the Hualapai Reservation, Mohave County, Arizona

    USGS Publications Warehouse

    Bills, Donald J.; Macy, Jamie P.

    2016-12-30

    The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, developed this study to determine an estimate of groundwater in storage in the Truxton aquifer on the Hualapai Reservation in northwestern Arizona. For this study, the Truxton aquifer is defined as the unconfined, saturated groundwater in the unconsolidated to semiconsolidated older and younger basin-fill deposits of the Truxton basin overlying bedrock. The physical characteristics of the Truxton aquifer have not been well characterized in the past. In particular, the depth to impermeable granite bedrock and thickness of the basin are known in only a few locations where water wells have penetrated into the granite. Increasing water demands on the Truxton aquifer by both tribal and nontribal water users have led to concern about the long-term sustainability of this water resource. The Hualapai Tribe currently projects an increase of their water needs from about 300 acre-feet (acre-ft) per year to about 780 acre-ft per year by 2050 to support the community of Peach Springs, Arizona, and the southern part of the reservation. This study aimed to quantitatively develop better knowledge of aquifer characteristics, including aquifer storage and capacity, using (1) surface resistivity data collected along transects and (2) analysis of existing geologic, borehole, precipitation, water use, and water-level data.The surface resistivity surveys indicated that the depth to granite along the survey lines varied from less than 100 feet (ft) to more than 1,300 ft below land surface on the Hualapai Reservation. The top of the granite bedrock is consistent with the erosional character of the Truxton basin and exhibits deep paleochannels filled with basin-fill deposits consistent with the results of surface resistivity surveys and borehole logs from wells. The estimated average saturated thickness of the Truxton aquifer on the Hualapai Reservation is about 330 ft (with an estimated range of 260 to 390 ft), based on both resistivity results and the depth to water in wells. The saturated thickness might be greater in parts of the Truxton aquifer where paleochannels are incised into the granite underlying the basin-fill sediments. The estimated groundwater storage of the Truxton aquifer on the Hualapai Reservation ranges from 420,000 to 940,000 acre-ft and does not include groundwater storage in the aquifer outside the Hualapai Reservation boundary. In addition, the calculation of total storage in the Truxton aquifer does not determine nor indicate the availability and sustainability of that groundwater as a long-term resource. These results compared well with studies done on alluvial-basin aquifers in areas adjacent to this study. The part of the Truxton aquifer on the Hualapai Reservation represents about 20 percent of the entire aquifer.

  2. Time Series Analysis of Subsidence and Water-Level Data for Aquifer System Characterization

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.

    2012-12-01

    The accessibility of high resolution surface displacement data in the form of InSAR, PS-InSAR, GPS, and extensometer data in heavily pumped basins provides diagnostic information that can be used in powerful ways to characterize the hydraulic properties of both confining units and aquifers that water-level data alone cannot accomplish. Land surface deformation signals reflect the elastic and inelastic properties of the heterogeneous aquifer system. These deformation signals can be quite complex and coupled with water level data often exhibit temporal signals at daily, seasonal, and decadal scales resulting from accompanying cyclical pumping patterns. In Las Vegas Valley, for example, cyclical seasonal and daily water-level fluctuations are superimposed on long-term water-level declines. The resulting changes in effective stress have resulted in decades of inelastic land surface lowering with superimposed seasonal elastic deformation signals. In this investigation signal processing of both water level and deformation data was done to filter separate signals at daily, seasonal, and decadal time scales that can be individually evaluated to more accurately estimate the hydraulic properties of the principle aquifer system in the valley that consists of multiple aquifers and confining units. Both elastic and inelastic skeletal specific storage, the horizontal hydraulic conductivity of the aquifers, and the vertical hydraulic conductivity of the confining units can be readily evaluated in this manner. The results compare favorably with the parameters calculated from a complex one-dimensional numerical compaction model. The advantage of the time series approach is that a more thorough description of the system can be made and the analytical approach is far simpler than constructing and calibrating a numerical model.

  3. Characterising alluvial aquifers in a remote ephemeral catchment (Flinders River, Queensland) using a direct push tracer approach

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew R.; Smith, Stanley D.; Lamontagne, Sébastien; Suckow, Axel

    2018-01-01

    The availability of reliable water supplies is a key factor limiting development in northern Australia. However, characterising groundwater resources in this remote part of Australia is challenging due to a lack of existing infrastructure and data. Here, direct push technology (DPT) was used to characterise shallow alluvial aquifers at two locations in the semiarid Flinders River catchment. DPT was used to evaluate the saturated thickness of the aquifer and estimate recharge rates by sampling for environmental tracers in groundwater (major ions, 2H, 18O, 3H and 14C). The alluvium at Fifteen Mile Reserve and Glendalough Station consisted of a mixture of permeable coarse sandy and gravely sediments and less permeable clays and silts. The alluvium was relatively thin (i.e. < 20 m) and, at the time of the investigation, was only partially saturated. Tritium (3H) concentrations in groundwater was ∼1 Tritium Unit (TU), corresponding to a mean residence time for groundwater of about 12 years. The lack of an evaporation signal for the 2H and 18O of groundwater suggests rapid localised recharge from overbank flood events as the primary recharge mechanism. Using the chloride mass balance technique (CMB) and lumped parameter models to interpret patterns in 3H in the aquifer, the mean annual recharge rate varied between 21 and 240 mm/yr. Whilst this recharge rate is relatively high for a semiarid climate, the alluvium is thin and heterogeneous hosting numerous alluvial aquifers with varied connectivity and limited storage capacity. Combining DPT and environmental tracers is a cost-effective strategy to characterise shallow groundwater resources in unconsolidated sedimentary aquifers in remote data sparse areas.

  4. Comparison of hydraulic conductivities for a sand and gravel aquifer in southeastern Massachusetts, estimated by three methods

    USGS Publications Warehouse

    Warren, L.P.; Church, P.E.; Turtora, Michael

    1996-01-01

    Hydraulic conductivities of a sand and gravel aquifer were estimated by three methods: constant- head multiport-permeameter tests, grain-size analyses (with the Hazen approximation method), and slug tests. Sediment cores from 45 boreholes were undivided or divided into two or three vertical sections to estimate hydraulic conductivity based on permeameter tests and grain-size analyses. The cores were collected from depth intervals in the screened zone of the aquifer in each observation well. Slug tests were performed on 29 observation wells installed in the boreholes. Hydraulic conductivities of 35 sediment cores estimated by use of permeameter tests ranged from 0.9 to 86 meters per day, with a mean of 22.8 meters per day. Hydraulic conductivities of 45 sediment cores estimated by use of grain-size analyses ranged from 0.5 to 206 meters per day, with a mean of 40.7 meters per day. Hydraulic conductivities of aquifer material at 29 observation wells estimated by use of slug tests ranged from 0.6 to 79 meters per day, with a mean of 32.9 meters per day. The repeatability of estimated hydraulic conductivities were estimated to be within 30 percent for the permeameter method, 12 percent for the grain-size method, and 9.5 percent for the slug test method. Statistical tests determined that the medians of estimates resulting from the slug tests and grain-size analyses were not significantly different but were significantly higher than the median of estimates resulting from the permeameter tests. Because the permeameter test is the only method considered which estimates vertical hydraulic conductivity, the difference in estimates may be attributed to vertical or horizontal anisotropy. The difference in the average hydraulic conductivities estimated by use of each method was less than 55 percent when compared to the estimated hydraulic conductivity determined from an aquifer test conducted near the study area.

  5. Application of artificial neural networks to assess pesticide contamination in shallow groundwater

    USGS Publications Warehouse

    Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.

    2006-01-01

    In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN, they were not able to predict contamination potential. However, when they were used with other parameters, the predictive performance efficiency of the BPNN in terms of R, E, ME, RMSE, and pesticide occurrence "class" groups increased. Ancillary data include data collected during the study such as well depth and time of sample collection. The BPNN indicated that the ancillary data had more predictive power than the original data. The BPNN results will help researchers identify parameters to improve maps of aquifer sensitivity to pesticide contamination. ?? 2006 Elsevier B.V. All rights reserved.

  6. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  7. Aquifers of the Denver Basin, Colorado

    USGS Publications Warehouse

    Topper, R.

    2004-01-01

    Development of the Denver Basin for water supply has been ongoing since the late 1800s. The Denver Basin aquifer system consists of the water-yielding strata of Tertiary and Cretaceous sedimentary rocks within four overlying formations. The four statutory aquifers contained in these formations are named the Dawson, Denver, Arapahoe, and Laramie-Fox Hills. For water rights administrative purposes, the outcrop/subcrop of the Laramie-Fox Hills aquifer defines the margins of the Basin. Initial estimates of the total recoverable groundwater reserves in storage, under this 6700-mi2 area, were 295 million acre-ft. Recent geologic evidence indicates that the aquifers are very heterogeneous and their composition varies significantly with distance from the source area of the sediments. As a result, available recoverable reserves may be one-third less than previously estimated. There is no legal protection for pressure levels in the aquifer, and water managers are becoming increasingly concerned about the rapid water level declines (30 ft/yr). Approximately 33,700 wells of record have been completed in the sedimentary rock aquifers of the Denver Basin for municipal, industrial, agricultural, and domestic uses.

  8. Simulations of flow in the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas

    USGS Publications Warehouse

    Kuniansky, E.L.; Holligan, K.Q.

    1994-01-01

    The transmissivity values used in the simulations were within estimated ranges and generally are: 1,000 to 10,000 ft2/d (feet squared per day) for the Edwards-Trinity and Trinity aquifers; 100,000 to greater than 1 million ft2/d for the Edwards aquifer; and less than 500 to 10,000 ft2/d in contiguous hydraulically connected units. Simulated flow through the Edwards-Trinity aquifer system and contiguous hydraulically connected units is about 3 million acre-feet per year. Estimates of areally distributed recharge from the simulations range from 0.1 to 1 inch per year for the Edwards-Trinity aquifer and increase to 4 inches per year for the Trinity aquifer. Recharge to the Edwards aquifer occurs along streambeds that cross outcropped high-permeability rocks of the Edwards Group through joints and faults. Many of the streams are diverted completely underground during periods of no precipitation. The movement of a substantial quantity of water (about 400 cubic feet per second) from the Trinity and Edwards-Trinity aquifers into the Edwards aquifer was simulated. Results of the simulations indicate that anisotropy strongly influences flow in the Edwards aquifer. In the San Antonio and Austin areas, the Edwards aquifer is the most active part of the ground-water flow system with one-third of ground-water discharge occurring in 5 percent of the modeled area for both simulations.

  9. Propagation of solutes and pressure into aquifers following river stage rise

    NASA Astrophysics Data System (ADS)

    Welch, Chani; Cook, Peter G.; Harrington, Glenn A.; Robinson, Neville I.

    2013-09-01

    Water level rises associated with river flow events induce both pressure and solute movement into adjacent aquifers at vastly different rates. We present a simple analytical solution that relates the travel time and travel distance of solutes into an aquifer following river stage rise to aquifer properties. Combination with an existing solution for pressure propagation indicates that the ratio of solute to pressure travel times is proportional to the ratio of the volume of water stored in the aquifer before the river stage rise and the volume added by the stage rise and is independent of hydraulic conductivity. Two-dimensional numerical simulations of an aquifer slice perpendicular to a river demonstrate that the solutions are broadly applicable to variably saturated aquifers and partially penetrating rivers. The solutions remain applicable where river stage rise and fall occur, provided that regional hydraulic gradients are low and the duration of the river stage rise is less than pressure and solute travel times to the observation point in the aquifer. Consequently, the solutions provide new insight into the relationships between aquifer properties and distance and time of solute propagation and, in some cases, may be used to estimate system characteristics. Travel time metrics obtained for a flood event in the Cockburn River in eastern Australia using electrical conductivity measurements enabled estimates of aquifer properties and a lateral extent of river-aquifer mixing of 25 m. A detailed time series of any soluble tracer with distinctly different concentrations in river water and groundwater may be used.

  10. Analysis of complex pumping interactions during an aquifer test conducted at a well field in the coastal plain near Augusta, Georgia, October 2009

    USGS Publications Warehouse

    Gonthier, Gerald J.

    2009-01-01

    A 24-hour aquifer test was conducted in Well Field 2 near Augusta, Georgia, October 21–22, 2009, to characterize the hydraulic properties of the Midville aquifer system. The selected well was pumped at a rate of 684 gallons per minute. At the initiation of aquifer-test pumping, water levels in each of eight wells monitored for the test were still recovering from the well-field production. Because water levels had not stabilized, data analyses were needed to account for the ongoing recovery. Hydraulic properties of the Midville aquifer system were estimated by an approach based on the Theis model and superposition. The Midville aquifer system was modeled as a Theis aquifer. The principle of superposition was used to sum the effects of multiple pumping and recovery events from a single pumped well and to sum the effects of all pumped wells as the estimated total drawdown at a monitored well. Simulated drawdown at each monitored well was determined by using a spreadsheet (SUMTheis) function of aquifer transmissivity and storativity. Simulated drawdown values were transformed into simulated water levels, accounting for longterm water-level trends. The transmissivity and storativity values that were used to calibrate the simulated water levels to measured water levels (roughly 4,000 square feet per day and 2E-04, respectively) provide estimates of the transmissivity and storativity of the Midville aquifer system in the vicinity of Well Field 2. The approach used in this study can be applied to similar well-field tests in which incomplete drawdown recovery or other known pumping is evident.

  11. Hydrogeologic and hydraulic characterization of aquifer and nonaquifer layers in a lateritic terrain (West Bengal, India)

    NASA Astrophysics Data System (ADS)

    Biswal, Sabinaya; Jha, Madan K.; Sharma, Shashi P.

    2018-02-01

    The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19-11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9-40 and 40-79 m, respectively. The mean K estimates by the GSA methods are 3.62-292.86 m/day for shallow aquifer layers and 0.97-209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69-693.79 m2/day, storage coefficient 1.01 × 10-7-2.13 × 10-4 and leakance 2.01 × 10-7-34.56 × 10-2 day-1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1-3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.

  12. Effective detection of CO 2 leakage: a comparison of groundwater sampling and pressure monitoring

    DOE PAGES

    Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; ...

    2014-12-31

    Shallow aquifer monitoring is likely to be a required aspect to any geologic CO 2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO 2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO 2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO 2 leakage has notmore » yet been quantitatively assessed. In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO 2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO 2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO 2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO 2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the location of the leak is unknown a priori, a reasonable assumption in many cases, we found that the leak would be detected in at least one of the monitoring wells in less than 10% of the scenarios considered. This is because plume sizes are relatively small, and so the probability of detection decreases rapidly with distance from the leakage point. For example, 400m away from the leakage point there is less than 20% chance of detection. We then compared the effectiveness of groundwater quality sampling to shallow aquifer and/or reservoir pressure monitoring. For the Edwards Aquifer example, pressure monitoring in the same monitoring well network was found to be even less effective that groundwater quality monitoring. This is presumably due to the unconfined conditions and relatively high permeability, so pressure perturbations quickly dissipate. Although specific results may differ from site to site, this type of analysis should be useful to site operators and regulators when selecting leak detection strategies. Given the spatial characteristics of a proposed monitoring well network, probabilities of leakage detection can be rapidly calculated using this methodology. Although conditions such as these may not be favorable for leakage detection in shallow aquifers, leakage detection could be much more successful in the injection reservoir. We demonstrate proof-of-concept for this hypothesis, presenting a simulation where there is measurable pressure change at the injection well due to overpressurization, fault rupture, and consequent leakage up the fault into intermediate and shallow aquifers. The size of the detectible pressure change footprint is much larger in the reservoir than in either of the overlying aquifers. Further exploration of the range of conditions for which this technique would be successful is the topic of current study.« less

  13. Cross-well slug testing in unconfined aquifers: A case study from the Sleepers River Watershed, Vermont

    USGS Publications Warehouse

    Belitz, K.; Dripps, W.

    1999-01-01

    Normally, slug test measurements are limited to the well in which the water level is perturbed. Consequently, it is often difficult to obtain reliable estimates of hydraulic properties, particularly if the aquifer is anisotropic or if there is a wellbore skin. In this investigation, we use partially penetrating stress and observation wells to evaluate specific storage, radial hydraulic conductivity and anisotropy of the aquifer, and the hydraulic conductivity of the borehole skin. The study site is located in the W9 subbasin of the Sleepers River Research Watershed, Vermont. At the site, ~3 m of saturated till are partially penetrated by a stress well located in the center of the unconfined aquifer and six observation wells located above, below, and at the depth of the stress well at radial distances of 1.2 and 2.4 m. The observation wells were shut in with inflatable packers. The semianalytical solution of Butler (1995) was used to conduct a sensitivity analysis and to interpret slug test results. The sensitivity analysis indicates that the response of the stress well is primarily sensitive to radial hydraulic conductivity, less sensitive to anisotropy and the conductivity of the borehole skin, and nearly insensitive to specific storage. In contrast, the responses of the observation wells are sensitive to all four parameters. Interpretation of the field data was facilitated by generating type curves in a manner analogous to the method of Cooper et al. (1967). Because the value of radial hydraulic conductivity is obtained from a match point, the number of unknowns is reduced to three. The estimated values of radial hydraulic conductivity and specific storage are comparable to those derived from the methods of Bouwer and Rice (1976) and Cooper et al. (1967). The values and skin conductivity, however, could not have been obtained without the use of observation wells.Normally, slug test measurements are limited to the well in which the water level is perturbed. Consequently, it is often difficult to obtain reliable estimates of hydraulic properties, particularly if the aquifer is anisotropic or if there is a wellbore skin. In this investigation, we use partially penetrating stress and observation wells to evaluate specific storage, radial hydraulic conductivity and anisotropy of the aquifer, and the hydraulic conductivity of the borehole skin. The study site is located in the W9 subbasin of the Sleepers River Research Watershed, Vermont. At the site, approximately 3 m of saturated till are partially penetrated by a stress well located in the center of the unconfined aquifer and six observation wells located above, below, and at the depth of the stress well at radial distances of 1.2 and 2.4 m. The observation wells were shut in with inflatable packers. The semianalytical solution of Buffer (1995) was used to conduct a sensitivity analysis and to interpret slug test results. The sensitivity analysis indicates that the response of the stress well is primarily sensitive to radial hydraulic conductivity, less sensitive to anisotropy and the conductivity of the borehole skin, and nearly insensitive to specific storage. In contrast, the responses of the observation wells are sensitive to all four parameters. Interpretation of the field data was facilitated by generating type curves in a manner analogous to the method of Cooper et al. (1967). Because the value of radial hydraulic conductivity is obtained from a match point, the number of unknowns is reduced to three. The estimated values of radial hydraulic conductivity and specific storage are comparable to those derived from the methods of Bouwer and Rice (1976) and Cooper et al. (1967). The values and skin conductivity, however, could not have been obtained without the use of observation wells.

