Science.gov

Sample records for aquifer system california

  1. Characteristics of Southern California coastal aquifer systems

    USGS Publications Warehouse

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  2. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California

    USGS Publications Warehouse

    Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.

    1979-01-01

    Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.

  3. Near-conservative behavior of 129Iodine in the Orange County Aquifer System, California

    SciTech Connect

    Schwer, K A; Santschi, P H; Moran, J E; Elmore, D

    2005-01-21

    Iodine is a biophilic element, with one stable isotope, {sup 127}I, and one long-lived radioisotope, {sup 129}I, which originates in the surface environment almost entirely from anthropogenic activities such as nuclear fuel reprocessing. Very few studies have evaluated the geochemical behavior of iodine isotopes in the subsurface. The concentrations of {sup 129}I and {sup 127}I were measured in wells fed by a series of artificial recharge ponds in the Forebay Area of the Orange County groundwater basin (California, USA) to evaluate their potential use as hydrological tracers. To substantiate interpretation of {sup 129}I and {sup 127}I concentration data, the aquifer system was evaluated using literature values of aquifer water mass age based on {sup 3}H/{sup 3}He, Xenon and {delta}{sup 18}O tracer data, as well as time-series data of Santa Ana River flow rates over the past decade. The aquifer data demonstrate the nearly conservative behavior of {sup 129}I, with {sup 129}I/{sup 127}I ratios likely reflecting variations in source functions as well as climatic conditions, and with inferred particle-water partition coefficients (K{sub d}) of 0.1 cm{sup 3} g{sup -1} or less.

  4. Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.

    2002-01-01

    In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring

  5. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  6. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  7. A combined radio- and stable-isotopic study of a California coastal aquifer system

    USGS Publications Warehouse

    Swarzenski, Peter W.; Baskaran, Mark; Rosenbauer, Robert J.; Edwards, Brian D.; Land, Michael

    2013-01-01

    Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl−, SO42−), silica, alkalinity, select trace elements (Ba, B, Sr), dissolved oxygen, stable isotopes of hydrogen (δD), oxygen (δ18O), dissolved inorganic carbon (δ13CDIC), and radioactive isotopes (3H, 222Rn and 223,224,226,228Ra). In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl− concentrations attained seawater-like values and in conjunction with isotopically heavier δ18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU) was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc), groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ13CDIC in the absence of SO42− imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/238U (activity ratios ~1) in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights into aquifer

  8. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (??10 mm in change of land surface elevation) were developed for a groundwater basin (~103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993-1995) subsidence patterns and those detected historically (1926-1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  9. Documentation of model input and output values for the geohydrology and mathematical simulation of the Pajaro Valley aquifer system, Santa Cruz and Monterey counties, California

    USGS Publications Warehouse

    Mitten, H.T.; Londquist, C.J.

    1990-01-01

    This report contains listings of the model input and sample output for simulation of the Pajaro Valley aquifer system, Santa Cruz and Monterey Counties, California. The files are contained on a 5 1/4-inch diskette. The decompressed files require approximately 5.3 megabytes of disk space on an IBM-compatible microcomputer. (USGS)

  10. A 10-year plan to study the aquifer system of Indian Wells Valley, California

    USGS Publications Warehouse

    Lipinski, Paul; Knochenmus, Darwin D.

    1981-01-01

    Water needs of the population of Indian Wells Valley, Calif., must be met through further development of ground-water resources. Studies show that annual ground-water pumpage there has increased since 1945 and has exceeded mean annual recharge since 1966. Continued and increased stress on the aquifer system of the valley is expected because population in the valley is predicted to double by 1998 and triple by 2020, based on 1977 population figures. The U.S. Geological Survey proposes a 10-year program to develop a data base to aid in evaluation of future water-management alternatives. A study plan has been developed that describes present and potential problems and objectives of the program, and outlines work items to be undertaken in the study area. (USGS)

  11. Time-series ground-water-level and aquifer-system compaction data, Edwards Air Force Base, Antelope Valley, California, January 1991 through September 1993

    USGS Publications Warehouse

    Freeman, L.A.

    1996-01-01

    As part of a study by the U.S. Geological Survey, a monitoring program was implemented to collect time-series ground-water-level and aquifer-system compaction data at Edwards Air Force Base, California. The data presented in this report were collected from 18 piezometers, 3 extensometers, 1 barometer, and 1 rain gage from January 1991 through September 1993. The piezometers and extensometers are at eight sites in the study area. This report discusses the ground-water-level and aquifer-system compaction monitoring networks, and presents the recorded data in graphs. The data reported are available in the data base of the U.S. Geological Survey.

  12. Digital model of the unconsolidated aquifer system in the Modesto area, Stanislaus and San Joaquin Counties, California

    USGS Publications Warehouse

    Londquist, Clark J.

    1981-01-01

    A digital mathematical model of the unconsolidated alluvial aquifer system in the Modesto area, Calif., has been developed which can be used to determine the effects of increased pumping and water use of future water levels in the aquifer system. The model is divided into two units. The lower unit is confined in the western part of the study area by a confining clay bed; elsewhere in this unit the aquifer is unconfined. The upper unit represents an unconfined aquifer and lies above the clay bed or its extension. Where the clay bed is absent the upper and lower units are considered as a single aquifer. The model, as calibrated, can evaluate with reasonable accuracy the effects on water levels of changing stresses and stress patterns only within the area of primary interest for the upper unit. In other areas of the upper unit and for the lower unit, predicted changes should be looked upon as, at best, representing only general trends. (USGS)

  13. Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California

    USGS Publications Warehouse

    Jagucki, Martha L.; Jurgens, Bryant C.; Burow, Karen R.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Modesto, California. The well selected for study pumps on average about 1,600 gallons per minute from the Central Valley aquifer system during peak summer demand. Water samples were collected at the public-supply well and at monitoring wells installed in the Modesto vicinity. Samples from the public-supply wellhead contained the undesirable constituents uranium, nitrate, arsenic, volatile organic compounds (VOCs), and pesticides, although none were present at concentrations exceeding drinking-water standards. Of these contaminants, uranium and nitrate pose the most significant water-quality risk to the public-supply well because human activities have caused concentrations in groundwater to increase over time. Overall, study findings point to four primary factors that affect the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Modesto: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) irrigation and agricultural and municipal pumping that drives contaminants downward into the primary production zone of the aquifer; (3) short-circuiting of contaminated water down the public-supply well during the low-pumping season; and (4) natural geochemical conditions of the aquifer. A local-scale computer model of groundwater flow and transport to the public-supply well was constructed to simulate long-term nitrate and uranium concentrations reaching the well. With regard to nitrate, two conflicting processes influence concentrations in the area contributing recharge to the well: (1) Beneath land that is being farmed or has recently been farmed (within the last 10 to 20 years), downward-moving irrigation waters contain elevated nitrate concentrations; yet (2) the proportion of agricultural land has decreased and the proportion of urban land has increased since 1960. Urban land use is associated with low nitrate

  14. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  15. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    USGS Publications Warehouse

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  16. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers. Groundwater and surface-water flow are controlled, in part, by the geologic setting. The physiographic province and related tectonic fabric control the relation between the direction of geomorphic features and the flow of water. Geologic structures such as faults and folding also control the direction of flow and connectivity of groundwater flow. The layering of sediments and their structural association can also influence pathways of groundwater flow and seawater intrusion. Submarine canyons control the shortest potential flow paths that can result in seawater intrusion. The location and extent of offshore outcrops can also affect the flow of groundwater and the potential for seawater intrusion and land subsidence in coastal aquifer systems. As coastal aquifer systems are developed, the source and movement of ground-water and surface-water resources change. In particular, groundwater flow is affected by the relative contributions of different types of inflows and outflows, such as pump-age from multi-aquifer wells within basal or upper coarse-grained units, streamflow infiltration, and artificial recharge. These natural and anthropogenic inflows and outflows represent the supply and demand components of the water budgets of ground-water within coastal watersheds. They are all significantly controlled by climate variability related to major climate cycles, such as the El Niño–Southern Oscillation and the Pacific Decadal Oscillation. The combination of natural forcings and anthropogenic stresses redirects the flow of groundwater and either

  17. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick

  18. Groundwater Availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  19. Ground-water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County, California, 1999-2002

    USGS Publications Warehouse

    Land, Michael; Reichard, Eric G.; Crawford, Steven M.; Everett, Rhett; Newhouse, Mark W.; Williams, Colin F.

    2004-01-01

    The extensive use of ground water throughout the Central and West Coast Basins of Los Angeles County during the first half of the 20th century resulted in declining water levels, widespread seawater intrusion, and deterioration of water quality along most reaches of the coast. In order to control seawater intrusion in the West Coast Basin, freshwater is injected into a series of wells at two seawater barrier projects. In order to better understand the processes of seawater intrusion and the efficiency of current barrier operation, data were collected from multiple-well monitoring sites installed by the U.S. Geological Survey, from local observation wells, and from production wells. The occurrence and areal extent of native, saline, and recently injected ground water near the coast were defined through the collection and analysis of inorganic and isotopic water-quality data and geophysical logs. Most water in the West Coast Basin with a dissolved-solids concentration less than 500 milligrams per liter generally has a sodium-bicarbonate to sodium/calcium-bicarbonate character. Water with a dissolved-solids concentration greater than 1,000 milligrams per liter also contains variable amounts of calcium and sodium, but chloride is predominant. Most of these high-dissolved-solids wells are perforated in the Upper aquifer systems; several have dissolved-chloride values near that of seawater. Elevated chloride concentrations were measured at many wells in both the Upper and Lower aquifer systems inland from the barrier projects. Although water levels have increased in many wells over the last 30 years, some of the wells do not show a corresponding decrease in dissolved chloride. A detailed assessment of saline ground water was provided by examining the ratios of chloride to bromide, iodide, and boron. Seawater-freshwater mixing lines were constructed using all three ratios. These ion ratios also identify water affected by mixing with injected imported water and oil

  20. Refurbished extensometer sites improve the quality and frequency of aquifer-system compaction and groundwater-level measurements, San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Sneed, M.; Brandt, J.; Solt, M.

    2012-12-01

    Extensive groundwater withdrawal from unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and land subsidence locally exceeding 8 meters (m) between 1926 and 1970. To identify the extent of subsidence, a network of 31 extensometers was installed in the 1960s. Importation of surface water in the early 1970s resulted in decreased groundwater pumping, a steady water-level recovery, and a reduced rate of compaction; consequently, data collection was sharply reduced. However, reduced surface-water availability during 1976-77, 1987-92, and 2007-09 caused increased groundwater pumping, lowered water levels, and renewed compaction. The resulting land subsidence has reduced freeboard and flow capacity of the Delta-Mendota Canal (DMC), the California Aqueduct (AQ), and other canals. Four deep (>300-m) cable-type extensometers from the old network, located along the DMC and AQ, were refurbished to identify existing and future subsidence, and to improve the quality and frequency of compaction measurements. Measurement quality was improved at three of these sites by replacing the existing reference tables, which sit atop concrete pads, with new reference tables cemented in 5.5-m boreholes and decoupled from the concrete pads to minimize the measurement of near-surface deformation. A new reference table could not be constructed at the fourth site due to restrictive drill-rig access. Insulated metal shelters were constructed to protect the equipment against environmental exposure at all sites. The frequencies of compaction and water-level measurements at the extensometer sites were improved by instrumenting each with a linear potentiometer and one or more submersible pressure transducers, respectively. An analog dial gauge was installed on each extensometer to provide data continuity in cases of electronic data interruption and to provide verification of potentiometer data. Aquifer-system compaction data from all four sites show

  1. Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004-2005

    USGS Publications Warehouse

    King, N.E.; Argus, D.; Langbein, J.; Agnew, D.C.; Bawden, G.; Dollar, R.S.; Liu, Z.; Galloway, D.; Reichard, E.; Yong, A.; Webb, F.H.; Bock, Y.; Stark, K.; Barseghian, D.

    2007-01-01

    Starting early in 2005, the positions of GPS stations in the San Gabriel valley region of southern California showed statistically significant departures from their previous behavior. Station LONG moved up by about 47 mm, and nearby stations moved away from LONG by about 10 mm. These changes began during an extremely rainy season in southern California and coincided with a 16-m increase in water level at a nearby well in Baldwin Park and a regional uplift detected by interferometric synthetic aperture radar. No equivalent signals were seen in GPS station position time series elsewhere in southern California. Our preferred explanation, supported by the timing and by a hydrologic simulation, is deformation due to recharging of aquifers after near-record rainfall in 2004-2005. We cannot rule out an aseismic slip event, but we consider such an event unlikely because it requires slip on multiple faults and predicts other signals that are not observed. Copyright 2007 by the American Geophysical Union.

  2. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  3. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    SciTech Connect

    Hayes, J.; Bertschinger, V. ); Aley, T. )

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyes were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.

  4. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Maintaining the sustainability of Southern California coastal aquifers requires joint management of surface water and groundwater (conjunctive use). This requires new data collection and analyses (including research drilling, modern geohydrologic investigations, and development of detailed computer groundwater models that simulate the supply and demand components separately), implementation of new facilities (including spreading and injection facilities for artificial recharge), and establishment of new institutions and policies that help to sustain the water resources and better manage regional development.

  5. Denitrification in a Shallow Aquifer Underlying a Dairy Farm in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Beller, H. R.; Carle, S. F.; Hudson, G. B.; Kane, S. R.; McNab, W. W.; Moran, J. E.; Tompson, A. F.

    2004-12-01

    Nitrate loading to shallow aquifers from dairy farm operations presents a serious threat to critical groundwater resources in California. Less well known is the extent to which saturated zone denitrification may mitigate the problem by converting nitrate to the benign end-product nitrogen, before nitrate is transported to deeper aquifers used for drinking water. We are carrying out a multi-disciplinary study of saturated zone denitrification, in a dense network of monitoring points at a 1500-cow dairy in Kings County, California. Detailed vertical profiles of anion and cation concentrations, along with dissolved excess nitrogen were obtained at five-foot intervals using temporary direct-push wells. Results show nitrate concentrations in excess of 100 mg/L over the top few meters of the water column, abruptly falling to less than 5 mg/L below a depth of approximately 10m. Over the same interval, dissolved excess nitrogen concentrations sharply increase, indicating that denitrification is responsible for a significant fraction of the nitrate decrease. This pattern is in effect across the entire dairy site. A key aspect of the project is a concurrent focus on understanding the hydrogeology of the site. Regionally, overdraft over the past several decades has resulted in the development of separate shallow (10 m) and deeper (≥ 40 m) aquifer systems. Recharge to the shallow aquifer is derived from low TDS, isotopically depleted Kings River water from a nearby unlined irrigation canal. Local agricultural pumping from the shallow aquifer and infiltration from irrigation water are significant factors in the shallow system. The deeper aquifer is characterized by intensive regional pumping, rapidly decreasing water levels, and the apparent disposition of the shallow aquifer as a perched system for a 1-km2 or more area surrounding the farm. The air gap separating the aquifers is low in oxygen and undergoes pressure changes as water levels fluctuate below. Age dating and

  6. Assessing the susceptibility to contamination of two aquifer systems used for public water supply in the Modesto and Fresno metropolitan areas, California, 2001 and 2002

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth; Johnson, Tyler D.

    2004-01-01

    Ground-water samples were collected from 90 active public supply wells in the Fresno and Modesto metropolitan areas as part of the California Aquifer Susceptibility (CAS) program. The CAS program was formed to examine the susceptibility to contamination of aquifers that are tapped by public supply wells to serve the citizens of California. The objectives of the program are twofold: (1) to evaluate the quality of ground water used for public supply using volatile organic compound (VOC) concentrations in ground-water samples and (2) to determine if the occurrence and distribution of low level VOCs in ground water and characteristics, such as land use, can be used to predict aquifer susceptibility to contamination from anthropogenic activities occurring at, or near, land surface. An evaluation was made of the relation between VOC occurrence and the explanatory variables: depth to the top of the uppermost well perforation, land use, relative ground-water age, high nitrate concentrations, density of leaking underground fuel tanks (LUFT), and source of recharge water. VOCs were detected in 92 percent of the wells sampled in Modesto and in 72 percent of the wells sampled in Fresno. Trihalomethanes (THM) and solvents were frequently detected in both study areas. Conversely, the gasoline components?benzene, toluene ethylbenzene, and xylenes (BTEX)?were rarely, if at all, detected, even though LUFTs were scattered throughout both study areas. The rare occurrence of BTEX compounds may be the result of their low solubility and labile nature in the subsurface environment. Samples were analyzed for 85 VOCs; 25 were detected in at least one sample. The concentrations of nearly all VOCs detected were at least an order of magnitude below action levels set by drinking water standards. Concentrations of four VOCs exceeded federal and state maximum contaminant levels (MCL): the solvent trichloroethylene (TCE) and the fumigant 1, 2-dibromo-3-chloropropane (DBCP) in Fresno, and the

  7. California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project--shallow aquifer assessment

    USGS Publications Warehouse

    ,

    2013-01-01

    The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.

  8. The Tuscaloosa Aquifer system in Mississippi

    USGS Publications Warehouse

    Boswell, E.H.

    1978-01-01

    A three-sheet map report describes the Tuscaloosa aquifer system in Mississippi. The Tuscaloosa aquifer system, of Cretaceous age , is in the interconnected irregular sand and gravel beds in the Coker and Gordo Formations. The aquifer contains freshwater in an area of about 9,000 sq mi in northeastern Mississippi. Water produced from the aquifer by about 90 water systems and numerous industries in 1975 averaged about 47 Mgal/d. Regional water level declines have averaged less than two feet per year and the aquifer has a large potential for future development. The aquifer is used in some areas where the dissolved-solids concentration is more than 500 mg/L and where wells exceed 2,000 ft in depth. The most common problems in water supplies are excessive chloride and iron. (Woodard-USGS)

  9. Data for ground-water test hole near Nicolaus, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, Gilbert L.

    1983-01-01

    Preliminary data are provided for the third of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 2, T.12N., R.3E., Sutter County, California, about 1 1/2 miles northwest of the town of Nicolaus. Drilled to a depth of 1,150 feet below land surface, the hole is cased to a depth of 100 feet and equipped with three piezometer tubes to depths of 311, 711, and 1,071 feet. A 5-foot well screen is set in sand at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer, and the well bore is filled between the plugs with sediment. Thirty-one cores and 34 sidewall cores were recovered. Laboratory tests were made for minerology, consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis of the three tapped zones and measured for water level. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  10. Data for ground-water test hole near Butte City, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, G.L.

    1983-01-01

    This report provides preliminary data for the third of seven test holes drilled as part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 32, T. 19 N., R. 1 W., Glenn County, California, about one-half mile south of the town of Butte City. Drilled to a depth of 1,432 feet below land surface, the hole is cased to a depth of 82 feet and equipped with three piezometer tubes to depths of 592 feet, 968 feet, and 1,330 feet. A 5-foot well screen is at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer , and the well bore is filled between the plugs with sediment. Nine cores and 49 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, and chemical quality of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  11. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1989-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.

  12. Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California

    USGS Publications Warehouse

    Nenna, Vanessa; Herckenrather, Daan; Knight, Rosemary; Odlum, Nick; McPhee, Darcy

    2013-01-01

    Developing effective resource management strategies to limit or prevent saltwater intrusion as a result of increasing demands on coastal groundwater resources requires reliable information about the geologic structure and hydrologic state of an aquifer system. A common strategy for acquiring such information is to drill sentinel wells near the coast to monitor changes in water salinity with time. However, installation and operation of sentinel wells is costly and provides limited spatial coverage. We studied the use of noninvasive electromagnetic (EM) geophysical methods as an alternative to installation of monitoring wells for characterizing coastal aquifers. We tested the feasibility of using EM methods at a field site in northern California to identify the potential for and/or presence of hydraulic communication between an unconfined saline aquifer and a confined freshwater aquifer. One-dimensional soundings were acquired using the time-domain electromagnetic (TDEM) and audiomagnetotelluric (AMT) methods. We compared inverted resistivity models of TDEM and AMT data obtained from several inversion algorithms. We found that multiple interpretations of inverted models can be supported by the same data set, but that there were consistencies between all data sets and inversion algorithms. Results from all collected data sets suggested that EM methods are capable of reliably identifying a saltwater-saturated zone in the unconfined aquifer. Geophysical data indicated that the impermeable clay between aquifers may be more continuous than is supported by current models.

  13. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    USGS Publications Warehouse

    Nishikawa, T.

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  14. Origins of seawater intrusion in a coastal aquifer - A case study of the Pajaro Valley, California

    USGS Publications Warehouse

    Bond, L.D.; Bredehoeft, J.D.

    1987-01-01

    Seawater may enter and contaminate stratified coastal aquifers through a number of different pathways. These pathways and their relative contribution are examined in the Pajaro Valley, California, a coastal area with extensive groundwater development. This study considers three pathways of possible intrusion of the primary confined aquifer: (1) onshore leakage from brackish sources, the estuary and sloughs, through the confining layer; (2) near-shore leakage from the ocean through the confining layer; and (3) offshore flow from the ocean through the submarine canyon outcrop of the aquifer. Groundwater flow and seawater intrusion are simulated using an areal, two-dimensional solute-transport computer model. This analysis indicates that leakage through confining layers is the principal mechanism of recharge to the aquifer. Although lateral flow through the offshore outcrop contaminates the aquifer, as a whole, at a higher rate, vertical leakage through the sea floor initially is the main pathway of seawater intrusion to the onshore portion of the aquifer. It is likely that leakage generally is the dominant mechanism of recharge and initial cause of seawater intrusion for poorly-confined, stratified coastal aquifers. This analysis suggests that a significant time interval follows the initial observation of seawater intrusion, during which remedial action can be taken to control lateral flow through the offshore outcrop, which ultimately will be the largest component of future intrusion in these aquifers. ?? 1987.

  15. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  16. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona

    USGS Publications Warehouse

    Hanson, R.T.

    1989-01-01

    Groundwater declines of several ft/yr since the 1940 's have induced aquifer-system compaction and land subsidence of as much as 0.5 ft in the Tucson basin and 1.1 ft in Avra Valley, Arizona. Aquifer system compaction is affected by the layering, hydraulic diffusivity, preconsolidation-stress threshold, and stress history of the aquifer system. Layering at extensometer sites can be categorized into three general groups that typify the fine-grained and coarse-grained layering within the Fort Lowell Formation and upper Tinaja beds. Data from the first group show almost as much elastic as inelastic compaction, a layering frequency of six layers/100 ft, and weighted-average aquitard thicknesses of 20 to 50 ft. Data from the second group show inelastic compaction, a layering frequency of two to three layers/100 ft, an average aquitard thickness of less than 20 ft. Data from the third group show inelastic compaction, a layering frequency of fewer than two layers/100 ft, an average aquitard thickness of more than 30 ft. A one-dimensional compaction model was applied to data from six extensometers to simulate aquifer-system compaction of less than 0.1 ft. Values of elastic and some values of inelastic specific storage are comparable to values estimated in California. Parts of the aquifer system appear to be in transition from predominantly elastic to inelastic compaction. Water level declines since 1940 at six extensometer sites are within an estimated preconsolidation-stress threshold of 50 to 150 ft. (USGS)

  17. Hydrochemistry of the surficial and intermediate aquifer systems in Florida

    USGS Publications Warehouse

    Berndt, M.P.; Katz, B.G.

    1992-01-01

    Hydrochemistry of the surficial and intermediate aquifer systems in Florida reflects the lithology and mineralogy of units within each aquifer and sources of water to each aquifer. The surficial aquifer system consists of sand, sandstone, clay, limestone, and shell units that are recharged primarily by precipitation. Calcium bicarbonate was the major-ion water type for 53 percent of the surficial aquifer determinations; a mixed water type (no dominant ions) accounted for 37 percent of the determinations. The median dissolved-solids concentration for the surficial aquifer system was 341 milligrams per liter. The intermediate aquifer system consists of limestone, dolomite, sand, and sandstone, and sources of water include downward leakage from the surficial aquifer system and, in some areas, upward leakage from the Upper Floridan aquifer. In northeastern and panhandle areas of Florida, water from the intermediate aquifer system had major-ion and dissolved-solids concentrations similar to water from the surficial aquifer system. In southwestern Florida, the water type in 67 percent of analyses was mixed, and the median dissolved-solids concentration was 642 milligrams per liter. In a northern area of southwestern Florida, hydrochemistry in the limestone aquifer of the intermediate aquifer system is similar to downward leakage from the surficial aquifer system. In a southern area, downward leakage from the surficial aquifer system has calcium and bicarbonate concentrations five times higher than in the northern area, and upward leakage from the Upper Floridan aquifer contains sodium chloride type water from mixing with seawater. In southern southwest Florida, both the limestone aquifer and the overlying sandstone aquifer within the intermediate aquifer system had higher calcium, sodium, chloride, and bicarbonate concentrations than the limestone aquifer in northern southwest Florida.

  18. A study of deep aquifers underlying coastal Orange County, California

    USGS Publications Warehouse

    Moreland, Joe A.; Singer, John A.

    1969-01-01

    zone, the depth to the base of aquifers containing fresh water ranges from 1,000 to 2,500 feet below mean sea level. The aquifers are composed of fine to medium sand with locally occurring beds of coarse sand and gravel. Permeability generally ranges from less than 50 gallons per day per square foot to 300 gallons per day per square foot. Pressure head increases with depth of the aquifer to as much as 40 feet above land surface near the base of fresh water. The water is of the sodium bicarbonate type, increasing in salinity with depth. Organic material imparts an amber color to the water, which becomes more distinct with depth. A test well, drilled to 926 feet and perforated from 784 to 884 feet, yielded 1,950 gallons per minute with about 90 feet of drawdown. The water is of the sodium bicarbonate type with dissolved solids of 225 mg/1. Additional studies are needed to evaluate the possibilities of subsidence due to pumping from the deep aquifers, to determine the vertical and horizontal permeabilities of confining beds, and to monitor the changes in water quality and water level.

  19. Can We Mitigate Climate Extremes using Managed Aquifer Recharge: Case Studies California Central Valley and South-Central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Faunt, C. C.; Pool, D. R.; Uhlman, K.

    2015-12-01

    Frequent long-term droughts interspersed with intense floods in the southwestern U.S. underscore the need to store more water to manage these climate extremes. Here we show how managed aquifer recharge can enhance drought resilience in the southwestern U.S. with ~ 70% of California under extreme drought and 75% of Arizona under moderate drought. Data on water sources, transportation, and users were compiled for managed aquifer recharge systems in the Central Valley and south-central Arizona. Groundwater depletion of 115 to 145 km3 in the 1900s created large subsurface reservoirs in thick alluvial basins in these regions. Large canals and aqueducts up to several 100 km long allow water to be imported from reservoirs, mostly in more humid regions. Imported water is either used instead of groundwater or is applied in surface spreading basins primarily during wet periods (≤1.3 km3/yr Central Valley, ≤0.7 km3/yr Arizona) and is extracted during droughts. The dominant water users include irrigators and municipalities both within and outside the managed aquifer recharge systems. Groundwater modeling indicates that recharge basins significantly increase groundwater storage in the Central Valley. Managed aquifer recharge systems significantly enhance drought resilience and increase sustainability of water resources in semiarid regions, complementing surface water reservoirs and conjunctive surface water/groundwater use by providing longer term storage.

  20. The Oligocene aquifer system in Mississippi

    USGS Publications Warehouse

    Gandl, L.A.