  14. Geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin, south-central New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Toppin, Kenneth W.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the State of New Hampshire, Department of Environmental Services, Water Resources Division has assessed the geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin in south-central New Hampshire. The middle Merrimack River basin drains 469 square miles; 98 square miles is underlain by stratified-drift aquifers. Saturated thickness of stratified drift within the study area is generally less than 40 feet but locally greater than 100 feet. Transmissivity of stratified-drift aquifers is generally less than 2,000 feet squared per day but locally exceeds 6, 000 feet squared per day. At present (1990), ground-water withdrawals from stratified drift for public supply are about 0.4 million gallons per day within the basin. Many of the stratified-drift aquifers within the study area are not developed to their fullest potential. The geohydrology of stratified-drift aquifers was investigated by focusing on basic aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial geologic mapping assisted in the determination of aquifer boundaries. Data from 757 wells and test borings were used to produce maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 10 miles of seismic-refraction profiling and 14 miles of seismic-reflection profiling were also used to construct the water table and saturated-thickness maps. Stratified-drift aquifers in the southern, western, and central parts of the study area are typically small and discontinuous, whereas aquifers in the eastern part along the Merrimack River valley are continuous. The Merrimack River valley aquifers formed in glacial Lakes Merrimack and Hooksett. Many other smaller discontinuous aquifers formed in small temporary ponds during deglaciation. A stratified-drift aquifer in Goffstown was analyzed for aquifer yield by use of a two-dimensional, finite-difference ground-water-flow model. Yield of the Goffstown aquifer was estimated to be 2.5 million gallons per day. Sensitivity analysis showed that the estimate of aquifer yield was most sensitive to changes in hydraulic conductivity. The amount of water induced into the aquifer from the Piscataquog River was most affected by changes in estimates of streambed conductance. Results of analysis of water samples from 10 test wells indicate that, with some exceptions, water in the stratified-drift aquifers generally meets U.S. Environmental Protection Agency primary and secondary drinking-water regulations. Water from two wells had elevated sodium concentrations, waterfront two wells had elevated concentrations of dissolved iron, and waterfront seven wells had elevated concentrations of manganese. Known areas of contamination were avoided during water-quality sampling.

  15. Estimation of uranium migration parameters in sandstone aquifers.

    PubMed

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are expressed more weakly, and uranium is possibly desorbed from the sediments. Overall, these results provide a better understanding of the evolution of uranium isotopes in groundwater systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Can arsenic occurrence rate in bedrock aquifers be predicted?

    USGS Publications Warehouse

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 μg L–1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 μg L–1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology.

  17. Can arsenic occurrence rates in bedrock aquifers be predicted?

    PubMed Central

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 µg L−1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 µg L−1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology. PMID:22260208

  18. Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Onoe, Hironori; Mok, Chin Man W.; Wen, Jet-Chau; Huang, Shao-Yang; Wang, Wenke

    2017-04-01

    Hydraulic tomography (HT) has become a mature aquifer test technology over the last two decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected information is then interpreted by inverse models. Among these models, the geostatistical approaches, built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random fields, which are characterized by means and covariance functions. They then use the spatial statistics as prior information with the aquifer response data to estimate the spatial distribution of the hydraulic properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features. Subsequently, we test this approach with synthetic numerical experiments. Results show that this approach, using conditional mean and covariance that reflect site-specific large-scale geologic features, indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-scale-fractured granite field site with a distinct fault zone. We find that by including fault information from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The improved estimates subsequently lead to better prediction of flow during a different pumping test at the site.

  19. Estimating harvested rainwater at greenhouses in south Portugal aquifer Campina de Faro for potential infiltration in Managed Aquifer Recharge.

    NASA Astrophysics Data System (ADS)

    Costa, Luís; Monteiro, José Paulo; Leitão, Teresa; Lobo-Ferreira, João Paulo; Oliveira, Manuel; Martins de Carvalho, José; Martins de Carvalho, Tiago; Agostinho, Rui

    2015-04-01

    The Campina de Faro (CF) aquifer system, located on the south coast of Portugal, is an important source of groundwater, mostly used for agriculture purposes. In some areas, this multi-layered aquifer is contaminated with high concentration of nitrates, possibly arising from excessive usage of fertilizers, reaching to values as high as 300 mg/L. In order to tackle this problem, Managed Aquifer Recharge (MAR) techniques are being applied at demonstration scale to improve groundwater quality through aquifer recharge, in both infiltration basins at the river bed of ephemeral river Rio Seco and existing traditional large diameter wells located in this aquifer. In order to assess the infiltration capacity of the existing infrastructures, in particular infiltration basins and large diameter wells at CF aquifer, infiltration tests were performed, indicating a high infiltration capacity of the existing infrastructures. Concerning the sources of water for recharge, harvested rainwater at greenhouses was identified in CF aquifer area as one of the main potential sources for aquifer recharge, once there is a large surface area occupied by these infrastructures at the demo site. This potential source of water could, in some cases, be redirected to the large diameter wells or to the infiltration basins at the riverbed of Rio Seco. Estimates of rainwater harvested at greenhouses were calculated based on a 32 year average rainfall model and on the location of the greenhouses and their surface areas, the latter based on aerial photograph. Potential estimated annual rainwater intercepted by greenhouses at CF aquifer accounts an average of 1.63 hm3/year. Nonetheless it is unlikely that the totality of this amount can be harvested, collected and redirected to aquifer recharge infrastructures, for several reasons, such as the lack of appropriate greenhouse infrastructures, conduits or a close location between greenhouses and large diameter wells and infiltration basins. Anyway, this value is a good indication of the total amount of the harvested rainfall that could be considered for future MAR solutions. Given the estimates on the greenhouse harvested rainwater and the infiltration capacity of the infiltration basins and large diameter wells, it is intended to develop groundwater flow models in order to assess the nitrate washing rate in the CF aquifer. This work is being developed under the scope of MARSOL Project (MARSOL-GA-2013-619120), in which Campina de Faro aquifer system is one of the several case studies. This project aims to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence in finding solutions to water scarcity in Southern Europe.

  20. Geohydrology and effects of water use in the Black Mesa area, Navajo and Hopi Indian Reservations, Arizona

    USGS Publications Warehouse

    Eychaner, James H.

    1983-01-01

    The N aquifer is the main source of water in the 5,400-square-mile Black Mesa area in the Navajo and Hopi Indian Reservations in northeastern Arizona. The N aquifer consists of the Navajo Sandstone and parts of the underlying Kayenta Formation and Wingate Sandstone of Jurassic and Triassic age. Maximum saturated thickness of the aquifer is about 1,050 feet in the northwestern part of the area, and the aquifer thins to extinction to the southeast. Water is under confined conditions in the central 3,300 square miles of the area. To the east, north, and west of Black Mesa, the aquifer is exposed at the surface, and water is unconfined. The aquifer was in equilibrium before about 1965. Recharge of about 13,000 acre-feet per year was balanced primarily by discharge near Moenkopi Wash and Laguna Creek and by evapotranspiration. At least 180 million acre-feet of water was in storage. The estimated average hydraulic conductivity of the aquifer is 0.65 foot per day. The confined storage coefficient is estimated to be about 0.0004 where the aquifer is thickest, and the estimated unconfined storage coefficient ranges from 0.10 to 0.15. Ground-water withdrawals that averaged 5,300 acre-feet per year from 1976 to 1979 have caused water levels to decline in wells in the confined part of the aquifer. Withdrawals include an average of 3,700 acre-feet per year to supply a coal-slurry pipeline from a coal mine on Black Mesa. Six observation wells equipped with water-level recorders have been used to monitor aquifer response. The water level in one well 32 miles south of the mine declined 17 feet from 1972 through 1979 and 3.5 feet during 1979. A mathematical model of the N aquifer was developed and calibrated for equilibrium and nonequilibrium conditions. The model was used in part to improve estimates of aquifer characteristics and the water budget, and it successfully reproduced the observed response of the aquifer through 1979. The model results indicate that about 95 percent of the 44,000 acre-feet of water pumped from 1965 to 1979 was withdrawn from storage, but the reduction amounted to less than 0.03 percent of total storage. Water-level declines through 1979 were estimated to be more than 100 feet in an area of 200 square miles. Four projections of future water-level changes were made using the model. The most probable projection indicates that water-level declines would exceed 100 feet in an area of 440 square miles by 2001. Most of the decline would be recovered within a few years if withdrawals at the mine ceased. By 1990, however, municipal-supply pumpage is expected to exceed pumpage at the mine, and this pumpage would continue to have significant impacts on water levels in the Black Mesa area.

  1. A Method to Estimate the Hydraulic Conductivity of the Ground by TRT Analysis.

    PubMed

    Liuzzo Scorpo, Alberto; Nordell, Bo; Gehlin, Signhild

    2017-01-01

    The knowledge of hydraulic properties of aquifers is important in many engineering applications. Careful design of ground-coupled heat exchangers requires that the hydraulic characteristics and thermal properties of the aquifer must be well understood. Knowledge of groundwater flow rate and aquifer thermal properties is the basis for proper design of such plants. Different methods have been developed in order to estimate hydraulic conductivity by evaluating the transport of various tracers (chemical, heat etc.); thermal response testing (TRT) is a specific type of heat tracer that allows including the hydraulic properties in an effective thermal conductivity value. Starting from these considerations, an expeditious, graphical method was proposed to estimate the hydraulic conductivity of the aquifer, using TRT data and plausible assumption. Suggested method, which is not yet verified or proven to be reliable, should be encouraging further studies and development in this direction. © 2016, National Ground Water Association.

  2. Estimated water use in Arkansas, 2010

    USGS Publications Warehouse

    Pugh, Aaron L.; Holland, Terrance W.

    2015-01-01

    Groundwater withdrawals comprised about 69 percent of the total amount of water used in Arkansas in 2010. Four aquifers in Arkansas account for more than 99 percent of the total groundwater withdrawals. The aquifers in deposits of Quaternary age supplied about 97 percent of all groundwater withdrawals. The Sparta-Memphis aquifer supplied about 2.5 percent of all groundwater withdrawals, the Wilcox aquifer supplied about 0.5 percent of all groundwater withdrawals, and the Paleozoic aquifer supplied about 0.3 percent of all groundwater withdrawals.

  3. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, Leonard F.; Neuzil, Christopher E.

    2007-01-01

    Although depletion of storage in low‐permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  4. Documentation of spreadsheets for the analysis of aquifer-test and slug-test data

    USGS Publications Warehouse

    Halford, Keith J.; Kuniansky, Eve L.

    2002-01-01

    Several spreadsheets have been developed for the analysis of aquifer-test and slug-test data. Each spreadsheet incorporates analytical solution(s) of the partial differential equation for ground-water flow to a well for a specific type of condition or aquifer. The derivations of the analytical solutions were previously published. Thus, this report abbreviates the theoretical discussion, but includes practical information about each method and the important assumptions for the applications of each method. These spreadsheets were written in Microsoft Excel 9.0 (use of trade names does not constitute endorsement by the USGS). Storage properties should not be estimated with many of the spreadsheets because most are for analyzing single-well tests. Estimation of storage properties from single-well tests is generally discouraged because single-well tests are affected by wellbore storage and by well construction. These non-ideal effects frequently cause estimates of storage to be erroneous by orders of magnitude. Additionally, single-well tests are not sensitive to aquifer-storage properties. Single-well tests include all slug tests (Bouwer and Rice Method, Cooper, Bredehoeft, Papadopulos Method, and van der Kamp Method), the Cooper-Jacob straight-line Method, Theis recovery-data analysis, Jacob-Lohman method for flowing wells in a confined aquifer, and the step-drawdown test. Multi-well test spreadsheets included in this report are; Hantush-Jacob Leaky Aquifer Method and Distance-Drawdown Methods. The distance-drawdown method is an equilibrium or steady-state method, thus storage cannot be estimated.

  5. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  6. Dual-domain mass-transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-10-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  7. Analysis of flow near a dug well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Sridharan, K.; Sathyanarayana, D.; Reddy, A. Siva

    1990-11-01

    A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.

  8. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Sarris, Theo S.; Close, Murray; Abraham, Phillip

    2018-03-01

    A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.

  9. Chemical investigations of aquifers affected by pyrite oxidation in the Bitterfeld lignite district.

    PubMed

    Grützmacher, G; Hindel, R; Kantor, W; Wimmer, R

    2001-01-01

    In a large area around the former open-pit lignite mines near Bitterfeld, Germany, groundwater taken from wells was analyzed for the major cations, anions, and trace elements. Quaternary and Tertiary sediments were collected from aquifers exposed on the sides of the pits and from boreholes outside the mines and analyzed for major and trace elements, as well as for carbonate, pyritic sulfur and total organic carbon. The pH and electrical conductivity of the sediments in suspension were measured. Significant differences were determined between the Tertiary sediments of the aquifers that were exposed to atmospheric oxygen during the lowering of the groundwater table and those outside the cone of depression. The greatest differences were found in the pyrite content, the pH values, and the electrical conductivity. In order to map the degree to which the mining of the lignite has affected the quality of the groundwater in the study area, the water samples were divided into six classes on the basis of their sulfate content. The neutralization potential was calculated to estimate the potential for acidification. Prediction of future groundwater quality is based on both (i) the present composition of the groundwater, surface water, and Quaternary and Tertiary aquifer sediments and (ii) the present and future groundwater flow directions. These studies have shown which parameters are important for future groundwater monitoring.

  10. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Maximizing the value of pressure data in saline aquifer characterization

    NASA Astrophysics Data System (ADS)

    Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.

    2017-11-01

    The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.

  12. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates.

    PubMed

    Pardo-Igúzquiza, Eulogio; Chica-Olmo, Mario; Luque-Espinar, Juan A; Rodríguez-Galiano, Víctor

    2015-11-01

    Contamination by nitrates is an important cause of groundwater pollution and represents a potential risk to human health. Management decisions must be made using probability maps that assess the nitrate concentration potential of exceeding regulatory thresholds. However these maps are obtained with only a small number of sparse monitoring locations where the nitrate concentrations have been measured. It is therefore of great interest to have an efficient methodology for obtaining those probability maps. In this paper, we make use of the fact that the discrete probability density function is a compositional variable. The spatial discrete probability density function is estimated by compositional cokriging. There are several advantages in using this approach: (i) problems of classical indicator cokriging, like estimates outside the interval (0,1) and order relations, are avoided; (ii) secondary variables (e.g. aquifer parameters) can be included in the estimation of the probability maps; (iii) uncertainty maps of the probability maps can be obtained; (iv) finally there are modelling advantages because the variograms and cross-variograms of real variables that do not have the restrictions of indicator variograms and indicator cross-variograms. The methodology was applied to the Vega de Granada aquifer in Southern Spain and the advantages of the compositional cokriging approach were demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Plummer, Niel; Busenberg, E.; Schiff, S.L.

    1995-01-01

    Detailed depth profiles of Chlorofluorocarbons CFC-11(CFCl3(, CFC-12 (CF2Cl2) and CFC-113 (C2F3Cl3) have been obtained from a well-characterized field site in central Ontario. Aquifer materials comprise predominantly silty sands, with a mean organic carbon content of 0.03%. Nearly one-dimensional flow exists at this site, and the vertical migration of a well-defined 3H peak has been tracked through time. Detailed vertical sampling has allowed CFC tracer velocities to be estimated to within 10%. Comparison with 3H profiles enables estimation of chlorofluorocarbon transport parameters. CFC-12 appears to be the most conservative of the CFCs measured. Sorption at this site is low (Kd < 0.03), and degradation does not appear to be important. CFC- 113 is retarded both with respect to CFC-12 and with respect to 3H (Kd = 0.09−0.14). CFC-11 appears to be degraded both in the highly organic unsaturated zone and below 3.5 m depth in the aquifer, where dissolved oxygen concentrations decrease to below 0.5 mg L−1. The half-life for CFC-11 degradation below 3.5 m depth is less than 2 years. While apparent CFC-12 ages match hydraulic ages to within 20% (up to 30 years), apparent CFC-11 and CFC-113 ages significantly overestimate hydraulic ages at our field site.

  14. Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods

    USGS Publications Warehouse

    Sukop, Michael C.; Huang, Haibo; Alvarez, Pedro F.; Variano, Evan A.; Cunningham, Kevin J.

    2013-01-01

    Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy's law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy's law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy's law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.

  15. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  16. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, James; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  17. Hydrogeology and simulation of source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer near Shippensburg, Cumberland and Franklin Counties, Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.

    2005-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the Shippensburg Borough Authority to evaluate the source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer in Cumberland and Franklin Counties, Pa. The areal extent of the zone of contribution was simulated for three production wells near Shippensburg, Pa. by use of a ground-water-flow model. A 111-square-mile area was selected as the model area and includes areas of the South Mountain Section and the Great Valley Section of the Valley and Ridge Physiographic Province. Within the model area, the geologic units in the South Mountain area are predominantly metamorphic rocks and the geologic units in the Great Valley are predominantly carbonate rocks. Hydrologic and geologic information were compiled to establish a conceptual model of ground-water flow. Characteristics of aquifer materials were determined, and streamflow and water levels were measured. Streamflow measurements in November 2003 showed all streams lost water as they flowed from South Mountain over the colluvium-mantled carbonate aquifer into the Great Valley. Some streams lost more than 1 cubic foot per second to the aquifer in this area. The Shippensburg Borough Authority owns three production wells in the model area. Two wells, Cu 969 and Fr 823, are currently (2004) used as production wells and produce 500,000 and 800,000 gallons per day, respectively. Well Cu 970 is intended to be brought on line as a production well in the future. Water levels were measured in 43 wells to use for model calibration. Water-level fluctuations and geophysical logs indicated confined conditions in well Cu 970. Ground-water flow was simulated with a model that consisted of two vertical layers, with five zones in each layer. The units were hydrostratigraphic units that initially were based on geologic formations, but boundaries were adjusted during model calibration. Model calibration resulted in a root mean square error of 9.8 feet. A parameter-estimation package was used during model calibration to estimate three parameters. The parameter estimation resulted in a value of 233 feet per day for horizontal hydraulic conductivity of the highly fractured carbonate rocks and sandy colluvium in layer 1; 3.97 feet per day for horizontal hydraulic conductivity of the ridge-forming unit in layer 1; and a value of 1.73 for horizontal anisotropy in both layers. The calibrated model was used to delineate the areal extent of the zone of contribution for wells Cu 969 and Fr 823. Although well Cu 970 is not currently (2004) being used, the areal extent of its zone of contribution also was simulated without additional model calibration. The shape of the areal extent of the zone of contribution was similar for each well and included an area that extended from the well southwest along the Tomstown Formation, and then extended southeast into the metamorphic rocks of South Mountain. The contributing areas from the watersheds of losing streams were also delineated because losing stream reaches bisect the areal extent of the zones of contribution. Spatial uncertainty of the areal extent of the zone of contribution was illustrated using a Monte-Carlo analysis. The model was run 1,000 times using randomly generated parameter sets that were normally distributed within the confidence interval around the optimal values for the three estimated parameters. The model converged and had a reasonable water budget for 980 of the model runs. For each of those 980 model runs, the recharge area was determined, and the results for all runs were compiled and contoured. The results of the Monte-Carlo analysis were compared to the results of the deterministic model, illustrating that the deterministic model has the greatest certainty in the area closest to each well in the Tomstown Formation. The areas farther from the well, upgradient, and in the metamorphic rocks have a higher degree

  18. Review: Natural tracers in fractured hard-rock aquifers in the Austrian part of the Eastern Alps—previous approaches and future perspectives for hydrogeology in mountain regions

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke

    2016-08-01

    Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria's hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).

  19. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  20. Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches

    NASA Astrophysics Data System (ADS)

    Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad

    2018-03-01

    Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.

  1. Groundwater flow to a horizontal or slanted well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Zhan, Hongbin; Zlotnik, Vitaly A.

    2002-07-01

    New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.

  2. Sustainable-yield estimation for the Sparta Aquifer in Union County, Arkansas

    USGS Publications Warehouse

    Hays, Phillip D.