    1979-01-01

    The Oligocene aquifer system in Mississippi consists of limestone and marl members of the Vicksburg Group, and the underlying Forest Hill Sand. The aquifer system crops out in a band 5 to 10 miles wide, that trends southeast across the State from the Warren-Yazoo County line to northeastern Wayne County. In the northwest part of the area, the formations dip to the southwest at 12 feet per mile. At the southeastern end of the outcrop, the dip is 42 feet per mile. The average dip for the entire area is 30 feet per mile. The aquifers are of primary importance for domestic and farm use. Total withdrawal in 1977 was about 1.4 million gallons per day. Since 1963 water levels have declined an average of between 0.05 and 2 feet per year. Water quality is generally good although in some places there are objectionably high concentrations of iron and color. (Woodard-USGS)

  1. Tying California's Water System Together

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; Singh, K.; Medellin-Azuara, J.; Lund, J. R.

    2015-12-01

    This paper presents updates to a relatively integrated hydro-economic model of California's water supply system (CALVIN), showing how future sustainable groundwater management and climate change are likely to affect the operation of California's statewide water supply system, and particularly the Sacramento-San Joaquin Delta. California's water system connects most parts of the state, so that water policy changes in one part of the state can affect water management and deliveries in distant parts of California. This provides a high level of robustness in this system, and geographically disperses the impacts of local actions.

  2. Santa Clara Valley water district multi-aquifer monitoring-well site, Coyote Creek Outdoor Classroom, San Jose, California

    USGS Publications Warehouse

    Hanson, R.T.; Newhouse, M.W.; Wentworth, C.M.; Williams, C.F.; Noce, T.E.; Bennett, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Santa Clara Valley Water District (SCVWD), has completed the first of several multiple-aquifer monitoring-well sites in the Santa Clara Valley. This site monitors ground-water levels and chemistry in the one of the major historic subsidence regions south of San Jose, California, at the Coyote Creek Outdoor Classroom (CCOC) (fig. 1) and provides additional basic information about the geology, hydrology, geochemistry, and subsidence potential of the upper- and lower-aquifer systems that is a major source of public water supply in the Santa Clara Valley. The site also serves as a science education exhibit at the outdoor classroom operated by SCVWD.

  3. Estimating Aquifer Properties in the San Joaquin Basin, California, through the Analysis of InSAR Data

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Knight, R. J.; Zebker, H. A.; Farr, T. G.; Liu, Z.; Chen, J.; Crews, J.; Reeves, J.

    2015-12-01

    Increased groundwater withdrawal in the San Joaquin Valley, California, due to recent droughts has over-stressed many parts of the aquifer system, resulting in widespread aquifer compaction and land subsidence. Using Interferometric Synthetic Aperture Radar, or InSAR, we measure the magnitude of land subsidence to be as much as 20 cm/year for the period from 2007-2011. By comparing the observed subsidence with current and historic groundwater levels, we estimate that 90% of the observed subsidence is inelastic, or not recoverable. Due to delayed drainage in thick aquitards, we find that the majority (>95%) of compaction is caused by thin clay lenses within the upper and lower aquifers, which agrees with previous studies in the area. We use representative skeletal storage coefficients from previous studies in conjunction with observed subsidence and groundwater levels in a 1-dimensional vertical diffusion model to estimate the effective vertical hydraulic conductivity of the aquifer, and determine it is on the order of 1×10-6 cm/second.

  4. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  5. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    NASA Astrophysics Data System (ADS)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  6. Delineation and description of the regional aquifer systems of Tennessee; Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  7. Modeling of Reactive Transport of Nitrate in a Heterogeneous Alluvial Fan Aquifer, San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Phillips, S. P.

    2005-12-01

    Fate of nitrate in an alluvial fan aquifer in the San Joaquin Valley, California, was investigated with combined laboratory analyses, field measurements, geostatistics, and flow and reactive transport modeling. In the summer of 2003, groundwater wells and lysimeters were installed along a 1-km transect extending upgradient from the Merced River through an unfarmed riparian zone, a corn field, and an orchard. Groundwater levels have been monitored continuously. Saturated and unsaturated pore waters were analyzed quarterly for nutrients, anions, and cations. Sediment core samples from above and below the water table were analyzed for organic matter, nutrients, inorganic chemistry, and potential denitrification using denitrification enzyme assays (DEA's) based on the acetylene block technique. Curve fitting of DEA's provided core-scale estimates of microbial populations and growth coefficients. DEA biomass was similar to values obtained with the most probable number technique. Growth coefficients were found to be relatively uniform across the site, while biomass varied by several orders of magnitude. Age dates estimated from Chlorofluorocarbon (CFC) and Sulfur Hexafluoride (SF6), together with analyses of nitrogen species and excess nitrogen gas, provided approximate aquifer-scale, zero-order denitrification rates. The field and laboratory measurements served as input for geostatistical realizations of sediment properties and simulations of reactive transport of nitrate in the saturated zone. Analyses of cores, drillers' logs, and previous interpretations of the local geology were used to generate transition probability models of hydrofacies distributions within Holocene alluvium and pre-Holocene fans, and maps of the boundaries between these stratigraphic sequences. Multiple 3-D realizations were created and ranked based on lateral and vertical bulk-flow properties. For realizations representing a range of geological conditions, 3-D flow was computed with boundary

  8. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  9. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.; ,

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  10. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  11. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The agricultural system of corn, soybeans, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of

  12. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of this practice.

  13. Preliminary delineation and description of the regional aquifers of Tennessee : the Highland Rim aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Bradley, M.W.

    1986-01-01

    The Highland Rim aquifer system in Tennessee is primarily composed of Mississippian carbonates and occurs west of the Valley and Ridge Province. It crops out in the Highland Rim and the Sequatchie Valley. It has been removed by erosion from the Central Basin. Groundwater in the Highland Rim aquifer system occurs primarily in secondary openings including solution openings, joints, and faults. The Chattanooga Shale is the lower confining layer for the Highland Rim aquifer system. Under the Cumberland plateau, this aquifer system is separated from the overlying Pennsylvanian formations by the Pennington Shale. The Highland Rim aquifer system is an important source of drinking water. It supplies most of the rural, domestic, and many public supplies of drinking water in the Highland Rim. Where there is a dynamic flow system, dissolved solids concentrations are less than 500 mg/L. However, isolated cells may exist where the groundwater has dissolved solids concentrations of more than 1 ,000 mg/L. (USGS)

  14. Distribution of carbonate-rock aquifers and the potential for their development, southern Nevada and adjacent parts of California, Arizona, and Utah

    USGS Publications Warehouse

    Dettinger, M.D.; Harrill, J.R.; Schmidt, D.L.; Hess, J.W.

    1995-01-01

    In 1985, the State of Nevada entered into a cooperative effort with the U.S. Department of the Interior to study and test the State's carbonate- rock aquifers. The studies were focused on southern Nevada and were intended to address the following concerns: Where is water potentially available in the aquifers?; How much water potentially can bewithdrawn from aquifers?; and What effects might result from development of the aquifers? The studies included basic-data collection, geologic mapping, geophysical and geochemical analyses, well drilling, and aquifer testing. The studies showed that the carbonate rocks are continuous and extensive enough to form regional aquifer systems only beneath thecentral third of the region. About 130,000 acre-feet per year of ground water flows through all the aquifers in this corridor (carbonate and noncarbonate), and about 77,000 acre-feet per year discharges directly from the carbonate-rock aquifers at regional springs in southern Nevada or at discharge areas in Death Valley, California. A larger volume of water -as much as 6 million acre-feet in the upper 100 feet alone-is stored in the rocks. Once depleted, however, that resource would be replenished by natural processes only very slowly. Ultimately, long-term development of the carbonate-rock aquifers would result in depletion of stored water, or in the capture of water that otherwise would discharge from the aquifers of southern Nevada and vicinity, or both. In manyplaces, development might extract water from both carbonate-rock and basin-fill aquifers. Possible effects of developing the carbonate-rock aquifers include declining water levels, decreasing springflow rates, drying up of some streams, playas, and meadows, and changing water quality. Specific impacts would depend upon the magnitude and length of development and site-specific conditions around the areas where the water is withdrawn. Confidence in predictions of the potential effects ofdevelopment of the carbonate

  15. Aquifer descriptions from the U.S. Geological Survey Regional Aquifer-System Analysis Program, 1978-1993

    USGS Publications Warehouse

    Davidson, Claire B.; Doherty, Helen

    1994-01-01

    The Regional Aquifer-System Analysis Program of the U.S. Geological Survey began in 1978. The overall purpose of this program is to define the geologic, hydrologic, and geochemical framework of the Nation's most important aquifers and aquifer systems. This report summarizes the aquifer or aquifer system name, geographic area, rock units, equivalent names, lithology, thickness, hydrologic characteristics, water quality, water use, and references for 157 aquifers in 23 areas of the United States. A .zip file containing the aquifer data and data search programs (in compressed ASCII format) is included in the report.

  16. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  17. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    USGS Publications Warehouse

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Bohlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  18. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    NASA Astrophysics Data System (ADS)

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, J. K.; Sturchio, Neil C.

    2015-05-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  19. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    USGS Publications Warehouse

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;

    2016-01-01

    Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  20. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine

    2016-03-01

    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  1. Statistical evaluation of variables affecting occurrence of hydrocarbons in aquifers used for public supply, California

    USGS Publications Warehouse

    Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.

    2014-01-01

    The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.

  2. Use of InSAR to identify land-surface displacements caused by aquifer-system compaction in the Paso Robles area, San Luis Obispo County, California, March to August 1997

    USGS Publications Warehouse

    Valentine, D.W.; Densmore, J.N.; Galloway, D.L.; Amelung, Falk

    2000-01-01

    The population in San Luis Obispo County has grown steadily during the 1990s, and some land use has been converted from dry farming to grazing to irrigated vineyards and urban areas. Because insufficient surface-water supplies are available to meet the growing demand, ground-water pumpage has increased and the resulting water-level declines have raised concern that this water resource may become overstressed. One particular concern is whether the larger ground-water basins within the county function as large individual basins or whether subsurface structures divide these large basins into smaller subbasins, as differences in ground-water-level data suggest. Interferometric Synthetic Aperture Radar (InSAR) is used in locating land-surface displacement, which may indicate subsurface structures in ground-water basins by determining seasonal and historical land-surface changes. Owing to the high spatial detail of InSAR imagery, the InSAR-derived displacement maps can be used with ground-water-level data to reveal differential aquifer-system compaction related to the presence of geological structures or the distribution of compressible sediments that may define subbasin boundaries. This report describes InSAR displacement maps of the Paso Robles area of San Luis Obispo County and compares them to maps of seasonal changes in ground-water levels to detect the presence of aquifer-system compaction.

  3. Use of InSAR to identify land-surface displacements caused by aquifer-system compaction in the Paso Robles area, San Luis Obispo County, California, March to August 1997

    USGS Publications Warehouse

    Valentine, David W.; Densmore, Jill N.; Galloway, Devin L.; Amelung, Falk

    2001-01-01

    The population in San Luis Obispo County has grown steadily during the 1990s, and some land use has been converted from dry farming to grazing to irrigated vineyards and urban areas. Because insufficient surface-water supplies are available to meet the growing demand, ground-water pumpage has increased and the resulting water-level declines have raised concern that this water resource may become overstressed. One particular concern is whether the larger ground-water basins within the county function as large individual basins or whether subsurface structures divide these large basins into smaller subbasins, as differences in ground-water-level data suggest. Interferometric Synthetic Aperture Radar (InSAR) is used in locating land-surface displacement, which may indicate subsurface structures in ground-water basins by determining seasonal and historical land-surface changes. Owing to the high spatial detail of InSAR imagery, the InSAR-derived displacement maps can be used with ground-water-level data to reveal differential aquifer-system compaction related to the presence of geological structures or the distribution of compressible sediments that may define subbasin boundaries. This report describes InSAR displacement maps of the Paso Robles area of San Luis Obispo County and compares them to maps of seasonal changes in ground-water levels to detect the presence of aquifer-system compaction.

  4. Analysis of potential water-supply management options, 2010-60, and documentation of revisions to the model of the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter

    2014-01-01

    The Fort Irwin National Training Center is considering several alternatives to manage their limited water-supply sources in the Irwin Basin. An existing three-dimensional, finite-difference groundwater-flow model—the U.S. Geological Survey’s MODFLOW—of the aquifer system in the basin was updated and the initial input dataset was supplemented with groundwater withdrawal data for the period 2000–10. The updated model was then used to simulate four combinations, or scenarios, of groundwater withdrawal and recharge over the next 50 years (January 2011 through December 2060). The scenarios included combinations of continuing withdrawals from currently active production wells, supplementing any increases in demand with withdrawals from an inactive production well, reducing withdrawal amounts and rates, and reducing the discharge of treated wastewater to infiltration ponds that provide a recharge source to the underlying aquifer. Results of the simulations indicated that, depending on the scenario implemented, groundwater levels would rise (over the next 50 years) from 40 feet to as much as 65 feet in the northwestern part of the Irwin Basin, and from 5 feet to 10 feet in the southeastern part.

  5. Preliminary delineation and description of the regional aquifers of Tennessee : Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  6. Assessing Coastal Aquifer Response to Projected Sea Level Rise in California

    NASA Astrophysics Data System (ADS)

    Odigie, K. O.; Hoover, D. J.; Barnard, P.; Swarzenski, P. W.

    2015-12-01

    The rate of global sea-level rise (SLR) has been increasing over the past century, primarily due to global warming and associated melting of polar icecaps. Recent projections indicate that sea level could rise globally by more than 1 m by 2100. Potential impacts of SLR in coastal regions are a concern, especially in California which has a ~1,800 km long coastline and where >70% of the population live in coastal counties. However, information on potential impacts of SLR-driven groundwater inundation in California is limited. In this study, we examined potential impacts of SLR-driven groundwater inundation in select low-lying areas of California, including Arcata, Stinson Beach, and Malibu Lagoon, under +1 m and +2 m SLR scenarios. The results indicate that Arcata, Stinson Beach, and Malibu Lagoon will be impacted by SLR-driven inundation to different extents. For example, ~15% of present-day dry land in Malibu Lagoon will be inundated with groundwater and the lagoon will be expanded by >100% relative to present-day area under the +2 m SLR scenario. In addition, the area with shallow water table ≤2 m from the ground surface will increase substantially with SLR at Malibu Lagoon. SLR-driven groundwater inundation could be problematic in some low-lying coastal regions. Therefore, improved understanding of potential response of coastal aquifers to SLR could help in preparing for mitigation and adaptation.

  7. Effects of unsaturated zone on aquifer test analysis in a shallow-aquifer system

    USGS Publications Warehouse

    Halford, K.J.

    1997-01-01

    A comparison between two hypothetical flow models of an unconfined aquifer, one saturated and the other variably saturated, indicates that the variably saturated model which explicitly models drainage from the unsaturated zone provides a better conceptual framework for analyzing unconfined aquifer test data and better estimates of the lateral and vertical hydraulic conductivity in fine-grained sands. Explicitly accounting for multiple aquifers, well-bore storage, and the effects of delayed drainage from the unsaturated zone increases confidence in aquifer property estimates by removing some assumptions and allowing for the inclusion of early time data and water-table observations in an aquifer test analysis. The inclusion of the unsaturated zone expands the number of parameters to be estimated, but reasonable estimates of lateral and vertical hydraulic conductivity and specific storage of the unconfined aquifer can be obtained. For the cases examined, only the van Genuchten parameter ?? needed to be determined by the test, because the parameters n and ??(r) had a minimal effect on the estimates of hydraulic conductivities, and literature values could be used for these parameters. Estimates of lateral and vertical hydraulic conductivity using MODFLOW were not as good as the VS2DT based estimates and differed from the known values by as much as 30 percent. The hydraulic properties of a surficial aquifer system were estimated through a series of aquifer tests conducted at Cecil Field Naval Air Station in Jacksonville, Florida. Aquifer test results were analyzed by calibrating a variably saturated, radial flow model to the measured drawdowns. Parameter estimation was performed by minimizing the difference between simulated and measured drawdowns with an optimization routine coupled to VS2DT and was constrained by assuming that the hydraulic properties of each aquifer or confining unit were homogeneous. Given the hydrogeologic conditions at the field site, estimating

  8. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  9. Hydrogeology of the surficial aquifer system, Dade County, Florida

    USGS Publications Warehouse

    Fish, J.E.; Stewart, M.T.

    1991-01-01

    An investigation of the surficial aquifer system in Dade County, begun in 1983, is part of a regional study of the aquifer system in southeastern Florida. Test drilling for lithologic samples, flow measurements during drilling, aquifer testing, and analyses of earlier data permitted delineation of the hydraulic conductivity distribution (on hydrogeologic sections), the aquifers in the system, the generalized transmissivity distribution, and interpretation of the ground-water flow system. The surficial aquifer system, in which an unconfined ground-water flow system exists, is composed of the sediments from land surface downward to the top of a regionally extensive zone of sediments of low permeability called the intermediate confining unit. The aquifer system units, which vary in composition from clay-size sediments to cavernous limestone, are hydro stratigraphically divided into the Biscayne aquifer at the top; an intervening semiconfining unit that consists principally of clayey sand; a predominantly gray limestone aquifer in the Tamiami Formation in western and west-central Dade County; and sand or clayey sand near the base of the surficial aquifer system. The base of the surficial aquifer system ranges from a depth of about 175 to 210 feet below land surface in westernmost Dade County to greater than 270 feet in northeastern Dade County. Test drilling and aquifer-test data indicate a complex hydraulic conductivity distribution. Hydraulic conductivities of the very highly permeable zone of the Biscayne aquifer commonly exceed 10,000 feet per day; in the gray limestone aquifer, they range from 210 to 780 feet per day. Transmissivities of the surficial aquifer system vary locally but have a recognizable areal trend. Estimated values generally are about 300,000 feet squared per day or greater in nearly all of central and eastern Dade County. Transmissivity is lower to the west, decreasing to less than 75,000 feet squared per day in western Dade County. High

  10. Analog-digital models of stream-aquifer systems

    USGS Publications Warehouse

    Moulder, E.A.; Jenkins, C.T.

    1969-01-01

    The best features of analog and digital computers were combined to make a management model of a stream-aquifer system. The analog model provides a means for synthesizing, verifying, and summarizing aquifer properties; the digital model permits rapid calculation of the effects of water management practices. Given specific management alternatives, a digital program can be written that will optimize operation plans of stream-aquifer systems. The techniques are demonstrated by application to a study of the Arkansas River valley in southeastern Colorado.

  11. Spatio-temporal distribution of stream-aquifer water exchanges along a multi-layer aquifer system

    NASA Astrophysics Data System (ADS)

    Mouhri, A.; Flipo, N.; Faycal, R.; Anne, J.; Ludovic, B.; Patrick, G.

    2013-12-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system. With an area of 104 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. Five MOLONARI stations (MOnitoring LOcal des échanges NAppe-RIvière) have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). The five MOLONARI stations are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. One year (april2012-july 2013) of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events (December 2012 and January 2013), while the upstream streams remain gaining streams even during the flood peak when overflow drastically reduces the water exchanges. To illustrate the spatial distribution of the stream-aquifer exchanges' temporal variability three extreme hydrological events of various intensity are analyzed.

  12. Geohydrologic systems in Kansas, geohydrology of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Kenny, J.F.; Wolf, R.J.; Hansen, Cristi V.

    1993-01-01

    The purpose of the investigation is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown of the envelope cover,This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of the physical framework and geohydrology of principal aquifers and confining systems in Kansas. Chapter H presents the geohydrology of the upper aquifer unit in the Western Interior Plains aquifer system. The physical framework of the aquifer system in relation to other systems is described by maps and sections showing areal extent and the thickness of rocks that compose the unit. The physical framework of the upper aquifer unit is described in detail in chapter D of the atlas (Hansen and others, in press). The hydrology of the system in relation to that of other systems is described in this chapter by maps showing the altitude of fluid levels and the direction of water movement within the unit. The chemical composition of water in the system is described by maps that show the distribution of dissolved-solids concentrations and the differences in water types on the basis of principal chemical constituents. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare

  13. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%.

  14. Facies distributions, recharge-discharge relations, and aquifer sensitivity in a glacial aquifer system, northeastern Indiana

    SciTech Connect

    Fleming, A.H. ); Yarling, M. )

    1994-04-01

    The Huntertown aquifer system underlies about 650 km[sup 2] in the interlobate region of northeastern Indiana and corresponds to a sequence of Saginaw Lobe deposits sandwiched between two Erie Lobe till sheets. The northern part of the system typically consists of a 3 to 10 m thick basal outwash apron composed chiefly of sand and capped by a discontinuous sheet of sandy till. Several small to medium-sized (5 to 30km[sup 2]) ice-contact fans are superposed on this sequence and result in thick (15 to 30 m), transmissive sections of sand and gravel. To the southeast, these sediments grade into finer-grained fan-delta and slackwater facies associated with ancestral Lake Erie. Facies distributions, and thus aquifer connectivity, are related to topographic characteristics of the underlying till sheet, which controlled Saginaw Lobe meltwater drainage. The aquifer system is variably confined by a younger sequence of clayey tills and lacustrine mud. The degree of confinement is related to terrain characteristics, with the thickest till (15 to 25 m) being associated with ridged and moraines in the southern and central parts of the system. These features are characteristic of a regional discharge area and suggest a relatively longer residence time. Sensitivity of aquifers in this part of the system may thus be correspondingly less. The distribution of geochemical facies is much less predictable, however, and may be affected by several independent variables.

  15. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  16. Hydrologeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer, Pooler, Chatham County, Georgia, 2011–2012

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2012-01-01

    Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d

  17. Alpha-emitting isotopes and chromium in a coastal California aquifer

    USGS Publications Warehouse

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  18. Geohydrologic systems in Kansas physical framework of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990

  19. Hydrogeologic framework of the Boise Aquifer system, southwestern Idaho

    SciTech Connect

    Squires, E.; Wood, S.H. ); Osiensky, J.L. )

    1993-04-01

    The City of Boise relies upon the underlying groundwater resource (38,000 acre-feet/year) for 90% of its public water-supply. Basin-fill sediments which comprise this system of aquifers are divisible into five distinct hydrogeologic settings which differ on the basis of sediment type, geophysical log character, and hydraulic properties. A large buried alluvial-fan/fan-delta complex (the Boise Fan) occupies the eastern head of the basin. Down-valley gradations in sediment type show a general increase in unit thickness and sediment color more typically gray; reflecting transition to the lake environment of deposition. Basinward (northwestward), the ancient fan materials grade into lake/fan transitional sediments which grade to predominantly lake sediment which grade to gray mudstones and fine sand layers of the deep lake environment. The depth to which drinking-water aquifers extend is limited by an underlying sequence of relatively impermeable volcanic rocks. Specific capacities of efficient wells, 400--1,200 feet deep and open to 80--100 feet of sand are highest in the lake/fan transition and the lacustrine aquifers of central Boise, lowest for the Boise Fan and intermediate for the deep artesian sand aquifers of west Boise. As a result of screen and filter-pack design based upon attention to sampling drill cuttings, sieve analysis of sands, and geophysical log location of aquifers, efficiency and productivity of new wells has been greatly increased. Groundwater recharge to the deeper aquifers is via permeable surface gravels. Increased groundwater withdrawals have possibly accelerated recharge by increasing vertical hydraulic gradients. Overbored wells with continuous surface-to-depth gravel packs, wells open to multiple aquifers, and improperly abandoned wells with deteriorating casing are also conduits for polluted shallow groundwater to enter the deeper aquifers.

  20. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve

  1. Groundwater Recharge Assessment in a Fractured Sandstone Aquifer in Southern California

    NASA Astrophysics Data System (ADS)

    Manna, F.; Parker, B. L.; Cherry, J. A.; McWhorter, D.

    2015-12-01

    This abstract summarizes the preliminary results from groundwater recharge estimates at an inactive industrial research facility located in southern California: the Santa Susana Field Laboratory. The research activities, carried out at this site from 1949 to 2006, caused chemical contamination of the aquifer. For this reason, the correct assessment of groundwater recharge and fluxes is a key topic in order to better understand the mechanism controlling the rate of contaminant transport and fate toward offsite receptors. The study area is about 11.5 km2 and is formed by fractured sandstone with interbedded shale and siltstone on a topographic ridge approximately 300 m above adjacent valleys. The bedrock is mostly exposed at surface with irregularly covered by thin alluvial deposits and vegetation, mostly chaparral. The Chloride Mass Balance method was used to estimate the long term average annual site-wide recharge considering the hydrogeological features of the area, the availability of chloride concentration data and the inherent assumptions of the method. Daily data of precipitation and runoff from 2008 to 2011, chloride concentration data in precipitation, dry deposition, surface water and in hundreds of monitoring wells across the site were available. The average spatial and temporal recharge estimated for the site is 4.7% of the average annual precipitation (452 mm) with a range of variation between 2% and 7%. This result matches other values of recharge at the site and reported in the literature for arid and semi-arid environments in different areas of the world (Scanlon et alii, 2006; Sharda et alii, 2006). Furthermore, the annual average runoff constitutes a small percentage (8%) of total inflow volume and therefore, the main "loss" of water is represented by the evapotranspiration. This result is consistent with the climatic characteristics of California where annual evapotranspiration is reported to be greater than annual precipitation volume (Hidalgo et

  2. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  3. Supporting Continuous Improvement in California's Education System

    ERIC Educational Resources Information Center

    Darling-Hammond, Linda; Plank, David N.

    2015-01-01

    California's new accountability system originated in the radical decentralization of power and authority from Sacramento to local schools and their communities brought about by the Legislature's adoption of the Local Control Funding Formula (LCFF) in 2013. Under California's previous accountability policies and the federal "No Child Left…

  4. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    NASA Astrophysics Data System (ADS)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  5. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone

    NASA Astrophysics Data System (ADS)

    Boehm, Alexandria B.; Paytan, Adina; Shellenbarger, Gregory G.; Davis, Kristen A.

    2006-02-01

    The coastal, unconfined aquifer at Huntington Beach, California contains saline groundwater (33 psu) adjacent to the water line, and a brackish groundwater (BGW) mixing zone (3-9 psu) approximately 50 m from the water line. According to salinity and water isotope analyses, the BGW composition varies spatially in the alongshore direction. Measurements obtained from two BGW wells indicate this water is a mixture of seawater and a freshwater end member (likely infiltrated runoff); results from a third more southerly well suggest the BGW is composed of seawater, freshwater, and water from the confined Talbert Aquifer. Saline groundwater, on the other hand, shares similar salinity and water isotopic composition with seawater. The saline groundwater is enriched with short- and long-lived radium isotopes relative to the surf zone, which in turn is enriched relative to waters further offshore. We derive eddy diffusion coefficients for the nearshore using 223Ra and 224Ra, and in conjunction with 226Ra activities, estimate a submarine groundwater discharge (SGD) rate between 4.2 and 8.9 L min -1m -1 of shoreline, respectively. Using analytical models, we estimate that between 74 and 100% of this discharge represents seawater than has been forced by tides and waves through the beach aquifer. Under one set of model assumptions, results indicate that a portion (up to 56%) of seawater pumped into the beach aquifer by waves and tides is not discharged suggesting salt water intrusion may be occurring. Because saline groundwater is enriched with dissolved inorganic nitrogen and soluble reactive phosphate relative to the coastal ocean, our results suggest that tidally and wave-driven seawater circulated through the beach aquifer represents an important mechanism for nutrient input to the nearshore environment in dry weather. Estimates of nutrient flux to the coastal ocean via SGD along 16-17 km of shoreline are equivalent to nutrient fluxes from two salt water wetlands near the

  6. Isotopic characterization of three groundwater recharge sources and inferences for selected aquifers in the upper Klamath Basin of Oregon and California, USA

    USGS Publications Warehouse

    Palmer, P.C.; Gannett, M.W.; Hinkle, S.R.

    2007-01-01

    Stable isotope (??D and ??18O) signatures of three principal groundwater recharge areas in the 21,000-km2 upper Klamath Basin are used to infer recharge sources for aquifers in the interior parts of the basin. Two of the principal recharge areas, the Cascade Range on the western and southern margin of the basin and uplands along the eastern margin, are defined by mean annual precipitation that exceeds approximately 60 cm. A third recharge area coincides with the extensive irrigation canal system in the south central part of the basin. The stable isotope signature for Cascade Range groundwater falls near the global meteoric water line (GMWL). The stable isotope signature for the groundwater of the eastern basin uplands also falls near the GMWL, but is depleted in heavy isotopes relative to the Cascade Range groundwater. The stable isotope signature for water from the irrigation canal system deviates from the GMWL in a manner indicative of fractionation by evaporation. Groundwater provenance was previously unknown for two aquifers of interest: that supplying deep (225-792 m), large-capacity irrigation wells along the Oregon-California border, and that of the geothermal system near Klamath Falls. Groundwater produced by the deep irrigation wells along the Oregon-California border appears to be a mixture of eastern-basin groundwater and water with an evaporative isotopic signature. The component with an evaporative isotopic signature appears in some places to consist of infiltrated irrigation water. Chloride data suggest that much of the component with the evaporative isotopic signature may be coming from an adjacent subbasin. After accounting for the 18O shift common in geothermal waters, isotope data suggest that the geothermal groundwater in the upper Klamath Basin may emanate from the eastern basin uplands. Findings demonstrate that stable isotope and chloride data can illuminate certain details of a regional groundwater flow system in a complex geologic setting

  7. Hydrology of the Texas Gulf Coast aquifer systems

    USGS Publications Warehouse

    Ryder, P.D.; Ardis, A.F.

    1991-01-01

    A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter. Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the HoustonGalveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's. Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston

  8. The quality of our Nation's waters: water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009

    USGS Publications Warehouse

    Thiros, Susan A.; Paul, Angela P.; Bexfield, Laura M.; Anning, David W.

    2015-01-01

    The Southwest Principal Aquifers consist of many basin-fill aquifers in California, Nevada, Utah, Arizona, New Mexico, and Colorado. Demands for irrigation and drinking water have substantially increased groundwater withdrawals and irrigation return flow to some of these aquifers. These changes have increased the movement of contaminants from geologic and human sources to depths used to supply drinking water in several basin-fill aquifers in the Southwest.

  9. Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California.

    PubMed

    Gonzalez, A R; Ndung'u, K; Flegal, A R

    2005-08-01

    To address increasing concerns of chromium contamination in the drinking water of Santa Cruz County, we designed a study to investigate the source(s) and spatial gradients of the chromium concentration and speciation in local aquifers. This study was catalyzed by a report (January 2001) bythe Soquel Creek Water District of elevated hexavalent chromium concentrations ranging from 6 to 36 microg L(-1), approaching the state's maximum concentration limit of 50 microg L(-1), in the Aromas Red Sands aquifer. To test the accuracy of those preliminary measurements, we collected groundwater using trace metal clean techniques from 11 sites in Santa Cruz County, including 10 from the aquifer with reportedly elevated chromium concentrations and 1 from an adjacent aquifer, the Purisima, and analyzed them fortotal chromium using inductively couple plasma mass spectrometry. Nine of the reportedly 10 contaminated sites had total chromium concentrations ranging from 5 to 39 microg L(-1), while one from the control site was below the limit of detection (0.01 microg L(-1)). We also measured the speciation of chromium at all sites using a solid supported membrane extraction coupled with graphite furnace atomic absorption spectrometry and determined that on average 84% of total chromium was Cr(VI). In addition to the groundwater analyses, a series of extractions were performed on sediment samples from both the Aromas Red Sands and Purisima aquifers. These tests were used to empirically characterize sediment trace metal (Cr, Fe, Mn) distributions in five phases providing information about the origin, availability, reactivity, and mobilization of these trace metals. Results from groundwater and sediment samples indicate that the chromium is naturally occurring in the Aromas Red Sands aquifer, possibly by Cr(III) mineral deposits being oxidized to Cr(VI) by manganese oxides in the aquifer.

  10. Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwestern Florida

    USGS Publications Warehouse

    Schmerge, David L.

    2001-01-01

    Chloride concentrations in the surficial and intermediate aquifer systems in southwestern Florida indicate a general trend of increasing salinity coastward and with depth. There are some notable exceptions to this trend. Brackish water is present in the sandstone and mid-Hawthorn aquifers in several inland areas in Lee County. In an area near the coast in Collier County, the lower Tamiami aquifer contains freshwater, with brackish water present farther inland. Saline water is present in the lower Tamiami aquifer along the coast in Collier County, but water is brackish in the underlying mid-Hawthorn and Upper Floridan aquifers. The analyses of major ions, hydrogen and oxygen isotopes, and strontium isotopes indicate the primary sources of salinity are underlying aquifers and the Gulf of Mexico. Based on these data, much of the salinity is from upward leakage of brackish water from underlying aquifers. Discharge as diffuse upward leakage and artesian wells are two possible pathways of saltwater intrusion from underlying aquifers. Artesian wells open to multiple aquifers have been pathways of saltwater intrusion in the sandstone and mid-Hawthorn aquifers in much of Lee County. The source of brackish water in the lower Tamiami and mid-Hawthorn aquifers in Collier County may be natural diffuse leakage from underlying aquifers. The source of the saline water in the lower Tamiami aquifer in Collier County is apparently the Gulf of Mexico; it is unclear however, whether this saline water is residual water from former Pleistocene sea invasions or recent saltwater intrusion.

  11. The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States

    USGS Publications Warehouse

    Renken, R.A.

    1984-01-01

    Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)

  12. FPI Cohort Reports: California State University System

    ERIC Educational Resources Information Center

    Quirk, Robert J.

    2013-01-01

    The California State University (CSU) system is the largest higher educational system in the United States. The system has physical assets valued at more than $20 billion (current replacement value) on the "State" side of the house alone. With over 1,200 buildings, and 50 million square foot of mixed-use space, the CSU facility managers…

  13. Ground-water flow in the Gulf Coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.

    2001-01-01

    The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

  14. Summary of the Oahu, Hawaii, Regional Aquifer-System Analysis

    USGS Publications Warehouse

    Nichols, William D.; Shade, Patricia J.; Hunt, Charles D.

    1996-01-01

    island. A regional aquifer system composed of the Waianae aquifer in the Waianae Volcanics and the Koolau aquifer in the Koolau Basalt is subdivided into well-defined areas by geohydrologic barriers. The aquifers are separated by the Waianae confining unit formed by weathering along the Waianae-Koolau unconformity. In some coastal areas, a caprock of sedimentary deposits overlies and confines the aquifers. The island of Oahu has been divided into seven major ground-water areas delineated by deep-seated structural geohydrologic barriers; these areas are further subdivided by shallower internal barriers to ground-water flow. The Koolau rift zone along the eastern (windward) side of the island and the Waianae rift zone to the west (Waianae area) constitute two of the major ground-water areas. North-central Oahu is divided into three smaller ground-water areas, Mokuleia, Waialua, and Kawailoa. The Schofield ground-water area encompasses much of the Schofield Plateau of central Oahu. Southern Oahu is divided into six areas, Ewa, Pearl Harbor, Moanalua, Kalihi, Beretania, and Kaimuki. Southeastern Oahu is divided into the Waialae and Wailupe-Hawaii Kai areas. Along the northeast coast of windward Oahu is the Kahuku ground-water area. The aquifers of Oahu contain shallow freshwater and deeper saltwater flow systems. There are five fresh ground-water flow systems: meteoric freshwater flow diverges from ground-water divides that lie somewhere within the Waianae and Koolau rift zones, forming an interior flow system in central Oahu (which is divided into the northern and southern Oahu flow systems) and exterior flow systems in western (Waianae area) Oahu, eastern (windward) Oahu, and southeastern Oahu. Development of the ground-water resources on Oahu began when the first well was drilled near Honouliuli in the summer of 1879. By 1890, 86 wells had been drilled on the island. From about 1891 to about 1910, development increased rapidly with the drilling of a

  15. Approximate potentiometric surface for the aquifer unit A2, Southeastern Coastal Plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.

    1985-01-01

    A generalized potentiometric surface map prepared as part of the southeastern United States, Regional Sand Aquifer-System Analysis defines the altitude of water levels under conditions prior to development for aquifer unit A2, the upper group of aquifers in the sand aquifer system. Aquifer unit A2, consisting of lower Tertiary sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops, west toward the Mississippi River in Mississippi, and southward to the Gulf of Mexico in Alabama and West Georgia. In eastern Georgia and South Carolina, the flow is southeast toward the Atlantic Ocean. (USGS)

  16. Approximate potentiometric surface for the aquifer unit A4, southeastern coastal plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.; Aucott, Walter R.; Faye, Robert E.; Williams, John S.; Mallory, Michael J.

    1985-01-01

    A generalized potentiometric surface map prepared as part of a regional analysis of sand aquifer system defines the altitude of water levels under pre-development conditions for aquifer unit A4, the lowermost group of aquifers in the sand aquifer system. Aquifer unit A4, consisting of Upper and Lower Cretaceous sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops and southward to the Gulf of Mexico in Mississippi, Alabama, and West Georgia. In coastal Georgia and South Carolina, the direction of flow is east northeast parallel to the coast and into North Carolina. (USGS)

  17. Hydrogeophysical methods for analyzing aquifer storage and recovery systems

    SciTech Connect

    Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

    2009-12-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  18. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  19. Geochemistry of the northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Knobel, L.L.; Chapelle, F.H.; Meisler, Harold

    1998-01-01

    Sediments of the northern Atlantic Coastal Plain comprise a complex multiaquifer flow system. On a large scale (greater than 500 square miles) ground water in this system evolves from predominantly calcium magnesium bicarbonate water with a low dissolved-solids content and low pH, near outcrop-recharge areas, to predominantly sodium bicarbonate water with a high-dissolved solids content and high pH, downgradient. This sodium bicarbonate water then grades into a sodium chloride water. This large-scale predictable progression of hydrochemical facies results from the summation of many smaller scale geochemical processes that chiefly depend on the sedimentary depositional environments of the aquifers.

  20. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    USGS Publications Warehouse

    Gonthier, Gerard J.; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  1. Regional Aquifer-System Analysis Program of the US Geological Survey; bibliography, 1978-86

    USGS Publications Warehouse

    Weeks, J.B.; Sun, Ren Jen

    1987-01-01

    The Regional Aquifer-System Analysis Program of the U.S. Geological Survey was initiated in 1978. The purpose of this program is to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation 's important aquifer systems. This information is needed to develop an understanding of the Nation 's major groundwater flow systems and to support better groundwater resources management. As of 1986, investigations of 28 regional aquifer systems were planned, investigations of 9 regional aquifer systems were completed, and 11 regional aquifer systems were being studied. This report is a bibliography of reports completed under the Regional Aquifer-System Analysis Program from 1978 through 1986. The reports resulting from each regional aquifer-system study are listed after an introduction to the study. During 1978-86, 488 reports were completed under the Regional Aquifer-System Analysis Program, and 168 reports which were partially funded by the Regional Aquifer-System Analysis Program were completed under the National Research Program. (Author 's abstract)

  2. Inside EUREKA. The California Career Information System.

    ERIC Educational Resources Information Center

    Banaghan, Bill; And Others

    A computerized career information system named EUREKA has been developed for California. It originated in 1975-76 under the direction of the Bay Area Computer Educators and since that time has received state and VEA funding. It consists of two major components, Quest and information files. Quest asks users twenty-one questions in order to…

  3. Funding California Schools: The Revenue Limit System

    ERIC Educational Resources Information Center

    Weston, Margaret

    2010-01-01

    Tax revenue flows to California's nearly 1,000 school districts through many different channels. According to the Governor's Committee on Education Excellence (2007), this system is so complex that the state cannot determine how revenues are distributed among school districts, and after reviewing a large number of academic studies in the Getting…

  4. Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system

    USGS Publications Warehouse

    Miller, J.A.; Renken, R.A.

    1988-01-01

    Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)

  5. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    literature ɛN values of -4o and -22o respectively (Aravena and Robertson, 1998; Pauwels et al., 2000). Ongoing denitrification batch experiments will allow us to determine the specific nitrogen and oxygen isotopic fractionation induced by the organic reactive layer, in order to estimate more precisely the extent of denitrification during artificial aquifer recharge. These results confirmed that the reactive layer induces denitrification in the recharge ponds area, proving the usefulness of an isotopic approach to characterize water quality improvement occurring during artificial aquifer recharge. References 1. Aravena, R., Robertson, W.D., 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6): 975-982. 2. Pauwels, H., J.C., Kloppmann, W., 2000. Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes. Chemical Geology, 168(3-4): 307-324. Acknowledgment This study was supported by the projects CGL2011-29975-C04-01 from the Spanish Government, 2009SGR-00103 from the Catalan Government and ENPI/2011/280-008 from the European Commission. Please fill in your abstract text.

  6. Preliminary evaluation of the hydrogeologic system in Owens Valley, California

    USGS Publications Warehouse

    Danskin, W.R.

    1988-01-01

    A preliminary, two-layer, steady-state, groundwater flow model was used to evaluate present data and hydrologic concepts of Owens Valley, California. Simulations of the groundwater system indicate that areas where water levels are most affected by changes in recharge and discharge are near toes of alluvial fans and along the edge of permeable volcanic deposits. Sensitivity analysis for each model parameter shows that steady state simulations are most sensitive to uncertainties in evapotranspiration rates. Tungsten Hills, Poverty Hills, and Alabama Hills were found to act as virtually impermeable barriers to groundwater flow. Accurate simulation of the groundwater system between Bishop and Lone Pine appears to be possible without simulating the groundwater system in Round Valley, near Owens Lake, or in aquifer materials more than 1,000 ft below land surface. Although vast amounts of geologic and hydrologic data have been collected for Owens Valley, many parts of the hydrogeologic system have not been defined with sufficient detail to answer present water management questions. Location and extent of geologic materials that impede the vertical movement of water are poorly documented. The likely range of aquifer characteristics, except vertical hydraulic conductivity, is well known, but spatial distribution of these characteristics is not well documented. A set of consistent water budgets is needed, including one for surface water, groundwater, and the entire valley. The largest component of previous water budgets (evapotranspiration) is largely unverified. More definitive estimates of local gains and losses for Owens River are needed. Although groundwater pumpage from each well is measured, the quantity of withdrawal from different zones of permeable material has not been defined. (USGS)

  7. Competition by aquifer materials in a bimetallic nanoparticle/persulfate system for the treatment of trichloroethylene.

    PubMed

    Al-Shamsi, Mohammed Ahmad; Thomson, Neil R

    2013-10-01

    It has been suggested in the literature that aquifer materials can compete with the target organic compounds in an activated peroxygen system. In this study, we employed a rapid treatment method using persulfate activated with bimetallic nanoparticles to investigate the competition between aquifer materials and the dissolved phase of a target organic compound. The concentration of dissolved trichloroethylene (TCE) remaining after using the activated persulfate system was two- to three-fold higher in a soil slurry batch system than in an aqueous batch system. For all five aquifer materials investigated, an increase in the mass of the aquifer solids significantly decreased the degradation of TCE. A linear relationship was observed between the mass of aquifer materials and the initial TCE degradation rate, suggesting that the organic carbon and/or aquifer material constituents (e.g., carbonates and bicarbonates) compete with the oxidation of TCE.

  8. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  9. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  10. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  11. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types.

  12. Hydrogeology of the Southeastern Coastal Plain aquifer system in Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Renken, Robert A.

    1996-01-01

    The Southeastern Coastal Plain aquifer system consists of a thick sequence of unconsolidated to poorly consolidated Cretaceous and Tertiary rocks that extend from Mississippi to South Carolina. Four regional sand and gravel aquifers are separated by three regional confining units of clay, shale, and chalk that do not conform everywhere to stratigraphic boundaries. The change in geologic facies is the most important factor controlling the distribution of transmissivity within the aquifer system.

  13. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  14. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  15. Aquifer-test analysis of the upper aquifer of the Potomac-Raritan- Magothy aquifer system, Union Beach Borough, Monmouth County, New Jersey

    USGS Publications Warehouse

    Pucci, A.A.; Pope, D.A.; Ivahnenko, Tamara

    1989-01-01

    The hydraulic properties of the upper aquifer of the Potomac-Raritan-Magothy aquifer system and of the overlying and underlying confining units were determined from and aquifer test in the vicinity of Union Beach Borough, New Jersey, near Raritan Bay. The April 1986 test included the pumping of 2 test wells for 72 hours at a combined discharge rate of 1,375 gal/min, and the measurement of water levels in 10 observation wells. No lateral recharge boundary in Raritan Bay affected the observed water-level changes. Assuming leaky artesian conditions, the average transmissivity and storage coefficient of the upper aquifer are 7,754 sq ft/day and 0.00044 respectively. The leakance of the combined confining units ranges from 0.000030 to 0.000076/day/ft. On the basis of lithologic samples from a nearby well, the overlying and underlying confining units were assumed to have similar hydraulic properties. By using this assumption, the vertical hydraulic conductivity of the confining units ranges from 0.010 to 0.027 ft/day. (USGS)

  16. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    USGS Publications Warehouse

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  17. Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect

    NASA Astrophysics Data System (ADS)

    Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der

    2013-04-01

    SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and

  18. Boron and strontium isotope compositions of groundwater from the La Paz arid coastal aquifer, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Mahlknecht, Jürgen; Rosner, Martin; Meixner, Anette

    2016-04-01

    In groundwater studies boron and strontium isotopic compositions can be used to identify natural and anthropogenic sources as well as processes related to groundwater recharge, flow and mixing. The La Paz arid costal aquifer in Baja California Sur, Mexico, is the most important source of drinking and irrigation water for La Paz area and suffers from anthropogenic contamination and intensive exploitation of the aquifer causing seawater intrusion and general groundwater abatement. The relatively un-radiogenic 87Sr/86Sr isotope ratios of the La Paz groundwater range in a narrow field between 0.7054 and 0.7062. In contrast to strontium the boron isotope composition displays a large variability between +27 and +55 permil d11B. The relatively low 87Sr/86Sr ratios of the La Paz groundwater highlight a significant contribution of strontium derived from local terrestrial sediments and igneous rocks with known 87Sr/86Sr ratios between 0.705 and 0.7035. The large variability of d11B values indicate that multiple sources and processes determine the boron isotope composition of La Paz groundwater. Rainwater (high d11B), seawater (~+40 permil) due to seawater intrusions, wastewater (low to medium d11B) and boron derived from the local geology (low to medium d11B) explain most of the observed groundwater d11B variability. However, d11B values higher than modern seawater point to significant boron isotope fractionation by preferential absorption of 10B onto clay minerals during the evolution of some groundwater samples. Due to low boron concentrations in rainwater a significant contribution of 11B-rich rainwater (>+40 permil) on the La Paz groundwater is unlikely.

  19. Preliminary evaluation of the Highland Rim aquifer system in Tennessee for receiving injected wastes

    USGS Publications Warehouse

    Bradley, M.W.

    1986-01-01

    The EPA has authority under the Safe Drinking Water Act to protect underground sources of drinking water from contamination by deep well injection. An aquifer, however, may be exempted from protection and used for injected wastes where the aquifer meets criteria established in the Agency 's Underground Injection Control program. The Highland Rim aquifer system in Tennessee consists of Mississippian age carbonate rocks and occurs from the Valley and Ridge of East Tennessee to west of the Tennessee River. This aquifer contains potable water and is an important source of drinking water for municipal and domestic supplies on the Highland Rim. The Highland Rim aquifer system under parts of the Cumberland Plateau is not currently used as a source of drinking water and is not expected to be used in the future. These areas meet parts of the EPA 's Underground Injection Control criteria for exempting aquifers to receive injected waste. (Author 's abstract)

  20. Preliminary potentiometric map and flow dynamic characteristics for the upper-basalt confined aquifer system

    SciTech Connect

    Spane, F.A. Jr.; Raymond, R.G.

    1993-09-01

    This report presents the first comprehensive Hanford Site-wide potentiometric map for the upper-basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). In constructing the potentiometric map, over forty on-site and off-site monitoring wells and boreholes were used. The potentiometric map developed for the upper-basalt confined aquifer is consistent with the areal head pattern indicated for the Mabton interbed, which is a deeper and more areally extensive confined aquifer underlying the Hanford Site. Salient features for the upper-basalt confined aquifer system potentiometric map are described.

  1. Geogenic sources of benzene in aquifers used for public supply, California

    USGS Publications Warehouse

    Belitz, Kenneth; Landon, Matthew K.

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium <1 pCi/L, specific conductance >1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth <30 m, and anoxic conditions. Evidence for geogenic sources of benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.

  2. Estimation of transit times in a Karst Aquifer system using environmental tracers: Application on the Jeita Aquifer system-Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Hamdan, Ahmad

    2016-04-01

    Estimating transit times is essential for the assessment of aquifer vulnerability to contaminants. Groundwater in karst aquifer is assumed to be relatively young due to fast preferential pathways; slow flow components are present in water stored in the fissured matrix. Furthermore, transit times are site specific as they depend on recharge rates, temperatures, elevation, and flow media; saturated and unsaturated zones. These differences create significant variation in the groundwater age in karst systems as the water sampled will be a mix of different water that has been transported through different flow pathways (fissured matrix and conduits). Several methods can be applied to estimate water transit time of an aquifer such as artificial tracers, which provide an estimate for fast flow velocities. In this study, groundwater residence times in the Jeita spring aquifer (Lebanon) were estimated using several environmental tracers such as Chlorofluorocarbons (CFCs), Sulfur Hexafluoride (SF6), Helium-Tritium (3H, 3H- 3He). Additional stable isotope and major ion analysis was performed to characterize water types. Groundwater samples were collected from six different wells in the Jeita catchment area (Jurassic Kesrouane aquifer) as well as from the spring and cave itself. The results are reproducible for the Tritium-Helium method, unlike for the CFC/SF6 methods that yielded poor results due to sampling problems. Tritium concentrations in all groundwater samples show nearly the same concentration (~2.73 TU) except for one sample with relatively lower tritium concentration (~2.26 TU). Ages ranging from 0.07 ± 0.07 years to 23.59 ± 0.00 years were obtained. The youngest age is attributed to the spring/ cave while the oldest ages were obtained in wells tapping the fissured matrix. Neon in these samples showed considerable variations and high delta Ne in some samples indicating high excess air. Four (4) samples showed extreme excess air (Delta-Ne is greater than 70 %) and

  3. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  4. Subsurface storage of liquids in the Floridan aquifer system in south Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system in south Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the Floridian aquifer system generally occurs at depths ranging from 500 to 1,000 ft, and the average thickness is about 3,000 ft. It is divided into three general hydrogeologic units that include Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Groundwater movement in the Upper Floridan aquifer is generally from the area of highest head in central Florida, eastward to the Straits of Florida, westward to the Gulf of Mexico, and, to a much lesser extent, southward. Injection of nontoxic liquid wastes into deep, saline parts of the Floridan aquifer system as a pollution-control measure began in 1943 with injection of oilfield brine in southwest Florida. Since then, the practice has quickly expanded, and many high capacity municipal and industrial injection wells are now in operation in southeast Florida. The principal use of the Floridan aquifer system in south Florida is for subsurface storage of liquid waste. The Boulder Zone of the Lower Floridan aquifer is extensively used as a receptacle for injected treated municipal wastewater, oilfield brine and, to a lesser extent, industrial wastewater. Pilot studies indicate a potential for cyclic storage of freshwater in the Upper Floridan aquifer in south Florida. (USGS)

  5. Analytical solution of two-dimensional solute transport in an aquifer-aquitard system.

    PubMed

    Zhan, Hongbin; Wen, Zhang; Huang, Guanhua; Sun, Dongmin

    2009-07-21

    This study deals with two-dimensional solute transport in an aquifer-aquitard system by maintaining rigorous mass conservation at the aquifer-aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient. PMID:19477033

  6. Hydrogeological framework of the Edwards-Trinity aquifer system, west-central Texas

    USGS Publications Warehouse

    Barker, Rene A.; Ardis, Ann F.

    1996-01-01

    The Edwards-Trinity aquifer system underlies about 42,000 square miles of west-central Texas, where mostly gently dipping Lower Cretaceous strata comprise three regional aquifers and two regional confining units. The aquifers are the Edwards Aquifer of the Balcones fault zone, the Trinity Aquifer of the Balcones fault zone and Hill County, and the Edwards-Trinity Aquifer of the Edwards Plateau and Trans-Pecos. The Navarro-Del Rio confining unit confines the downdip part of the Edwards Aquifer, and the Hammett confining unit confines the updip, basal part of the Trinity Aquifer and a small southeastern fringe of the Edwards-Trinity Aquifer. Transmissivity averages less than 10,000 feet squared per day throughout more than 90 percent of the study area as the result of widespread cementation and secondary mineral growth. However, in fractured and leached rocks in the Balcones fault zone, transmissivity averages about 750,000 feet squared per day in the Edwards aquifer, which occupies less than 10 percent of the area.

  7. Quantifying spatio-temporal stream-aquifer water exchanges along a multi-layer aquifer system using LOMOS and hydro-thermo modelling

    NASA Astrophysics Data System (ADS)

    Mouhri, Amer; flipo, Nicolas; Rejiba, Fayçal; Bodet, Ludovic; Jost, Anne; Goblet, Patrick

    2014-05-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system using both LOcal MOnitoring Stations (LOMOSs) coupled with the optimization of a hydro-thermo model per LOMOS. With an area of 45 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. The connectivity status between streams and aquifer units has been evaluated using near surface geophysical investigations as well as drill cores. Five LOMOSs of the stream-aquifer exchanges have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). Each LOMOS is composed of one or two shallow piezometers located 2 to 3 m away from the river edge; one surface water monitoring system; two hyporheic zone temperature profiles located close to each river bank. The five LOMOSs are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. The 2012-April - 2013-december period of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events, while the upstream streams

  8. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  9. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  10. Hydraulic conductivity, specific yield, and pumpage--High Plains aquifer system, Nebraska

    USGS Publications Warehouse

    Pettijohn, Robert A.; Chen, Hsiu-Hsiung

    1983-01-01

    Hydrologic data used to evalute the ground-water potential of the High Plains aquifer system in Nebraska are presented on maps showing the hydraulic conductivity and specific yield of the aquifer system and the volume and distribution of water pumped for irrigation from the aquifer system during 1980. The High Plains aquifer system underlies 177,000 square miles in parts of eight states, including 64,770 square miles in Nebraska. It consists of the Ogallala Formation and Tertiary and Quaternary deposits that are saturated and hydraulically connected to the Ogallala. The hydraulic conductivity of the aquifer system varies from greater than 200 feet per day in parts of the North Platte, Platte, Elkhorn, and Republican River valleys to less than 25 feet per day in the northwestern part of the state. Specific yield of the aquifer system ranges from 10 to 20 percent in most of the state and averages 16 percent. The estimated volume of water recoverable from the aquifer system in Nebraska is 2,237 million acre-feet. Inches of water withdrawn from the aquifer system during 1980 varied from less than 1.5 in the sandhills of north-central Nebraska to more than 12 in the Platte River and Blue River basins. This withdrawal represents about 6,703,000 acre-feet of ground water. (USGS)

  11. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system

    USGS Publications Warehouse

    Fusillo, T.V.; Hochreiter, J.J.; Lord, D.G.