    2000-01-01

    Options for utilizing alternative sources of water to alleviate overdraft from the Sparta aquifer and ensure that the aquifer can continue to provide abundant water of excellent quality for the future are being evaluated by water managers in Union County. Sustainable yield is a critical element in identifying and designing viable water supply alternatives. With sustainable yield defined and a knowledge of total water demand in an area, any unmet demand can be calculated. The ground-water flow model of the Sparta aquifer was used to estimate sustainable yield using an iterative approach. The Sparta aquifer is a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. Currently, the rate of withdrawal in some areas greatly exceeds the rate of recharge to the aquifer and considerable water-level declines have occurred. Ground-water flow model results indicate that the aquifer cannot continue to meet growing water-use demands indefinitely and that water levels will drop below the top of the primary producing sand unit in Union County (locally termed the El Dorado sand) by 2008 if current water-use trends continue. Declines of that magnitude will initiate dewatering of the El Dorado sand. The sustainable yield of the aquifer was calculated by targeting a specified minimum acceptable water level within Union County and varying Union County pumpage within the model to achieve the target water level. Selection of the minimum target water level for sustainable-yield estimation was an important criterion for the modeling effort. In keeping with the State Critical Ground-Water Area designation criteria and the desire of water managers in Union County to improve aquifer conditions and bring the area out of the Critical Ground-Water Area designation, the approximate altitude of the top of the Sparta Sand in central Union County was used as the minimum water level target for estimation of sustainable yield in the county. A specific category of sustainable yield? stabilization yield, reflecting the amount of water that the aquifer can provide while maintaining current water levels? also was determined and provides information for short-term management. The top of the primary producing sand unit (the El Dorado sand) was used as the minimum water-level target for estimating stabilization yield in the county because current minimum water levels in central Union County are near the top of the El Dorado sand. Model results show that withdrawals from the Sparta aquifer in Union County must be reduced to 28 percent of 1997 values to achieve sustainable yield and maintain water levels at the top of the Sparta Sand if future pumpage outside of Union County is assumed to increase at the rate observed from 1985-1997. Results of the simulation define a very large current unmet demand and represent a substantial reduction in the county?s current dependence upon the aquifer. If future pumpage outside of Union County is assumed to increase at double the rate observed from 1985-1997, withdrawals from the Sparta aquifer in Union County must be reduced to 25 percent of 1997 values to achieve sustainable yield. Withdrawals from the Sparta aquifer in Union County must be reduced to about 88 to 91 percent (depending on pumpage growth outside of the county) of 1997 values to stabilize water levels at the top of the El Dorado sand. This result shows that 1997 rate of withdrawal in the county is considerably greater than the rate needed to halt the rapid decline in water levels.

  3. A digital simulation of the glacial-aquifer system in the northern three-fourths of Brown County, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1990-01-01

    A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)

  4. The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers

    NASA Astrophysics Data System (ADS)

    Viaroli, Stefano; Mastrorillo, Lucia; Lotti, Francesca; Paolucci, Vittorio; Mazza, Roberto

    2018-01-01

    Groundwater management authorities usually use groundwater budget calculations to evaluate the sustainability of withdrawals for different purposes. The groundwater budget calculation does not always provide reliable information, and it must often be supported by further aquifer monitoring in the case of hydraulic connections between neighboring aquifers. The Riardo Plain aquifer is a strategic drinking resource for more than 100,000 people, water storage for 60 km2 of irrigated land, and the source of a mineral water bottling plant. Over a long period, the comparison between the direct recharge and the estimated natural outflow and withdrawals highlights a severe water deficit of approximately 40% of the total groundwater outflow. A groundwater budget deficit should be a clue to the aquifer depletion, but the results of long-term water level monitoring allowed the observation of the good condition of this aquifer. In fact, in the Riardo Plain, the calculated deficit is not comparable to the aquifer monitoring data acquired in the same period (1992-2014). The small oscillations of the groundwater level and the almost stable streambed spring discharge allows the presumption of an additional aquifer recharge source. The confined carbonate aquifer locally mixes with the above volcanic aquifer, providing an externally stable recharge that reduces the effects of the local rainfall variability. The combined approach of the groundwater budget results and long-term aquifer monitoring (spring discharge and/or hydraulic head oscillation) provides information about significant external groundwater exchanges, even if unidentified by field measurements, and supports the stakeholders in groundwater resource management.

  5. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    NASA Astrophysics Data System (ADS)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  6. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.

  7. Analysis of hydrogeologic properties in the Prairie du Chien-Jordan aquifer, Shakopee Mdewakanton Sioux Community, southeastern Minnesota

    USGS Publications Warehouse

    Strobel, M.L.; Delin, G.N.

    1996-01-01

    The Neuman (1974) method for unconfined aquifers was used to analyze data collected from the two observation wells during the drawdown and recovery periods, resulting in a range of estimated aquifer hydraulic properties. Aquifer transmissivity ranged from 4,710 to 7,660 ft2/d and aquifer storativity ranged from 8.24 x 10-5 to 1.60 x 10-4. These values are generally in close agreement for all four sets of data, given the limitations of the test, indicating that the test results are accurate and representative of the aquifer hydrogeologic properties. The lack of late-time data made it impossible to accurately assess aquifer specific yield.

  8. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  9. Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef

    2018-04-01

    In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.

  10. Bedrock aquifers in the Denver basin, Colorado; a quantitative water-resources appraisal

    USGS Publications Warehouse

    Robson, S.G.

    1984-01-01

    The Denver metropolitan area is experiencing a rapid population growth that is requiring increasing supplies of potable water to be pumped from bedrock aquifers in order to meet demand. In an effort to determine the ability of the aquifers to continue to meet this demand, the Colorado Department of Natural Resources, the Denver Board of Water Commissioners, and Adams, Arapahoe, Douglas, Elbert and El Paso Counties joined with the U.S. Geological Survey in undertaking a hydrologic evaluation of the ground-water resources of the basin. This involved mapping of aquifer extent, thickness, structure, hydraulic characteristics, and water-level and water-quality conditions. This enabled ground-water modeling techniques to be used to simulate aquifer response to various pumpage estimates and ground-water development plans.The Laramie-Fox Hills aquifer (the deepest aquifer) underlies the 6,700-square-mile study area and is overlain by the more permeable Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer, which crops out in the southern part of the study area. It is estimated that 260x106 acre-feet of recoverable ground water are in storage in these four bedrock aquifers. However, less than 0.1 percent of this volume of water is stored under confined conditions. The larger volume of water stored under unconfined conditions will be available for use only when the water levels in the confined aquifers decline below the top of the individual aquifer, allowing water-table conditions to develop.Annual precipitation on the Denver basin supplies an average of 6,900 cubic feet per second of water to the area; about 55 cubic feet per second of this recharges the bedrock aquifers, principally through the Dawson Arkose. The direction of ground-water movement is generally from ground-water divides in the southern part of the area northward toward the margins of the aquifers. Pumpage has ranged from about 5 cubic feet per second in 1884 to about 41 cubic feet per second in 1978. Pumpage exceeds recharge in the metropolitan area and has caused water-level declines (1958-78) to exceed 200 feet in a 135-square-mile area of the Arapahoe aquifer southeast of Denver.A quasi-three-dimensional finite-difference model of the aquifer system was constructed and calibrated under steady-state and transient-state conditions. Steady-state calibration indicated that lateral hydraulic conductivity within the aquifers is about 100,000 times larger than the vertical hydraulic conductivity between the aquifers. Transient-state calibration indicated that between 1958 and 1978, 374,000 acre-feet of water was pumped from the aquifers, producing a 90,000-acre-foot net decrease in the volume of water in storage in the aquifers. During this time, pumpage also changed the rates of interaquifer flow, induced additional recharge, and caused capture of natural discharge.Three 1979-2050 pumpage estimates were made for use in simulating the effects of various ground-water development plans. Simulations using each of these pumpage estimates indicate that by the year 2050 large water-level declines could occur, particularly in the deeper aquifers. Maximum water-level declines of 410, 1,700, and 1,830 feet were produced using the small, medium, and large pumping rates.Four plans for supplementing the Denver water supply include pumping a satellite well field, pumping a municipal well field, pumping to irrigate parks, and injecting water during periods of low demand for later use during periods of peak demand. Model simulation of these plans indicates that the satellite well field will yield twice as much water as the municipal well field, but will produce larger and more widespread water-level declines in the four aquifers. The municipal well field would not significantly affect water levels in the Dawson aquifer. Pumping the Arapahoe aquifer to supply irrigation water to selected parks was shown to produce only small water-level declines in the aquifer. Results of simulating injection-pumpage well fields at two locations indicate that simulated injection rates could range from 1.7 to 10 cubic feet per second, depending on the choice of site. The volume of water that could be stored in the bedrock aquifer is, thus, sensitive to the hydrologic characteristics of the chosen site. More study is needed to evaluate water-chemistry compatibility of native and injected water.

  11. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    USGS Publications Warehouse

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer system averages about 2×10-6 per foot. Water quality of the Dublin and Midville aquifer systems was characterized during the aquifer test on the basis of water samples collected from composite well flow originating from five depths in the completed production well during the aquifer test. Samples were analyzed for total dissolved solids, specific conductance, pH, alkalinity, and major ions. Water-quality results from composite samples, known flow contribution from individual screens, and a mixing equation were used to calculate water-quality values for sample intervals between sample depths or below the bottom sample depth. With the exception of iron and manganese, constituent concentrations of water from each of the sampled intervals and total flow from the well were within U.S. Environmental Protection Agency primary and secondary drinking-water standards. Water from the bottommost sample interval in the lower part of the lower Midville aquifer (900 to 930 feet) contained manganese and iron concentrations of 59.1 and 1,160 micrograms per liter, respectively, which exceeded secondary drinking-water standards. Because this interval contributed only 0.1 percent of the total flow to the well, water quality of this interval had little effect on the composite well water quality. Two other sample intervals from the Midville aquifer system and the total flow from both aquifer systems contained iron concentrations that slightly exceeded the secondary drinking-water standard of 300 micrograms per liter.

  12. Using stable isotopes and multi-spatial variable parameters in characterising the karstic aquifer of the Ajloun area, NW-Jordan - A case study of the Tanour and Rasoun springs

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Ptak, Thomas; Licha, Tobias; Toll, Mathias; Margane, Armin; Sauter, Martin

    2015-04-01

    Key words: Karst systems, Groundwater vulnerability, Stable isotopes, Jordan. Water resources are extremely scarce in Jordan, which is considered as one of the poorest countries in the world with respect to water resources availability (UNDP 2014), with more than 90% of the country receiving less than 200 mm/year of rainfall (Al Kharadsheh et al. 2012). The most important aquifer for drinking-water purposes in Jordan is the upper Cretaceous limestone aquifer. The karstic springs of Tanour and Rasoun, located in the Ajloun governorate around 75 kilometres northwest of the capital of Amman, have been selected for this study. These springs are the main source for the local domestic water supply, with an average discharge between the years 2000 and 2012 of 200 m3/h and 60 m3/h, respectively (MWI, 2013). During the past few years, the water supply from these two springs had to be discontinued due to high contamination of the groundwater either by microbiological contaminants or by wastewater from local olive oil presses. This wastewater is locally called 'Zeebar'. Understanding of the karst aquifer system, the pathways and movement within the epikarst, and estimation of the travel and residence time within the aquifer is important for managing and evaluating the pollution risk, which affects the usability of groundwater for drinking purposes. For a better understanding of the karstic system and its behaviour, different methods are applied: 1. Analysis of the stable isotope composition of δ2H and δ18O during the winter season for both (a) Tanour and Rasoun groundwater, and (b) rainfall samples collected from several locations at different elevations within the catchment. 2. Analysis of major ion concentrations in groundwater of the Tanour and Rasoun springs. 3. Long-term measurements of different physico-chemical parameters from the Tanour and Rasoun springs (temperature, conductivity, turbidity, TOC, etc.) using multiparameter probes with telemetric data transfer. 4. Application of a travel time-based groundwater vulnerability method, and other different groundwater vulnerability methods for karst systems. The resulting data will be processed and used as spatially variable parameters for determining the karst aquifer characteristics within the study area. The springs show a rapid response to rainfall events which reflects a fast travel time and short residence time in the karst aquifer. References - Al Kharadsheh E, Akroush S and Mazahreh S (2012) Land Degradation in Jordan - Review of Knowledge Resources, International Center for Agricultural Research in the Dry Areas (ICARDA), OASIS Country Report 1. - MWI - Ministry of Water and Irrigation (2013) Discharge Data for Tanour and Rasoun Springs, Water Information System, National Master Plan Directorate, Amman, Jordan. - UNDP (United Nations Development Programme) (2014, September) About Jordan, http://www.jo.undp.org/content/jordan/en/home/countryinfo/

  13. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.

    PubMed

    Gong, Gordon; Mattevada, Sravan; O'Bryant, Sid E

    2014-04-01

    Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10µg/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (p<0.0001). Correlation coefficient was significantly lower with cokriging than any other methods (p<0.006) for wells in Texas, east Texas or the Edwards aquifer. Correlation coefficient was significantly greater for wells in southwestern Texas Panhandle than in east Texas, and was higher for wells in Ogallala aquifer than in Edwards aquifer (p<0.0001) regardless of interpolation methods. In regression analysis, the best models are when well depth and/or elevation were entered into the model as covariates regardless of area/aquifer or interpolation methods, and models with IDW are better than kriging in any area/aquifer. In conclusion, the accuracy in estimating groundwater arsenic level depends on both interpolation methods and wells' geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular. Published by Elsevier Inc.

  14. Construction of a hydrologic model for estimating Wadi runoff and ground water recharge in the Eastern Desert, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheith, H.; Sultan, M.; Environmental Research

    2002-06-10

    We constructed a hydrologic model to estimate the groundwater recharge rate for alluvial aquifers of the Eastern Desert from sporadic precipitation over the Red Sea hills. To estimate initial losses over sub-basins, transmission losses through channel routing, and downstream runoff, we developed an integrated model combining spatial rainfall distribution, an appropriate basin unit hydrograph, and appropriate infiltration parameters. Watersheds and stream networks identified from digital terrain elevation data were verified by comparison with co-registered Landsat thematic mapper scenes and geologic maps. Records of a November 1994 storm event acquired from rain gauges along the Nile River and the Red Seamore » shore were used to generate a spatial precipitation distribution for the study area. A 2 hour design hyetograph was adopted from rain gauge data for the 1994 flood event. The model was tested against records from the November 1994 flood event at the outlets of the Tarfa and Hammamat watersheds. Groundwater recharge rates were estimated for the alluvial aquifers within the major watersheds of the north Eastern Desert. We estimated that during the 1994 flood event, the ground water recharge through transmission losses ranged from 21 to 31% (Tarfa: 15.8 x 10{sup 6} m{sup 3}; Asyuti: 20 x 10{sup 6} m{sup 3}, Qena: 49 x 10{sup 6} m{sup 3}, Hammamat: 59 x10{sup 6} m{sup 3}) of the precipitated volume. The initial losses ranged from 65 to 77%. Only 3-7% of the precipitation reached the watershed outlets. Archival data show that rainfall events of the size of the November 1994 storm or larger occur every 40 months; thus, the annual recharge rates for the Tarfa, Asyuti, Qena, and Hammamat alluvial aquifers are estimated at 4.7 x 10{sup 6} m{sup 3}, 6 x 10{sup 6} m{sup 3}, 14.7 x 10{sup 6} m{sup 3}, and 17.7 x10{sup 6} m{sup 3}, respectively. Implications for the use of these renewable ground waters and similar water resources in other arid areas of Egypt and in neighboring countries are clear.« less

  15. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    USGS Publications Warehouse

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles initially entrapped in the aquifer matrix. Theoretical gas dissolution rates, coupled with field evidence of a decline iin total dissolved-gas pressure and dissolved oxygen from nearby monitoring wells, support the timing of this gas dissipation.

  16. Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured-rock aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Lacombe, Pierre J.; Bradley, Paul M.

    2012-01-01

    Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation–cis-dichloroethene (cis-DCE) and chloride–using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis-DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump-and-treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009.

  17. Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands

    USGS Publications Warehouse

    Hejazian, Mehrdad; Gurdak, Jason J.; Swarzenski, Peter W.; Odigie, Kingsley; Storlazzi, Curt

    2017-01-01

    Freshwater resources on low-lying atoll islands are highly vulnerable to climate change and sea-level rise. In addition to rainwater catchment, groundwater in the freshwater lens is a critically important water resource on many atoll islands, especially during drought. Although many atolls have high annual rainfall rates, dense natural vegetation and high evapotranspiration rates can limit recharge to the freshwater lens. Here we evaluate the effects of land-use/land-cover change and managed aquifer recharge on the hydrogeochemistry and supply of groundwater on Roi-Namur Island, Republic of the Marshall Islands. Roi-Namur is an artificially conjoined island that has similar hydrogeology on the Roi and Namur lobes, but has contrasting land-use/land-cover and managed aquifer recharge only on Roi. Vegetation removal and managed aquifer recharge operations have resulted in an estimated 8.6 x 105 m3 of potable groundwater in the freshwater lens on Roi, compared to only 1.6 x 104 m3 on Namur. We use groundwater samples from a suite of 33 vertically nested monitoring wells, statistical testing, and geochemical modeling using PHREEQC to show that the differences in land-use/land-cover and managed aquifer recharge on Roi and Namur have a statistically significant effect on several groundwater-quality parameters and the controlling geochemical processes. Results also indicate a seven-fold reduction in the dissolution of carbonate rock in the freshwater lens and overlying vadose zone of Roi compared to Namur. Mixing of seawater and the freshwater lens is a more dominant hydrogeochemical process on Roi because of the greater recharge and flushing of the aquifer with freshwater as compared to Namur. In contrast, equilibrium processes and dissolution-precipitation non-equilibrium reactions are more dominant on Namur because of the longer residence times relative to the rate of geochemical reactions. Findings from Roi-Namur Island support selective land-use/land-cover change and managed aquifer recharge as a promising management approach for communities on other low-lying atoll islands to increase the resilience of their groundwater supplies and help them adapt to future climate change related stresses.

  18. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  19. Dual-Screened Vertical Circulation Wells for Groundwater Lowering in Unconfined Aquifers.

    PubMed

    Jin, Yulan; Holzbecher, Ekkehard; Sauter, Martin

    2016-01-01

    A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free-surface, by coupling the arbitrary Lagrangian-Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity. © 2015, National Ground Water Association.

  20. Predicting the effect of deep-rooted hybrid poplars on the groundwater flow system at a large-scale phytoremediation site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, J. J.; Negri, M. C.; Hinchman, R. R.

    2001-03-01

    Estimating the effect of phreatophytes on the groundwater flow field is critical in the design or evaluation of a phytoremediation system. Complex hydrogeological conditions and the transient water use rates of trees require the application of numerical modeling to address such issues as hydraulic containment, seasonality, and system design. In 1999, 809 hybrid poplars and willows were planted to phytoremediate the 317 and 319 Areas of Argonne National Laboratory near Chicago, Illinois. Contaminants of concern are volatile organic compounds and tritium. The site hydrogeology is a complex framework of glacial tills interlaced with sands, gravels, and silts of varying character,more » thickness, and lateral extent. A total of 420 poplars were installed using a technology to direct the roots through a 25-ft (8-m)-thick till to a contaminated aquifer. Numerical modeling was used to simulate the effect of the deep-rooted poplars on this aquifer of concern. Initially, the best estimates of input parameters and boundary conditions were determined to provide a suitable match to historical transient ground-water flow conditions. The model was applied to calculate the future effect of the developing deep-rooted poplars over a 6 year period. The first 3 years represent the development period of the trees. In the fourth year, canopy closure is expected to occur; modeling continues through the first 3 years of the mature plantation. Monthly estimates of water use by the trees are incorporated. The modeling suggested that the mature trees in the plantation design will provide a large degree of containment of groundwater from the upgradient source areas, despite the seasonal nature of the trees' water consumption. The results indicate the likely areas where seasonal dewatering of the aquifer may limit the availability of water for the trees. The modeling also provided estimates of the residence time of groundwater in the geochemically altered rhizosphere of the plantation.« less

  1. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    USGS Publications Warehouse

    Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.

    2006-01-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.

  2. Improving a regional model using reduced complexity and parameter estimation

    USGS Publications Warehouse

    Kelson, Victor A.; Hunt, Randall J.; Haitjema, Henk M.

    2002-01-01

    The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.

  3. Improving a regional model using reduced complexity and parameter estimation.

    PubMed

    Kelson, Victor A; Hunt, Randall J; Haitjema, Henk M

    2002-01-01

    The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.