    1985-01-01

    Samples for analysis of volatile organic compounds were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magoth aquifer system in the study area. Most of the contamination appears to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers. Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably due to differences in the uses of the compounds and the distribution patterns of potential contamination sources. The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with volatile organic compounds detected (10 percent of wells sampled). The concentrations in most wells in the upper aquifer which had detectable levels were less than 10 ??g/l. In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of wells sampled, and several wells contained concentrations above 100 ??g/l. The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably due to (1) vertical leakage of contamination from the middle aquifer, and (2) the high percentage of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

  12. Processes affecting geochemistry and contaminant movement in the middle Claiborne aquifer of the Mississippi embayment aquifer system

    USGS Publications Warehouse

    Katz, Brian G.; Kingsbury, James A.; Welch, Heather L.; Tollett, Roland W.

    2012-01-01

    Groundwater chemistry and tracer-based age data were used to assess contaminant movement and geochemical processes in the middle Claiborne aquifer (MCA) of the Mississippi embayment aquifer system. Water samples were collected from 30 drinking-water wells (mostly domestic and public supply) and analyzed for nutrients, major ions, pesticides, volatile organic compounds (VOCs), and transient age tracers (chlorofluorocarbons, tritium and helium-3, and sulfur hexafluoride). Redox conditions are highly variable throughout the MCA. However, mostly oxic groundwater with low dissolved solids is more vulnerable to nitrate contamination in the outcrop areas east of the Mississippi River in Mississippi and west Tennessee than in mostly anoxic groundwater in downgradient areas in western parts of the study area. Groundwater in the outcrop area was relatively young (apparent age of less than 40 years) with significantly (p 50 m depth) indicated contaminant movement from shallow parts of the aquifer into deeper oxic zones. Given the persistence of nitrate in young oxic groundwater that was recharged several decades ago, and the lack of a confining unit, the downward movement of young contaminated water may result in higher nitrate concentrations over time in deeper parts of the aquifer containing older oxic water.

  13. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  14. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Solute reactions indicate that calcite and silica are precipitated in the aquifer. Large amounts of sodium and chloride, relative to their concentration in the igneous rock, are being removed from the aquifer. Release of fluids from inclusions in the igneous rocks, and initial flushing of grain boundaries and pores of detrital marine sediments in interbeds are believed to be the source of the sodium chloride. Identification and quantification of reactions controlling solute concentrations in groundwater in the eastern plain indicate that the aquifer is not a large mixing vessel that simply stores and transmits water and solutes but is undergoing diagenesis and is both a source and sink for solutes. Reactions controlling solutes in the western Snake River basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake River Plain contains

  15. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    SciTech Connect

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs.

  16. Summary of ground-water hydrology of the Cambrian-Ordovician aquifer system in the northern Midwest, United States: A in Regional aquifer system analysis

    USGS Publications Warehouse

    Young, H.L.

    1992-01-01

    Development of the aquifer system began in various parts of the northern Midwest in the 1860's and 1870's with the drilling of deep, generally flowing artesian wells near Lake Michigan in eastern Wisconsin and northeastern Illinois and along the valleys of the Mississippi River and its tributaries. Initial heads of 186 and 130 feet above Lake Michigan at Milwaukee and Chicago, respectively, have been reported. Large-scale pumping has produced cones of depression in these two areas, with respective head declines of as much as 375 and 900 feet. Other major pumping centers generally have had much smaller declines. The largest withdrawals from the aquifer system were about 180 million gallons per day in each of the major metropolitan areas of Chicago and Minneapolis-St. Paul (Twin Cities). However, the total decline in head in the St. Peter-Prairie du Chien-Jordan aquifer in the Twin Cities by 1980 was only 90 feet because the aquifer is unconfined. Most of the eastern two-thirds of Iowa, where the aquifer system is tightly confined, is characterized by more than 50 feet of head decline, with 200 feet or more at Mason City and the Quad Cities. Pumpage from the Cambrian-Ordovician aquifer system throughout the study area averaged 683 million gallons per day for the period 1976-80. Results of a transient-model simulation show that recharge increased over predevelopment recharge by 447 million gallons per day. Natural discharge decreased by 99 million gallons per day, and 137 million gallons per day was released from aquifer storage. Mineralization of ground water in the aquifer system increases from slightly mineralized calcium magnesium bicarbonate water in the northern recharge areas, through more mineralized, mixed water types with increased sodium and sulfate, to highly mineralized sodium chloride brines in the deeper parts of the structural basins.

  17. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    USGS Publications Warehouse

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  18. Population in trans-border regions: the Southern California-Baja California urban system.

    PubMed

    Rubin-kurtzman, J R; Ham-chande, R; Van Arsdol, M D

    1996-01-01

    "This article is a case study of population growth and composition in the Southern California-Baja California trans-border urban system (TBS). The central question guiding the research is how the combination of geographic proximity and economic integration in two very different regions affects population characteristics in the Southern California-Baja California TBS. We begin by briefly defining trans-border urban systems. We then specify the attributes of the Southern California-Baja California TBS, contrasting them with attributes observed elsewhere in the United States and Mexico.... The data are drawn primarily from the U.S. and Mexican censuses. Secondary data from a variety of sources also are discussed." PMID:12347786

  19. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    SciTech Connect

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  20. System Strategic Plan for the California Community Colleges: Preparing the Foundation for California's Future. 2013 Update

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2013

    2013-01-01

    The "System Strategic Plan for the California Community Colleges" provides a comprehensive road map for restoring student access and improving student success. The Plan addresses the major demographic, economic and educational challenges that California will face over the coming decades. It presents clear system goals, specific…

  1. Hydraulic properties of the Madison aquifer system in the western Rapid City area, South Dakota

    USGS Publications Warehouse

    Greene, Earl A.

    1993-01-01

    Available information on hydrogeology, data from borehole geophysical logs, and aquifer tests were used to determine the hydraulic properties of the Madison aquifer. From aquifer-test analysis, transmissivity and storage coefficient were determined for the Minnelusa and Madison aquifers, and vertical hydraulic conductivity (Kv') along with specific storage (Ss') for the Minnelusa confining bed. Borehole geophysical well logs were used to determine the thickness and location of the Minnelusa aquifer, the lower Minnelusa confining bed, and the Madison aquifer within the Madison Limestone. Porosity values determined from quantitative analysis of borehole geophysical well logs were used in analyzing the aquifer-test data. The average porosity at the two aquifer-test sites is about 10 percent in the Minnelusa aquifer, 5 percent in the lower Minnelusa confining bed, and 35 percent in the Madison aquifer. The first aquifer test, which was conducted at Rapid City production well #6, produced measured drawdown in the Minnelusa and Madison aquifers. Neuman and Witherspoon's method of determining the hydraulic properties of leaky two-aquifer systems was used to evaluate the aquifer-test data by assuming the fracture and solution-opening network is equivalent to a porous media. Analysis of the aquifer test for the Minnelusa aquifer yielded a transmissivity value of 12,000 feet squared per day and a storage coefficient of 3 x 10-3. The specific storage of the Minnelusa confining bed was 2 x 10-7 per foot, and its vertical hydraulic conductivity was 0.3 foot per day. The transmissivity of the Madison aquifer at this site was 17,000 feet squared per day, and the storage coefficient was 2 x 10-3. The second aquifer test, which was conducted at Rapid City production well #5 (RC-5) produced measured drawdown only in the Madison aquifer. Hantush and Jacob's method of determining the hydraulic properties of leaky confined aquifers with no storage in the confining bed was used to

  2. Geohydrologic systems in Kansas, geohydrology of the Great Plains aquifer system

    USGS Publications Warehouse

    McGovern, Harold E.; Wolf, R.J.

    1993-01-01

    Sedimentary rocks of Late Cambrian through Early Cretaceous age in Kansas are part of a regional flow system of hydraulically connected aquifers and confining units. Future demands for water require that these deeply buried rocks be studied to describe hydrologic properties and ground-water-flow conditions and to provide information that will serve as the basis for decisions concerning the protection and the management of the water resources contained therein, Toward this end, the U.S. Geological Survey, as a part of its Central Midwest Regional Aquifer-System Analysis (CMRASA), began a 5-year hydrologic investigation of this regional flow system in Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, and Texas (Jorgensen and Signor, 1981).This chapter is one of nine contained in Hydrologic Investigations Atlas HA-722, which present a description of the physical framework (Chapters B-F) and the geohydrology (Chapters G-I} of principal aquifers and confining systems in Upper Cambrian through Lower Cretaceous rocks in Kansas; the stratigraphic relations of these geohydrologic systems are discussed in detail in Chapter A (Wolf and others, 1990). This chapter (G) describes the geohydrology of the Great Plains aquifer system; the physical framework of the Great Plains aquifer system is presented in Chapter B (Spinazola and others, 1992).The maps in this chapter are based on existing data from selected geophysical and lithologic logs, drill-stem tests, water-level measurements, water-quality analyses, and published maps of stratigraphically equivalent units. An index to the geohydrologic data compiled for the CMRASA in Kansas is presented in Spinazola and others (1987). For the most part, data used to construct the maps were collected over many years and do not reflect aquifer conditions for any specific time period.

  3. Properties and chemical constituents in ground water from the lower Wilcox Aquifer, Mississippi Embayment Aquifer System, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Lower Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System is presented by a series of maps. These maps show the areal distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Lower Wilcox Aquifer ranges from 18 mg/L near the outcrop in western Tennessee to 122,000 mg/L in a down-dip area in southern Mississippi. The primary water type is calcium bicarbonate in the outcrop area and sodium bicarbonate in all other areas of the aquifer within the limits of available data. The concentrations of major ions generally increase from the outcrop area to the down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio maps of selected ions in water from the Lower Wilcox Aquifer indicate some trends. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.1 to 40.4 and generally decreases from outcrop to down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio of bicarbonate to chloride ranges from 0.01 in southern Mississippi to 52.3 in northwestern Mississippi. This ratio increases from the outcrop toward the Mississippi River and from north to south in the

  4. Geohydrology of the High Plains Aquifer system, Cheyenne urban area, Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.; Crist, Marvin A.

    1991-01-01

    The Cheyenne area is on broad tablelands that form part of the High Plains aquifer. Surficial deposits, along with the Ogallala Formation and the White River Group, are included in the High Plains aquifer in the study area, and both unconfined and confined ground-water conditions exist within 100 feet of land surface. During wet years, shallow ground-water problems affect urban development. The High Plains aquifer is considered an aquifer system in the Cheyenne area. Water-yielding sandstone and conglomerate units are surrounded by sequences of clay and silt; although the water-yielding units under confined conditions may be areally extensive, they are not easily identified. Urban development has modified the High Plains aquifer system locally as indicated by the mapped potentiometric surfaces, the perched water zones, and the surface-drainage patterns. That part of the system in the shallow zones is affected by excavations and by structures that penetrate the saturated zones. (USGS)

  5. Geology of the surficial aquifer system, Broward County, Florida; lithologic logs

    USGS Publications Warehouse

    Causaras, C.R.

    1985-01-01

    The geologic framework of the surficial aquifer system, of which the Biscayne aquifer is the major component in Broward County, Florida, is presented in eight geologic cross sections. The cross sections are based on detailed lithologic logs of 27 test wells that were drilled, in the summer of 1981, through the sediments overlying the relatively impermeable units of the Hawthorn Formation, of Miocene age. The cross sections show the aquifer system as a wedge-shaped sequence of Cenozoic sediments. The aquifer thickness gradually decreases from more than 400 feet along the coast to about 160 feet in the west and southwest parts of Broward County. The sediments that comprise the aquifer system range in age from Pliocene to Pleistocene and are assigned to the following stratigraphic units from bottom to top: Tamiami Formation, Caloosahatchee Marl, Fort Thompson Formation, Key Largo Limestone, Anastasia Formation, Miami Oolite, and Pamlico Sand. (USGS)

  6. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  7. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and

  8. Computational and Experimental Simulations of Cr(VI) Remediation via In Situ Reduction in an Alluvial Aquifer at Hinkley, California

    NASA Astrophysics Data System (ADS)

    Bobb, C.; Miller, L. G.; Kent, D. B.; Maher, K.

    2015-12-01

    The accumulation of hexavalent chromium (Cr(VI)) in groundwater due to natural and human-induced processes poses a significant health threat as Cr(VI) is both a carcinogen and mutagen. Anthropogenic Cr(VI) contamination has compromised drinking water in the alluvial aquifer underlying the town of Hinkley, CA and extensive in-situ remediation (ISR) is underway to mitigate the threat to residents. ISR capitalizes on the redox sensitivity of chromium by using ethanol to reduce soluble, toxic, Cr(VI) to insoluble and non-hazardous Cr(III). However, the sequence of reduction reactions that occurs within the aquifer is not well understood. Therefore, we use computer-modeled and experimental redox titrations to examine how pH, oxygen supply, mineral surface chemistry, agitation, and microbial activity impact the reduction of Cr(VI) by ethanol. We further use experimental titrations to confirm the validity of our modeled results. Aqueous and gaseous phases are monitored throughout the experiment to track changes in pH, dissolved oxygen, CO2, Mn(II), Fe(II), and SO42-. Aqueous Fe(II) is a dominant control on Cr(VI) reduction; thus the cycling of Fe in the system must be considered. Our modeled results show that reductive dissolution of manganese oxides and Fe(III) (oxy)hydroxides increases pH, making sulfate reduction thermodynamically favorable. Simultaneous Fe(III) and sulfate reduction allows precipitation of iron sulfide minerals, limiting the available Fe(II) to reduce Cr(VI). Computational model results indicate that elevated organic buffer (HEPES, MOPS, EPPS) concentrations are required to maintain pH values below 8.8 where simultaneous reduction of Fe(III) and SO42- during ethanol oxidation becomes thermodynamically favorable. Microbial activity within the aquifer may also play a significant role in the transfer of electrons from ethanol to the terminal electron acceptors.

  9. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Water-quality data were synthesized to evaluate factors that affect spatial and depth variability in water quality and to assess aquifer vulnerability to contaminants from geologic materials and those of human origin. The quality of shallow groundwater in the alluvial aquifer and shallow bedrock aquifer system has been adversely affected by development of agricultural and urban areas. Land use has altered the pattern and composition of recharge. Increased recharge from irrigation water has mobilized dissolved constituents and increased concentrations in the shallow groundwater. Concentrations of most constituents associated with poor or degraded water quality in shallow groundwater decreased with depth; many of these constituents are not geochemically conservative and are affected by geochemical reactions such as oxidation-reduction reactions. Groundwater age tracers provide additional insight into aquifer vulnerability and help determine if young groundwater of potentially poor quality has migrated to deeper parts of the bedrock aquifers used for drinking-water supply. Age-tracer results were used to group samples into categories of young, mixed, and old groundwater. Groundwater ages transitioned from mostly young in the water-table wells to mostly mixed in the shallowest bedrock aquifer, the Dawson aquifer, to mostly old in the deeper bedrock aquifers. Although the bedrock aquifers are mostly old groundwater of good water quality, several lines of evidence indicate that young, contaminant-bearing recharge has reached shallow to moderate depths in some areas of the bedrock aquifers. The Dawson aquifer is the most vulnerable of the bedrock aquifers to contamination, but results indicate that the older (deeper) bedrock aquifers are also vulnerable to groundwater contamination and that mixing with young recharge has occurred in some areas. Heavy pumping has caused water-level declines in the bedrock aquifers in some parts of the Denver Basin, which has the potential

  10. Conceptualization of groundwater flow of a coastal arid aquifer using isotopic and chemical tools: La Paz, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Tamez-Melendez, Carol; Hernández-Antonio, Arturo; Mahlknecht, Jürgen

    2016-04-01

    Groundwater from the La Paz coastal aquifer in Baja California Sur, Mexico, is the main source of drinking water for the local population. Due to its proximity to the coast, sea water intrusion is the main factor of salinization of groundwater. Other geochemical processes also affect the quality of the aquifer threating its vulnerability. Forty-seven samples were analyzed for ion chemistry and isotopes. A hierarchical cluster analysis was performed for a better interpretation resulting in three main groups and proved for geographical correspondence. Deuterium and d18O ranged from -82 to -52.1 and from -11.6 to -7 permil, respectively, showing that the main recharge originates in the Sierra el Novillo, flowing toward SE-NW direction and in accordance to deuterium excess (d) high evaporation effects (d>10‰) are mostly in the middle portion of the study area and in El Centenario due to high kinetic isotope fractioning related to elevated temperatures. Hydrogeochemistry analyses demonstrated salinization mainly due to sea water intrusion and in second instance due water-rock interaction, where enrichment of Na+ (ranges from 35.7 to 1089 mg/L-1) was present in some samples probably due to weathering of silicates and/or cation exchange in soils with Ca2+ (27.7 to 658 mg/L-1) at clay-surfaces. High concentrations of NO3-2 (ranges from 1.4 to 48.8 mg/L-1), Cl- (ranges from 54.4 to 2960 mg/L-1) and Na+ show that anthropogenic input is mainly coming from an agricultural area (El Centenario-Chametla) where heavy groundwater extractions are made for irrigational purposes, lowering the groundwater table up to 10 m and consequently promoting upconing and salinity concentrations (NaCl). Carbon-13 and radiocarbon ranged from -12.3 to -9.1‰ and from 29.5 to 100.4 pmC, respectively. Distribution of ages (up to ~5000 years) indicates two flow trends (E-W and SE-NW).

  11. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  12. Integration of computer systems for California aqueduct power plant systems

    SciTech Connect

    Delfin, E.L. ); Gaushell, D.J. )

    1993-06-01

    The California State Water Project is one of the largest water and power systems in the world and includes over 130 hydroelectric units. This paper provides an overview of the planning and implementation of the control and communication systems replacement for the entire Project. New control system features include a multi-agency control center, off-site backup control center, four area control systems, ten major pumping/generating plant control systems, and a 400 mile fiber optic communication system.

  13. Water-level surface in the Chicot equivalent aquifer system in southeastern Louisiana, 2009

    USGS Publications Warehouse

    Tomaszewski, Dan J.

    2011-01-01

    The Chicot equivalent aquifer system is an important source of freshwater in southeastern Louisiana. In 2005, about 47 million gallons per day (Mgal/d) were withdrawn from the Chicot equivalent aquifer system in East Baton Rouge, East Feliciana, Livingston, Tangipahoa, St. Helena, St. Tammany, Washington, and West Feliciana Parishes. Concentrated withdrawals exceeded 5 Mgal/d in Bogalusa, the city of Baton Rouge, and in northwestern East Baton Rouge Parish. In the study area, about 30,000 wells screened in the Chicot equivalent aquifer system were registered with the Louisiana Department of Transportation and Development (LaDOTD). These wells were constructed for public-supply, industry, irrigation, and domestic uses. Most of the wells were registered as domestic-use wells and are small-diameter, low-yielding wells. Total withdrawal from the Chicot equivalent aquifer system for domestic use was estimated to be 12 Mgal/d in 2005. This report documents the 2009 water-level surface of the Chicot equivalent aquifer system in southeastern Louisiana. The report also shows differences in water-level measurements for the years 1991 and 2009 at selected sites. Understanding changes and trends in water levels is important for continued use, planning, and management of groundwater resources. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, conducted this study of the water-level surface of the Chicot equivalent aquifer system as part of an ongoing effort to monitor groundwater levels in aquifers in Louisiana.

  14. Geohydrologic systems in Kansas physical framework of the Great Plains aquifer system

    USGS Publications Warehouse

    Spinazola, Joseph M.; McGovern, Harold E.; Wolf, R.J.

    1992-01-01

    The purpose of this map report is to provide a description of one of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. The report is the result of an investigation made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifer and confining systems in Kansas. Chapter B describes the physical framework of the Great Plains aquifer system and presents maps and a geohydrologic cross section that show the thickness, the areal extent, and the altitude and configuration of the top of the Lower Cretaceous rocks that compose the Great Plains aquifer system. The maps are based on data from selected geophysical and lithologic logs and from published maps of stratigraphically equivalent units. Maps that show the thickness and the altitude and configuration of the top of the Great Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian surface through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic system are consistent with maps of underlying and overlying systems; modifications were made where necessary. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of geohydrologic systems in

  15. Approximate potentiometric surface for the aquifer unit A3, southeastern coastal plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.

    1985-01-01

    A generalized potentiometric surface map prepared as part of the southeastern United States, Regional Sand Aquifer-System Analysis defines the altitude of water levels under conditions prior to development for aquifer unit A3, the middle group of aquifers in the sand aquifer system. Aquifer unit A3, consisting of Upper Cretaceous and Tertiary sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops, west toward the Mississippi River in Mississippi, and southward to the Gulf of Mexico in Alabama and West Georgia. In eastern Georgia, the flow is southeast toward the Atlantic Ocean , and in South Carolina, the direction of flow is southeast toward the Pee Dee River. (USGS)

  16. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    Maps were georeferenced and digitized where existing geographic information system (GIS) data were unavailable (1977–89, 1991, 1995–99). Existing GIS data available for 1990, 1992–94, and 2000–13 were included in the geodatabase. The feature classes were organized into three feature datasets by principal aquifer: Chicot, Evangeline, and Jasper aquifers.

  17. Summary of hydrologic testing of the Floridan aquifer system at Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Williams, Lester J.

    2010-01-01

    indicated the Upper Floridan aquifer had a transmissivity of 40,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 10,000 feet squared per day. An aquifer test conducted on the combined aquifer system, when the test well was open from 333 to 1,112 feet, gave a transmissivity of 50,000 feet squared per day. Additionally, during the 72-hour test of the Lower Floridan aquifer, a drawdown response was observed in the Upper Floridan aquifer wells.

  18. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    SciTech Connect

    Thorne, P.

    1999-01-04

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995).

  19. Glacial aquifer systems in the northeastern United States: a study plan

    SciTech Connect

    Lyford, F.P.; Dysart, J.E.; Randall, A.D.; Kontis, A.L.

    1984-01-01

    The US Geological Survey in 1982 designed a study of the availability and quality of water in glacial aquifers in the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and Ohio. The study is one of several being conducted nationwide to assemble information on major aquifer systems. The work, scheduled for completion in 1986, focuses on general principles that define aquifer geometry, hydraulic properties, recharge, and discharge; physical-chemical properties of water, interactions between water and rock; and mechanisms for mixing of water from multiple sources. Planned project activities include compilation and analysis of available data for a regional summary of glacial-aquifer systems, studies of selected system components such as recharge and chemical processes, classification of aquifers with regard to water-supply potential, and construction of generalized ground-water models to predict responses of several types of aquifer systems to pumping and climatic stress. This report describes the general characteristics of glacial aquifer systems in the northeastern United States and the planned work elements of the study.

  20. Hydrogeology and simulation of ground-water flow in the Eutaw-McShan Aquifer and in the Tuscaloosa aquifer system in northeastern Mississippi

    USGS Publications Warehouse

    Strom, E.W.; Mallory, M.J.

    1995-01-01

    The Eutaw-McShan aquifer and Tuscaloosa aquifer system in northeastern Mississippi were investi- gated to better understand the hydrogeology and the ground-water flow in and between the aquifers. A numerical model was developed to simulate ground- water flow for prepumping and pumping conditions, and model simulatons projected the possible effects of increased ground-water withdrawals. The five aquifers studied, from youngest to oldest, are the Eutaw-McShan, Gordo, Coker, massive sand, and the Lower Cretaceous aquifers. The finite-difference computer code MODFLOW was used to represent the flow system. The model grid covers 33,440 square miles, primarily in northeastern Mississippi, but includes parts of northwestern Alabama, southwestern Tennessee, and eastern Arkansas. A comparison of the simulated predevelopment and 1992 potentiometric surfaces for the aquifers shows an overall water- level decline. Simulated water levels declined an average of 53 and 44 feet in the confined parts of the Eutaw-McShan and Gordo aquifers, respectively. However, the area near Tupelo had a significant rise in water levels due to decreased pumpage from the Eutaw-McShan and Gordo aquifers compared to the simulated potentiometric surface for 1978.

  1. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    SciTech Connect

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix.

  2. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  3. Plan of study for the northern Midwest regional aquifer-system analysis

    USGS Publications Warehouse

    Steinhilber, W.L.; Young, H.L.

    1979-01-01

    Sedimentary rocks of Cambrian and Ordovician age form a major aquifer system in most of Wisconsin and Iowa, northern Illinois, northwestern Indiana, southeastern Minnesota, and northern Missouri. Many metropolitan areas depend on the aquifer for all or part of their water supplies. Declines in potentiometric head have been large in the most heavily pumped areas, most notably Chicago, Milwaukee-Waukesha, Minneapolis-St. Paul, and Des Moines. A thorough understanding of the aquifer system is needed for sound management decisions. Thus, a 4-year study of the aquifer, beginning in October 1978, is included in the U.S. Geological Survey 's program of Regional Aquifer-System Analysis. The study will evaluate the aquifer 's water-supply potential, describe its water quality, and, through computer models of the ground-water flow system, provide the means to evaluate regional aquifer response to different patterns of ground-water development. This report describes the objectives, work plan, and organization of this study. (Woodard-USGS)

  4. California current system - Predators and the preyscape

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; Adams, Peter B.; Jahncke, Jaime

    2015-06-01

    The preyscape of the California Current System (CCS), one of the most productive marine areas on Earth (Glantz and Thompson, 1981), is highly variable, as evidenced by the papers in this issue, and as such presents a challenge to Ecosystem-based fishery management (EBFM), which attempts to integrate ecosystem considerations as part of fishery management and conservation decisions. Approaches to EBFM for the waters off Washington, Oregon, and California, the CCS, have been initiated (PFMC, 2007, 2013), and are continually being developed. To inform this process, a workshop was held in September 2013 to: i) gather together the existing information on forage fish and predator dynamics in the CCS; ii) consider temporal (seasonal, annual, decadal) and spatial availability of prey complexes and why these patterns of availability occur and change; iii) summarize and present that information for discussion to a large range of experts in oceanography, fish and fisheries management, seabirds, marine mammals, and ecosystem management; and, iv) synthesize this information to be useable by fishery agencies. The papers in this special Journal of Marine Systems issue address these four points. While the full results and recommendations can be found here - "http://www.pointblue.org/uploads/assets/calcurrent/REPORT_Forage_Fish_Workshop_FINAL.pdf"

  5. California Smart Traveler System. Final report

    SciTech Connect

    Behnke, R.W.

    1992-02-01

    The report describes how audiotex and videotex information systems can be used to develop new modes of public transportation (e.g., parataxis or single-trip carpools) and how these new modes can be integrated with conventional transit, paratransit and ridesharing modes to reduce traffic congestion, gasoline consumption, air pollution and mobility problems at a low cost to taxpayers. This report also describes how these telephone-based information services can be used to develop low-cost, user-friendly Advanced Traveler Information Systems (ATIS) that will tell drivers and riders the 'best' ways to get between any two points in an area via either private vehicle or public transportation. The proposed California Smart Traveler (CST) System will enable travelers to obtain more timely and accurate information on which to base their local or regional travel decisions.

  6. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is

  7. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    SciTech Connect

    Katz, B.G.; Berndt, M.P.; Bullen, T.D.; Hansard, P.