  4. Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set

    USGS Publications Warehouse

    Eggleston, J.R.; Rojstaczer, S.A.; Peirce, J.J.

    1996-01-01

    This study evaluates commonly used geostatistical methods to assess reproduction of hydraulic conductivity (K) structure and sensitivity under limiting amounts of data. Extensive conductivity measurements from the Cape Cod sand and gravel aquifer are used to evaluate two geostatistical estimation methods, conditional mean as an estimate and ordinary kriging, and two stochastic simulation methods, simulated annealing and sequential Gaussian simulation. Our results indicate that for relatively homogeneous sand and gravel aquifers such as the Cape Cod aquifer, neither estimation methods nor stochastic simulation methods give highly accurate point predictions of hydraulic conductivity despite the high density of collected data. Although the stochastic simulation methods yielded higher errors than the estimation methods, the stochastic simulation methods yielded better reproduction of the measured In (K) distribution and better reproduction of local contrasts in In (K). The inability of kriging to reproduce high In (K) values, as reaffirmed by this study, provides a strong instigation for choosing stochastic simulation methods to generate conductivity fields when performing fine-scale contaminant transport modeling. Results also indicate that estimation error is relatively insensitive to the number of hydraulic conductivity measurements so long as more than a threshold number of data are used to condition the realizations. This threshold occurs for the Cape Cod site when there are approximately three conductivity measurements per integral volume. The lack of improvement with additional data suggests that although fine-scale hydraulic conductivity structure is evident in the variogram, it is not accurately reproduced by geostatistical estimation methods. If the Cape Cod aquifer spatial conductivity characteristics are indicative of other sand and gravel deposits, then the results on predictive error versus data collection obtained here have significant practical consequences for site characterization. Heavily sampled sand and gravel aquifers, such as Cape Cod and Borden, may have large amounts of redundant data, while in more common real world settings, our results suggest that denser data collection will likely improve understanding of permeability structure.

  5. The use of pneumatically generated water pressure signals for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Fort, M.; Roberts, R.; Chace, D.

    2013-12-01

    The use of pneumatically generated pressure signals for aquifer characterization Hydraulic tests are the most reliable method of obtaining estimates of hydrologic properties, such as conductivity, that are essential for flow and transport modeling. The use of a sinusoidal signal for hydraulic testing is well established, with Streltsova (1988), Rasmussen (2003) and others having developed analytic solutions. Sinusoidal tests provide a unique easily distinguished signal that reduces ambiguity during analysis and we show that a sinusoidal pressure signal propagates farther into the formation than a standard slug-test signal. If a sinusoidal test is combined with a slug and/or a constant rate test, it can further reduce uncertainty in the estimated parameter values. We demonstrate how pneumatic pressure can be used to generate all three of these signals. By positioning pressure transducers both below the water level and in the head space above the water, we can monitor the total pressure acting on the formation and the changes in water level. From the changes in water level, it is possible to calculate the flow rate in and out of the well, assuming that the well diameter and water density are known. Using gas flow controllers with a Supervisory Control And Data Acquisition (SCADA) system we are able to precisely control the pressures in the well. The use of pneumatic pressure has the advantage that it requires less equipment (no pumps) and produces no water. We also show how the numerical well test analysis program nSIGHTS can be used to analyze all three types of tests simultaneously and to assess the relative contribution of each type of test to the parameter estimation. nSIGHTS was recently released as open source by Sandia National Laboratories and is available for free.

  6. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  7. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  8. Cross-borehole slug test analysis in a fractured limestone aquifer

    NASA Astrophysics Data System (ADS)

    Audouin, Olivier; Bodin, Jacques

    2008-01-01

    SummaryThis work proposes new semi-analytical solutions for the interpretation of cross-borehole slug tests in fractured media. Our model is an extension of a previous work by Barker [Barker, J.A., 1988. A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research 24 (10), 1796-1804; Butler Jr., J.J., Zhan X., 2004. Hydraulic tests in highly permeable aquifers. Water Resources Research 40, W12402. doi:10.1029/2003/WR002998]. It includes inertial effects at both test and observation wells and a fractional flow dimension in the aquifer. The model has five fitting parameters: flow dimension n, hydraulic conductivity K, specific storage coefficient Ss, and effective lengths of test well Le and of observation well Leo. The results of a sensitivity analysis show that the most sensitive parameter is the flow dimension n. The model sensitivity to other parameters may be ranked as follows: K > Le ˜ Leo > Ss. The sensitivity to aquifer storage remains one or two orders of magnitude lower than that to other parameters. The model has been coupled to an automatic inversion algorithm for facilitating the interpretation of real field data. This inversion algorithm is based on a Gauss-Newton optimization procedure conditioned by re-scaled sensitivities. It has been used to interpret successfully cross-borehole slug test data from the Hydrogeological Experimental Site (HES) of Poitiers, France, consisting of fractured and karstic limestones. HES data provide flow dimension values ranging between 1.6 and 2.5, and hydraulic conductivity values ranging between 4.4 × 10 -5 and 7.7 × 10 -4 m s -1. These values are consistent with previous interpretations of single-well slug tests. The results of the sensitivity analysis are confirmed by calculations of relative errors on parameter estimates, which show that accuracy on n and K is below 20% and that on Ss is about one order of magnitude. The K-values interpreted from cross-borehole slug tests are one order of magnitude higher than those previously interpreted from interference pumping tests. These findings suggest that cross-borehole slug tests focus on preferential flowpath networks made by fractures and karstic channels, i.e. the head perturbation induced by a slug test propagates only through those flowpaths with the lowest hydraulic resistance. As a result, cross-borehole slug tests are expected to identify the hydrodynamic properties of karstic-channels and fracture flowpaths, and may be considered as complementary to pumping tests which more likely provide bulk properties of the whole fracture/karstic-channel/matrix system.

  9. Simulating groundwater-peatland interactions in depression and slope peatlands in southern Quebec (Canada)

    NASA Astrophysics Data System (ADS)

    Larocque, M.; Quillet, A.; Paniconi, C.

    2013-12-01

    It is crucial to understand hydrogeological interactions between aquifers and peatlands in order to grasp the influence of aquifers in peatland water budgets, to understand the role of groundwater in the evolution or organic matter deposition, and to quantify how a peatland can sustain groundwater levels in a superficial aquifer. These questions have rarely been addressed in literature and there is currently no understanding of which process dominates aquifer-peatland exchanges in different geomorphological settings. The main purpose of the study was to use groundwater flow modeling to answer these questions in two contrasted geological contexts of southern Quebec (Canada). During a three-year study, six peatlands have been instrumented in the Becancour (Centre-du-Quebec) and Amos (Abitibi-Temiscamingue) regions of southern Quebec (Canada). At each site, either one or two transects of six piezometer nests (at 1.20 m depth in the organic deposits and in the mineral deposits below the peat) have been installed, for a total of twelve aquifer-peatland transects of approximately 500 m. The stratigraphy and geometry of the peatland-aquifer system, as well as the hydrodynamic properties of the organic and mineral deposits have been measured at all sites. Groundwater levels have been recorded from autumn 2010 to summer 2012. The Becancour peatlands have developed in depressions while the Amos peatlands have developed through the paludification of esker slopes. The maximum peat thickness measured in the Bécancour peatlands is 6.4 m while it is 4.5 m in the Amos region. In both regions, peatlands are fringed by sandy deposits that extend at least partly under the organic deposits. The thickness of these underlying deposits is not well defined, but available data suggests a metric scale thickness in areas close to the adjacent superficial aquifer. Field data is used to create 2D numerical models in Modflow to simulate flow between the shallow groundwater and the peatland on four peatland transects considered representative of the overall variability observed at the field sites. The models are first calibrated to reproduce measured heads, head gradients and temporal variations. In order to assess typical flow patterns and exchanges, a global sensitivity analysis of the model are performed to identify which parameters and processes control the exchanged fluxes. Results show that for depression peatlands, exchanged aquifer-peatland fluxes occur on short distances near the peatland border. For slope peatlands, exchanged fluxes are distributed further inside the peatland. Local hydrostratigraphy as well as peat and mineral deposits hydraulic properties control aquifer-peatland exchanges. Peat recharge is a challenge to represent, but appears to have a similar effect on the four simulated peatlands. Based on the influence of each parameter on the flow, a graphical tool is proposed to help estimate the exchanges between groundwater and peatlands when limited data is available.

  10. Uncertainty Quantification and Risk Mitigation of CO2 Leakage in Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2013-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Using FOSM-Based Data Worth Analyses to Design Geophysical Surveys to Reduce Uncertainty in a Regional Groundwater Model Update

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; White, J.; Kress, W. H.; Clark, B. R.; Barlow, J.

    2016-12-01

    Hydrogeophysical surveys have become an integral part of understanding hydrogeological frameworks used in groundwater models. Regional models cover a large area where water well data is, at best, scattered and irregular. Since budgets are finite, priorities must be assigned to select optimal areas for geophysical surveys. For airborne electromagnetic (AEM) geophysical surveys, optimization of mapping depth and line spacing needs to take in account the objectives of the groundwater models. The approach discussed here uses a first-order, second-moment (FOSM) uncertainty analyses which assumes an approximate linear relation between model parameters and observations. This assumption allows FOSM analyses to be applied to estimate the value of increased parameter knowledge to reduce forecast uncertainty. FOSM is used to facilitate optimization of yet-to-be-completed geophysical surveying to reduce model forecast uncertainty. The main objective of geophysical surveying is assumed to estimate values and spatial variation in hydrologic parameters (i.e. hydraulic conductivity) as well as map lower permeability layers that influence the spatial distribution of recharge flux. The proposed data worth analysis was applied to Mississippi Embayment Regional Aquifer Study (MERAS) which is being updated. The objective of MERAS is to assess the ground-water availability (status and trends) of the Mississippi embayment aquifer system. The study area covers portions of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The active model grid covers approximately 70,000 square miles, and incorporates some 6,000 miles of major rivers and over 100,000 water wells. In the FOSM analysis, a dense network of pilot points was used to capture uncertainty in hydraulic conductivity and recharge. To simulate the effect of AEM flight lines, the prior uncertainty for hydraulic conductivity and recharge pilots along potential flight lines was reduced. The FOSM forecast uncertainty estimates were then recalculated and compared to the base forecast uncertainty estimates. The resulting reduction in forecast uncertainty is a measure of the effect on the model from the AEM survey. Iterations through this process, results in optimization of flight line location.

  12. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the 'recharge mound' is less distinct than might be found in an aquifer composed of finer materials. However, water levels recorded from piezometers in and around the wetland do show a higher water table than periods when the wetland was dry. The largest increases in water level occur between the wetland channel and Skunk Creek. The results of this study demonstrate that artificially recharged wetlands can be useful in recharging underlying aquifers and increasing water levels in these aquifers.

  13. Water from the Coastal Plain aquifers in the Washington, D.C., metropolitan area

    USGS Publications Warehouse

    Papadopulos, S.S.; Bennett, R.R.; Mack, F.K.; Trescott, P.C.

    1974-01-01

    A brief study of the Atlantic Coastal Plain aquifers in the vicinity of the Washington, D.C., metropolitan area was made, using available data, to estimate the water-supply potential of these aquifers and to determine the possibility of developing an emergency water supply during droughts. Assuming that the data available are representative, the study indicates that the water-supply potential of these aquifers, within an assumed 30-mile radius of Washington, D.C., is about 170 million gallons per day. That is, these aquifers, which are now furnishing an estimated 60 million gallons per day, could be developed to supply an additional 110 million gallons per day on a continuous basis. This quantity might be even larger if a significant amount of water is derived from leakage through finer grained confining beds, but further studies would be necessary to determine the amount of leakage and the long-term effects of large-scale continuous use. Furthermore, under intermittent pumping conditions, an assumed emergency supply of 100 million gallons per day could probably be developed from well fields within a 30-mile radius of Washington. An exploration and testing program would be necessary to assess the reliability of these preliminary estimates.

  14. Historical and potential groundwater drawdown in the Bruneau area, Owyhee County, southwestern Idaho

    USGS Publications Warehouse

    Adkins, Candice B.; Bartolino, James R.

    2012-01-01

    Geothermal seeps and springs in the Bruneau area in southwestern Idaho provide a vital but disappearing habitat for the Bruneau hot springsnail (Pyrgulopsis bruneauensis). In order to aid in conservation efforts, a two-part study was conducted (1) to determine trends in groundwater levels over time and (2) to simulate drawdown in aquifers that contribute to the geothermal seeps and springs along the Bruneau River. Seasonal and Regional Kendall tests for trends were used to determine water-level trends over a 20-year monitoring (1990–2010) period. Seasonal Kendall tests were used to calculate trends in groundwater-levels in 22 monitoring wells and indicated statistically significant changes in water level with trends ranging from 0.21 to 1.0 feet per year. Regional Kendall tests were used to calculate drawdown in categories of wells based on five criteria (well depth, distance from Indian Bathtub Spring, geologic unit, regional topographic valley, and temperature). Results from Regional Kendall tests indicate that slope of the trend (in feet per year) increased as a function of well depth; trends in water level as a function of other categories did not exhibit an obvious pattern based on distance from Indian Bathtub Spring, geologic unit, topographic valley, or temperature. Analytical solutions were used to simulate drawdown and recovery in wells using the Theis equation and a range of hydraulic parameters. Drawdown effects were determined by changing the storativity, transmissivity, and flow values over a hypothetical timeline. For example, estimates projected that after 20 years of pumping (at an assumed storativity of 0.002, a transmissivity of 980,000 feet squared per day, and a flow of 100 acre-feet per year), 1 foot of drawdown in the volcanic-rock aquifers would not be detected; however, other estimates using the same time frame but different hydraulic parameters (storativity of 0.001, transmissivity of 13,000 feet squared per day, and 610 acre-feet per year) determined 1 foot of drawdown to be detected as far as 29 miles from the hypothetical pumping well. A sensitivity analysis was performed to determine the effect of changing one hydraulic parameter while keeping the others constant. Many assumptions had to be made about properties of the aquifer in order to calculate effects of drawdown on geothermal seeps and springs. These analyses estimate pumping effects over time; the recovery of groundwater levels would likely take significantly longer to observe than the effects from pumping.

  15. Generalized hydrogeology and ground-water budget for the C Aquifer, Little Colorado River Basin and parts of the Verde and Salt River Basins, Arizona and New Mexico

    USGS Publications Warehouse

    Hart, Robert J.; Ward, John J.; Bills, Donald J.; Flynn, Marilyn E.

    2002-01-01

    The C aquifer underlies the Little Colorado River Basin and parts of the Verde and Salt River Basins and is named for the primary water-bearing rock unit of the aquifer, the Coconino Sandstone. The areal extent of this aquifer is more than 27,000 square miles. More than 1,000 well and spring sites were identified in the U.S. Geological Survey database for the C aquifer in Arizona and New Mexico. The C aquifer is the most productive aquifer in the Little Colorado River Basin. The Little Colorado River is the primary surface-water feature in the area, and it has a direct hydraulic connection with the C aquifer in some areas. Spring discharge as base flow from the C aquifer occurs predominantly in the lower 13 miles of the Little Colorado River subsequent to downward leakage into the deeper Redwall-Muav Limestone aquifer. Ground-water mounds or divides exist along the southern and northeastern boundaries of the Little Colorado River Basin. The ground-water divides are significant boundaries of the C aquifer; however, the location and persistence of the divides potentially can be affected by ground-water withdrawals. Ground-water development in the C aquifer has increased steadily since the 1940s because population growth has produced an increased need for agricultural, industrial, and public water supply. Ground-water pumpage from the C aquifer during 1995 was about 140,000 acre-feet. Ground-water budget components for the C aquifer were evaluated using measured or estimated discharge values. The system was assumed to be in a steady-state condition with respect to natural recharge and discharge, and the stability of discharge from major springs during the past several decades supported the steady-state assumption. Downward leakage to the Redwall-Muav Limestone aquifer is a major discharge component for the ground-water budget. Discharge from the C aquifer is estimated to be 319,000 acre-feet per year.

  16. Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers.

    PubMed

    Marçais, Jean; Gauvain, Alexandre; Labasque, Thierry; Abbott, Benjamin W; Pinay, Gilles; Aquilina, Luc; Chabaux, François; Viville, Daniel; de Dreuzy, Jean-Raynald

    2018-09-15

    Estimating intermediate water residence times (a few years to a century) in shallow aquifers is critical to quantifying groundwater vulnerability to nutrient loading and estimating realistic recovery timelines. While intermediate groundwater residence times are currently determined with atmospheric tracers such as chlorofluorocarbons (CFCs), these analyses are costly and would benefit from other tracer approaches to compensate for the decreasing resolution of CFC methods in the 5-20 years range. In this context, we developed a framework to assess the capacity of dissolved silica (DSi) to inform residence times in shallow aquifers. We calibrated silicate weathering rates with CFCs from multiple wells in five crystalline aquifers in Brittany and in the Vosges Mountains (France). DSi and CFCs were complementary in determining apparent weathering reactions and residence time distributions (RTDs) in shallow aquifers. Silicate weathering rates were surprisingly similar among Brittany aquifers, varying from 0.20 to 0.23 mg L -1  yr -1 with a coefficient of variation of 7%, except for the aquifer where significant groundwater abstraction occurred, where we observed a weathering rate of 0.31 mg L -1  yr -1 . The silicate weathering rate was lower for the aquifer in the Vosges Mountains (0.12 mg L -1  yr -1 ), potentially due to differences in climate and anthropogenic solute loading. Overall, these optimized silicate weathering rates are consistent with previously published studies with similar apparent ages range. The consistency in silicate weathering rates suggests that DSi could be a robust and cheap proxy of mean residence times for recent groundwater (5-100 years) at the regional scale. This methodology could allow quantification of seasonal groundwater contributions to streams, estimation of residence times in the unsaturated zone and improve assessment of aquifer vulnerability to anthropogenic pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts to estimate sustainable yield using simulated 1997 hydraulic heads as initial heads in Scenario 1 and 100 percent of the baseline 1990-1997 withdrawal rate as the lower specified limit in Scenario 2 led to infeasible results. Sustainable yield was estimated successfully for scenario 3 with three variations on the upper limit of withdrawal rates. Additionally, ground-water withdrawals in Union County were fixed at 35.6 percent of the baseline 1990-1997 withdrawal rate in Scenario 3. These fixed withdrawals are recognized by the Arkansas Soil and Water Conservation Commission to be sustainable as determined in a previous study. The optimized solutions maintained hydraulic heads at or above the top of the Sparta Sand (except in the outcrop areas where unconfined conditions occur) and streamflow within the outcrop areas was maintained at or above minimum levels. Scenario 3 used limits of 100, 150, and 200 percent of baseline 1990-1997 withdrawal rates for the upper specified limit on 1,119 withdrawal decision variables (managed wells) resulting in estimated sustainable yields ranging from 11.6 to 13.2 Mft3/d in Arkansas and 0.3 to 0.5 Mft3/d in Louisiana. Assuming the total 2 Conjunctive-Use Optimization Model and Sustainable-Yield Estimation for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana water demand is equal to the baseline 1990-1997 withdrawal rates, the sustainable yields estimated from the three scenarios only provide 52 to 59 percent of the total ground-water demand for Arkansas; the remainder is defined as unmet demand that could be obtained from large, sustainable surface-water withdrawals.

  18. Recharge of valley-fill aquifers in the glaciated northeast from upland runoff

    USGS Publications Warehouse

    Williams, J.H.; Morrissey, D.J.