    1999-07-01

    This report presents results of detailed statistical analyses of total and dissolved Pb concentrations in water samples collected from the major aquifer systems in Florida for the FGWQMN [Florida Ground Water Quality Monitoring Network] to determine the influence of anthropogenic factors on elevated Pb concentrations. In addition, Pb isotopic data are presented for water samples collected from a subset of 13 wells in the monitoring network, samples of aquifer material, rainfall, and Pb counterweights. The Pb-isotope data provide a better understanding of the relative contributions of anthropogenic and natural sources of Pb in ground water samples from Florida`s major aquifer systems.

  8. Hydrostratigraphic modeling of a complex, glacial-drift aquifer system for importation into MODFLOW

    USGS Publications Warehouse

    Herzog, B.L.; Larson, D.R.; Abert, C.C.; Wilson, S.D.; Roadcap, G.S.

    2003-01-01

    Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision??. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems.

  9. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (<10,000 ppm TDS) water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  10. Recovery of injected freshwater from a brackish aquifer with a multiwell system.

    PubMed

    Miotliński, Konrad; Dillon, Peter J; Pavelic, Paul; Barry, Karen; Kremer, Sarah

    2014-01-01

    Herein we propose a multiple injection and recovery well system strategically operated for freshwater storage in a brackish aquifer. With the system we call aquifer storage transfer and recovery (ASTR) by using four injection and two production wells, we are capable of achieving both high recovery efficiency of injected freshwater and attenuation of contaminants through adequately long residence times and travel distances within the aquifer. The usual aquifer storage and recovery (ASR) scheme, in which a single well is used for injection and recovery, does not warrant consistent treatment of injected water due to the shorter minimum residence times and travel distances. We tested the design and operation of the system over 3 years in a layered heterogeneous limestone aquifer in Salisbury, South Australia. We demonstrate how a combination of detailed aquifer characterization and solute transport modeling can be used to maintain acceptable salinity of recovered water for its intended use along with natural treatment of recharge water. ASTR can be used to reduce treatment costs and take advantage of aquifers with impaired water quality that might locally not be otherwise beneficially used.

  11. Hydrogeology of the North Coast Limestone aquifer system of Puerto Rico

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús

    1995-01-01

    The North Coast Limestone aquifer system of Puerto Rico is composed of three regional hydrogeologic units: an upper aquifer that contains an underlying saltwater zone near the coast, a middle confining unit, and a lower aquifer. The upper aquifer is unconfined, except in coastal areas where it is locally confined by fine-grained surficial deposits. The upper aquifer is mostly absent in the Rio Piedras area of northeastern Puerto Rico. The confining unit is composed of calcareous claystone, marl, chalky and silicified limestone, and locally clayey fine-grained sandstone. Test hole data indicate that the confining unit is locally leaky in the San Juan metropolitan area. An artesian zone of limited areal extent exists within the middle confining unit, in the central part of the study area. The lower aquifer mostly contains ground water under confined conditions except in the outcrop areas, where it is unconfined. The lower aquifer is thickest and most transmissive in the north-central part of the study area. Water in the lower aquifer is fresh throughout much of the area, but is brackish in some areas near San Juan and Guaynabo. West of the Rio Grande de Arecibo, the extent of the lower aquifer is uncertain. Data are insufficient to determine whether or not the existing multiple water-bearing units in this area are an extension of the more productive lower aquifer in the Manati to Arecibo area. Zones of moderate permeability exist within small lenses of volcanic conglomerate and sandstone of the San Sebastian Formation, but in general this formation is not a productive aquifer. Transmissivity values for the upper aquifer range from 200 to more than 280,000 feet squared per day. The transmissivity values for the upper aquifer generally are highest in the area between the Rio de la Plata and Rio Grande de Arecibo, where transmissivity values have been reported to exceed 100,000 feet squared per day in six locations. Transmissivity estimates for the lower aquifer are

  12. Regional flow and deformation analysis of Basin-fill aquifer systems using stress-dependent parameters.

    PubMed

    Preisig, Giona; Cornaton, Fabien Joel; Perrochet, Pierre

    2014-01-01

    Changes in effective stress due to water pressure variations modify the intrinsic hydrodynamic properties of aquifers and aquitards. Overexploited groundwater systems, such as basins with heavy pumping, are subject to nonrecoverable modifications. This results in loss of permeability, porosity, and specific storage due to system consolidation. This paper presents (1) the analytical development of model functions relating effective stress to hydrodynamic parameters for aquifers and aquitards constituted of unconsolidated granular sediments, and (2) a modeling approach for the analysis of aquifer systems affected by effective stress variations, taking into account the aforementioned dependency. The stress-dependent functions were fit to laboratory data, and used in the suggested modeling approach. Based on only few unknowns, this approach is computationally simple, efficiently captures the hydromechanical processes that are active in regional aquifer systems under stress, and readily provides an estimate of their consolidation. PMID:23448260

  13. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system.

    PubMed

    Pavlovskiy, Igor; Selle, Benny

    2015-04-01

    For karstified aquifer systems, numerical models of groundwater flow are difficult to setup and parameterize. However, a system understanding useful for groundwater management may be obtained without applying overly complicated models. In this study, we demonstrate for a karstified carbonate aquifer in south-western Germany that a combination of methods with moderate data requirements can be used to infer flowpaths and transit times of groundwater to production wells.

  14. Geochemistry of the Cambrian-Ordovician aquifer system in the northern midwest, United States

    SciTech Connect

    Siegel, D.I.

    1989-01-01

    The geochemistry of the Cambrian-Ordovician aquifer system was modified during the Pleistocene by large-scale emplacement of glacial meltwater, as indicated by large-scale emplacement of glacial meltwater, as indicated by the investigation of stable isotopes of water, and a plume of dilute water that trends perpendicular to the direction of ground-water flow in Iowa and Missouri. Ground water in this part of the aquifer system could be hundreds of thousands of years old.

  15. Characterization of flow dynamics and vulnerability in a coastal aquifer system.

    PubMed

    Murgulet, Dorina; Tick, Geoffrey R

    2013-01-01

    Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age-dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ(13) C value (-17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ(18) O and δD values (-4.0 ± 0.1‰ VSMOW, n = 27; δD: -19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.

  16. System Description and Status Report: California Education Information System.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    The California Education Information System (CEIS) consists of two subsystems of computer programs designed to process business and pupil data for local school districts. Creating and maintaining records concerning the students in the schools, the pupil subsystem provides for a central repository of school district identification information and a…

  17. AB 1725 Model Accountability System. California Community Colleges. Revised.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Board of Governors.

    This report proposes a model accountability system for the California community colleges to comply with the directives of Assembly Bill 1725 (AB 1725). The purpose of the accountability system is to provide colleges and districts, the board of governors, and the California legislature with information that will allow for the continued improvement…

  18. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    SciTech Connect

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology may have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.

  19. 77 FR 56839 - California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice of Filing Take notice that on July 9, 2012, California Independent System Operator Corporation submitted their..., California Independent System Operator Corporation, Order Granting Complaint And Directing A...

  20. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  1. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  2. A critical evaluation of combined engineered and aquifer treatment systems in water recycling.

    PubMed

    Dillon, P; Page, D; Vanderzalm, J; Pavelic, P; Toze, S; Bekele, E; Sidhu, J; Prommer, H; Higginson, S; Regel, R; Rinck-Pfeiffer, S; Purdie, M; Pitman, C; Wintgens, T

    2008-01-01

    Australian experience at five research sites where stormwater and reclaimed water have been stored in aquifers prior to reuse, have yielded valuable information about water treatment processes in anaerobic and aerobic aquifers. One of these sites is the stormwater to potable water ASTR project at the City of Salisbury, a demonstration project within the broader EC project 'RECLAIM WATER'. A framework for characterising the effectiveness of such treatment for selected organic chemicals, natural organic matter, and pathogens is being developed for inclusion in new Australian Guidelines for Management of Aquifer Recharge. The combination of pre-treatments (including passive systems such as reed beds) and aquifer treatment effectiveness in relation to source waters and intended uses of recovered water will be described. Advantages and disadvantages of various types of pre-treatments in relation to effectiveness and sustainability of managed aquifer recharge will be discussed taking account of aquifer characteristics. These observations will be consolidated into a draft set of principles to assist in selection of engineered treatments compatible with passive treatment in aquifers.

  3. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  4. Bibliography on ground water in glacial-aquifer systems in the Northeastern United States

    USGS Publications Warehouse

    Wiltshire, Denise A.; Lyford, Forest P.; Cohen, A.J.

    1986-01-01

    The U.S. Geological Survey established the Regional Aquifer-System Analysis (RASA) program to evaluate major interconnected aquifers or groups of aquifers that share similar characteristics within a region. One of the objectives of the Northeastern Glacial RASA is to provide information on the occurrence and quality of ground water in glacial deposits in ten States: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, Ohio, Pennsylvania, and New Jersey. To help meet the objectives of the RASA program, an automated bibliographic data base was developed. The data base contains references to ground-water resources of glacial-aquifer systems in the ten States listed above. This bibliography contains more than 700 ground-water related references that date from 1839 through 1984. The bibliography lists books, journal articles, conference proceedings, government and other technical reports, theses, and maps. Unpublished manuscripts, publications in press, newspaper articles, and book reviews are omitted from the bibliography.

  5. Glacial aquifer systems in the northeastern United States; a plan for study

    USGS Publications Warehouse

    Lyford, F.P.; Dysart, J.E.; Randall, A.D.; Kontis, A.L.

    1984-01-01

    The U.S. Geological Survey project designed to study the availability and quality of water in glacial aquifers in the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and Ohio is scheduled for completion in 1986. It will focus on general principles that define aquifer geometry, hydraulic properties of sediments, recharge, discharge, physical-chemical properties of water, rock and water-rock interactions, and mechanisms for mixing of water from multiple sources. Planned project activities include compilation and analysis of available data for a regionwide analysis of glacial-aquifer systems, studies of selected system components such as recharge and chemical processes, classification of aquifers with regard to water-supply potential, and construction of generalized ground-water models to predict responses of types of aquifer systems to pumping and climatic stress. This report describes the general characteristics of glacial aquifer systems in the Northeastern United States and of planned work elements of the study. (USGS)

  6. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard J.

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  7. Surficial aquifer system in eastern Lee County, Florida

    USGS Publications Warehouse

    Boggess, D.H.; Watkins, F.A.

    1986-01-01

    The surficial aquifer system in eastern Lee County consists of an upper water bearing unit, which is generally unconfined, and a lower water bearing unit, which is confined and is the major source tapped by most wells. The top of the lower unit, which is of primary interest in this report, ranges in depth from 40 to 60 ft below land surface in the east-central part of the county to more than 120 ft in the southern part. In the extreme southern part of the county, a middle water bearing unit also contains water under artesian pressure. Recharge to the lower unit occurs primarily by leakage from the overlying saturated section through the confining beds. Water levels in the lower unit fluctuate similarly to those in the upper (unconfined) unit. Groundwater in the lower unit moves from areas of highest water level in the south part of Lehigh acres, northward toward the Caloosahatchee River, and toward the coast. The lower unit contains freshwater throughout much of its extent and is the source of public water supply at Lehigh Acres and Green Meadows where an average of about 3 mil gal/day was withdrawn in 1980. In several areas, the concentrations of chlorides and dissolved solids exceed drinking water standards. Yields of wells that tap the lower unit range from 10 to 1,100 gal/min. Transmissivities ranging from about 17,700 to 7,750 sq ft/day were determined for different areas of the unit. Storage coefficients range from 0.0001 to 0.0003. (Author 's abstract)

  8. Redox processes and water quality of selected principal aquifer systems

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.

  9. Simulation of ground-water flow in the coastal plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.L.; Eimers, J.L.; Coble, R.W.

    1991-01-01

    A 3-D finite difference digital model was used to simulate groundwater flow in the 25,000 sq mi aquifer system of the North Carolina Coastal Plain. The model was developed from a geohydrologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which comprise a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in North Carolina. The model was calibrated by comparing observed and simulated water levels. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 sq ft/d in a part of the Castle Hayne aquifer, which is composed predominately of limestone. The maximum simulated vertical hydraulic conductivity in a confining unit was 2.5 ft/d in a part of the confining unit overlying the upper Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakage near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 in/yr in areas having clay at the surface, to about 20 in/yr in areas having sand at the surface. Most of this recharge moves laterally to streams, with only about 1 in/yr moving down to the confined parts of the aquifer system. Groundwater level declines, which are the result of water taken from storage, are extensive in some area and minimal in others. Water level declines exceeding 100 ft have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 ft in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. A water-budget analysis using the model simulations indicates that much of the water removed from the groundwater system by pumping ultimately is made

  10. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  11. Framework for regional synthesis of water-quality data for the glacial aquifer system in the United States

    USGS Publications Warehouse

    Warner, Kelly L.; Arnold, Terri L.

    2005-01-01

    The glacial aquifer system is the largest principal aquifer in aerial extent and ground-water use for public supply in the United States. A principal aquifer is defined as a regionally extensive aquifer or aquifer system that has the potential to be used as a source of potable water (U.S. Geological Survey, 2003). Multiple aquifers often are grouped into large, extensive aquifer systems such as the glacial aquifer system. The glacial aquifer system is considered here to include all unconsolidated aquifers above bedrock north of the line of continental glaciation throughout the country (fig. 1). Total withdrawals from the glacial aquifer system were 3,560 million gallons per day in 2000, which constitutes almost 5 percent of total withdrawals from all aquifers in the United States (Maupin and Barber, 2005). Approximately 41 million people relied on the glacial aquifer for public supply and domestic use in 2000. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program began assessing the glacial aquifer system in 1991. The assessment of water-quality data on a regional scale, such as the glacial aquifer system, is coincident with the regional framework established by the Regional Aquifer-System Analysis Program (RASA) (Sun and others, 1997). From 1978 to 1995, the RASA Program systematically evaluated 25 of the Nation's most important groundwater systems including studies in the glacial aquifer system in the northeast, Midwest, and northern Midwest United States. The NAWQA Program is building on the work of the RASA Program to study the water quality of 16 of the most important ground-water systems (Lapham and others, 2005). Over 1,700 water-quality samples have been collected by the NAWQA Program from 1991 to 2004 to assess the glacial aquifer system. This large data set is unique in that the samples have been collected using a consistent sampling protocol, and multiple nested samples. The nested samples address the recently recharged shallow

  12. Descriptive analysis of aquifer thermal energy storage systems

    SciTech Connect

    Reilly, R.W.

    1980-06-01

    The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

  13. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2011-01-01

    Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  14. Q&A: The Basics of California's School Finance System

    ERIC Educational Resources Information Center

    EdSource, 2006

    2006-01-01

    In a state as large and complex as California, education financing can become as complicated as rocket science. This two-page Q&A provides a brief, easy-to-understand explanation of California's school finance system and introduces the issues of its adequacy and equity. A list of resources providing additional information is provided.

  15. Future groundwater extraction scenarios for an aquifer in a semiarid environment: case study of Guadalupe Valley Aquifer, Baja California, Northwest Mexico.

    PubMed

    Campos-Gaytan, Jose Ruben; Kretzschmar, Thomas; Herrera-Oliva, Claudia Soledad

    2014-11-01

    Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984-2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007-2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.

  16. Future groundwater extraction scenarios for an aquifer in a semiarid environment: case study of Guadalupe Valley Aquifer, Baja California, Northwest Mexico.

    PubMed

    Campos-Gaytan, Jose Ruben; Kretzschmar, Thomas; Herrera-Oliva, Claudia Soledad

    2014-11-01

    Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984-2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007-2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region. PMID:25086715

  17. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  18. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    USGS Publications Warehouse

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  19. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    USGS Publications Warehouse

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The underlying Eau Claire Formation and its partial equivalent to the southwest, the Bonneterre Formation, form an important confining unit above the Mount Simon aquifer throughout much of the study area. Siltstone and shale are fairly common in the upper part of the Eau Claire Formation but less so in its northernmost extent in Wiscon

  20. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Williams, Lester J.; Cherry, Gregory C.

    2010-01-01

    Test drilling and field investigations, conducted at Hunter Army Airfield (HAAF), Chatham County, Georgia, during 2009, were used to determine the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and to evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). Field investigation activities included (1) constructing a 1,168-foot (ft) test boring and well completed in the LFA, (2) collecting drill cuttings and borehole geophysical logs, (3) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (4) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (5) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (6) conducting aquifer tests in the new LFA well and in an existing UFA well to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to quantify the effects of interaquifer leakage on the UFA and to determine the amount of pumping reduction required in the UFA to offset drawdown resulting from the leakage. Borehole-geophysical and flowmeter data indicate the LFA at HAAF consists of limestone and dolomitic limestone between depths of 703 and 1,080 ft, producing water from six major permeable zones: 723-731; 768-785; 818-837; 917-923; 1,027-1,052; and 1,060-1,080 ft. Data from a flowmeter survey, conducted at a pumping rate of 748 gallons per minute (gal/min), suggest that the two uppermost zones contributed 469 gal/min or 62.6 percent of the total flow during the test. The remaining four zones contributed from 1.7 to 18 percent of the total flow. Grab water samples indicate that with the exception of fluoride, constituent concentrations in the LFA increased with depth; water from the deepest interval (1,075 ft) contained chloride and sulfate concentrations of 480 and 240 milligrams per

  1. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  2. Water security and services in the ocean-aquifer system

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2011-12-01

    Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.

  3. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    USGS Publications Warehouse

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately

  4. Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.; Harlow,, George E.

    2002-01-01

    The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations

  5. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    USGS Publications Warehouse

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  6. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  7. Plan of study for the Northern Atlantic Coastal Plain Regional Aquifer System Analysis

    USGS Publications Warehouse

    Meisler, Harold

    1980-01-01

    Sediments of Cretaceous to Holocene age compose the Northern Atlantic Coastal Plain aquifer system in an area of 50,000 square miles in parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The aquifer system is a major source of water supply in the area. About 1.4 billion gallons is withdrawn from its aquifers each day. Increasing withdrawal of ground water has created or intensified several problems such as declining water levels, development of large cones of depression, saltwater intrusion, spreading of ground-water contamination, and land subsidence. The U.S. Geological Survey has begun a comprehensive study that will define the geology, hydrology, and geochemistry of the aquifer system. The effects of future utilization of the aquifer system will be determined and alternative plans for water withdrawal will be evaluated through computer simulation modeling. This report describes the objectives, organization, and work plans of the study, and describes the work to be accomplished in each U.S. Geological Survey District of the study area.

  8. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models.

  9. Pumping-induced drawdown and stream depletion in a leaky aquifer system

    USGS Publications Warehouse

    Butler, J.J.; Zhan, X.; Zlotnik, V.A.

    2007-01-01

    The impact of ground water pumping on nearby streams is often estimated using analytic models of the interconnected stream-aquifer system. A common assumption of these models is that the pumped aquifer is underlain by an impermeable formation. A new semianalytic solution for drawdown and stream depletion has been developed that does not require this assumption. This solution shows that pumping-induced flow (leakage) through an underlying aquitard can be an important recharge mechanism in many stream-aquifer systems. The relative importance of this source of recharge increases with the distance between the pumping well and the stream. The distance at which leakage becomes the primary component of the pumping-induced recharge depends on the specific properties of the aquifer, aquitard, and streambed. Even when the aquitard is orders of magnitude less transmissive than the aquifer, leakage can be an important recharge mechanism because of the large surface area over which it occurs. Failure to consider aquitard leakage can lead to large overestimations of both the drawdown produced by pumping and the contribution of stream depletion to the pumping-induced recharge. The ramifications for water resources management and water rights adjudication can be significant. A hypothetical example helps illustrate these points and demonstrates that more attention should be given to estimating the properties of aquitards underlying stream-aquifer systems. The solution presented here should serve as a relatively simple but versatile tool for practical assessments of pumping-induced stream-aquifer interactions. However, this solution should not be used for such assessments without site-specific data that indicate pumping has induced leakage through the aquitard. ?? 2006 National Ground Water Association.

  10. Pumping-induced drawdown and stream depletion in a leaky aquifer system.

    PubMed

    Butler, James J; Zhan, Xiaoyong; Zlotnik, Vitaly A

    2007-01-01

    The impact of ground water pumping on nearby streams is often estimated using analytic models of the interconnected stream-aquifer system. A common assumption of these models is that the pumped aquifer is underlain by an impermeable formation. A new semianalytic solution for drawdown and stream depletion has been developed that does not require this assumption. This solution shows that pumping-induced flow (leakage) through an underlying aquitard can be an important recharge mechanism in many stream-aquifer systems. The relative importance of this source of recharge increases with the distance between the pumping well and the stream. The distance at which leakage becomes the primary component of the pumping-induced recharge depends on the specific properties of the aquifer, aquitard, and streambed. Even when the aquitard is orders of magnitude less transmissive than the aquifer, leakage can be an important recharge mechanism because of the large surface area over which it occurs. Failure to consider aquitard leakage can lead to large overestimations of both the drawdown produced by pumping and the contribution of stream depletion to the pumping-induced recharge. The ramifications for water resources management and water rights adjudication can be significant. A hypothetical example helps illustrate these points and demonstrates that more attention should be given to estimating the properties of aquitards underlying stream-aquifer systems. The solution presented here should serve as a relatively simple but versatile tool for practical assessments of pumping-induced stream-aquifer interactions. However, this solution should not be used for such assessments without site-specific data that indicate pumping has induced leakage through the aquitard.

  11. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Kuniansky, Eve L.

    2015-04-08

    The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within

  12. The hydrogeochemistry of a heavily used aquifer in the Mexican wine-producing Guadalupe Valley, Baja California

    NASA Astrophysics Data System (ADS)

    Daesslé, L. W.; Mendoza-Espinosa, L. G.; Camacho-Ibar, V. F.; Rozier, W.; Morton, O.; van Dorst, L.; Lugo-Ibarra, K. C.; Quintanilla-Montoya, A. L.; Rodríguez-Pinal, A.

    2006-10-01

    The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l-1), Se (70 μg l-1), Mo (18 μg l-1) and Cu (4.3 μg l-1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001-2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (˜200 L S-1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l-1) are only found near the northern limit of the basin associated with a geological fault.

  13. Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.

    ERIC Educational Resources Information Center

    Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

    2003-01-01

    This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

  14. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and

  15. Detailed performance and environmental monitoring of aquifer heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Acuna, José; Ahlkrona, Malva; Zandin, Hanna; Singh, Ashutosh

    2016-04-01

    The project intends to quantify the performance and environmental impact of large scale aquifer thermal energy storage, as well as point at recommendations for operating and estimating the environmental footprint of future systems. Field measurements, test of innovative equipment as well as advanced modelling work and analysis will be performed. The following aspects are introduced and covered in the presentation: -Thermal, chemical and microbiological influence of akvifer thermal energy storage systems: measurement and evaluation of real conditions and the influence of one system in operation. -Follow up of energy extraction from aquifer as compared to projected values, recommendations for improvements. -Evaluation of the most used thermal modeling tool for design and calculation of groundwater temperatures, calculations with MODFLOW/MT3DMS -Test and evaluation of optical fiber cables as a way to measure temperatures in aquifer thermal energy storages

  16. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  17. Ground-water flow and quality in Wisconsin's shallow aquifer system

    USGS Publications Warehouse

    Kammerer, P.A.

    1995-01-01

    In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.

  18. A digital-computer model for estimating hydrologic changes in the aquifer system in Dane County, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1975-01-01

    The extensive use of ground water for water supply within Dane County has resulted in the need for an appraisal of the area's ground-water resources. Water-resources planners and other water-oriented groups have expressed concern over ground-water level declines and reductions in streamflow that are occurring as a result of heavy pumping. Digital-computer modeling techniques were used to estimate hydrologic changes in the aquifer system that would be caused by continued development. The system was modeled as a two-aquifer system consisting of a confined sandstone aquifer overlain by a leaky unconfined aquifer and underlain by impermeable bedrock. The physical properties of the aquifer system needed for the model were approximated using aquifer-test data and well-log data and by matching observed hydrologic changes in the system with corresponding changes computed by the model. Computed hydrologic changes do not represent a serious depletion of the available ground-water supply for the foreseeable future. Maximum added regional declines in ground-water levels (drawdowns) from 1970 to 1990 were computed to be approximately 10 feet (3 metres) in the unconfined aquifer and approximately 40 feet (12 metres) in the confined aquifer. It is computed that for the same period the average annual streamflow from the upper Yahara River basin would be reduced by approximately 29 cubic feet per second (0.82 cubic metre per second). These changes are computed based on estimated development trends for the confined sandstone aquifer.

  19. The water footprint of California's energy system, 1990-2012.

    PubMed

    Fulton, Julian; Cooley, Heather

    2015-03-17

    California's energy and water systems are interconnected and have evolved in recent decades in response to changing conditions and policy goals. For this analysis, we use a water footprint methodology to examine water requirements of energy products consumed in California between 1990 and 2012. We combine energy production, trade, and consumption data with estimates of the blue and green water footprints of energy products. We find that while California's total annual energy consumption increased by just 2.6% during the analysis period, the amount of water required to produce that energy grew by 260%. Nearly all of the increase in California's energy-related water footprint was associated with water use in locations outside of California, where energy products that the state consumes were, and continue to be, produced. We discuss these trends and the implications for California's future energy system as it relates to climate change and expected water management challenges inside and outside the state. Our analysis shows that while California's energy policies have supported climate mitigation efforts, they have increased vulnerability to climate impacts, especially greater hydrologic uncertainty. More integrated analysis and planning are needed to ensure that climate adaptation and mitigation strategies do not work at cross purposes.

  20. Hydrology of the Mississippi River Valley alluvial aquifer, south- central United States; a preliminary assessment of the regional flow system

    USGS Publications Warehouse

    Ackerman, D.J.

    1989-01-01

    Data describing the aquifer framework and steady-state regional flow were assembled for the Mississippi River Valley alluvial aquifer north of Vicksburg, Mississippi. The aquifer is part of the Mississippi embayment aquifer system. The 60 to 140 ft thick alluvial aquifer grades from gravel at the bottom to fine sand near the top. It is overlain by the Mississippi River Valley confining unit, which consists of 10 to 50 ft of silts, clays, and fine-grained sands. Underlying units consist of alternating sands and clays corresponding to regional hydrogeologic units of the Mississippi embayment aquifer system. The three-layer finite difference model was used to simulate two-dimensional confined or unconfined steady-state flow for predevelopment and 1972. Preliminary analysis of predevelopment flow indicates that recharge to the alluvial aquifer was from underlying aquifers and the confining unit. Rivers accounted for almost all discharge. Pumpage from the alluvial aquifer for irrigation substantially changed regional flow direction toward depressions in the potentiometric surface. Recharge from rivers and the confining unit increased and recharge from underlying aquifers decreased. Discharge to underlying aquifers increased and discharge to rivers decreased. Recharge from the confining unit reached a maximum of 1.3 inch/year for large parts of the aquifer. Nearly all drawdown exceeding 20 ft was at two locations in Arkansas--the Grande Prairie region, and west of Crowleys Ridge. Model results indicate the importance of leakage from rivers and the confining unite to providing recharge to sustain large amounts of pumpage from the alluvial aquifer. (USGS)

  1. MODFLOW procedure to simulate axisymmetric flow in radially heterogeneous and layered aquifer systems

    NASA Astrophysics Data System (ADS)

    Louwyck, Andy; Vandenbohede, Alexander; Bakker, Mark; Lebbe, Luc

    2014-08-01

    A procedure is outlined to simulate axisymmetric groundwater flow in radially heterogeneous and layered aquifer systems using the unmodified version of MODFLOW. The procedure is straightforward, as it only requires correction of some of the input parameters. In contrast to other MODFLOW procedures to simulate axisymmetric flow, no restrictions are imposed on the type of flow, the discretization of radial distance, or the parameter values. Hence, the method can deal with both confined and unconfined flow, wellbore storage, and axisymmetric aquifer inhomogeneities including effects of finite-thickness skin and gravel pack. Several test cases are presented, which compare the calculated results with existing analytical solutions, the analytic element solver TTim, and the axisymmetric, finite-difference model MAxSym. It is concluded that the MODFLOW procedure is capable of simulating accurately axisymmetric flow in radially heterogeneous multi-aquifer systems.