    1996-01-01

    Channeled and unchanneled runoff from till-covered bedrock uplands is a major source of recharge to valley-fill aquifers in the glaciated northeastern United States. Streamflow measurements and model simulation of average steady-state conditions indicate that upland runoff accounted for more recharge to two valley-fill aquifers in moderately high topographic-relief settings than did direct infiltration of precipitation. Recharge from upland runoff to a modeled valley-fill aquifer in an area of lower relief was significant but less than that from direct infiltration of precipitation. The amount of upland runoff available for recharging valley-fill aquifers in the glaciated Northeast ranges from about 1.5 to 2.5 cubic feet per second per square mile of drainage area that borders the aquifer. Stream losses from tributaries that drain the uplands commonly range from 0.3 to 1.5 cubic feet per second per 1,000 feet of wetted channel where the tributaries cross alluvial fans in the main valleys. Recharge of valley-fill aquifers from channeled runoff was estimated from measured losses and average runoff rates and was represented in aquifer models as specified fluxes or simulated by head-dependent fluxes with streamflow routing in the model cells that represent the tributary streams. Unchanneled upland runoff, which includes overland and subsurface flow, recharges the valley-fill aquifers at the contact between the aquifer and uplands near the base of the bordering till-covered hillslopes. Recharge from unchanneled runoff was estimated from average runoff rates and the hillslope area that borders the aquifer and was represented as specified fluxes to model-boundary cells along the valley walls.

  19. Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008

    USGS Publications Warehouse

    Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.

    2008-01-01

    This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.

  20. Availability of water from the Outwash Aquifer, Marion County, Indiana

    USGS Publications Warehouse

    Smith, B.S.

    1983-01-01

    The outwash aquifer in Marion County, Indiana is a continuous, unconfined sand and gravel deposit containing isolated boulder, till, silt, and clay deposits along the White River, Fall Creek, and Eagle Creek. Flow in the aquifer is from the boundaries of the aquifer with the Tipton till plain toward the streams and major pumping centers in the aquifer. A two-dimensional, finite-difference model of the outwash aquifer was calibrated to water levels of October 6 to 10, 1980 and used to estimate availability of water in the aquifer. A drawdown limit of 50-percent saturated thickness applied to 78 simulated-pumping wells assumed to be 1 foot in diameter produced 97 cubic feet per second from the outwash aquifer. Streamflow reductions caused by 97 cubic feet per second simulated pumpage and constant-flux boundaries were estimated to be 85 cubic feet per second in the White River and 12 cubic feet per second in Fall Creek. In comparison, the 7-day, 10-year low flows were 83 cubic feet per second in the White River near Nora and 23 cubic feet per second in Fall Creek at Millersville. Simulated pumpage of 115 cubic feet per second and constant-flux boundaries produced streamflow reductions of 101 cubic feet per second on the White River and 13 cubic feet per second on Fall Creek. (USGS)

  1. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic conductivity of the lower layer over that of the unconfined aquifer) is smaller than 0.1. The present solution is compared with the numerical solution from FEMWATER for validation and the results indicate good match between these two solutions. Finally, the present solution is applied to a set of field drawdown data obtained from a CHT for the estimation of hydrogeologic parameters.

  2. Simulation of subsurface storage and recovery of treated effluent injected in a saline aquifer, St. Petersburg, Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    1996-01-01

    The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion increases, (3) high formation permeability favors low recovery efficiencies, and (4) porosity and anisotropy have little effect on recovery efficiencies. In several hypothetical tests, the recovery efficiency fluctuated between about 4 and 76 percent. The sensitivity of recovery efficiency to variations in the rate and duration of injection (0.25, 0.50, 1.0, and 2.0 million gallons per day) and withdrawal cycles (60, 180, and 365 days) was determined. For a given operational scheme, recovery efficiency increased as the injection and withdrawal rate is increased. Model results indicate that recovery efficiencies of between about 23 and 37 percent can be obtained for different subsurface storage and recovery schemes. Five successive injection, storage, and recovery cycles can increase the recovery efficiency to about 46 to 62 percent. There is a larger rate of increase at smaller rates than at larger rates. Over the range of variables studied, recovery efficiency improved with successive cycles, increasing rapidly during initial cycles tyhen more slowly at later cycles. The operation of a single well used for subsurface storage and recovery appears to be technically feasible under moderately favorable conditions; however, the recovery efficiency is higly dependent upon local physical and operational parameters. A combination of hydraulic, chemical, and operational parameters that minimize dispersion and buoyancy flow, maximizes recovery efficiency. Recovery efficiency was optimal where resident formation water density and permeabilities were relatively similar and low.

  3. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  4. Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model

    NASA Astrophysics Data System (ADS)

    Toro, J.; Padilla, I. Y.

    2017-12-01

    Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.

  5. Identifying Aquifer Heterogeneities using the Level Set Method

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Vesselinov, V. V.; Lei, H.

    2016-12-01

    Material interfaces between hydrostatigraphic units (HSU) with contrasting aquifer parameters (e.g., strata and facies with different hydraulic conductivity) have a great impact on flow and contaminant transport in subsurface. However, the identification of HSU shape in the subsurface is challenging and typically relies on tomographic approaches where a series of steady-state/transient head measurements at spatially distributed observation locations are analyzed using inverse models. In this study, we developed a mathematically rigorous approach for identifying material interfaces among any arbitrary number of HSUs using the level set method. The approach has been tested first with several synthetic cases, where the true spatial distribution of HSUs was assumed to be known and the head measurements were taken from the flow simulation with the true parameter fields. These synthetic inversion examples demonstrate that the level set method is capable of characterizing the spatial distribution of the heterogeneous. We then applied the methodology to a large-scale problem in which the spatial distribution of pumping wells and observation well screens is consistent with the actual aquifer contamination (chromium) site at the Los Alamos National Laboratory (LANL). In this way, we test the applicability of the methodology at an actual site. We also present preliminary results using the actual LANL site data. We also investigated the impact of the number of pumping/observation wells and the drawdown observation frequencies/intervals on the quality of the inversion results. We also examined the uncertainties associated with the estimated HSU shapes, and the accuracy of the results under different hydraulic-conductivity contrasts between the HSU's.

  6. Geology and hydrogeology of Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad, Bee and Goliad counties, Texas

    USGS Publications Warehouse

    Snyder, G.L.

    1995-01-01

    Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.

  7. Geohydrology of the alluvial and terrace deposits of the North Canadian River from Oklahoma City to Eufaula Lake, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1989-01-01

    This investigation was undertaken to describe the geohydrology of the alluvial and terrace deposits along the North Canadian River between Lake Overholser and Eufaula Lake, an area of about 1,835 square miles, and to determine the maximum annual yield of ground water. A 1982 water-level map of the alluvial and terrace aquifer was prepared using field data and published records. Data from test holes and other data from the files of the U.S. Geological Survey and the Oklahoma Water Resources Board were used to establish the approximate thickness of the alluvial and terrace deposits. The North Canadian River from Lake Overholser, near Oklahoma City, to Eufaula Lake is paralleled by a 2- to 3-mile wide band of alluvium. Scattered terrace deposits on either side of the alluvium reach an extreme width of 8 miles. Rocks of Permian age bound the alluvial and terrace deposits from the west to the midpoint of the study area; Pennsylvanian rocks bound the alluvial and terrace deposits from that point eastward. Three major aquifers are present in the study area: the alluvial and terrace aquifer, consisting of alluvium and terrace deposits of Quaternary age in a narrow band on either side of the North Canadian River; the Garber-Wellington aquifer of Permian age, consisting of an upper unconfined zone and a lower confined zone separated by relatively impermeable shales; and the Ada-Vamoosa aquifer of Pennsylvanian age. At locations were the alluvial and terrace aquifer overlies either of the other aquifers, there is hydraulic continuity between the alluvial and terrace aquifer and the other aquifers, and water levels are the same. Most large-scale municipal and industrial pumping from the Garber-Wellington aquifer is from the lower zone and has little discernible effect upon the alluvial and terrace aquifer. The total estimated base flow of the North Canadian River for the studied reach is 264 cubic feet per second. Evapotranspiration from the basin in August is about 60 cubic feet per second for the North Canadian River from Lake Overholser to a measuring station above Eufaula Lake. Estimated recharge rates to the alluvial and terrace aquifer in the basin range from 1.7 inches at the west edge of the study area to 7.0 inches at the east edge. Total permitted withdrawal from the aquifer, according to records of the Oklahoma Water Resources Board, ranged from 2,107 acre-feet per year in 1942 to about 21,415 acre-feet per year in 1982. Simulations of the alluvial and terrace aquifer from Lake Overholser to Eufaula Lake were made using a finite-difference model developed by McDonald and Harbaugh (1984). The area of the aquifers was subdivided into a finite-difference grid having 30 rows and 57 columns with cells measuring 1 mile in the north-south direction and 2 miles in the east-west direction. The model was calibrated in two steps: A steady-state calibration simulated head distribution prior to extensive pumping of the aquifer in 1942, and a transient calibration simulated head distribution after extensive pumpage. The final horizontal hydraulic conductivity used for the alluvial and terrace aquifer was 0.0036 feet per second (310 feet per day) at all locations. The recharge rate for the alluvial and terrace aquifer ranged from 1.7 inch per year in the west to 7.0 inches per year in the east, and averaged about 3.3 inches per year. A specific yield of 15 percent was used for the transient simulation. Permitted pumpage for 1942 through 1982 was used in the digital model to estimate the annual volume of water in storage in the alluvial and terrace aquifer for the years for this time period. The 1982 permitted pumpage rates were used for projections for 1983 to 2020. The estimated volume of water in storage was 1,940,000 acre-feet in 1982. Because the estimated recharge rate is equal to the allowed pumpage rate in 1982, the projected volume of water in storage in both 1993 and 2020 was 1,890,000 acre-feet.

  8. Hydrogeology and sources of recharge to the Buffalo and Wahpeton aquifers in the southern part of the Red River of the North drainage basin, west-central Minnesota and southeastern North Dakota

    USGS Publications Warehouse

    Schoenberg, Michael

    1998-01-01

    The potential sources of recharge to the Wahpeton aquifers investigated were the Red River of the North, and adjacent hydro geologic units. The volume of ground water pumped from the Wahpeton aquifers provides an estimate of the upper limit for the volume of recharge to the aquifer. Based on pumpage from all of the Wapheton aquifers from 1990 to 1993, the upper limit is about 580 million gallons per year (2.4 x 105 cubic feet per day).

  9. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.

  10. Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona

    USGS Publications Warehouse

    Lopes, Thomas J.; Hoffmann, John P.

    1997-01-01

    The Navajo Nation and Hopi Tribe of the Black Mesa area, Arizona, depend on ground water from the N aquifer to meet most tribal and industrial needs. Increasing use of this aquifer is creating concerns about possible adverse effects of increased ground-water withdrawals on the water resources of the region. A thorough understanding of the N aquifer is necessary to assess the aquifer's response to ground-water withdrawals. This study used geochemical techniques as an independent means of improving the conceptual model of ground-water flow in the N aquifer and to estimate recharge rates and hydraulic conductivity. Ground water flows in a south-southeastward direction from the recharge area around Shonto into the confined part of the N aquifer underneath Black Mesa. Ground-water flow paths diverge in the confined part of the aquifer to the northeast and south. The N aquifer thins to extinction south of Black Mesa. This discontinuity could force ground water to diverge along paths of least resistance. Ground water discharges from the confined part of the aquifer into Laguna Creek and Moenkopi Wash and from springs southwest of Kykotsmovi and southeast of Rough Rock after a residence time of about 35,000 years or more. Recent recharge along the periphery of Black Mesa mixes with older ground water that discharges from the confined part of the aquifer and flows away from Black Mesa. Dissolved-ion concentrations, ratios of dissolved ions, dissolved-gas concentrations, tritium, carbon-13, and chlorine-36 data indicate that water in the overlying D aquifer could be leaking into the confined part of the N aquifer in the southeastern part of Black Mesa. The boundary between the leaky and nonleaky zones is defined roughly by a line from Rough Rock to Second Mesa and separates ground waters that have significantly different chemistries. The Dakota Sandstone and Entrada Formation of the D aquifer could be the sources of leakage. Adjusted radiocarbon ground-water ages and data on isotopes of oxygen and hydrogen indicate that more than 90 percent of the water in the confined part of the N aquifer is older than 10,000 years and was recharged during glacial periods. Estimates of recharge rates made on the basis of ground-water ages, aquifer thicknesses, and assumed porosities indicate that the annual average recharge rate in the northwestern part of the study area during the glacial periods was about four times the average annual rate of the past 10,000 years, and that recharge rates for the past 10,000 years are less than modern recharge rates assumed in a previous study. Estimates of horizontal hydraulic conductivity were 0.95 and 1.16 feet per day for the northeast and southwest flow paths, respectively. These values are within the range of hydraulic conductivities calculated from aquifer tests, which ranged from 0.05 to 2.1 feet per day and averaged 0.65 foot per day.

  11. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Giorgio; Barbieri, Giulio; Vernier, Antonio; Carletti, Alberto; Demurtas, Nicola; Pinna, Rosanna; Pittalis, Daniele

    2009-12-01

    SummaryThe paper describes the methodological and innovative approach, which aims to evaluate the potential risk of nitrate pollution in aquifers from agricultural practices by combining intrinsic aquifer vulnerability to contamination, according to the SINTACS R5 method, with agricultural nitrates hazard assessment, according to the IPNOA index. The proposed parametric model adopts a geographically based integrated evaluation system, comprising qualitative and semi-quantitative indicators. In some cases, the authors have modified this model, revising and adjusting scores and weights of the parameter to account for the different environmental conditions, and calibrating accordingly. The method has been successfully implemented and validated in the pilot area of the Alghero coastal plain (northwestern Sardinia, Italy) where aquifers with high productivity are present. The classes with a major score (high potential risk) are in the central part of the plain, in correspondence with the most productive aquifers, where most actual or potential pollution sources are concentrated. These are mainly represented by intensive agricultural activities, by industrial agglomerate and diffused urbanisation. For calibrating the model and optimizing and/or weighting the examined factors, the modelling results were validated by comparison with groundwater quality data, in particular nitrate content, and with the potential pollution sources census data. The parametric method is a popular approach to groundwater vulnerability assessment, in contrast to groundwater flow model and statistical method ones: it is, indeed, relatively inexpensive and straightforward, and use data commonly available or that can be estimated. The zoning of nitrate vulnerable areas provides regional authorities with a useful decision support tool for planning land-use properly managing groundwater and combating and/or mitigating desertification processes. However, a careful validation of the results is indispensable for reliable application.

  12. Distribution of Isotopic and Environmental Tracers in Groundwater, Northern Ada County, Southwestern Idaho

    USGS Publications Warehouse

    Adkins, Candice B.; Bartolino, James R.

    2010-01-01

    Residents of northern Ada County, Idaho, depend on groundwater for domestic and agricultural uses. The population of this area is growing rapidly and groundwater resources must be understood for future water-resource management. The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used a suite of isotopic and environmental tracers to gain a better understanding of groundwater ages, recharge sources, and flowpaths in northern Ada County. Thirteen wells were sampled between September and October 2009 for field parameters, major anions and cations, nutrients, oxygen and hydrogen isotopes, tritium, radiocarbon, chlorofluorocarbons, and dissolved gasses. Well depths ranged from 30 to 580 feet below land surface. Wells were grouped together based on their depth and geographic location into the following four categories: shallow aquifer, intermediate/deep aquifer, Willow Creek aquifer, and Dry Creek aquifer. Major cations and anions indicated calcium-bicarbonate and sodium-bicarbonate water types in the study area. Oxygen and hydrogen isotopes carried an oxygen-18 excess signature, possibly indicating recharge from evaporated sources or water-rock interactions in the subsurface. Chlorofluorocarbons detected modern (post-1940s) recharge in every well sampled; tritium data indicated modern water (post-1951) in seven, predominantly shallow wells. Nutrient concentrations tended to be greater in wells signaling recent recharge based on groundwater age dating, thus confirming the presence of recent recharge in these wells. Corrected radiocarbon results generated estimated residence times from modern to 5,100 years before present. Residence time tended to increase with depth, as confirmed by all three age-tracers. The disagreement among residence times indicates that samples were well-mixed and that the sampled aquifers contain a mixture of young and old recharge. Due to a lack of data, no conclusions about sources of recharge could be drawn from this study.

  13. The potential vulnerability of the Namib and Nama Aquifers due to low recharge levels in the area surrounding the Naukluft Mountains, SW Namibia

    NASA Astrophysics Data System (ADS)

    Kambinda, Winnie N.; Mapani, Benjamin

    2017-12-01

    The Naukluft Mountains in the Namib Desert are a high rainfall-high discharge area. It sees increased stream-, spring-flow as well as waterfalls during the rainy season. The mountains are a major resource for additional recharge to the Namib and Nama aquifers that are adjacent to the mountains. This paper aimed to highlight the potential vulnerability of the aquifers that surround the Naukluft Mountain area; if the strategic importance of the Naukluft Karst Aquifer (NKA) for bulk water supply becomes necessary. Chloride Mass Balance Method (CMBM) was applied to estimate rainfall available for recharge as well as actual recharge thereof. This was applied using chloride concentration in precipitation, borehole and spring samples collected from the study area. Groundwater flow patterns were mapped from hydraulic head values. A 2D digital elevation model was developed using Arc-GIS. Results highlighted the influence of the NKA on regional groundwater flow. This paper found that groundwater flow was controlled by structural dip and elevation. Groundwater was observed to flow predominantly from the NKA to the south west towards the Namib Aquifer in two distinct flow patterns that separate at the center of the NKA. A distinct groundwater divide was defined between the two flow patterns. A minor flow pattern from the northern parts of the NKA to the north east towards the Nama Aquifer was validated. Due to the substantial water losses, the NKA is not a typical karst aquifer. While the project area receives an average rainfall of 170.36 mm/a, it was estimated that 1-14.24% (maximum 24.43 mm/a) rainfall was available for recharge to the NKA. Actual recharge to the NKA was estimated to be less than 1-18.21% (maximum 4.45 mm/a) reflecting the vast losses incurred by the NKA via discharge. This paper concluded that groundwater resources of the NKA were potentially finite. The possibility of developing the aquifer for bulk water supply would therefore drastically lower recharge to surrounding aquifers that sustain local populations because all received rainfall will be utilized to maximise recharge to the NKA instead of surrounding aquifers.

  14. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  15. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  16. Implications of Projected Climate Change for Groundwater Recharge in the Western United States

    NASA Technical Reports Server (NTRS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; hide

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/ location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 degrees longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems.

  17. Implications of projected climate change for groundwater recharge in the western United States

    USGS Publications Warehouse

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10–20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems.

  18. Implications of projected climate change for groundwater recharge in the western United States

    NASA Astrophysics Data System (ADS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems.

  19. Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia

    NASA Astrophysics Data System (ADS)

    Wallner, Markus; Houben, Georg; Lohe, Christoph; Quinger, Martin; Himmelsbach, Thomas

    2017-12-01

    The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Grace W.; Jasperse, James; Seymour, Donald

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June tomore » October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.« less

  1. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  2. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  3. Heterotrophic prokaryotic production in ultra-oligotrophic alpine karst aquifers and ecological implications

    PubMed Central

    Wilhartitz, Inés C.; Kirschner, Alexander K.T.; Stadler, Hermann; Herndl, Gerhard J.; Dietzel, Martin; Latal, Christine; Mach, Robert L.; Farnleitner, Andreas H.