  2. Numerical simulation approaches to evaluate nitrate contamination of groundwater through leakage well in layered aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E.; Lee, E.; Lee, K.

    2013-12-01

    The layered aquifer system (i.e. perched and regional aquifers) is locally observed in Gosan area of Jeju Island, Korea due to scattered distributions of an impermeable clay layer. In the Gosan area, farming is actively performed and nitrate contamination has been frequently reported in groundwater of regional aquifer which is sole water resource in the island. Water quality of the regional groundwater is impacted by inflows of the nitrate-rich perched groundwater, which is located above the impermeable layer and directly affected by surface contaminants. A poorly grouted well penetrating the impermeable layer provides a passage of contaminated groundwater through the impermeable layer. Such a hydrogeological characteristic consequently induces nitrate contamination of the regional aquifer in this region. To quantify the inflows of the perched groundwater via leakage wells, a numerical model was developed to calculate leakage amounts of the perched groundwater into the regional groundwater. This perched groundwater leakages were applied as point and time-variable contamination sources during the solute transport simulation process for the regional aquifer. This work will provide useful information to suggest effective ways to control nitrate contamination of groundwater in the agricultural field.

  3. Two-dimensional ground-water flow model of the Cretaceous aquifer system of Lee County and vicinity, Mississippi

    USGS Publications Warehouse

    Kernodle, John Michael

    1981-01-01

    A two-dimensional ground-water flow model of the Eutaw-McShan and Gordo aquifers in the area of Lee County, Miss., was successfully calibrated and verified using data from six long-term observation wells and two intensive studies of areal water levels. The water levels computed by the model were found to be most sensitive to changes in simulated aquifer hydraulic conductivity and to changes in head in the overlying Coffee Sand aquifer. The two-dimensional model performed reasonably well in simulating the aquifer system except possibly in southern Lee County and southward where a clay bed at the top of the Gordo Formation partially isolated the Gordo from the overlying Eutaw-McShan aquifer. The verified model was used to determine theoretical aquifer response to increased ground-water withdrawal to the year 2000. Two estimated rates of increase and five possible well field locations were examined. (USGS)

  4. Geophysical log database for the Floridan aquifer system and southeastern Coastal Plain aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Raines, Jessica E.; Lanning, Amanda E.

    2013-01-01

    The U.S. Geological Survey (USGS) Groundwater Resources Program began two regional studies in the southeastern United States in the fall of 2009 to investigate ground-water availability of fresh and brackish water resources: (1) groundwater availability of the Floridan aquifer system, (http://water.usgs.gov/ogw/gwrp/activities/regional.html), and (2) saline water aquifer mapping in the southeastern United States. A common goal for both studies was to gather available geophysical logs and related data from the State geological surveys and the USGS that would be used as a basis for developing a hydrogeologic framework for the study area. Similar efforts were undertaken by the USGS Floridan and Southeastern Coastal Plain Regional Aquifer-System Analysis (RASA) Program from the 1970s to mid-1990s (Miller, 1986; Renken, 1996). The logs compiled for these older efforts were difficult to access from the paper files; however, and partly because of this, older and newer logs were compiled into a single digital database for the current study. The purpose of this report is to summarize the different types of logs and related data contained in the database and to provide these logs in a digital format that can be accessed online through the database and files accompanying this report (http://pubs.usgs.gov/ds/760/).

  5. Geochemistry of the Cambrian-Ordovician aquifer system in the northern Midwest, United States: D in Regional aquifer-system analysis

    USGS Publications Warehouse

    Siegel, D.I.

    1989-01-01

    Distributions of dissolved trace constituents in the aquifers probably are related to the proximity to mineralogic sources as well as chemical and hydraulic mechanisms. For example, concentrations of some constituents, such as cadmium and arsenic, are largest in the vicinity of the Dakota Formation in northwestern Iowa. Other constituents, such as beryllium and vanadium, have larger concentrations near the edge of the Forest City basin in southwestern Iowa and northwestern Missouri. Strontium and fluoride concentrations generally increase from north to south, which suggests the input of these trace constituents during the recharge events. However, concentrations of bromide, radium-226, and lithium show distribution patterns similar to the "plume" defined by dissolved solids and isotopes of water, suggesting dilution of concentrations of trace constituents by Pleistocene recharge. Concentrations of other constituents are partly controlled by aquifer temperature, such as silica in south-central Iowa, and solubility controls, such as barium in northeastern Illinois. Additional information on the chemical and mineralogical composition of the aquifer matrix and the isotopically lightest ground water is needed to evaluate the hypothesis of Pleistocene mixing before more quantitative studies can be done to evaluate the different proposed mechanisms that have controlled and modified the water chemistry over time. This study, however, indicates that the ground water in the region is thousands of years old. The study also indicates that the major chemical trends in the aquifers probably are related as much to paleohydrogeologic flow systems during Pleistocene time as to the present flow system, which may postdate the retreat of the last ice sheet about 12,000 years ago.

  6. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  7. Assessing the Vulnerability of Public-Supply Wells to Contamination: Floridan Aquifer System Near Tampa, Florida

    USGS Publications Warehouse

    Jagucki, Martha L.; Katz, Brian G.; Crandall, Christy A.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Temple Terrace, Florida, northeast of Tampa. The well selected for study typically produces water at the rate of 700 gallons per minute from the Upper Floridan aquifer. Water samples were collected at the public-supply well and at monitoring wells installed in or near the simulated zone of contribution to the supply well. Samples of untreated water from the public-supply wellhead contained the undesirable constituents nitrate, arsenic, uranium, radon-222, volatile organic compounds (VOCs), and pesticides, although all were detected at concentrations less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well in Temple Terrace: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) short-circuiting of contaminated water through sinkholes; (3) natural geochemical processes within the aquifer; and (4) pumping stress. Although the public-supply well is completed in the Upper Floridan aquifer, it produces water with concentrations of nitrate, VOCs, and the natural contaminant radon that are intermediate between the typical composition of water from the Upper Floridan aquifer and that of the overlying surficial aquifer system. Mixing calculations show that the water produced by the public-supply well could consist of upwards of 50 percent water from the surficial aquifer system mixed with water from the Upper Floridan aquifer. Anthropogenically affected water from the surficial aquifer system travels rapidly to depth through sinkholes that must be directly connected to the cavernous zone intersected by the public-supply well (and several other production wells in the region). Such solution features serve as fast pathways to the well and circumvent the natural attenuation of nitrate and

  8. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.

  9. Areal variation in recharge to and discharge from the Floridan aquifer system in Florida

    USGS Publications Warehouse

    Aucott, Walter R.

    1988-01-01

    This report is a revision and update of existing recharge maps of the Floridan aquifer system to include quantitative information derived from Regional Aquifer Systems Analysis models as well as other recent information and also includes information on discharge from the system. The report represents predevelopment conditions with inset map that describes the change in recharge resulting from development. Recharge is greater in areas where the Floridan is unconfined, poorly confined, or the overlying confining layer is breached by sinkholes, such as is commonly found in the area extending from Tallahassee to Tampa. Discharge from the Floridan is dominated by spring flow. Spring flow is common in the area between Tallahassee and Tampa. Offshore discharge by upward leakage and submarine springs also is an important component of the flow system. Little inflow or outflow occurs from the Floridan in large areas of Florida, including south Florida and the extreme panhandle. The principal factors affecting recharge to the Florida aquifer system are the thickness and hydraulic conductivity of the overlying confining bed. Other factors of importance include the vertical hydraulic gradient, water available for recharge, and aquifer transmissivity. (USGS)

  10. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    USGS Publications Warehouse

    Scanlon, B.R.; Nicot, J.-P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D.K.

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 ??g/L (range 0.3-164 ??g/L), whereas As levels are much lower in the north (SHP-N: 9% ??? As MCL of 10 ??g/L; range 0.2-43 ??g/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman's ?? = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ?? = 0.88; Se, ?? = 0.54; B, ?? = 0.51 and Mo, ?? = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (?? = 0.56), oxyanion-forming elements and SiO2 (?? = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (??2H: -65 to -27; ??18O: -9.1 to -4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization of As

  11. Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950-2000

    USGS Publications Warehouse

    Marella, Richard L.; Berndt, Marian P.

    2005-01-01

    The Floridan aquifer system in the southeastern United States is one of the most productive aquifers in the world (Miller, 1990). This aquifer system underlies an area of about 100,000 square miles in southern Alabama, eastern and southern Georgia, southeastern Mississippi, southern South Carolina, and all of Florida. The Floridan aquifer system is the primary source of water for nearly 10 million people and supports agriculture, industry, and tourism throughout most of the region. In most areas, water from this aquifer is potable and needs very little treatment before use. However, in southern Florida (south of Lake Okeechobee), northwestern Florida and southern Alabama and Mississippi (Pensacola and westward), and eastern South Carolina, water in the aquifer system generally is not potable. The purpose of this report is to: Provide a general description of the Floridan aquifer system; Discuss water withdrawals by category for 2000; Highlight trends in water withdrawals between 1950 and 2000; and Provide a brief summary on the effects that human impacts have on the Floridan aquifer system.

  12. Long-term geochemical evaluation of the coastal Chicot aquifer system, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Borrok, David M.; Broussard, Whitney P.

    2016-02-01

    Groundwater is increasingly being overdrafted in the Gulf and Atlantic Coastal regions of the United States. Geochemical data associated with groundwater in these aquifers can provide important information on changes in salinity, recharge, and reaction pathways that can be used to improve water management strategies. Here we evaluated long-term geochemical changes associated with the 23,000 km2 Chicot aquifer system in Louisiana, USA. The Chicot aquifer is currently being overdrafted by about 1,320,000 m3 per day. We compiled selected bulk geochemical data from samples collected from 20 wells in the Chicot aquifer from 1993 to 2015. Oxygen and hydrogen isotope measurements were additionally completed for the 2014 samples. We identified three zones of groundwater with distinctive geochemical character; (1) A groundwater recharge zone in the northern part of the study area with low pH, low salinity, and low temperature relative to other groundwater samples, (2) a groundwater recharge zone in the southeastern part of the study area with low temperature, high alkalinity, and higher Ca and Mg concentrations compared to the other groundwater samples, and (3) groundwater in the southwestern part of the aquifer system with high salinity, high temperature, and a ∼1:1 Na/Cl ratio. The geochemistry of these regions has been relatively stable over the last ∼20 years. However, in the drought year of 2011, the estimated extent of zones with elevated salinity increased substantially. Geochemical evidence suggests that there was increased infiltration of deeper, more salt-rich waters into the shallower Chicot aquifer.

  13. Historical saturated thickness of the Edwards-Trinity aquifer system and selected contiguous hydraulically connected units, west-central Texas

    USGS Publications Warehouse

    Ardis, Ann F.; Barker, Rene A.

    1993-01-01

    The purposes of this report are to illustrate the historical distribution of saturated thickness (hereafter referred to as the saturated thickness) in the Edwards-Trinity aquifer system, summarize the reasons for the variation in the saturated thickness, and relate the regional effects of this variation to the distribution of transmissivity. The saturated thickness map (sheet 2) was determined for most of the area by subtracting the altitude of the base of the aquifer system (Barker and Ardis, 1992) from the altitude of the historical potentiometric surface (Bush and others, 1993). Where the Edwards and Trinity aquifers are confined in the Balcones fault zone, the saturated thickness is defined by the thickness of the aquifer system, which was determined by subtracting the altitude of the base of the aquifer system from the altitude of the base of the Navarro-Del Rio confining unit (G.E. Groschen and W.G. Stein, U.S. Geological Survey, written commun, 1990).

  14. Bibliography of Regional Aquifer-System Analysis Program of the US Geological Survey, 1978-96

    USGS Publications Warehouse

    Sun, Ren Jen; Weeks, John B.; Grubb, Hayes F.

    1997-01-01

    The Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey was initiated in 1978 and was completed in 1995. The purpose of this program was to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation's important aquifer systems. This information is critically needed to develop an understanding of the Nation's major ground-water flow systems and to support better management of ground-water resources. Twenty-five of the Nation's major aquifer systems were studied under this program. Starting in 1988, the program devoted part of its resources to compilation of a National Ground Water Atlas that presets a comprehensive summary of the Nation's major ground-water resources. The atlas, which is designed in a graphical format supported by descriptive text, serves as a basic reference for the location, geography, geology, and hydrologic characteristics of the major aquifers in the Nation. This bibliography lists 1,105 reports that result from various studies of the program. The list of reports for each study follows a brief description of that study.

  15. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  16. Artificial recharge to the Floridan aquifer system, Orlando Area, Central Florida

    USGS Publications Warehouse

    German, E.R.; Bradner, L.A.

    1989-01-01

    Approximately 400 drainage wells exist in Orange County, central Florida. The rate of recharge through drainage wells is limited by the rate of surface flow to the wells; the hydraulic properties of weirs, overflow pipes, and well casings; or the water level above the top of the casing. The rate commonly is not limited by the hydraulic properties of the very transmissive aquifer system.

  17. Hydrologic analysis of the High Plains aquifer system in Box Butte County, Nebraska

    USGS Publications Warehouse

    Pettijohn, R.A.; Chen, Hsiu-Hsiung

    1984-01-01

    During the past 40 years, pumpage of ground water for irrigation from the High Plains aquifer system underlying Box Butte County, Nebraska, has resulted in a steady decline of water levels. Consequently, a digital model of the aquifer system was constructed to evaluate various water-management alternatives. The hydraulic conductivity of the aquifer system ranges from 6 to 60 feet per day; the specific yield ranges from 12 to 21 percent; and natural recharge ranges from 0.06 to 4.33 inches annually. Predevelopment saturated thickness (1938) ranged from 190 to 510 feet. Water pumped in 1980 was estimated at 104,000 acre-feet from an estimated recoverable volume of 34.4 million acre-feet in the aquifer system. Results from model simulation predict that the area of water-level declines of 10 feet or more will increase from 336 square miles (1981) to 630 square miles by 1991 if pumpage is increased at the maximum annual rate experienced for the period 1972-81. Maximum water-level declines would increase from 50 feet (1981) to 79 feet (1991). However, pumpage rates held at the 1981 level (no further development) would limit the decline area of 10 feet or more to 530 square miles by 1991 and the maximum decline to 63 feet. (USGS)

  18. Hydrogeology and the distribution of salinity in the Floridan aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, R.S.; Memberg, S.J.

    2000-01-01

    The virtually untapped Floridan aquifer system is considered to be a supplemental source of water for public use in the highly populated coastal area of Palm Beach County. A recent study was conducted to delineate the distribution of salinity in relation to the local hydrogeology and assess the potential processes that might control (or have affected) the distribution of salinity in the Floridan aquifer system. The Floridan aquifer system in the study area consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer and ranges in age from Paleocene to Oligocene. Included at its top is part of a lowermost Hawthorn Group unit referred to as the basal Hawthorn unit. The thickness of this basal unit is variable, ranging from about 30 to 355 feet; areas where this unit is thick were paleotopographic lows during deposition of the unit. The uppermost permeable zones in the Upper Floridan aquifer occur in close association with an unconformity at the base of the Hawthorn Group; however, the highest of these zones can be up in the basal unit. A dolomite unit of Eocene age generally marks the top of the Lower Floridan aquifer, but the top of this dolomite unit has a considerable altitude range: from about 1,200 to 2,300 feet below sea level. Additionally, where the dolomite unit is thick, its top is high and the middle confining unit of the Floridan aquifer system, as normally defined, probably is not present. An upper zone of brackish water and a lower zone of water with salinity similar to that of seawater (saline-water zone) are present in the Floridan aquifer system. The brackish-water and saline-water zones are separated by a transition zone (typically 100 to 200 feet thick) in which salinity rapidly increases with depth. The transition zone was defined by using a salinity of 10,000 mg/L (milligrams per liter) of dissolved-solids concentration (about 5,240 mg/L of chloride concentration) at its top and 35,000 mg/L of dissolved

  19. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    USGS Publications Warehouse

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential

  20. Altitudes and thicknesses of hydrogeologic units of the Ozark Plateaus aquifer system in Arkansas, Kansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.

    2016-09-29

    A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.

  1. Simulation of saltwater movement in the Floridan aquifer system, Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Bush, Peter W.

    1988-01-01

    Freshwater to supply Hilton Head Island, S.C., is obtained from the upper permeable zone of the Upper Floridan aquifer. Long-term pumping at Savannah, Ga., and the steadily increasing pumping on Hilton Head Island, have lowered Upper Floridan heads near the center of the island from about 10 feet above sea level to about 6 to 7 feet below sea level. The seaward hydraulic gradient that existed before pumping began has been reversed, thus increasing the potential for saltwater intrusion. Simulations of predevelopment, recent, and future ground-water flow in the Floridan aquifer system beneath the north end of Hilton Head Island and Port Royal Sound are presented. A finite-element model for fluid-density-dependent ground-water flow and solute transport was used in cross section. The general configuration of the simulated predevelopment flowfield is typical of a coastal aquifer having a seaward gradient in the freshwater. The freshwater flows toward Port Royal Sound over an intruding wedge of saltwater. The simulated flowfield at the end of 1983 shows that ground water in the Floridan aquifer system beneath most of Hilton Head Island has reversed its predevelopment direction and is moving toward Savannah. The distribution of chloride concentrations, based on simulation at the end of 1983, is about the same as the predevelopment distribution of chloride concentrations obtained from simulation. Results of two 50-year simulations from 1983 to 2034 suggest that there will be no significant threat of saltwater intrusion into the upper permeable zone of the Upper Floridan aquifer if heads on Hilton Head Island remain at current levels for the next 45 to 50 years. However, if head decline continues at the historical rate, any flow that presently occurs from the north end of the island toward Port Royal Sound will cease, allowing lateral intrusion of saltwater to proceed. Even under these conditions, chloride concentrations in the upper permeable zone of the Upper Floridan

  2. Spatial distribution of arsenic in the Texas Gulf Coastal Aquifer System and inferences regarding hydrogeochemical controls

    NASA Astrophysics Data System (ADS)

    Gates, J. B.; Nicot, J.; Scanlon, B. R.

    2008-12-01

    Arsenic is a prominent trace element in the Gulf Coastal Aquifer System (GCAS) in Texas, particularly in the southwestern portion where 29% of wells exceed the USEPA maximum contaminant level of 10 μg/L for drinking water. While the dominant source is generally thought to be geogenic rather than anthropogenic, little is known about the hydrologic/geochemical mechanisms affecting occurrence in groundwater. The aim of this study was to assess spatial trends in hydrochemistry on a regional scale to help infer relevant processes. The investigation included geostatistical analysis of water quality results from the Texas Water Development Board groundwater database (n>1000) and chemical/isotopic analysis of a transect (17 wells) in the unconfined portion of the Jasper Aquifer, where some of the highest arsenic concentrations in the GCAS are found. Across the GCAS, arsenic and other oxyanion-forming elements (vanadium, molybdenum etc) are most common in the Miocene-age Jasper Aquifer, and tend to decrease with decreasing aquifer age. Principal Component Analysis suggests that spatial variations in arsenic in the GCAS as a whole are related to both total mineralization (TDS), and a second orthogonal component comprised of several trace elements (most prominently vanadium and silicon). A similar relationship is apparent for the Jasper Aquifer, but without a strong correspondence to TDS. The Jasper Aquifer transect also reflects these patterns. Near-neutral pH and slightly-oxidizing conditions observed in the transect are not likely to promote reductive dissolution or desorption from mineral oxides, and no relationship with pH or Eh is present. Rather, maximum arsenic values in the transect (120 μg/L) coincide with the boundary of the underlying Catahoula Formation which is a known source of saline fluids. Mixing of upward leakage with meteoric recharge is therefore considered to be a likely mechanism controlling arsenic concentrations. This inference is consistent with

  3. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  4. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  5. Conjunctive-management models for sustained yield of stream-aquifer systems

    USGS Publications Warehouse

    Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.

    2003-01-01

    Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.

  6. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells.

  7. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells. PMID:26657381

  8. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer System from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.; Finkelstein, Jason S.; McCoy, Kurt J.

    2013-11-14

    Updates to the regional hydrologic budget include revised estimates of aquifer recharge, water use and streamflow data. Inflow to the aquifer system of about 20,000 million gallons per day (Mgal/d) includes 19,600 Mgal/d from recharge from precipitation, 200 Mgal/d of recharge from wastewater via onsite domestic septic systems, and 200 Mgal/d from the release of water from aquifer storage. Outflow from the aquifer system includes groundwater discharge to streams (11,900 Mgal/d), groundwater withdrawals (1,500 Mgal/d), and groundwater discharge to coastal waters (6,600 Mgal/d). A numerical modeling analysis is required to improve this hydrologic budget calculation and to forecast future changes in water levels and aquifer storage caused by groundwater withdrawals, land-use changes, and the effects of climate variability and change.

  9. Geohydrology and model analysis of stream-aquifer system along the Arkansas River in Kearny and Finney Counties, southwestern Kansas

    USGS Publications Warehouse

    Dunlap, L.E.; Lindgren, Richard J.; Sauer, C.G.

    1985-01-01

    A study was made, in cooperation with the Division of Water Resources, Kansas State Board of Agriculture, to determine geohydrologic conditions in an area comprising nearly 850,000 acres along the Arkansas River valley in Kearny and Finney Counties, southwestern Kansas. The Arkansas River meanders atop and interacts hydraulically with the area's multilayered, unconsolidated aquifer system. Declines in static water levels in wells in the heavily pumped lower aquifer ranged from 20 to 80 feet during 1974-80. The river is dry in much of the area. A digital computer model was calibrated to simulate the trends of historic water levels. Simulated 1974-80 conditions depicted an average annual recharge to the unconsolidated aquifer system of 66,900 acre-feet from precipitation and 36,200 acre-feet from river and canal seepage and boundary inflow. Simulated average annual discharge consisted of 634,800 acre-feet from pumpage and boundary outflow. Simulated average annual recharge to the unconsolidated aquifer system was 531,700 acre-feet less than average annual discharge, indicating the ground-water resource is currently (1982) being mined in the study area. Simulation also indicated that there would be sufficient saturated thickness in 2005 for irrigation if 1980 hydrologic conditions continued. Seepage losses from the Arkansas River and irrigation canals are a major source of recharge to the unconsolidated aquifer system. Therefore, the amount of flow in the Arkansas River would be important in determining the rate of future water-level declines in the study area. Streamflow seepage losses could be decreased by (1) decreasing the number of wells pumping in the study area in order to reduce downward leakage from the valley aquifer, or (2) increasing streamflow discharge in order to recharge the valley aquifer. The rate and direction of flow between the river and the valley aquifer depend on the hydraulic conductivity of the streambed and the hydraulic gradient between the

  10. Geohydrologic systems in Kansas; physical framework of the confining unit in the Western Interior Plains aquifer system

    USGS Publications Warehouse

    Hansen, C.V.; Wolf, R.J.; Spinazola, J.M.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.

  11. Major geochemical processes in the evolution of carbonate-Aquifer systems

    USGS Publications Warehouse

    Hanshaw, B.B.; Back, W.

    1979-01-01

    -reefs, where reflux dolomites may form, highly alkaline, on-shore and continental lakes, and sabkha flats; these dolomites are typically associated with evaporite minerals. However, these processes cannot account for most of the regionally extensive dolomites in the geologic record. A major environment of regional dolomitization is in the mixing zone (zone of dispersion) where profound changes in mineralogy and redistribution of porosity and permeability occur from the time of early emergence and continuing through the time when the rocks are well-developed aquifers. The reactions and processes, in response to mixing waters of differing chemical composition, include dissolution and precipitation of carbonate minerals in addition to dolomitization. An important control on permeability distribution in a mature aquifer system is the solution of dolomite with concomitant precipitation of calcite in response to gypsum dissolution (dedolomitization). Predictive models developed by mass-transfer calculations demonstrate the controlling reactions in aquifer systems through the constraints of mass balance and chemical equilibrium. An understanding of the origin, chemistry, mineralogy and environments of deposition and accumulation of carbonate minerals together with a comprehension of diagenetic processes that convert the sediments to rocks and geochemical, tectonic and hydrologic phenomena that create voids are important to hydrologists. With this knowledge, hydrologists are better able to predict porosity and permeability distribution in order to manage efficiently a carbonate-aquifer system. ?? 1979.

  12. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    PubMed

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  13. Evaluation of Main Compositions of Water Chemistry Data By Graphical Methods, Edremit (Balikesir) Alluvial Aquifer System

    NASA Astrophysics Data System (ADS)

    Ertekin, Can; Sedat Çetiner, Ziya

    2015-04-01

    This case study aims to characterize and compare hydrogeochemistry based on major ion composition belonging to the year of 1970's, 2007 and 2008 for Edremit alluvial aquifer system which lies on the northwestern coast of Anatolia. Graphical representations including Piper, Schoeller, Stiff and Durov diagrams are applied to ease a systematic interpretation of a wide range of well chemistry data sets. In Piper diagram, water types of the aquifer system are mainly dominated with calcium, carbonate-bicarbonate and sulphate ions. Water types of the site are separated as sulphate or carbonate-bicarbonate ion dominated zones for 1970's data. Comparing data of 1970's, 2007 and 2008 the newest data set is clustered into magnesium dominate zone. This is related to relatively deep groundwater chemistry affect probably resulting from long term groundwater withdrawal for irrigation in the aquifer system. The Schoeller diagram portrays differences of the data set of 1970's, 2007 and 2008 more clearly comparing the Piper diagram. In this diagram, higher portions of magnesium and sulphate composition of the well data belonging to the year of 2007 and 2008 are possibly related to deep routes of groundwater flow paths of the site and/or geothermal water mixing. In Durov diagram, the data set was projected to a rectangular shape and it was not immediately clear to differentiate ionic composition of the water. This is not coincidence because the fact that pH values do not change significantly over the years and its contribution is not substantial comparing to major ion chemistry. Finally, application of hydrogeochemical modeling as a further step was touched upon herein to further depict undergone processes and end-members in the whole aquifer system on Edremit Plain. Keywords: Edremit, groundwater, aquifer, hydrogeochemistry, facies

  14. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    PubMed

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  15. An Aquifer Storage and Recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas.

    PubMed

    Sheng, Zhuping

    2005-06-01

    The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.

  16. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    PubMed

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  17. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGESBeta

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  18. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  19. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    PubMed

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  20. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  1. Sandia National Laboratories, California Environmental Management System program manual.

    SciTech Connect

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  2. Sandia National Laboratories, California Environmental Management System program manual

    SciTech Connect

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  3. 76 FR 79676 - California Independent System Operator Corporation; Supplemental Notice of Agenda and Discussion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Federal Energy Regulatory Commission California Independent System Operator Corporation; Supplemental... related to the California Independent System Operator Corporation's (CAISO) proposal to eliminate... York Independent System Operator to settle the interties.\\9\\ \\9\\ NYISO is a net importer and...