    2011-01-01

    Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ prokaryotic heterotrophic production (HP) and its controlling factors, two alpine karst springs of contrasting hydrogeology but of nearby catchments were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was low but revealed strong seasonal variations ranging from 0.06 to 6.83 pmol C l−1 h−1 (DKAS1, dolomitic karst-spring) and from 0.50 to 75.6 pmol C l−1 h−1 (LKAS2, limestone karst-spring). Microautoradiography combined with catalyzed reporter deposition - fluorescence in situ hybridization (MAR-CARD-FISH) showed that only about 7 % of the picoplankton community took up [3H]leucine resulting in generation times of 3 to 684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was strongly governed by hydrogeographical components (e.g. discharge), whereas variations in DKAS1 are also strongly influenced by changes within the aquifer itself. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers (n=12) revealed an 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared to the planktonic fraction, highlighting the metabolic potential of surface associated endokarst communities to add to self-purification processes. Estimates of microbially mediated CO2 in this compartment indicated a possible contribution to karstification. PMID:19490127

  4. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  5. Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France

    NASA Astrophysics Data System (ADS)

    Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric

    2018-06-01

    Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

  6. Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France

    NASA Astrophysics Data System (ADS)

    Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric

    2018-03-01

    Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

  7. Quantifying aquifer properties and freshwater resource in coastal barriers: a hydrogeophysical approach applied at Sasihithlu (Karnataka state, India)

    NASA Astrophysics Data System (ADS)

    Vouillamoz, J.-M.; Hoareau, J.; Grammare, M.; Caron, D.; Nandagiri, L.; Legchenko, A.

    2012-11-01

    Many human communities living in coastal areas in Africa and Asia rely on thin freshwater lenses for their domestic supply. Population growth together with change in rainfall patterns and sea level will probably impact these vulnerable groundwater resources. Spatial knowledge of the aquifer properties and creation of a groundwater model are required for achieving a sustainable management of the resource. This paper presents a ready-to-use methodology for estimating the key aquifer properties and the freshwater resource based on the joint use of two non-invasive geophysical tools together with common hydrological measurements. We applied the proposed methodology in an unconfined aquifer of a coastal sandy barrier in South-Western India. We jointly used magnetic resonance and transient electromagnetic soundings and we monitored rainfall, groundwater level and groundwater electrical conductivity. The combined interpretation of geophysical and hydrological results allowed estimating the aquifer properties and mapping the freshwater lens. Depending on the location and season, we estimate the freshwater reserve to range between 400 and 700 L m-2 of surface area (± 50%). We also estimate the recharge using time lapse geophysical measurements with hydrological monitoring. After a rainy event close to 100% of the rain is reaching the water table, but the net recharge at the end of the monsoon is less than 10% of the rain. Thus, we conclude that a change in rainfall patterns will probably not impact the groundwater resource since most of the rain water recharging the aquifer is flowing towards the sea and the river. However, a change in sea level will impact both the groundwater reserve and net recharge.

  8. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  9. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    NASA Astrophysics Data System (ADS)

    Janardhanan, S.; Datta, B.

    2011-12-01

    Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.

  10. Influence of tidal fluctuations in the water table and methods applied in the calculation of hydrogeological parameters. The case of Motril-Salobreña coastal aquifer

    NASA Astrophysics Data System (ADS)

    Sánchez Úbeda, Juan Pedro; Calvache Quesada, María Luisa; Duque Calvache, Carlos; López Chicano, Manuel; Martín Rosales, Wenceslao

    2013-04-01

    The hydraulic properties of coastal aquifer are essential for any estimation of groundwater flow with simple calculations or modelling techniques. Usually the application of slug test or tracers test are the techniques selected for solving the uncertainties. Other methods are based on the information associated to the changes induced by tidal fluctuation in coastal zones. The Tidal Response Method is a simple technique based in two different factors, tidal efficiency factor and time lag of the tidal oscillation regarding to hydraulic head oscillation caused into the aquifer. This method was described for a homogeneous and isotropic confined aquifer; however, it's applicable to unconfined aquifers when the ratio of maximum water table fluctuation and the saturated aquifer thickness is less than 0.02. Moreover, the tidal equations assume that the tidal signal follows a sinusoidal wave, but actually, the tidal wave is a set of simple harmonic components. Due to this, another methods based in the Fourier series have been applied in earlier studies trying to describe the tidal wave. Nevertheless, the Tidal Response Method represents an acceptable and useful technique in the Motril-Salobreña coastal aquifer. From recently hydraulic head data sets at discharge zone of the Motril-Salobreña aquifer have been calculated transmissivity values using different methods based in the tidal fluctuations and its effects on the hydraulic head. The effects of the tidal oscillation are detected in two boreholes of 132 m and 38 m depth located 300 m to the coastline. The main difficulties for the application of the method were the consideration of a confined aquifer and the variation of the effect at different depths (that is not included into the tidal equations), but these troubles were solved. In one hand, the assumption that the storage coefficient (S) in this unconfined aquifer is close to confined aquifers values due to the hydrogeological conditions at high depth and without saturation changes. In the other hand, we have monitored hydraulic head fluctuations due to tidal oscillations in different shallow boreholes close to the shoreline, and comparing with the deep ones. The calculated values with the tidal efficiency factor in the deep boreholes are about one less order of magnitude regarding to the obtained results with time lag method. Nevertheless, the application of these calculation methods based on tidal response in unconfined aquifers provides knowledge about the characteristics of the discharge zone and groundwater flow patterns, and it may be an easy and profitable alternative to traditional pumping tests.

  11. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in some monitoring wells, which have been related to anthropogenic activity. Vulnerability maps were produced using different parametric methods (e.g.: DRASTIC, GOD, DISCO, AVI), then the results are compared and assessed. Since each one of these methods use different number of parameters and weights, relatively different results were obtained, although the results have been evaluated with common cartographic inputs. The comparison between selected methods shows that the GOD method results are more correlated with the other methods and produces vulnerability maps comparable with them. Even though groundwater vulnerability is a critical issue around the world, no protection zones have been delineated in Guadalajara city, one of the biggest in Latin America. The groundwater contamination in the study area poses a serious risk for a large population and the environment. This work aims to propose an approach for groundwater protection cartography, based on the application and the comparison of results from different contamination vulnerability methods. These outcomes may assist water authorities to identify the higher vulnerable zones of the aquifers, in order to improving and adapting the land planning and management according to the protection of the own water resources.

  12. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    Large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems, e.g. with seepage between aquifer layers that can lead to water quality degradation. These large aquifer systems thus require rational water management at the sedimentary basin scale in order to preserve both water quantity and quality. In addition to hydrogeological modelling mainly dealing with water quantity, chemical and isotopic methods were applied to evidence the spatial variability of water characteristics and to turn this into better understanding of hydrosystems functioning. The large Eocene Sand aquifer system of the Adour-Garonne sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 (one-fifth of the French territory, located in the South west part). The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres..The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. High spatial variability was evidenced within a same aquifer layer, with temporal variability over one hydrological cycle limited to a few points located in the recharge areas. These results and especially the very old waters recharged under colder climate combined with the continuous decrease of water levels in the IMS aquifer for instance constitute major indicators to be taken into account for water management at the aquifer system scale. Major elements variability was interpreted in terms of water-rock interactions in these confined systems isolated from anthropogenic influence, with the main role played by evaporites on the water salinity (up to 2.5 g.L-1). Rare Earth Elements (REE) were also analysed in some groundwater samples, resulting in a large variability of UCC normalized-REE patterns, ΣREE ranging from 1.9 to 50.6 µg.L-1, with no dependence on TDS. For instance, interaction with carbonates delivers REE flat patterns and highest ΣREE. The REE patterns and control by key parameters are investigated in order to test REE as a potential supplementary geochemical tracer to recognize the aquifer type hosting groundwater.

  13. Stream-floodwave propagation through the Great Bend alluvial aquifer, Kansas: Field measurements and numerical simulations

    USGS Publications Warehouse

    Sophocleous, M.A.

    1991-01-01

    The hypothesis is explored that groundwater-level rises in the Great Bend Prairie aquifer of Kansas are caused not only by water percolating downward through the soil but also by pressure pulses from stream flooding that propagate in a translatory motion through numerous high hydraulic diffusivity buried channels crossing the Great Bend Prairie aquifer in an approximately west to east direction. To validate this hypothesis, two transects of wells in a north-south and east-west orientation crossing and alongside some paleochannels in the area were instrumented with water-level-recording devices; streamflow data from all area streams were obtained from available stream-gaging stations. A theoretical approach was also developed to conceptualize numerically the stream-aquifer processes. The field data and numerical simulations provided support for the hypothesis. Thus, observation wells located along the shoulders or in between the inferred paleochannels show little or no fluctuations and no correlations with streamflow, whereas wells located along paleochannels show high water-level fluctuations and good correlation with the streamflows of the stream connected to the observation site by means of the paleochannels. The stream-aquifer numerical simulation results demonstrate that the larger the hydraulic diffusivity of the aquifer, the larger the extent of pressure pulse propagation and the faster the propagation speed. The conceptual simulation results indicate that long-distance propagation of stream floodwaves (of the order of tens of kilometers) through the Great Bend aquifer is indeed feasible with plausible stream and aquifer parameters. The sensitivity analysis results indicate that the extent and speed of pulse propagation is more sensitive to variations of stream roughness (Manning's coefficient) and stream channel slope than to any aquifer parameter. ?? 1991.

  14. Geohydrology of the High Plains Aquifer, western Kansas

    USGS Publications Warehouse

    Stullken, L.E.; Watts, Kenneth R.; Lindgren, R.J.

    1985-01-01

    The High Plains aquifer underlies 174,050 sq mi of eight states (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming) and contains approximately 3.3 billion acre-ft of water in storage. Saturated thicknesses within the aquifer are as great as 600 ft near the southern border of southwest Kansas. The aquifer is replenished primarily by infiltration from precipitation. Average precipitation at the Garden City Experiment Station is 18.93 in/yr. Groundwater flow is generally from west to east under unconfined conditions. Hydraulic connection with subcropping consolidated aquifers allows ground water to flow vertically in minor quantities. The aquifer is depleted primarily by irrigation. Hydraulic conductivity estimates from 1,612 lithologic logs had an average value of 75 ft/day, with a standard deviation of 35 ft/day. Specific yields estimated from the same lithologic logs had a mean of 0.17 and a standard deviation of 0.047. Water from the High Plains aquifer in Kansas generally is suitable for human and animal consumption and irrigation of crops. Typically, it is a calcium bicarbonate type water, with concentrations of total dissolved solids ranging from 250 to 500 mg/L. The quality of water in the aquifer deteriorates toward the east due to mixing with recharge water containing dissolved minerals leached from the overlying soil and unsaturated zones and mineralized water from adjacent bedrock units. The simulated water budget for the steady state model of predevelopment (pre-1950) conditions in the High Plains aquifer in northwest Kansas showed that annual recharge to the aquifer from infiltration of precipitation was 87,000 acre-ft/yr and from boundary inflow, 21,000 acre-ft/yr. Annual discharge from the aquifer was 108,000 acre-ft/yr, including 81,000 acre-ft/yr from leakage to streams, 23,000 acre-ft from outflow at the boundaries of the aquifer, and 4,000 acre-ft from municipal and industrial pumpage. (Lantz-PTT)

  15. Simultaneous estimation of aquifer thickness, conductivity, and BC using borehole and hydrodynamic data with geostatistical inverse direct method

    NASA Astrophysics Data System (ADS)

    Gao, F.; Zhang, Y.

    2017-12-01

    A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.

  16. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems requires that hydraulic characterization be carried out at a much finer spatial scale, for which adequate information on geometric detail is not forthcoming. Traditional methods of interpretation of field data have relied heavily on analytic solutions to specific, highly idealized initial-value problems. The availability of efficient numerical models and versatile spreadsheets of personal computers offer promising opportunities to relax many unavoidable assumptions of analytical solutions and interpret field data much more generally and with fewer assumptions. Currently, a lot of interest is being devoted to the characterization of permeability. However, all groundwater systems are transient on appropriate timescales. The dynamics of groundwater systems cannot be understood without paying attention to capacitance. Much valuable insights about the dynamic attributes of groundwater systems could be gained by long-term passive monitoring of responses of groundwater systems to barometric changes, Earth tides, and ocean tides.

  17. Geostatistical characterisation of geothermal parameters for a thermal aquifer storage site in Germany

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, J.; Li, T.; Grathwohl, P.; Blum, P.; Bayer, P.

    2009-04-01

    The design of geothermal systems such as aquifer thermal energy storage systems (ATES) must account for a comprehensive characterisation of all relevant parameters considered for the numerical design model. Hydraulic and thermal conductivities are the most relevant parameters and its distribution determines not only the technical design but also the economic viability of such systems. Hence, the knowledge of the spatial distribution of these parameters is essential for a successful design and operation of such systems. This work shows the first results obtained when applying geostatistical techniques to the characterisation of the Esseling Site in Germany. In this site a long-term thermal tracer test (> 1 year) was performed. On this open system the spatial temperature distribution inside the aquifer was observed over time in order to obtain as much information as possible that yield to a detailed characterisation both of the hydraulic and thermal relevant parameters. This poster shows the preliminary results obtained for the Esseling Site. It has been observed that the common homogeneous approach is not sufficient to explain the observations obtained from the TRT and that parameter heterogeneity must be taken into account.

  18. Geohydrology of alluvium and terrace deposits of the Cimarron River from freedom to Guthrie, Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Bergman, D.L.

    1996-01-01

    Ground water in 1,305 square miles of Quaternary alluvium and terrace deposits along the Cimarron River from Freedom to Guthrie, Oklahoma, is used for irrigation, municipal, stock, and domestic supplies. As much as 120 feet of clay, silt, sand, and gravel form an unconfined aquifer with an average saturated thickness of 28 feet. The 1985-86 water in storage, assuming a specific yield of 0.20, was 4.47 million acre-feet. The aquifer is bounded laterally and underlain by relatively impermeable Permian geologic units. Regional ground-water flow is generally southeast to southwest toward the Cimarron River, except where the flow direction is affected by perennial tributaries. Estimated average recharge to the aquifer is 207 cubic feet per second. Estimated average discharge from the aquifer by seepage and evapotranspiration is 173 cubic feet per second. Estimated 1985 discharge by withdrawals from wells was 24.43 cubic feet per second. Most water in the terrace deposits varied from a calcium bicarbonate to mixed bicarbonate type, with median dissolved-solids concentration of 538 milligrams per liter. Cimarron River water is a sodium chloride type with up to 16,600 milligrams per liter dissolved solids. A finite-difference ground-water flow model was developed and calibrated to test the conceptual model of the aquifer under steady-state conditions. The model was calibrated to match 1985-86 aquifer heads and discharge to the Cimarron River between Waynoka and Dover.

  19. Private Domestic-Well Characteristics and the Distribution of Domestic Withdrawals among Aquifers in the Virginia Coastal Plain

    USGS Publications Warehouse

    Pope, Jason P.; McFarland, Randolph E.; Banks, R. Brent

    2008-01-01

    A comprehensive analysis of private domestic wells and self-supplied domestic ground-water withdrawals in the Coastal Plain Physiographic Province of Virginia indicates that the magnitudes of these withdrawals and their effects on local and regional ground-water flow are larger and more important than previous reports have stated. Self-supplied ground-water withdrawals for domestic use in the Virginia Coastal Plain are estimated to be approximately 40 million gallons per day, or about 28 percent of all ground-water withdrawals in the area. Contrary to widely held assumptions, only 22 percent of domestic wells in the Virginia Coastal Plain are completed in the shallow, unconfined surficial aquifer to which the water is returned directly by home septic systems. Fifty-three percent of the wells are completed in six deeper confined aquifers, and the remaining 25 percent are completed in the Potomac aquifer and confining zone, the deepest units in the confined system. Assuming an equal rate of withdrawal per well, 78 percent of domestic ground-water withdrawal, or about 30 million gallons per day, is removed from the regional confined ground-water system. Domestic ground-water withdrawal from an estimated 200,000 private wells supplies more than 15 percent of the population of the area and provides almost the entire source of water in some rural counties. The geographic distribution of these withdrawals is dependent on the self-supplied population and is highly variable. Domestic-well characteristics vary spatially as well, primarily because of geographic differences in depths to particular aquifers, but also because of well-drilling practices that are influenced by geographic, regulatory, and socioeconomic factors. Domestic ground-water withdrawals in the Virginia Coastal Plain were characterized as part of a larger study to analyze the regional ground-water flow system. Characterizing the withdrawals required differentiation of the withdrawals among the aquifers in the area in addition to determination of the geographic distribution of the withdrawals. Because of a lack of comprehensive data on private-well construction and distribution, a sample of private domestic-well records was used to estimate well characteristics and approximate the proportion of wells and withdrawals associated with each aquifer. Construction data on 2,846 private domestic wells were collected from 29 counties and independent cities (localities) having appreciable self-supplied populations and representing private domestic withdrawals of about 31 million gallons per day. Within each locality, geographically stratified random sampling of well records by tax plat characterized details of well construction for the population of domestic wells. Because neither specific location data nor aquifer elevations were available for individual wells, the primary aquifer in which each well is completed was estimated by cross-referencing the screen elevation estimated from the well record with a generalized configuration of hydrogeologic units underlying the locality in which the well is located. For each locality, summarizing the results of this process allowed the determination of the proportion of wells and withdrawals associated with each aquifer. Additional evaluation of spatial data was used to apply the domestic withdrawal rates developed for each aquifer in each locality to a detailed ground-water study of the portion of the Virginia Coastal Plain east of the Chesapeake Bay, which is known as the Eastern Shore Peninsula. Because domestic withdrawal estimates are based on the self-supplied population, the geographic distribution of withdrawals within each of the Eastern Shore counties was estimated by using population data from the 2000 U.S. Census at the resolution of census block groups and further refining the distribution based on road density. The allocation of withdrawals among aquifers was then determined by cross-referencing the spatial distribut

  20. Impact of river water levels on the simulation of stream-aquifer exchanges over the Upper Rhine alluvial aquifer (France/Germany)

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Habets, Florence

    2018-05-01

    This study aims to assess the sensitivity of river level estimations to the stream-aquifer exchanges within a hydrogeological model of the Upper Rhine alluvial aquifer (France/Germany), characterized as a large shallow aquifer with numerous hydropower dams. Two specific points are addressed: errors associated with digital elevation models (DEMs) and errors associated with the estimation of river level. The fine-resolution raw Shuttle Radar Topographic Mission dataset is used to assess the impact of the DEM uncertainties. Specific corrections are used to overcome these uncertainties: a simple moving average is applied to the topography along the rivers and additional data are used along the Rhine River to account for the numerous dams. Then, the impact of the river-level temporal variations is assessed through two different methods based on observed rating curves and on the Manning formula. Results are evaluated against observation data from 37 river-level points located over the aquifer, 190 piezometers, and a spatial database of wetlands. DEM uncertainties affect the spatial variability of the stream-aquifer exchanges by inducing strong noise and unrealistic peaks. The corrected DEM reduces the biases between observations and simulations by 22 and 51% for the river levels and the river discharges, respectively. It also improves the agreement between simulated groundwater overflows and observed wetlands. Introducing river-level time variability increases the stream-aquifer exchange range and reduces the piezometric head variability. These results confirm the need to better assess river levels in regional hydrogeological modeling, especially for applications in which stream-aquifer exchanges are important.

  1. Ground-water resources of the Caguas-Juncos Valley, Puerto Rico

    USGS Publications Warehouse

    Puig, J.C.; Rodriguez, J.M.

    1993-01-01

    ?The Caguas-Juncos valley, which occupies an area of 35 square miles in east-central Puerto Rico, is underlain by the largely unconfined alluvial aquifer. Withdrawals from this aquifer for public water supply and for agricultural, industrial, and domestic water uses totalled about 3.0 million gallons per day in 1988. Some wells in the valley yield as much as 310 gallons per minute from the alluvial deposits along Rio Gurabo near Gurabo and near Juncos. Wells used at dairy farms in the area commonly yield about 30 gallons per minute. The potentiometric surface of the alluvial aquifer varies seasonally and generally is highest near the end of December and lowest in April. Transmissivity of the alluvial aquifer, estimated from specific capacity and slug test data, ranges from 65 to 4,800 feet squared per day. The estimated specific yield of the water-table is about 10 to 15 percent. The amount of water stored in the aquifer is estimated to be about 122,000 acre-feet. Analyses of ground-water samples revealed the presence of two distinct problems-- high natural concentrations of iron and manganese, and localized areas of human- related contamination scattered throughout the valley. The ground water is a calcium-bicarbonate type and typically has dissolved solids concentrations of less than 500 milligrams per liter.

  2. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    NASA Astrophysics Data System (ADS)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  3. Evaluation of a pumping test of the Snake River Plain aquifer using axial-flow numerical modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Gary S.; Frederick, David B.; Cosgrove, Donna M.

    2002-06-01

    The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application.

  4. Geohydrology of the Vamoosa-Ada aquifer east-central Oklahoma with a section on chemical quality of water

    USGS Publications Warehouse

    D'Lugosz, Joseph J.; McClaflin, Roger G.; Marcher, Melvin V.

    1986-01-01

    The Vamoosa-Ada aquifer, which underlies an area of about 2,320 mi2, consists principally of the Vamoosa Formation and the overlying Ada Group of Pennsylvanian age. Rocks comprising the aquifer were deposited in a nearshore environment ranging from marine on the west to nonmarine on the east. Because of changes in depositional environments with time and from place to place, the aquifer is a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate, with interbedded very thin limestone. The aggregate thickness of water-bearing sandstones is greatest south of the Cimarron River, where it reaches a maximum of 550 ft in the vicinity of Seminole. North of the Cimarron River, the average aggregate thickness of the sandstones is about 100 ft, but locally it may be as much as 200 ft. Transmissivity values derived from seven aquifer tests made for this study range from 70 to 490 ft2 per day; values decrease from south to north with decreasing sandstone thickness. Hydraulic-conductivity values range from 2 to 4 ft per day. Storage coefficients for the confined part of the aquifer, as determined from four aquifer tests made during 1944, have an average value of 0.0002. The average storage coefficient for the unconfined part of the aquifer is estimated at 0.12, based on an analysis of geophysical logs and grain-size data. The specific capacity of wells tested is generally less than 1 gallon per minute per foot of drawdown. An approximate hydrologic budget for the aquifer for 1975 gives values, in acre-feet per year, of 93,000 for recharge, 233,000 for runoff, and 2,003,000 for evapotranspiration. The total of these values is almost equal to the average annual precipitation of 2,330,000 acre-ft per year. The estimated amount of water containing a maximum of 1,500 milligrams per liter of dissolved solids stored in the aquifer is estimated at 60 million acre-ft. Of this amount, an estimated 36 million acre-ft is available for use. The quality of water in the Vamoosa-Ada aquifer generally is suitable for municipal, domestic, and stock use. Of 55 water samples analyzed in the laboratory, about 75 percent were of the sodium bicarbonate or sodium calcium bicarbonate type; the remainder were of the sodium sulfate, calcium sulfate, sodium chloride, or indeterminate types. Laboratory and on-site chemical-quality data indicate that mineralization of both ground and surface waters is greater than normal in some areas. Water samples from 7 wells and 12 stream sites had concentrations of bromide exceeding 1 milligram per liter; the only known source of bromide in the area is brine associated with petroleum production.

  5. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect. Although the part of the lower Great Miami River Buried Valley Aquifer System where the Hamilton North Well Field is located is semiconfined, unconfined, or locally confined and not directly connected to the Great Miami River, the discontinuity of the clay/till layers beneath the river indicates that other, deeper parts of the aquifer system may be directly connected to the Great Miami River.

  6. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.

    PubMed

    Kaliraj, S; Chandrasekar, N; Peter, T Simon; Selvakumar, S; Magesh, N S

    2015-01-01

    The south west coast of Kanyakumari district in Tamil Nadu, India, is significantly affected by seawater intrusion and diffusion of pollutants into the aquifers due to unregulated beach placer mining and other anthropogenic activities. The present study investigates the vulnerability of the coastal aquifers using Geographic Information System (GIS)-based DRASTIC model. The seven DRASTIC parameters have been analyzed using the statistical equation of this model to demarcate the vulnerable zones for aquifer contamination. The vulnerability index map is prepared from the weighted spatial parameters, and an accounting of total index value ranged from 85 to 213. Based on the categorization of vulnerability classes, the high vulnerable zones are found near the beach placer mining areas between Manavalakurichi and Kodimanal coastal stretches. The aquifers associated with settlements and agricultural lands in the middle-eastern part have experienced high vulnerability due to contaminated water bodies. Similarly, the coastal areas of Thengapattinam and Manakudi estuary and around the South Tamaraikulam have also been falling under high vulnerability condition due to backwater and saltpan. In general, the nearshore region except the placer mining zone and the backwater has a moderately vulnerable condition, and the vulnerability index values range from 149 to180. Significantly, the northern and northeastern uplands and some parts of deposition zones in the middle-south coast have been identified as low to no vulnerable conditions. They are structurally controlled by various geological features such as charnockite, garnet biotite gneiss and granites, and sand dunes, respectively. The aquifer vulnerability assessment has been cross-verified by geochemical indicators such as total dissolved solids (TDS), Cl(-), HCO₃(-), and Cl(-)/HCO₃(-) ratio. The high ranges of TDS (1,842--3,736 mg/l) and Cl(-) (1,412--2,112 mg/l) values are well correlated with the observed high vulnerable zones in the study area. The Cl(-)/HCO₃(-) ratio (7.13 to 12.18) of the high vulnerable zone obviously indicates deterioration of the aquifer contamination. Sensitivity analysis has also been performed to evaluate sensitivity of the individual DRASTIC parameters to aquifer vulnerability. This reveals the net recharge rate and groundwater table depth are becoming more sensitive to aquifer contamination. It is realized that the GIS is an effective platform for aquifer vulnerability mapping with reliable accuracy, and hence, the study is more useful for sustainable water resource management and the aquifer conservation.

  7. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2006 to January 2010

    USGS Publications Warehouse

    Hansen, Cristi V.; Aucott, Walter R.

    2010-01-01

    Sustainable yield for the Equus Beds aquifer in the study area was estimated to be about 57,000 acre-feet per year using two different methods. The sum of permitted annual irrigation (about 45,600 acre-feet) and city (about 31,400 acre-feet) pumpage of 77,000 acre-feet per year greatly exceeds the estimated sustainable yield. Effective water management, including additions to the water budget such as those from the Equus Beds Aquifer Storage and Recovery project, can help produce the most water for beneficial use in a more sustainable way.

  8. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  9. Flowmetering of drainage wells in Kuwait City, Kuwait

    USGS Publications Warehouse

    Paillet, Frederick L.; Senay, Y.; Mukhopadhyay, A.; Szekely, F.

    2000-01-01

    A heat-pulse flowmeter was used in six drainage wells in Kuwait City for flow profiling under both ambient and pumping conditions. The data collected were used in: (a) estimating the cross-flow among the screened intervals under ambient conditions; (b) estimating the relative transmissivity adjacent to the individual screen zones; and (c) determination of the hydraulic heads at the far boundaries of the large-scale aquifer zones. These inferences were cross-checked against known hydrogeology of the aquifer-aquitard system in the study area, and the calibration results of numerical flow modeling. The major conclusions derived from the flow measurements were: (a) the presence of natural downward cross-flow under ambient condition supported the hypothesis that the upper part of the Kuwait Group aquifer in the study area was divided into a series of permeable units (aquifers), separated by confining or semi-confining beds (aquitards); (b) the head differences between the different screened zones, derived through modeling of the flowmeter data of the wells, provided additional confirmation for the division of the upper part of the Kuwait Group aquifer into compartments in the study area; (c) flowmeter data indicated that the second and third aquifers were contributing most of the water to the well bores, compared with the uppermost (first) and the lowermost (fourth) aquifers; and (d) inflow to the wells during pumping was associated with discrete sub-intervals in the screened zones, controlled by local aquifer heterogeneity, and possibly clogging of screens and gravel pack.

  10. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models

    NASA Astrophysics Data System (ADS)

    Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin

    2017-06-01

    This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.

  11. Evaluation of groundwater quality and selected hydrologic conditions in the South Coast aquifer, Santa Isabel area, Puerto Rico, 2008–09

    USGS Publications Warehouse

    Rodríguez, José M.

    2013-01-01

    The source of drinking water in the Santa Isabel and Coamo areas of Puerto Rico (Molina and Gómez-Gómez, 2008) is the South Coast aquifer (hereafter referred to as the aquifer), which supplies about 30,700 cubic meters per day (m³/d) to Puerto Rico Aqueduct and Sewer Authority (PRASA) public-supply wells. In addition, approximately 45 wells provide an estimated 33,700 m³/d of groundwater to irrigate crops in the area. In 1967, baseline nitrate concentrations in groundwater throughout most of the aquifer were generally less than 6 milligrams per liter (mg/L) as nitrogen in collected water samples (U.S. Geological Survey, 2012). In 2007, elevated nitrate concentrations were detected in the aquifer, near Santa Isabel and the foothills north of the coastal plain at Santa Isabel as part of a regional groundwater-quality assessment conducted by the U.S. Geological Survey (USGS) during 2007 (Rodríguez and Gómez-Gómez, 2008). The increase in nitrate concentrations has been of concern to local government agencies because of its potential effect on public supply. To address public-supply concerns, the USGS, in cooperation with the Puerto Rico Department of Natural and Environmental Resources (PRDNER), evaluated groundwater quality in the aquifer near the Santa Isabel area between January 2008 and May 2009. The objectives of the study were to (1) define the groundwater-quality conditions of the aquifer, with emphasis on the distribution of nitrate concentrations; (2) identify potential sources leading to elevated nitrate concentrations; (3) estimate the nitrate loads from major sources identified; and (4) estimate the groundwater withdrawals by principal-use categories in the area. Results of this study will be used by Commonwealth of Puerto Rico and Federal agencies in developing strategies that can result in containment of high nitrate groundwater to minimize degradation of fresh groundwater in the aquifer.

  12. Delineation of the hydrogeologic framework of the Big Sioux aquifer near Sioux Falls, South Dakota, using airborne electromagnetic data

    USGS Publications Warehouse

    Valseth, Kristen J.; Delzer, Gregory C.; Price, Curtis V.

    2018-03-21

    The U.S. Geological Survey, in cooperation with the City of Sioux Falls, South Dakota, began developing a groundwater-flow model of the Big Sioux aquifer in 2014 that will enable the City to make more informed water management decisions, such as delineation of areas of the greatest specific yield, which is crucial for locating municipal wells. Innovative tools are being evaluated as part of this study that can improve the delineation of the hydrogeologic framework of the aquifer for use in development of a groundwater-flow model, and the approach could have transfer value for similar hydrogeologic settings. The first step in developing a groundwater-flow model is determining the hydrogeologic framework (vertical and horizontal extents of the aquifer), which typically is determined by interpreting geologic information from drillers’ logs and surficial geology maps. However, well and borehole data only provide hydrogeologic information for a single location; conversely, nearly continuous geophysical data are collected along flight lines using airborne electromagnetic (AEM) surveys. These electromagnetic data are collected every 3 meters along a flight line (on average) and subsequently can be related to hydrogeologic properties. AEM data, coupled with and constrained by well and borehole data, can substantially improve the accuracy of aquifer hydrogeologic framework delineations and result in better groundwater-flow models. AEM data were acquired using the Resolve frequency-domain AEM system to map the Big Sioux aquifer in the region of the city of Sioux Falls. The survey acquired more than 870 line-kilometers of AEM data over a total area of about 145 square kilometers, primarily over the flood plain of the Big Sioux River between the cities of Dell Rapids and Sioux Falls. The U.S. Geological Survey inverted the survey data to generate resistivity-depth sections that were used in two-dimensional maps and in three-dimensional volumetric visualizations of the Earth resistivity distribution. Contact lines were drawn using a geographic information system to delineate interpreted geologic stratigraphy. The contact lines were converted to points and then interpolated into a raster surface. The methods used to develop elevation and depth maps of the hydrogeologic framework of the Big Sioux aquifer are described herein.The final AEM interpreted aquifer thickness ranged from 0 to 31 meters with an average thickness of 12.8 meters. The estimated total volume of the aquifer was 1,060,000,000 cubic meters based on the assumption that the top of the aquifer is the land-surface elevation. A simple calculation of the volume (length times width times height) of a previous delineation of the aquifer estimated the aquifer volume at 378,000,000 cubic meters; thus, the estimation based on AEM data is more than twice the previous estimate. The depth to top of Sioux Quartzite, which ranged in depth from 0 to 90 meters, also was delineated from the AEM data.

  13. Numerical model to support the management of groundwater resources of a coastal karstic aquifer (southern Italy)

    NASA Astrophysics Data System (ADS)

    Polemio, Maurizio; Romanazzi, Andrea

    2013-04-01

    The main purpose of the research is to define management apporouches for a coastal karstic aquifer. The core of the tools uses numerical modelling, applied to groundwater resource of Salento (southern Italy) and criteria to reduce the quantitative and qualitative degradation risks. The computer codes selected for numerical groundwater modelling were MODFLOW and SEAWAT. The approach chosen was based on the concept of a equivalent homogeneous porous medium by which it is assumed that the real heterogeneous aquifer can be simulated as homogeneous porous media within cells or elements. The modelled aquifer portion extends for 2230 km2, and it was uniformly discretized into 97,200 cells, each one of 0.6 km2. Vertically, to allow a good lithological and hydrogeological discretization, the area was divided into 12 layers, from 214 to -350 m asl. Thickness and geometry of layers was defined on the basis of the aquifer conceptualisation based on the 3d knowledge of hydrogeological complexes. For the boundary conditions, inactive cells were used along the boundary with the rest of Murgia-Salento aquifer, as conceptual underground watershed due to the absence of flow. About the sea boundary was used CHD boundary cells (Constant Head Boundary). Additional boundary conditions were used for SEAWAT modelling, as initial concentration and constant concentration, in the latter case for cells shaping the coastline. A mean annual net rainfall (recharge) was calculated in each cell with a GIS elaboration, ranged from 68 to 343 mm, 173 mm an average. The recharge or infiltration was calculated using an infiltration coefficient (IC) (defined as infiltration/net rainfall ratio) for each hydrogeological complex, assuming values equal to 1 inside endorheic areas. The mean annual recharge was equal to 150 mm. The model was implemented using MODFLOW and SEAWAT codes in steady-state conditions to obtain a starting point for following transient scenarios, using piezometric data of thirties as in that period the discharge level was negligeable. The model was calibrated through the use of PEST (Non-Linear Parameter Estimation) code, a standard in the geo-environmental modelling. The calibration was realised using data of 17 selected wells. The results of calibration can be summarised considering these control parameters: the correlation coefficient, equal to 0.92, the standard deviation, equal to 0.7, the mean square error, equal about to 0.65, and the absolute mean residue (RMS), equal to 12%. The result emphasize the intrusion phenomena of seawater into aquifer with a important reduction of the quality of water and shown the importance of define management policies of groundwater extraction.

  14. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    USGS Publications Warehouse

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state groundwater model validation is possible in this laboratory sandbox aquifer if the heterogeneous K distribution and forcing functions (boundary conditions and source/sink terms) are characterized sufficiently. ?? 2010 by the American Geophysical Union.

  15. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    USGS Publications Warehouse

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend along the northern and eastern Pahute Mesa study area and near the southwestern edge of the study area. The estimated hydraulic-property distributions and observed hydraulic connections among geologic structures improved the characterization and representation of groundwater flow at Pahute Mesa.

  16. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Bartolino, James R.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington State Department of Ecology, investigated the hydrogeologic framework and ground-water budget of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer located in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho, and the Spokane Valley and Hillyard Trough, Washington, is the sole source of drinking water for more than 500,000 residents. Continued growth, water-management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer consists mostly of gravels, cobbles, and boulders - deposited during a series of outburst floods resulting from repeated collapse of the ice dam that impounded ancient Glacial Lake Missoula. In most places, the SVRP aquifer is bounded by bedrock of pre-Tertiary granite or metasedimentary rocks, or Miocene basalt and associated sedimentary deposits. Discontinuous fine-grained layers are scattered throughout the SVRP aquifer at considerably different altitudes and with considerably different thicknesses. In the Hillyard Trough and the Little Spokane River Arm of the aquifer, a massive fine-grained layer with a top altitude ranging from about 1,500 to 1,700 feet and thickness ranging from about 100 to 200 feet separates the aquifer into upper and lower units. Most of the Spokane Valley part of the aquifer is devoid of fine-grained layers except near the margins of the valley and near the mouths of lakes. In the Rathdrum Prairie, multiple fine-grained layers are scattered throughout the aquifer with top altitudes ranging from about 1,700 to 2,400 feet with thicknesses ranging from 1 to more than 135 feet. The altitude of the base of the aquifer ranges from less than 1,800 feet near Lake Pend Oreille to less than 1,200 feet near the aquifer's outlet near Long Lake. The thickness of the aquifer is more than 800 feet in the northwestern part of the northern Rathdrum Prairie, through the West Channel area, and through the west-central part of the Rathdrum Prairie. In Washington, the areas of greatest thickness, more than 600 feet, are mapped in the central parts of the Spokane Valley, Spokane, and the Hillyard Trough. Recharge or inflow to the SVRP aquifer occurs from six main sources: the Spokane River, lakes, infiltration from precipitation over the aquifer, tributaries, infiltration from landscape irrigation and septic systems, and subsurface inflow. Discharge or outflow from the SVRP aquifer occurs from five main sources: the Spokane River, the Little Spokane River, pumpage, subsurface discharge to Long Lake, and infiltration of ground water to sewers. Total estimated mean annual inflow to and outflow from the SVRP aquifer is about 1,470 cubic feet per second. Several data needs were identified during this investigation that would improve the definition of the hydrogeologic framework and ground-water budget components for the SVRP aquifer study area. Deep drilling along the axis of the aquifer could determine the depth to the bottom of the aquifer where data are currently unavailable as well as identify the presence of fine-grained layers and their thickness. A more detailed analysis of the geologic and hydrologic setting near the southern ends of Spirit and Hoodoo Valleys could help determine the location of the ground-water divide between the two valleys and the Rathdrum Prairie. Better estimates of seepage into the aquifer from Coeur d'Alene Lake and Lake Pend Oreille and underflow from the aquifer to Long Lake would strengthen the recharge and discharge estimates of the aquifer. A hydrochemical study incorporating analyses of envi

  17. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.

    PubMed

    Kattaa, Bassam; Al-Fares, Walid; Al Charideh, Abdul Rahman

    2010-05-01

    Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.

    PubMed

    Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari

    2017-03-01

    Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.

  19. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  20. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  1. A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Qahman, Khalid; Lecca, Giuditta

    2015-03-01

    Seawater intrusion is one of the major threats to freshwater resources in coastal areas, often exacerbated by groundwater overexploitation. Mitigation measures are needed to properly manage aquifers, and to restore groundwater quality. This study integrates three computational tools into a unified framework to investigate seawater intrusion in coastal areas and to assess strategies for managing groundwater resources under natural and human-induced stresses. The three components are a three-dimensional hydrogeological model for density-dependent variably saturated flow and miscible salt transport, an automatic calibration procedure that uses state variable outputs from the model to estimate selected model parameters, and an optimization module that couples a genetic algorithm with the simulation model. The computational system is used to rank alternative strategies for mitigation of seawater intrusion, taking into account conflicting objectives and problem constraints. It is applied to the Gaza Strip (Palestine) coastal aquifer to identify a feasible groundwater management strategy for the period 2011-2020. The optimized solution is able to: (1) keep overall future abstraction from municipal groundwater wells close to the user-defined maximum level, (2) increase the average groundwater heads, and (3) lower both the total mass of salt extracted and the extent of the areas affected by seawater intrusion.

  2. Stochastic joint inversion of geoelectrical cross-well data for salt tracer test monitoring to image the hydraulic conductivity field of heterogenous aquifers

    NASA Astrophysics Data System (ADS)

    Revil, A.; Jardani, A.; Dupont, J.