  4. 76 FR 7187 - California Independent System Operator Corporation; Notice of Institution of Section 206...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of Institution of... Independent System Operator Corporation's Virtual Award Charge. California Independent System Operator...

  5. Planning report for the southwest alluvial basins (east) regional aquifer-system analysis, parts of Colorado, New Mexico, and Texas

    USGS Publications Warehouse

    Wilkins, D.W.; Scott, W.B.; Kaehler, C.A.

    1980-01-01

    The study of the Southwest alluvial basins (east) will involve an analysis of the regional aquifer system in parts of Colorado, New Mexico, and Texas. This area has been divided into 22 basins. The study of the alluvial aquifer-system will be made in the following stages: (1) project planning, (2) literature searches, (3) compiling existing data, (4) data collection, (5) basin modeling, (6) regional aquifer modeling, and (7) reports. The regional aquifer study will be accomplished through studying each of the 22 basins. Data compilation and limited data collection will be part of each basin study. Digital computer models will be made for those basins where data are sufficient. A regional aquifer model will be developed from the basin models. In addition to this report, there will be basin hydrology reports and the final regional report. Included in the final report will be a description of the regional hydrology and geology. (USGS)

  6. Regional Analysis of Stormwater Runoff for the Placement of Managed Aquifer Recharge Sites in Santa Cruz and Northern Monterey Counties, California

    NASA Astrophysics Data System (ADS)

    Young, K. S.; Beganskas, S.; Fisher, A. T.

    2015-12-01

    We apply a USGS surface hydrology model, Precipitation-Runoff Modeling System (PRMS), to analyze stormwater runoff in Santa Cruz and Northern Monterey Counties, CA with the goal of supplying managed aquifer recharge (MAR) sites. Under the combined threats of multiyear drought and excess drawdown, this region's aquifers face numerous sustainability challenges, including seawater intrusion, chronic overdraft, increased contamination, and subsidence. This study addresses the supply side of this resource issue by increasing our knowledge of the spatial and temporal dynamics of runoff that could provide water for MAR. Ensuring the effectiveness of MAR using stormwater requires a thorough understanding of runoff distribution and site-specific surface and subsurface aquifer conditions. In this study we use a geographic information system (GIS) and a 3-m digital elevation model (DEM) to divide the region's four primary watersheds into Hydrologic Response Units (HRUs), or topographic sub-basins, that serve as discretized input cells for PRMS. We then assign vegetation, soil, land use, slope, aspect, and other characteristics to these HRUs, from a variety of data sources, and analyze runoff spatially using PRMS under varying precipitation conditions. We are exploring methods of linking spatially continuous and high-temporal-resolution precipitation datasets to generate input precipitation catalogs, facilitating analyses of a variety of regimes. To gain an understanding of how surface hydrology has responded to land development, we will also modify our input data to represent pre-development conditions. Coupled with a concurrent MAR suitability analysis, our model results will help screen for locations of future MAR projects and will improve our understanding of how changes in land use and climate impact hydrologic runoff and aquifer recharge.

  7. Integrating Predictive Modeling with Control System Design for Managed Aquifer Recharge and Recovery Applications

    NASA Astrophysics Data System (ADS)

    Drumheller, Z. W.; Regnery, J.; Lee, J. H.; Illangasekare, T. H.; Kitanidis, P. K.; Smits, K. M.

    2014-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization led to reduced natural recharge rates and overuse. Scientists and engineers have begun to re-investigate the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. MAR systems offer the possibility of naturally increasing groundwater storage while improving the quality of impaired water used for recharge. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. Our project seeks to ease the operational challenges of MAR facilities through the implementation of active sensor networks, adaptively calibrated flow and transport models, and simulation-based meta-heuristic control optimization methods. The developed system works by continually collecting hydraulic and water quality data from a sensor network embedded within the aquifer. The data is fed into an inversion algorithm, which calibrates the parameters and initial conditions of a predictive flow and transport model. The calibrated model is passed to a meta-heuristic control optimization algorithm (e.g. genetic algorithm) to execute the simulations and determine the best course of action, i.e., the optimal pumping policy for current aquifer conditions. The optimal pumping policy is manually or autonomously applied. During operation, sensor data are used to assess the accuracy of the optimal prediction and augment the pumping strategy as needed. At laboratory-scale, a small (18"H x 46"L) and an intermediate (6'H x 16'L) two-dimensional synthetic aquifer were constructed and outfitted with sensor networks. Data collection and model inversion components were developed and sensor data were validated by analytical measurements.

  8. Chloride Concentration in Water from the Upper Permeable Zone of the Tertiary Limestone Aquifer System, Southeastern United States

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1982-01-01

    INTRODUCTION The tertiary limestone aquifer system of the southeastern United States is a sequence of carbonate rocks referred to as the Floridan aquifer in Florida and the principal artesian aquifer in Georgia, Alabama, and South Carolina. More than 3 billion gallons of water are pumped daily from the limestone aquifer; and the system is the principal source of municipal, industrial, and agricultural water supply in south Georgia and most of Florida. The aquifer system includes units of Paleocene to early Miocene age that combine to form a continuous carbonate sequence that is hydraulically connected in varying degrees. In a small area near Brunswick, Ga., a thin sequence of rocks of Late Cretaceous age is part of the system. In and directly downdip from much of the outcrop area, the system consists of one continuous permeable unit. Further downdip the aquifer system generally consists of two major permeable zones separated by a less-permeable unit of highly variable hydraulic properties (very leaky to virtually nonleaky). Conditions for the system vary from unconfined to confined depending upon whether the argillaceous Miocene and younger rocks that form the upper confining unit have been removed by erosion. This report is one of a series of preliminary products depicting the hydrogeologic framework, water chemistry, and hydrology of the aquifer system. The map shows the distribution of chloride ions in water from the upper permeable zone of the limestone aquifer system. The upper permeable zone consists of several formations, primarily the Tampa, Suwannee, Ocala, and Avon Park Limestones (Miller 1981a, b). Chloride concentrations of water within the upper permeable zone vary from nearly zero in recharge areas to many thousands of milligrams per liter (mg/L) in coastal discharge areas. Where the aquifer system discharges into the sea, the upper permeable zone contains increasing amounts of seawater. In these areas, wells that fully penetrate the upper permeable

  9. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward

  10. The San Andreas Fault System, California

    USGS Publications Warehouse

    Wallace, Robert E.

    1990-01-01

    Maps of northern and southern California printed on flyleaf inside front cover and on adjacent pages show faults that have had displacement within the past 2 million years. Those that have had displacement within historical time are shown in red. Bands of red tint emphasize zones of historical displacement; bands of orange tint emphasize major faults that have had Quaternary displacement before historical time. Faults are dashed where uncertain, dotted where covered by sedimentary deposits, and queried where doubtful. Arrows indicate direction of relative movement; sawteeth on upper plate of thrust fault. These maps are reproductions, in major part, of selected plates from the 'Fault Map of California,' published in 1975 by the California Division of Mines and Geology at a scale of 1:750,000; the State map was compiled and data interpreted by Charles W. Jennings. New data about faults, not shown on the 1975 edition, required modest revisions, primarily additions; however, most of the map was left unchanged because the California Division of Mines and Geology is currently engaged in a major revision and update of the 1975 edition. Because of the reduced scale here, names of faults and places were redrafted or omitted. Faults added to the reduced map are not as precise as on the original State map, and the editor of this volume selected certain faults and omitted others. Principal regions for which new information was added are the region north of the San Francisco Bay area and the offshore regions. Many people have contributed to the present map, but the editor is solely responsible for any errors and omissions. Among those contributing informally, but extensively, and the regions to which each contributed were G.A. Carver, onland region north of lat 40? N.; S.H. Clarke, offshore region north of Cape Mendocino; R.J. McLaughlin, onland region between lat 40?00' and 40?30' N. and long 123?30' and 124?30' W.; D.S. McCulloch, offshore region between lat 35? and 40? N

  11. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Drost, M. K.

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.

  12. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    SciTech Connect

    Drost, M K

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted in Seattle, Washington, on November 30 and December 1, 1989 by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high-priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development. 2 tabs.

  13. Shallow Aquifer Connectivity and Early Season Water Supply of Seasonal Wetlands and Drainages Leading to Regional Drainage Systems

    NASA Astrophysics Data System (ADS)

    McCarten, N. F.; Harter, T.

    2009-12-01

    The Sacramento and San Joaquin Rivers in the Central Valley, California are recognized being seasonally supplied by early season direct surface water runoff and later season snow melt runoff from their tributaries. In addition, early season water supply to these rivers is derived from precipitation (PPT) that has infiltrated into soils underlain by a near surface aquitard, typically at less than 2 m depth. These shallow perched groundwater systems contribute a potentially substantial amount of water from more than 500,000 hectares of landforms associated with geomorphic terraces underlain by these aquitards. Early season water input to seasonal and perennial drainages is regulated by the hydraulic conductivity of the (clay-) loamy soils and by surface and aquitard slope of the local catchments associated with these old alluvial landforms. Research on these landforms and shallow aquifers has identified a complex PPT and evapotranspiration (ET) sensitive system that includes shallow depressions that seasonally produce water table derived wetlands (“vernal pools”). These wetlands have been recognized for a very high level of plant and invertebrate species diversity including endangered species. In addition, these seasonal wetlands provide migratory feeding areas of birds. Our work on these seasonal perched systems shows that as much as 80 percent of the soil column above the aquitard is saturated, during average to high rainfall years, for up to 90 to 120 days. Where the water table of this perched system intercepts the land surface, vernal pools develop. The perched groundwater drains into seasonal surface drainages that ultimately supply the Sacramento and San Joaquin rivers. At the end of the rainy season, both the vernal pools and the perched aquifer rapidly and synchronously disappear. Once the soil is unsaturated, water flow is vertically upward due to ET. Variably saturated modeling of this system was conducted using HYDRUS 2D/3D. Climate inputs were from

  14. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Athanasiou, Georgios; Schimdt, Felix; Apostolopoulos, Georgios; Uzunoglou, Nikolaos; Dietrich, Peter; Schuth, Christoph

    2015-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  15. Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1989-01-01

    The chemical quality of the ground water in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. The rocks are principally limestone and dolomite, but they grade into limy sands and clays near the aquifer system's updip limits. Major minerals in the aquifer system are calcite, dolomite, and, locally, gypsum or quartz; minor minerals include apatite, glauconite, and clay minerals such as kaolinite and montmorillonite. Trace amounts of metallic oxides or sulfides are present in some areas. The aquifer system consists of the Upper and Lower Floridan aquifers, separated in most places by a less permeable confining unit that has highly variable hydraulic properties. Only the Upper Floridan aquifer is present throughout the study area. Freshwater enters the aquifer system in outcrop areas located primarily in central Georgia and north-central Florida. Discharge occurs chiefly to streams and springs and, to a lesser extent, directly into the sea. Most of the flow into and out of the system takes place where it is unconfined or where the upper confining unit is thin. Secondary permeability developed by dissolution of aquifer material is most prominent in these areas of dynamic flow. Dissolved-solids concentrations in water from the Upper Floridan aquifer generally range from less than 25 milligrams per liter near outcrops to more than 25,000 milligrams per liter along the coasts. The dominant cations in the ground water

  16. A Regional Strategy for the Assessment and Management of Transboundary Aquifer Systems in the Americas

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Rivera, A.; Tujchneider, O.; Guillén, C.; Campos, M.; Da Franca, N.; May, Z.; Aureli, A.

    2015-12-01

    The UNESCO-IHP ISARM-Americas technical committee has developed a regional strategy for the assessment and management of transboundary aquifer systems in the Americas as part of their ongoing cooperative assistance to help neighboring countries sustain water resources and reduce potential conflict. The fourth book in the series of publications sponsored by UNESCO and OAS documents this strategy. The goal of this strategy is the collective understanding, developing, managing, and protecting of the transboundary aquifers in the Americas This strategy includes technical, social, and governance recommendations for an integrated resource management of groundwater based on flexible arrangements that not only manage but also demand social participation in solving problems, consider changes in land use and water use and promote the increase of water sustainability for all transboundary neighbors. The successful implementation of this strategy starts with sharing information of the status and use of land and water as well as intergovernmental partnerships to link science and policy with existing instruments for managing the water resources. International organizations such as UNESCO and OAS also can help facilitate the development of transboundary agreements and establish cooperation on transboundary aquifers between neighbors. The UNESCO-IHP ISARM-Americas technical committee has been successful in creating a network of partners from 24 countries and in translating existing aquifer knowledge into a meaningful strategy for the American hemisphere. The strategy aims to explain and develop the role of science and the informed-decision approach. Examples from North and South America show how the process has begun to develop for selected transboundary aquifers. These include the Milk River basin between the US and Canada, the Rio Grande and Colorado River basins between the US and Mexico, and the Guarani River basin in South America.

  17. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.

    PubMed

    Abusaada, Muath; Sauter, Martin

    2013-01-01

    The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date.

  18. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    USGS Publications Warehouse

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  19. A digital simulation of the glacial-aquifer system in the northern three-fourths of Brown County, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1990-01-01

    A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)

  20. Inorganic, isotopic, and organic composition of high-chloride water from wells in a coastal southern California aquifer

    USGS Publications Warehouse

    Izbicki, J.A.; Christensen, A.H.; Newhouse, M.W.; Aiken, G.R.

    2005-01-01

    Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl- concentrations were near faults that bound the valley. Depending on well construction, high-Cl-water from different sources may enter a well at different depths. For example, Cl- concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl- concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl - waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and ??34S and ??13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl- water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl- concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl - concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.

  1. 75 FR 1363 - City of Riverside, CA, California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Riverside, CA, California Independent System Operator Corporation... and the California Independent System Operator Corporation filed its seventh annual revision to...

  2. 77 FR 70431 - California Independent System Operator Corporation; Notice Establishing Answer Period to Limited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice Establishing...) filed a Limited Emergency Protest (Protest) regarding the comment period for the California Independent System Operator Corporation's (CAISO) petition for declaratory order and request for expedited...

  3. 76 FR 67177 - Pacific Gas and Electric Company; California Independent System Operator Corporation; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pacific Gas and Electric Company; California Independent System Operator... California Independent System Operator Corporation (Respondent), alleging that the application of...

  4. 77 FR 38050 - California Independent System Operator Corporation; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice of Petition for... Commission's (Commission) Rules of Practice and Procedure, 18 CFR 385.207, the California Independent System Operator Corporation (CAISO) submitted a Petition for Declaratory Order requesting that the...

  5. 76 FR 19766 - California Independent System Operator Corporation; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice of Technical... Commission (Commission) directed staff to convene a technical conference regarding California Independent System Operator Corporation's (CAISO) Capacity Procurement Mechanism (CPM) and exceptional...

  6. 76 FR 22091 - California Independent System, Operator Corporation; Supplemental Notice of Agenda and Discussion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Energy Regulatory Commission California Independent System, Operator Corporation; Supplemental Notice of... California Independent System Operator Corporation's (CAISO) Capacity Procurement Mechanism (CPM... interested parties are invited to attend, and registration is not required. \\1\\ Cal. Indep. Sys....

  7. 75 FR 1362 - City of Anaheim, CA, California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Anaheim, CA, California Independent System Operator Corporation... the California Independent System Operator Corporation filed is seventh annual revision to...

  8. 77 FR 41402 - California Independent System Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of FERC... California Independent System Operator (CAISO). The agenda and other documents for the teleconferences...

  9. 77 FR 70160 - California Independent System, Operator Corporation; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Energy Regulatory Commission California Independent System, Operator Corporation; Notice of Petition for... Energy Regulatory Commission's (Commission) Rules of Practice and Procedure, California Independent System Operator Corporation filed a petition requesting that the Commission issue a declaratory order...

  10. 75 FR 39243 - California Independent System; Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System; Operator Corporation; Notice of Filing June 30, 2010. Take notice that on June 29, 2010, the California Independent System Operator...

  11. 75 FR 49928 - California Independent System Operator Corporation; Green Energy Express LLC; 21st Century...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Energy Regulatory Commission California Independent System Operator Corporation; Green Energy Express LLC...) directed staff to convene a technical conference regarding California Independent System Operator... led by Commission staff. Commissioners may attend the conference. \\1\\ Cal. Indep. Sys. Operator...

  12. 76 FR 76157 - California Independent System, Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ...; ER11-4580-000; ER12-50-000] California Independent System, Operator Corporation; Notice of FERC Staff... California Independent System Operator (CAISO). The agenda and other documents for the teleconferences...

  13. 78 FR 34093 - California Independent System Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of FERC Staff... California Independent System Operator (CAISO). The agenda and other documents for the teleconferences...

  14. 77 FR 13589 - California Independent System Operator Corporation; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of Complaint Take...) Rules of Practice and Procedure, 18 CFR 385.206, California Independent System Operator...

  15. 76 FR 76713 - California Independent System Operator Corporation; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice of Technical... Commission (Commission) directed staff to convene a technical conference regarding California Independent System Operator Corporation's (CAISO) proposal to eliminate convergence bidding at intertie...

  16. Remedial Policy in the California State University System: An Analysis

    ERIC Educational Resources Information Center

    Harmon, Taryn Bethany

    2011-01-01

    Remedial courses have become a fixture on college and university campuses across the nation with nearly all public institutions offering at least one remedial course and nearly one quarter of first-year students requiring remediation (USDE, NCES, 2003). In the California State University System, the context for this study, the proportion of…

  17. Funding California Schools: The Revenue Limit System. Technical Appendices

    ERIC Educational Resources Information Center

    Weston, Margaret

    2010-01-01

    This document presents the technical appendices accompanying the report, "Funding California Schools: The Revenue Limit System." Included are: (1) Revenue Limit Calculation and Decomposition; (2) Data and Methods; and (3) Base Funding Alternative Simulation Results. (Contains 5 tables and 26 footnotes.) [For the main report, "Funding California…

  18. EUREKA, The California Career Information System. Annual Interim Report.

    ERIC Educational Resources Information Center

    Richmond Unified School District, CA.

    Results of the first year's operation of EUREKA (a computerized system to provide current, accurate, and locally relevant labor market and educational information to California high school students and counselors for the purposes of career exploration and decision making) are presented in this report. The general project design is outlined: (1)…

  19. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  20. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    USGS Publications Warehouse

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  1. A semi-analytical model for predicting water quality from an aquifer storage and recovery system

    NASA Astrophysics Data System (ADS)

    Sedighi, Ali; Klammler, Harald; Brown, Chris; Hatfield, Kirk

    2006-10-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater in an aquifer through wells for the purpose of creating a subsurface water supply that is recovered at a later time, often using the same wells, to meet seasonal, long-term, emergency, or other demands. In this paper a numerically efficient semi-analytical model is developed for predicting the quality of water recovered by an ASR system given data on the qualities of ambient and injected waters, hydraulic properties of the aquifer, ambient hydraulic gradient, and system operations. It is assumed the ASR well is installed in a stratified aquifer such that the semi-analytical ASR model (SASRM) simulates the fate of water injected under steady-state conditions into each stratum. It is also assumed that a sharp and mobile interface separates injected water from ambient groundwater such that in situ mixing of water within and between strata does not occur. SASRM assigns particles to define the location the interface in all strata and then follows the migration of these particles under ambient and induced flow conditions. During water recovery, the transient location of the interface is simulated in each stratum and this information is used to quantify the fractions of ambient and injected water extracted at the well-head and the quality of water recovered. To mimic the effects of dispersion, a Latin Hypercube sampling strategy is used to assign hydraulic conductivities according to a predefined probability distribution to the layers of a conceptually stratified aquifer. The volumetric fraction of water received or delivered from any given lithologic unit is assumed proportional to the transmissivity of the stratum normalized to the total aquifer transmissivity interrogated by the ASR well. SARSM is numerically verified against MT3DMS and then calibrated and validated using field data from an ASR system located in Boynton Beach, FL. The field demonstration shows SASRM is capable of predicting

  2. Chemical composition data and calculated aquifer temperature for selected wells and springs of Honey Lake Valley, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Major element, minor element, and gas composition data are tabulated for 15 springs and wells in Honey Lake Valley, California. Wendel and Amedee hot springs issue Na-S04-C1 waters at boiling or near boiling temperatures; the remaining springs and wells issue Na-HC03 waters at temperatures ranging from 14 to 33 deg C. Gases escaping from the hot springs are principally nitrogen with minor amounts of methane. The geothermometers calculated from the chemical data are also tabulated for each spring. (Woodard-USGS)

  3. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    NASA Astrophysics Data System (ADS)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  4. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater. PMID:22903335

  5. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  6. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  7. The location of old groundwater in hydrogeologic basins and layered aquifer systems

    NASA Astrophysics Data System (ADS)

    Gassiat, Claire; Gleeson, Tom; Luijendijk, Elco

    2013-06-01

    The age of groundwater, the time since the water recharged the subsurface, is a fundamental characteristic of groundwater that impacts diverse geologic processes and practical applications. The distribution of groundwater age depends on many factors including permeability, recharge rate, aquifer geometry, and topography. Seminal work simulated topography-driven regional groundwater flow with various topographies, localized high-permeability zones, and more recently with permeability decreasing with depth, but the role of layered aquifer systems which are common in both consolidated and unconsolidated sediments has not been systematically explored. Here we show that high age zones with predictable locations occur in layered geologic systems across a wide range of hydraulic gradients, basin geometries, and permeabilities. Numerical simulations of a generic three-layer aquifer system indicate that high age zones consistently form in the low-permeability layer near the middle of the basin. The zones of older groundwater result from low groundwater velocities in the low-permeability layer and the rejuvenation of the groundwater through mixing of different flow paths near discharge zones. The high age zones are not hydraulic stagnation points but are associated with areas of low velocity. Formation and location of zones of high groundwater ages in low-permeability units are important as these units are targeted for radioactive waste disposal and shale gas extraction. High age zones are also likely to affect geologic processes that depend on groundwater or solute fluxes and may serve as archives of past hydrological or climatological conditions.

  8. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    USGS Publications Warehouse

    Oki, D.S.; Souza, W.R.; Bolke, E.L.; Bauer, G.R.

    1998-01-01

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Ground-water flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units.

  9. Triennial changes in groundwater quality in aquifers used for public supply in California: Utility as indicators of temporal trends

    USGS Publications Warehouse

    Kent, Robert; Landon, Matthew K.

    2016-01-01

    From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.

  10. Hydrogeology and water quality of the shallow aquifer system at the Mainside, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    USGS Publications Warehouse

    Harlow, G.E.; Bell, C.F.

    1996-01-01

    Lithologic and geophysical logs of boreholes at 29 sites show that the hydrogeologic framework of the Mainside of the Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, consists of un-consolidated sedimentary deposits of gravel, sand, silt, and clay. The upper 220 feet of these sediments are divided into five hydrogeologic units, including the (1) Columbia (water-table) aquifer, (2) upper confining unit, (3) upper confined aquifer, (4) Nanjemoy-Marlboro confining unit, and (5) Aquia aquifer. The Columbia aquifer in the study area is a local system that is not affected by regional pumping. Ground-water recharge occurs at topographic highs in the northern part of the Mainside, and ground-water discharge occurs at topographic lows associated with adjacent surface-water bodies. Regionally, the direction of ground-water flow in the upper confined and Aquia aquifers is toward the southwest and southeast, respectively. A downward hydraulic gradient exists between the aquifers in the shallow system, and stresses on the Aquia aquifer are indicated by heads that range between 2 and 12 feet below sea level. The ratio of median horizontal hydraulic conductivity of the Columbia aquifer to median vertical hydraulic con-ductivity of the upper confining unit, however, is approximately 2,600:1; therefore, under natural- flow conditions, most water in the Columbia aquifer probably discharges to adjacent surface- water bodies. The composition and distribution of major ions vary in the Columbia aquifer. In general, water samples from wells located along the inland perimeter roads of the study area have chloride or a combination of chloride and sulfate as the dominant anions, and water samples from wells located in the interior of the study area have bicarbonate or a combination of bicarbonate and sulfate as the dominant anions. Sodium and calcium were the dominant cations in most samples. Dissolved solids and four inorganic constituents are present in water from the

  11. Simulation of groundwater flow in the shallow aquifer system of the Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.; Selnick, David L.; Stumvoll, Ryan F.

    2012-01-01

    Estimating future loadings of nitrogen to the Chesapeake Bay requires knowledge about the groundwater flow system and the traveltime of water and chemicals between recharge at the water table and the discharge to streams and directly to the bay. The Delmarva Peninsula has a relatively large proportion of its land devoted to agriculture and a large associated nitrogen load in groundwater that has the potential to enter the bay in discharging groundwater. To better understand the shallow aquifer system with respect to this loading and the traveltime to the bay, the U.S. Geological Survey constructed a steady-state groundwater flow model for the region. The model is based on estimates of recharge calculated using recently developed regression equations for evapotranspiration and surface runoff. The hydrogeologic framework incorporated into the model includes unconfined surficial aquifer sediments, as well as subcropping confined aquifers and confining beds down to 300 feet below land surface. The model was calibrated using 48 water-level measurements and 24 tracer-based ages from wells located across the peninsula. The resulting steady-state flow solution was used to estimate ages of water in the shallow aquifer system through the peninsula and the distribution and magnitude of groundwater traveltime from recharge at the water table to discharge in surface-water bodies (referred to as return time). Return times vary but are typically less than 10 years near local streams and greater than 100 years near the stream divides. The model can be used to calculate nitrate transport parameters in various local watersheds and predict future trends in nitrate loadings to Chesapeake Bay for different future nitrogen application scenarios.

  12. Mathematical model of the Tesuque aquifer system near Pojoaque, New Mexico

    USGS Publications Warehouse

    Hearne, Glenn A.

    1985-01-01

    A three-dimensional digital model of ground-water flow was constructed to represent the dipping anisotropic beds of the Tesuque aquifer system underlying the Pojoaque River basin and vicinity, New Mexico. Simulations of steady-state conditions and historical ground-water withdrawals were consistent with observed data. The model was used to simulate the response of the aquifer system to an irrigation-development plan in the Pojoaque River basin. Storage is the main source of water; 34.05 cubic feet per second (86 percent of the withdrawal rate) was simulated to be withdrawn from storage after 50 years of withdrawals for irrigation development. The maximum simulated water-level decline was 334 feet, and the net simulated streamflow capture from the Rio Grande and the Santa Cruz, Pojoaque, and Santa Fe Rivers was 5.63 cubic feet per second (14 percent of the withdrawal rate). The sensitivity of the model was tested by varying aquifer characteristics to the limits of the plausible range. Change in hydraulic head in the Pojoaque River basin is most sensitive to hydraulic conductivity. In all simulations, after 50 years of withdrawals, the maximum simulated decline in hydraulic head ranged between 210 and 474 feet, storage in the aquifer system was the source of 80 to 90 percent of the water withdrawn from wells, and streamflow capture from the Rio Grande and its tributaries plus irrigation diversions from the tributaries of the Pojoaque River simulated a decrease in the flow of the Rio Grande of between 17.13 and 21.11 cubic feet per second.