    2012-12-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution associated with a low density of available piezometers. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity. We use a stochastic joint inversion of Direct Current (DC) resistivity and Self-Potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field of an heterogeneous aquifer. The pilot point parameterization is used to avoid over-parameterization of the inverse problem. Bounds on the model parameters are used to promote a consistent Markov chain Monte Carlo sampling of the hydrogeological parameters of the model. To evaluate the effectiveness of the inversion process, we compare several scenarios where the geophysical data are coupled or not to the hydrogeological data to map the hydraulic conductivity. We first test the effectiveness of the inversion of each type of data alone, and then we combine the methods two by two. We finally combine all the information together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. The results of the inversion reveal that the self-potential data improve the estimate of hydraulic conductivity especially when the self-potential data are combined to the salt concentration measurement in the second well or to the time-lapse electrical resistivity data. Various tests are also performed to quantify the uncertainty in the inversion when for instance the semi-variogram is not known and its parameters should be inverted as well.

  3. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  4. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    USGS Publications Warehouse

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer. Analyses of water samples from 30 wells indicate that the water quality in the basins studied is generally suitable for drinking and other domestic purposes. Concentrations of iron and manganese exceeded the U.S . Environmental Protection Agency's (USEPA) and the New Hampshire Water Supply Engineering Bureau's secondary maximum contaminant levels for drinking water in 20 samples. With one exception, concentrations of volatile organic compounds at all wells sampled met New Hampshire Water Supply and Engineering Bureau's drinking-water standards. At one well, trichloroethylene was detected at a concentration of 5.7 micrograms per liter. Ground-water contamination has been detected at several hazardous-waste sites in the study area. Currently, 5 sites are on the USEPA's National Priority List of superfund sites, 10 sites are Resource Conservation and Recovery Act of 1976 sites, and 1 site is a Department of Defense hazardous-waste site of stratigraphic layers is a product of a material's density and the velocity at which sound travels through that material . The reflected signals return to the hydrophones at the water surface and are then filtered, amplified, and displayed graphically on the chart recorder to allow interpretation of aquifer stratigraphy and bedrock depths. Lithologic data from nearby wells and test holes were used as control points to check the interpretation of the reflection profiles. Test drilling was done at 66 locations (pls . 1-3) to determine sediment grain size, stratigraphy, depth to water table, depth to bedrock, and ground water quality . A 6-inch-diameter, hollow-stem auger was used for test drilling . Split-spoon samples of subsurface materials collected at specific depths were used to evaluate the grain-size characteristics and identify the stratigraphic sequence of materials comprising the aquifers . Thirty-eight test holes cased with a 2-inch-diameter polyvinyl-chloride (PVC) pipe and slotted screens were used to make ground-water-level measurements and collect ground-water-quality samples. Surface-water-discharge measurements were made at 16 sites during low flow when the surface water is primarily ground-water discharge . These low-flow measurements indicate quantities of ground water potentially available from aquifers. Hydraulic conductivities of aquifer materials were estimated from grain-size-distribution data from 61 samples of stratified drift . Transmissivity was estimated from well logs by assigning hydraulic conductivity to specific well-log intervals, multiplying by the saturated thickness of the interval, and summing the results . Additional transmissivity values were obtained from an analysis of specific capacity and aquifer-test data. Long-term aquifer yields and contributing areas to hypothetical supply wells were estimated by application of a method that is analogous to super position and incorporates a ground-water-flow model developed by McDonald and Harbaugh (1988) . This method was applied to two aquifers judged to have the best potential for providing additional ground-water supplies. Samples of ground water from 26 test wells and 4 municipal wells were collected in March and August 1987 for analysis of common inorganic, organic, and volatile organic constituents. Methods for collecting and analyzing the samples are described by Fishman and Freidman (1989) . The water-quality results from the well samples were used to characterize background water quality in the stratified-drift aquifers.

  5. Transport toward a well in highly heterogeneous aquifer

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Bellin, Alberto; Fiori, Aldo

    2017-04-01

    Solute transport toward a well is a challenging subject in subsurface hydrology since the complexity of the mathematical model is tremendously increased by the non-uniformity of the mean flow and heterogeneity of the formation. Up to date, analytical solutions for such flow configurations are limited to low heterogeneous conditions. On the other hand, numerical simulations in 3D highly heterogeneous formations are computationally expensive and plagued by numerical errors. In this work we propose an analytical solution for the Breakthrough Curve (BTC) at the well for an instantaneous linear injection across the aquifer's thickness for any degree of heterogeneity of the porous medium. Our solution makes use of the Multi Indicator Model-Self Consistent Approximation (MIMSCA), by which the aquifer is conceptualized as an ensemble of blocks of constant hydraulic conductivity K randomly drawn from a lognormal distribution. In order to apply MIMSCA, we assume the flow as locally uniform, given that K is uniform within the block. With this approximation, the travel time to the well is equal to the superposition of the time spent by the solute particle within each block. We emphasize that, despite the approximations introduced, the model is able to reproduce the laboratory experiment of [1] without the need to fit any transport parameters. In this work, we present results for two different injection modes: a resident injection (e.g., residual DNAPL) and a flux proportional injection (e.g., leakage from a passive well). The proposed methodology allows to quantify the BTC at the well as a function of few parameters such as the injection mode and the statistical structure of the aquifer (geometric mean, variance and integral scale of the hydraulic conductivity field). Results illustrate that the release condition has a strong impact on the shape of the BTC. Furthermore, the difference between different injection modes increases with the heterogeneity of the K-field. The importance of the both injection mode and heterogeneity degree are also elucidated on the early and late solute arrival times at the well. Finally, we show how travel times become ergodic only for very thick aquifers, even in case of mild heterogeneity. We emphasize that the present framework has a practical validity, giving an affordable, although approximated, first estimation of mass arrival at an extraction well. References [1] Fernàndez-Garcia, D., T. H. Illangasekare, and H. Rajaram (2004), Conservative and sorptive forced-gradient and uniform flow tracer tests in a three-dimensional laboratory test aquifer, Water Resour. Res., 40, W10103, doi:10.1029/2004WR003112.

  6. Modeling cross-hole slug tests in an unconfined aquifer

    DOE PAGES

    Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; ...

    2016-06-28

    Cross-hole slug test date are analyzed with an extended version of a recently published unconfined aquifer model accounting for waterable effects using the linearized kinematic condition. The use of cross-hole slug test data to characterize aquifer heterogeneity and source/observation well oscillation parameters is evaluated. The data were collected in a series of multi-well and multi-level pneumatic slug tests conducted at a site in Widen, Switzerland. Furthermore, the tests involved source and observation well pairs separated by distances of up to 4 m, and instrumented with pressure transducers to monitor aquifer response in discrete intervals.

  7. Geologic structure, hydrology, and water quality of the Laramie-Fox Hills aquifer in the Denver Basin, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1981-01-01

    The Denver ground-water basin underlies a 6,700-square-mile area extending from Greeley in the north to Colorado Springs in the south, and from the Front Range in the west to near Limon in the east.  The four major bedrock aquifers that occur in the basin are the Laramie-Fox Hills aquifer (the deepest aquifer), the Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer (the uppermost aquifer).  The Laramie-Fox Hills aquifer, which is the subject of this report, underlies the entire area of the basin in east-central Colorado (index map, fig. 1) and is an important source of water for residents in the northern Denver suburban area and in the rural areas of eastern Jefferson, Arapahoe, and Elbert Counties, Adams County, and southern Weld and El Paso Counties.  About 90 percent of the estimated 1,700 wells completed in the aquifer supply water to residents and livestock.  The remaining wells supply water for commercial and industrial use and limited irrigation of commercial crops.

  8. Simulation of spring discharge from a limestone aquifer in Iowa, USA

    USGS Publications Warehouse

    Zhang, Y.-K.; Bai, E.-W.; Libra, R.; Rowden, R.; Liu, H.

    1996-01-01

    A lumped-parameter model and least-squares method were used to simulate temporal variations of discharge from Big Spring, Iowa, USA, from 1983 to 1994. The simulated discharge rates poorly match the observed one when precipitation is taken as the sole input. The match is improved significantly when the processes of evapotranspiration and infiltration are considered. The best results are obtained when snowmelt is also included in the model. Potential evapotranspiration was estimated with Thornthwaite's formula, infiltration was calculated through a water-balance approach, and snowmelt was generated by a degree-day model. The results show that groundwater in the limestone aquifer is mainly recharged by snowmelt in early spring and by infiltration from rainfall in later spring and early summer. Simulated discharge was visually calibrated against measured discharge; the similarity between the two supports the validity of this approach. The model can be used to study the effects of climate change on groundwater resources and their quality.

  9. Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

    2014-01-01

    The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells. Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.

  10. Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation

    USGS Publications Warehouse

    Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.

    2008-01-01

    Most published solutions for aquifer responses to ocean tides focus on the one-sided attenuation of the signal as it propagates inland. However, island aquifers experience periodic forcing from the entire coast, which can lead to integrated effects of different tidal signals, especially on narrow high-permeability islands. In general, studies disregard a potential time lag as the tidal wave sweeps around the island. We present a one-dimensional analytical solution to the ground water flow equation subject to asynchronous and asymmetric oscillating head conditions on opposite boundaries and test it on data from an unconfined volcanic aquifer in Maui. The solution considers sediment-damping effects at the coastline. The response of Maui Aquifers indicate that water table elevations near the center of the aquifer are influenced by a combination of tides from opposite coasts. A better match between the observed ground water head and the theoretical response can be obtained with the proposed dual-tide solution than with single-sided solutions. Hydraulic diffusivity was estimated to be 2.3 ?? 107 m 2/d. This translates into a hydraulic conductivity of 500 m/d, assuming a specific yield of 0.04 and an aquifer thickness of 1.8 km. A numerical experiment confirmed the hydraulic diffusivity value and showed that the y-intercepts of the modal attenuation and phase differences estimated by regression can approximate damping factors caused by low-permeability units at the boundary.

  11. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  12. Water Footprint and Water Consumption for the Main Crops and Biofuels Produced in Brazil

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2011-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  13. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO 2 Geological Sequestration

    DOE PAGES

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...

    2012-12-20

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  15. Hydrogeology and Ground-Water Quality of Brunswick County, North Carolina

    USGS Publications Warehouse

    Harden, Stephen L.; Fine, Jason M.; Spruill, Timothy B.

    2003-01-01

    Brunswick County is the southernmost coastal county in North Carolina and lies in the southeastern part of the Coastal Plain physiographic province. In this report, geologic, hydrologic, and chemical data were used to investigate and delineate the hydrogeologic framework and ground-water quality of Brunswick County. The major aquifers and their associated confining units delineated in the Brunswick County study area include, from youngest to oldest, the surficial, Castle Hayne, Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers.All of these aquifers, with the exception of the Castle Hayne aquifer, are located throughout Brunswick County. The Castle Hayne aquifer extends across only the southeastern part of the county. Based on available data, the Castle Hayne and Peedee confining units are missing in some areas of Brunswick County, which allows direct hydraulic contact between the surficial aquifer and underlying Castle Hayne or Peedee aquifers. The confining units for the Black Creek, upper Cape Fear, and lower Cape Fear aquifers appear to be continuous throughout Brunswick County.In examining the conceptual hydrologic system for Brunswick County, a generalized water budget was developed to better understand the natural processes, including precipitation, evapotranspiration, and stream runoff, that influence ground-water recharge to the shallow aquifer system in the county. In the generalized water budget, an estimated 11 inches per year of the average annual precipitation of 55 inches per year in Brunswick County is estimated to infiltrate and recharge the shallow aquifer system. Of the 11 inches per year that recharges the shallow system, about 1 inch per year is estimated to recharge the deeper aquifer system.The surficial aquifer in Brunswick County is an important source of water for domestic supply and irrigation. The Castle Hayne aquifer is the most productive aquifer and serves as the principal ground-water source of municipal supply for the county. The upper part of the Peedee aquifer is an important source of ground-water supply for domestic and commercial use. Ground water in the lower part of the Peedee aquifer and the underlying aquifers is brackish and is not known to be used as a source of supply in Brunswick County. Most of the precipitation that recharges the surficial aquifer is discharged to local streams that drain into the Waccamaw River, Cape Fear River, and Atlantic Ocean. Recharge to the Castle Hayne aquifer occurs primarily from the surficial aquifer. Recharge to the Peedee aquifer occurs primarily from the surficial and Castle Hayne aquifers, with some upward leakage of water also occurring from the underlying Black Creek aquifer. Discharge from the Castle Hayne and Peedee aquifers occurs to local streams, the Cape Fear River, and the Atlantic Ocean.Evaluation of water-level data for the period January 1970 through May 2002 indicated no apparent long-term temporal trends in water levels in the surficial and Castle Hayne aquifers and in the upper part of the Peedee aquifer. The most significant water-level trends were noted for wells tapping the lower part of the Peedee aquifer and tapping the Black Creek aquifer where water levels have declined as much as 41 and 37 feet, respectively. These ground-water-level declines are attributed to regional ground-water pumping in areas outside of Brunswick County. Water-level data for Brunswick County wells tapping the upper Cape Fear and lower Cape Fear aquifers tend to fluctuate within a fairly uniform range with no apparent temporal trend noted. Analysis of vertical hydraulic gradients during this same period primarily indicate downward flow of ground water within and among the surficial, Castle Hayne, and Peedee aquifers. The vertical flow of ground water in the Black Creek aquifer is upward into the overlying Peedee aquifer. Upward flow also is noted for the upper and lower Cape Fear aquifers.Historic and recent analytic data were evaluated to better understand the sources of water contained in Brunswick County aquifers and the suitability of the water for consumption. Based on analytical results obtained for recent samples collected during this study, ground water from the surficial aquifer, Castle Hayne aquifer, and upper part of the Peedee aquifer appears to be generally suitable for drinking water. Although concentrations of iron and manganese commonly exceeded the drinking-water standards, the concern generally associated with the occurrence of these analytes in a water supply is one of aesthetics. In all samples, nitrate, nitrite, and sulfate were detected at concentrations less than drinkingwater standards.Based on historic analytical data, the brackish water in the lower part of the Peedee aquifer and in the Black Creek, upper Cape Fear, and lower Cape Fear aquifers is classified as a sodium-chloride type water. The presence of brackish water in these deeper systems combined with upward vertical gradients presents the potential for upward migration of brackish water into overlying aquifers, or upconing beneath areas of pumping. The current (2001) location of the boundary between freshwater and brackish water in Brunswick County aquifers is unknown.

  16. Characterization of interactions between sub-surface compartments and a deep sub-vertical aquifer in crystalline basement (St-Brice en Coglès, French Brittany)

    NASA Astrophysics Data System (ADS)

    Roques, C.; Bour, O.; Aquilina, L.; Longuevergne, L.; Dewandel, B.; Hochreutener, R.; Schroetter, J.; Labasque, T.; Lavenant, N.

    2012-12-01

    Hard-rock aquifers constitute in general a limited groundwater resource whose upper part is particularly sensitive to anthropogenic activities. Locally, some high production aquifers can be encountered, typically near regional tectonic discontinuities which may constitute preferential flow paths. However, this kind of aquifer, in particular their interactions with sub-surface, is often very difficult to characterize. We investigated the hydrogeological functioning of a deep vertical conductive fractured zone, focusing on the interactions between hydrologic compartments, thanks to a multidisciplinary approach and a variety of field experiments. A specific field site located in north east of French Brittany, in crystalline bedrock, was selected because of high measured yields during drilling (100 m3/h), essentially related to permeable fractures at 120 m depth and deeper. Three deep boreholes 80 to 250 deep were drilled at relatively short distances (typically 30 meters); one of them has been cored for detailed geological information. Shallower boreholes were also drilled (7 to 20 m deep) to characterize the upper weathered compartment and the hydraulic connections with the deep compartment. The system was characterized both in natural conditions and during a 9-week large scale pumping test carried out at a pumping rate of 45 m3/h. To describe the hydraulic properties and the functioning of the deep hydraulic structure, we used a multidisciplinary approach: (a) well head variations and traditional pumping test interpretations, (b) high-resolution flow loggings to identify fracture connectivity, (c) tracer tests to estimate transfer times and groundwater fluxes between main compartments and (d) multi-parameters fluid logging, geochemistry and groundwater dating to identify water origin and mixing processes between different reservoirs. The geometry of the main permeable structure has been identified combining geological information and hydraulic interpretations. It shows a clear compartmentalization of the aquifer with a strong spatial heterogeneity in permeability. Although using a packer to force the pumping to be deeper than 80 meters, a very fast reaction of the upper aquifer during pumping with clear leaky effects was observed. Heat-Pulse Flowmeter logs also show the interconnections between compartments. During the pumping, we also monitored a high decrease of groundwater ages of the water pumped. Combination of all these methods allowed the flow connections between compartments to be identified and the fluxes between the different compartments to be quantified. We show in particular how the deep groundwater resource is strongly dependent of shallower compartments. Identifying flow properties and origin of water in a deep aquifer is an important issue to optimize the management of such groundwater resources. In particular the estimation of the groundwater capacity, and also to predict groundwater quality changes are essential. This study allows quantifying fluxes between compartments both in natural and pumping conditions. Such a characterization is crucial to assess the sustainability of deep hard-rock aquifers for groundwater supply.

  17. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    USGS Publications Warehouse

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  18. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration

    NASA Astrophysics Data System (ADS)

    Ketabchi, Hamed; Mahmoodzadeh, Davood; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2016-04-01

    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation. We assess and quantify the seawater toe location under the impacts of SLR in combination with recharge rate variations, land-surface inundation (LSI) due to SLR, aquifer bed slope variation, and changing landward boundary conditions (LWBCs). This is the first study to include all of these factors in a single analysis framework. Both analytical and numerical models are used for these sensitivity assessments. It is demonstrated that (1) LSI caused by SLR has a significant incremental impact on the seawater toe location, especially in the flatter coasts and the flux-controlled (FC) LWBCs, however this impact is less than the reported orders of magnitude differences which were estimated using only analytical solutions; (2) LWBCs significantly influence the SLR impacts under almost all conditions considered in this study; (3) The main controlling factors of seawater toe location are the magnitudes of fresh groundwater discharge to sea and recharge rate. Regional freshwater flux entering from the landward boundary and the groundwater hydraulic gradient are the major contributors of fresh groundwater discharge to sea for both FC and head-controlled (HC) systems, respectively; (4) A larger response of the aquifer and larger seawater toe location changes are demonstrable for a larger ratio of the aquifer thickness to the aquifer length particularly in the HC systems; (5) The lowest sensitivity of seawater toe location is found for the density difference ratio of the seawater and freshwater, and also for the aquifer bed slope; (6) The early-time observations show seawater fingers below the inundated lands due to SLR which are diminished and ultimately extinguished; and (7) A less than 2% reversal effect on the seawater toe location after overshoot mechanism is observed in the transient simulations which suggests that this mechanism is an insignificant and impractical factor compared to other more significant factors.

  19. Conceptual and numerical models of groundwater flow in the Ogallala and Arikaree aquifers, Pine Ridge Indian Reservation area, South Dakota, water years 1980-2009

    USGS Publications Warehouse

    Davis, Kyle W.; Putnam, Larry D.; LaBelle, Anneka R.

    2015-01-01

    The numerical model is a tool that could be used to better understand the flow system of the Ogallala and Arikaree aquifers, to approximate hydraulic heads in the aquifer, and to estimate discharge to rivers, springs, and seeps in the Pine Ridge Reservation area in Bennett, Jackson, and Shannon Counties. The model also is useful to help assess the response of the aquifer to additional stress, including potential increased well withdrawals and potential drought conditions.

  20. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Guihéneuf, N.; Perrin, J.; Bour, O.; Dewandel, B.; Dausse, A.; Viossanges, M.; Ahmed, S.; Maréchal, J. C.

    2015-02-01

    Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10-7 to 8.5 × 10-8 m2 s-1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10-3 to 7.0 × 10-4 m2 s-1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

Top