  13. 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: New insights into aquifer-geometry and interconnections for a better assessment of groundwater resources

    NASA Astrophysics Data System (ADS)

    Hassen, Imen; Gibson, Helen; Hamzaoui-Azaza, Fadoua; Negro, François; Rachid, Khanfir; Bouhlila, Rachida

    2016-08-01

    The challenge of this study was to create a 3D geological and structural model of the Kasserine Aquifer System (KAS) in central Tunisia and its natural extension into north-east Algeria. This was achieved using an implicit 3D method, which honors prior geological data for both formation boundaries and faults. A current model is presented which provides defendable predictions for the spatial distribution of geology and water resources in aquifers throughout the model-domain. This work has allowed validation of regional scale geology and fault networks in the KAS, and has facilitated the first-ever estimations of groundwater resources in this region by a 3D method. The model enables a preliminary assessment of the hydraulic significance of the major faults by evaluating their influence and role on groundwater flow within and between four compartments of the multi-layered, KAS hydrogeological system. Thus a representative hydrogeological model of the study area is constructed. The possible dual nature of faults in the KAS is discussed in the context that some faults appear to be acting both as barriers to horizontal groundwater flow, and simultaneously as conduits for vertical flow. Also discussed is the possibility that two flow directions occur within the KAS, at a small syncline area of near Feriana. In summary, this work evaluates the influence of aquifer connectivity and the role of faults and geology in groundwater flow within the KAS aquifer system. The current KAS geological model can now be used to guide groundwater managers on the best placement for drilling to test and further refine the understanding of the groundwater system, including the faults connectivity. As more geological data become available, the current model can be easily edited and re-computed to provide an updated model ready for the next stage of investigation by numerical flow modeling.

  14. Holocene Evolution of two Upwelling Systems - Offshore Northern California and the Central Gulf of California

    NASA Astrophysics Data System (ADS)

    Barron, J. A.; Bischoff, J. L.; Bukry, D.; Heusser, L.; Herbert, T. D.; Lyle, M.

    2002-12-01

    High resolution records from offshore northern California \\(ODP 1019\\) and the central Gulf of California \\(DSDP 480 and BAM80 E17\\) reveal both similarities and differences in the Holocene evolution of these upwelling systems. Common themes include: 1\\ ) an earlier Holocene period \\(11.6-8.2 ka\\) with relatively high calcium carbonate deposition, probably reflecting a maximum in summer insolation; 2\\ ) increasing diatom deposition during the middle and late Holocene, likely signaling an intensification of seasonal northwest winds; and 3\\ ) the onset of modern oceanic conditions between 3.5 and 3.2 ka, possibly associated with the expression of increasing ENSO variability. At ODP 1019 off northern California, cooler alkenone-based SST's and the rarity of the subtropical-diatom Pseudoeunotia doliolus suggest that the California Current was rather broad during the middle part of the Holocene \\(ca. 8.2-3.2 ka\\), perhaps similar to the conditions that exist during a modern La Niña. Decreasing wt. % CaCO3 relatively low, but increasing wt. % organic C, and low to moderate estimated opal content typify this middle Holocene interval. Beginning at 5.2 ka, increasing coastal redwood pollen is evidence that coastal fog and coastal upwelling were becoming more important. Subsequently, at ca. 3.5 ka, a doubling of estimated opal coupled with increased coastal redwood pollen suggests a further enhancement of seasonal coastal upwelling. At about the same time \\(ca. 3.2 ka\\), a sustained ca. 1 deg. C increase in alkenone SST and 3-fold increase in P. doliolus imply warming of fall and winter SST's. An enhancement of the interannual variability of surface water conditions at this time is probably associated with an increasing expression of ENSO variability. In the central Gulf of California between ca. 11.0 and 8.2 ka, biosilica production was generally low compared to that of the latest Holocene, suggesting that wintertime NW winds were relatively weak. Stepwise

  15. Digital models of ground-water flow in the Cape Cod aquifer system, Massachusetts

    USGS Publications Warehouse

    Guswa, John H.; LeBlanc, Denis R.

    1985-01-01

    The Cape Cod aquifer system was simulated with three-dimensional finite-difference ground-water-flow models. Five areas were modeled to provide tools that can be used to evaluate the hydrologic impacts of regional water development and waste disposal. The model boundaries were selected to represent the natural hydrologic boundaries of the aquifer. The boundary between fresh and saline ground water was treated as an interface along which there is no dispersion. The saline-water zone was treated as static (nonflowing). Comparisons of calculated and observed values of head, position of the boundary between fresh and saline water, and ground-water discharge (at locations where data were available) indicate that the simulated groundwater reservoirs generally agree with field conditions. Model analyses indicate that the total steady-state freshwater-flow rate through the five modeled areas is approximately 412 cubic feet per second.

  16. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    SciTech Connect

    Modis, K. Sideri, D.

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  17. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  18. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

    USGS Publications Warehouse

    Danskin, Wesley R.

    1998-01-01

    The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and

  19. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1993-01-01

    The 15,600 sq mi Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. Quaternary basalt of the Snake River Group underlies most of the 10,800 square mile eastern plain and constitutes the most productive aquifers. Transmissivity of the upper 200 feet of the basalt aquifer commonly ranges from 100,000 to 1,000,000 square feet per day. Vertical hydraulic conductivity is several orders of magnitude lower than horizontal hydraulic conductivity and is related to the degree of jointing. Alluvial sand and gravel in the Boise River valley constitutes the most productive aquifers in the 4,800 square mile western plain. Along much of its length, the Snake River gains groundwater. Between Milner and King Hill, the river gained 4.7 million acre-ft in 1980, most as spring flow from the north side. The chemical composition of groundwater in the plain is essentially the same as that in streams and ground- water from tributary drainage basins. The use of surface water for irrigation for 100 years has caused major changes in the hydrologic system on the plain. During that time, recharge on the main part of the eastern plain increased about 70 percent, discharge about 80 percent. In 1980, about 8.9 million acre-ft of Snake River water was diverted and 2.3 million acre-ft of groundwater was pumped from 5,300 wells for irrigation.

  20. The distribution of bromide in water in the Floridan aquifer system, Duval County, northeastern Florida

    USGS Publications Warehouse

    German, E.R.; Taylor, G.F.

    1995-01-01

    Although Duval County, Florida, has ample ground-water resources for public supply, the potential exists for a problem with excessive disinfectant by-products. These disinfectant by-products result from the treatment of raw water containing low concentrations of bromide and naturally occurring organic compounds. Because of this potential problem, the relation of bromide concentrations to aquifer tapped, well location and depth, and chemical characteristics of water in the Floridan aquifer system underlying Duval County were studied to determine if these relations could be applied to delineate water with low-bromide concentrations for future supplies. In 1992, water samples from 106 wells that tap the Floridan aquifer system were analyzed for bromide and major dissolved constituents. A comparison of bromide concentrations from the 1992 sampling with data from earlier studies (1979-80) indicates that higher bromide concentrations were detected during the earlier studies. The difference between the old and new data is probably because of a change in analytical methodology in the analysis of samples. Bromide concentrations exceeded the detection limit (0.10 milligrams per liter) in water from 28 of the 106 wells (26 percent) sampled in 1992. The maximum concentration was 0.56 milligrams per liter. There were no relations between bromide and major dissolved constituents, well depth, or aquifer tapped that would be useful for determining bromide concentrations. Areal patterns of bromide occurrence are not clearly defined, but areas with relatively high bromide concentrations tend to be located in a triangular area near the community of Sunbeam, Florida, and along the St. Johns River throughout Duval County.

  1. Hydrogeology and Potentiometric Surface of the Dublin and Midville Aquifer Systems in Richmond County, Georgia, January 2007

    USGS Publications Warehouse

    Williams, Lester J.

    2007-01-01

    INTRODUCTION The Dublin and Midville aquifer systems are part of the Cretaceous aquifer system that underlies most of Richmond County, Georgia (Gorday, 1985; Falls and others, 1997). The Cretaceous aquifer system is the second most productive aquifer in Georgia and is a major source of water in the region. About 220 million gallons per day (Mgal/d) of water was withdrawn from the Cretaceous aquifer system during 2000 in Georgia (Fanning, 2003). The Augusta-Richmond County Water System is the largest public water supplier in the county and withdrew 13 Mgal/d of ground water during 2000; withdrawals decreased from 2001 to 2005. The towns of Hephzibah and Blythe withdrew 0.4 and 0.03 Mgal/d, respectively. Industrial ground-water withdrawals are concentrated along the Savannah River and totaled 2.89 Mgal/d. To monitor seasonal and long-term water-level fluctuations and trends in the aquifers, the U.S. Geological Survey (USGS) - in cooperation with Augusta Utilities - maintains a countywide network of about 100 water-level monitoring wells in various aquifers, including a new continuous monitoring site (well 30AA33) and two existing USGS-Georgia Environmental Protection Division network sites (wells 29AA09 and 30AA04). Data compiled during this study were used to better define the hydrogeologic units and to construct an updated potentiometric-surface map for the area, which is used to better understand ground-water movement in the Cretaceous aquifer system. In addition, the potentiometric surface and related water-level data can be used for water-resource planning and to update ground-water flow models for the region (Clarke and West, 1997; Cherry, 2006).

  2. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge. PMID:26774392

  3. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge.

  4. Hydrology of the Tertiary-Cretaceous aquifer system in the vicinity of Fort Rucker Aviation Center, Alabama

    USGS Publications Warehouse

    Scott, J.C.; Law, L.R.; Cobb, Riley

    1984-01-01

    Fort Rucker Aviation Center, built in 1941-42, uses ground water for its water supply. The demand for water began to exceed the capacity of the well field in 1976. The Tertiary-Cretaceous aquifer system in the Fort Rucker area consists of an upper and lower aquifer. The upper aquifer consists of the basal part of the Tuscahoma Sand, the Nanafalia and Clayton Formations, and the upper part of the Providence Sand. The lower aquifer consists of the lower part of the Providence Sand and the Ripley Formation. Most large capacity (greater than 100 gal/min (gallons per minute)) wells in the Fort Rucker area are developed in one of these aquifers, and produce 500 gal/min or more. An aquifer test made at Fort Rucker during the study indicates that the transmissivity of the upper aquifer is about 7,000 ft sq/d (feet squared per day). This test and a potentiometric map of the area indicate that wells spaced too closely together is a major problem at pumping centers in the study area. (USGS)

  5. Chemical characteristics of water in the surficial aquifer system, Dade County, Florida

    USGS Publications Warehouse

    Sonntag, W.H.

    1987-01-01

    Geohydrologic test drilling was conducted throughout Dade County to describe the chemical characteristics of water from geohydrologic units in the surficial aquifer system. Water quality analysis of samples collected from the test wells completed in central Dade County indicates that the Biscayne aquifer (unit A), the upper clastic unit of the Tamiami Formation (unit B), and parts of a limestone, sandstone, and sand unit of the Tamiami Formation (unit C) have been effectively flushed of residual seawater, and contain primarily calcium bicarbonate groundwater. The lower parts of unit C and the lower clastic unit of the Tamiami Formation (unit D) primarily contain calcium-sodium bicarbonate or sodium bicarbonate type water. An analysis of variance test indicates that water in units A and B is not significantly (0.05 probability level) different in composition. Mean concentrations of dissolved solids, sodium, and chloride are significantly different between units A and C, whereas mean concentrations of dissolved solids, calcium, sodium, and chloride are significantly different between units A and D. Groundwater in the surficial aquifer system in northwestern Dade County is more mineralized than groundwater that occurs elsewhere in the county (except in coastal areas affected by saltwater). An analysis of variance test indicates that mean concentrations of dissolved solids, sodium, and chloride at sites in northwestern Dade County, developed in units A and C, are significantly different from the mean concentrations of these constituents at sites throughout the rest of the county. Water in this part of the surficial aquifer system is similar to highly mineralized water found in western Broward County. However, in northwestern Dade County, the groundwater has been diluted to a greater extent by less mineralized recharge water. Overall, groundwater in the four major geohydrologic units of the surficial aquifer system of Dade County is suitable for most uses. Maximum

  6. Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system

    USGS Publications Warehouse

    Stewart, M.; Langevin, C.

    1999-01-01

    A numerical ground water flow model was created in 1978 and revised in 1981 to predict the drawdown effects of a proposed municipal wellfield permitted to withdraw 30 million gallons per day (mgd; 1.1 x 105 m3/day) of water from the semiconfined Floridan Aquifer system. The predictions are based on the assumption that water levels in the semiconfined Floridan Aquifer reach a long-term, steady-state condition within a few days of initiation of pumping. Using this assumption, a 75 day simulation without water table recharge, pumping at the maximum permitted rates, was considered to represent a worst-case condition and the greatest drawdowns that could be experienced during wellfield operation. This method of predicting wellfield effects was accepted by the permitting agency. For this post audit, observed drawdowns were derived by taking the difference between pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and observed drawdowns suggests that actual drawdown over a 12 year period exceeds predicted drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions suggests that the values used for transmissivity, storativity, specific yield, and leakance are reasonable at the wellfield scale. Simulation using actual 1980-1992 pumping rates improves the agreement between predicted and observed drawdowns. The principal source of error is the assumption that water levels in a semiconfined aquifer achieve a steady-state condition after a few days or weeks of pumping. Simulations using a version of the 1981 model modified to include recharge and evapotranspiration suggest that it can take hundreds of days or several years for water levels in the linked Surficial and Floridan Aquifers to reach an apparent steady-state condition, and that slow declines in levels continue for years after the initiation of pumping. While the 1981 'impact' model can be used for reasonably predicting short-term, wellfield

  7. California environmental resources evaluation system in the NBS partnership

    SciTech Connect

    Greenwood, G.B.

    1995-12-31

    The California Resources Agency launched the California Environmental Resources Evaluation System (CERES) in July, 1994 to provide information on the state`s ecological systems and conservation activities to citizens throughout California Operating off the Internet and using Mosaic software, CERES allows the public to search and locate information at different sites, including public to search and locate information at different sites, including public agencies, universities and local watershed groups. The project will coordinate the compilation of seamless datasets available on a distributed network of servers from state, federal and local sources to support resource management and conservation planning. The designation of CERES as a major initiative by the Resources Agency, in collaboration with the National Biological Survey and other state and federal agencies, reflects a new approach to biological conservation that recognizes multiple sources of authority for conservation that recognizes multiple sources of authority for conservation planning - from the local to the federal - as well as the central role of place in organizing citizens` perceptions of ecological systems. By facilitating the access of all stakeholders to information on the state`s ecological systems and conservation activities, CERES will promote a more profound public discussion and a more appropriate articulation of the relationship between social and ecological systems in the state.

  8. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    NASA Astrophysics Data System (ADS)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    Like many other coastal areas, Göksu Delta (Mersin-Silifke, Southern Turkey) is a preferred place for human settlement especially due to its productive farmlands and water resources. The water dependent ecosystem in Göksu delta hosts about 332 different plant species and 328 different bird species besides serving for human use. Göksu Delta has been declared as Special Environmental Protection Zone, Wildlife Protection Area, and RAMSAR Convention for Wetlands of International Importance area. Unfortunately, rising population, agricultural and industrial activities cause degradation of water resources both by means of quality and quantity. This problem also exists for other wetlands around the world. It is necessary to prepare water management plans by taking global warming issues into account to protect water resources for next generations. To achieve this, the most efficient tool is to come up with groundwater management strategies by constructing groundwater flow models. By this aim, groundwater modeling studies were carried out for Göksu Delta coastal aquifer system. As a first and most important step in all groundwater modeling studies, geological and hydrogeological settings of the study area have been investigated. Göksu Delta, like many other deltaic environments, has a complex structure because it was formed with the sediments transported by Göksu River throughout the Quaternary period and shaped throughout the transgression-regression periods. Both due to this complex structure and the lack of observation wells penetrating deep enough to give an idea of the total thickness of the delta, it was impossible to reveal out the hydrogeological setting in a correct manner. Therefore, six wells were drilled to construct the conceptual hydrogeological model of Göksu Delta coastal aquifer system. On the basis of drilling studies and slug tests that were conducted along Göksu Delta, hydrostratigraphic units of the delta system have been obtained. According to

  9. Description of data files compiled for the Central Midwest Regional Aquifer-System Analysis

    USGS Publications Warehouse

    Helgesen, John O.; Hansen, Cristi V.

    1989-01-01

    Several types of geologic and hydrologic data were collected and compiled as part of the Central Midwest Regional Aquifer-System Analysis. The study described the hydrology of Cambrian-age through Cretaceous-age rocks in all of Kansas and Nebraska and parts of eight other states. Information from both water wells and petroleum wells was obtained from numerous State, Federal, and private sources. The completeness, quality, and distribution of the data varies considerably. Most data files contain data selected to represent the regional scope of the study. The log data file contains about 850 lithologic logs and about 750 geophysical logs. The hydraulic-head data file contains about 1 ,400 measured water levels and about 2,600 values of equivalent freshwater head derived from drill-stem-test analyses. The hydrochemical data file contains about 2,900 water quality analyses. The aquifer-property data file contains about 1,050 values. In addition to site-specific data, areal information in the form of model-data arrays is available for initial hydraulic head, transmissivity, and vertical leakance. These data describe the major geohydrologic units studied in terms of a three-dimensional grid, 28 rows x 33 columns x 5 layers. Parts of the hydraulic-head, hydrochemical, and aquifer-property data files are proprietary. The fluid-withdrawal data file was developed for study use only. Most other data described herein are available on magnetic tape from the U.S. Geological Survey in Lawrence, Kansas. (USGS)

  10. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  11. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  12. Comparing Point Count System and physically-based approaches to map aquifer vulnerability

    NASA Astrophysics Data System (ADS)

    Lagomarsino, D.; Martina, M. L. V.; Todini, E.

    2009-04-01

    Pollution vulnerability maps of aquifers are an important instrument for land and water management. These maps are generally based on simplified Point Count System Models (PCSM), such as DRASTIC or SINTACS, without the use of physically based groundwater models, which may provide more accurate results. The present research aims at finding a trade-off between the accuracy provided by a physically-based model, which inevitably involves higher computational complexity and data requirements, and the coarser, albeit simpler and easy to implement, approach provided by an indicator based model such as one of the most important PCSM, the DRASTIC model (Aller et al., 1987). The alluvial aquifer of the conoid of the Reno River, extending from pedemountain hills of the Apennines chain towards Po plain, is one of the main sources of drinking water for the city of Bologna. The parameters considered by DRASTIC (Depth of water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity) represent the main hydrogeological and environmental parameters that influence the pollution transport from the surface towards the groundwater. The real flow of the Reno aquifer, was then simulated by means of a finite element model (FEFLOW) that takes into account the physical processes of water movement and the associated transport of contaminant in the environment. The results obtained by the model have been compared with the DRASTIC vulnerability map. A preliminary analysis of the vulnerability map, based on chemical analyses of water, reveals that the concentration of Nitrates is actually higher in those zones where higher vulnerability values were found.

  13. Assessment of nitrate-N contamination in the Chunnakam aquifer system, Jaffna Peninsula, Sri Lanka.

    PubMed

    Vithanage, Meththika; Mikunthan, Thushyanthi; Pathmarajah, Selverajah; Arasalingam, Sutharsiny; Manthrithilake, Herath

    2014-01-01

    Jaffna peninsula in Sri Lanka is an area of intensive agriculture using extensive organic and inorganic nitrogenous compounds and hence, this study was focused on assessing vulnerability of karstic aquifer system with specific focus on nitrate contamination, and compare loads of nitrate from agriculture. The total number of the wells sampled in the Chunnakam aquifer is 44. The coverage of wells with measurements of nitrate and nitrite concentrations in the database covering the study period from Januray, 2011 to August, 2011. The intrinsic vulnerability of the area is estimated by the DRASTIC model and the modified DRASTIC method was used to determine the nitrate-specific vulnerability of the aquifers. Average concentrations of nitrate-N and nitrite-N during the study period were 4.869 and 0.014 mg/L respectively. The average number of wells exceeding permissible level of NO3-N is approximately 6-12, which means that about 14-28% out of the 44 wells. Modified DRASTIC (DI) index value computed as explained above increased from DI = 177 to a range of 182 to 197. In spite of the increase, the Modified DI values show that the aquifer vulnerability specific to nitrate contamination remains in "high" category. Although nitrogen loading at the domestic sources and irrigation is of the same order of magnitude, the loading from fertilizer input is much larger which is about 15 times higher. This finding suggests that the fertilizer input in agricultural areas constitute a significant contribution to the nitrogen content in the groundwater and soils in agricultural areas of Jaffna.

  14. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  15. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  16. Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    SciTech Connect

    Sprinkle, C.L.

    1989-01-01

    The chemical quality of the groundwater in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. Dissolved solids concentrations in water from the Upper Floridan aquifer generally range from < 25 mg/L near outcrops to > 25,000 mg/L along the coasts. The dominant cations in the groundwater are Ca(2+), Mg(2+), and Na(+); the dominant anions are HCO3({minus}), Cl({minus}), and SO4(2{minus}). The concentration of Ca(2+) is controlled primarily by calcite saturation. Concentrations of Mg(2+), Na(+), and Cl({minus}) are highest where mixing of freshwater and saltwater occurs. Concentrations of HCO3({minus}) reflect the control of calcite solubility. The concentration of SO4(2{minus}) is highest where gypsiferous rock units are present in the aquifer system. The major geochemical processes that occur in the Upper Floridan aquifer, based on water quality maps and computations using a geochemical model are: (1) dissolution of aquifer minerals toward equilibrium; (2) mixing of groundwater with recharge, leakage, or seawater; (3) sulfate reduction; and (4) cation exchange between water and aquifer minerals.

  17. Delineation of Holocene-Pleistocene aquifer system in parts of Middle Ganga Plain, Bihar, Eastern India through DC resistivity survey

    NASA Astrophysics Data System (ADS)

    Ganguli, Shuva Shankha; Singh, Shashikant

    2014-07-01

    The study area forms a part of the Middle Ganga Plain (MGP) and experiences intensive groundwater draft due to domestic, irrigation and industrial purposes. Geoelectrical surveys were carried out in a geomorphic unit of MGP called South Ganga Plain, along the north-south traverse covering a total 50 km stretch. Interpreted results of the total of 17 vertical electrical soundings, carried out, provided information on aquifer and aquitard geometry and sediment nature in different aquifer systems. Bedrock topography is also demarcated along the north-south transect. The estimated dip of massive bedrock is less than 0.5° and dips toward north. The survey results show that a two-tier aquifer system exists in Newer alluvium parts of the study area and it is replaced by a single aquifer system at Older alluvium that occurs under thick clay/sandy clay bed in the southern part. An exponential decay of the aquifer potential is observed from north to south. Paleo channel Sone River is traced and it forms a potential aquifer.

  18. Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Lane, Jr., John W.; Singha, Kamini; Haeni, F. Peter

    2002-01-01

    An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing. The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.

  19. Descriptions of anisotropy and heterogeneity and their effect on ground-water flow and areas of contribution to public supply wells in a karst carbonate aquifer system

    USGS Publications Warehouse

    Knochenmus, Lari A.; Robinson, James L.

    1996-01-01

    MODFLOW and MODPATH numerical models were used to generate areas of contribution to public supply wells for simulated hypothetical anisotropy and heterogeneous carbonate aquifer systems. The simulations incorporated, to varying degrees, the anisotropy and heterogeneity observed in a karst carbonate aquifer system. These include: isotropic and homogeneous single-layer system, doubly-porous single-layer system, and interconnected vertically and horizontally heterogeneous system. The study indicated that the distribution and nature of aquifer anisotropy and heterogeneity will affect the simulated size, shape, and orientation of areas of contribution in karst carbonate aquifer systems.

  20. 78 FR 77447 - California Wind Energy Association, First Solar, Inc. v. California Independent System Operator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Wind Energy Association, First Solar, Inc. v. California... Practice and Procedure, 18 CFR 385.206 (2013), California Wind Energy Association and First Solar,...

  1. California's Accountability System and the API. Expert Report. Submitted for: Eliezer Williams vs. State of California.

    ERIC Educational Resources Information Center

    Russell, Michael

    This paper was presented as expert testimony in the Williams vs. State of California class action lawsuit. That case, filed on behalf of California public schoolchildren, charged the State with denying thousands of students the basic tools for a sound education. This paper addresses whether California's current output-based accountability system…

  2. Computer simulation of the steady-state flow system of the Tertiary limestone (Floridan) aquifer system in east-central Florida

    USGS Publications Warehouse

    Tibbals, C.H.

    1981-01-01

    The predevelopment steady-state ground-water flow system for 13 ,700 square miles of the Tertiary limestone aquifer system (known as the Florida aquifer in Florida) in east-central Florida is simulated by means of a digital computer model. The model results indicate that about 1,900 cubic feet per second recharges the aquifer as downward leakage from the surficial aquifer. The average recharge rate where recharge actually occurs (approximately 6,550 square miles) is about 4 inches per year. The maximum recharge rate is about 14 inches per year. An additional 21 cubic feet per second is recharged to the modeled area of the aquifer by means of lateral boundary inflow along the northeast boundary. The Floridan aquifer system, as simulated, discharges 1,300 cubic feet per second as springflow, 540 cubic feet per second as diffuse upward leakage to the surficial aquifer in an area of approximately 7,150 square miles and 81 cubic feet per second as lateral boundary outflow to the southwest and to the east. The average transmissivity of the upper unit of the aquifer, as simulated, is about 120,000 square feet per day while that for the lower unit is about 60,000 square feet per day. (USGS)

  3. Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.

    2012-04-01

    In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical

  4. Altitude and configuration of the water table in the High Plains aquifer system of Kansas, pre-1950

    USGS Publications Warehouse

    Stullken, Lloyd E.; Pabst, Marilyn E.

    1985-01-01

    The High Plains aquifer in Kansas is a part of a regional system that extends from South Dakota to Texas. The aquifer in Kansas underlies an area of 31,000 square miles in the western and south-central part. The aquifer is a hydraulically connected assemblage of unconsolidated water-bearing deposits of Tertiary and Quaternary age. Maps at a scale of 1:500,000 show the altitude and configuration of the water table in Kansas prior to 1950. The water-table maps depict the water-level surface that was present prior to major development of the High Plains aquifer. Ground water moves from higher altitudes in the western part of the High Plains to lower altitudes in the eastern part at an average slope of 10 feet per mile. The upgradient flexure of water-table contours along some of the valleys indicates that ground water is discharged to the streams in those areas. (USGS)

  5. Simulation of ground-water flow in the Potomac-Raritan-Magothy aquifer system, Pennsauken Township and vicinity, New Jersey

    USGS Publications Warehouse

    Pope, Daryll A.; Watt, Martha K.

    2004-01-01

    The Potomac-Raritan-Magothy aquifer system is one of the primary sources of potable water in the Coastal Plain of New Jersey, particularly in heavily developed areas along the Delaware River. In Pennsauken Township, Camden County, local drinking-water supplies from this aquifer system have been contaminated by hexavalent chromium at concentrations that exceed the New Jersey maximum contaminant level. In particular, ground water at the Puchack well field has been adversely affected to the point where, since 1984, water is no longer withdrawn from this well field for public supply. The area that contains the Puchack well field was added to the National Priorities List in 1998 as a Superfund site. The U.S. Geological Survey (USGS) conducted a reconnaissance study from 1996 to 1998 during which hydrogeologic and water-quality data were collected and a ground-water-flow model was developed to describe the conditions in the aquifer system in the Pennsauken Township area. The current investigation by the USGS, in cooperation with the U.S. Environmental Protection Agency (USEPA), is an extension of the previous study. Results of the current study can be applied to a Remedial Investigation and Feasibility Study conducted at the Puchack well field Superfund site. The USGS study collected additional data on the hydrogeology and water-quality in the area. These data were incorporated into a refined model of the ground-water-flow system in the Potomac-Raritan-Magothy aquifer system. A finite-difference model was developed to simulate ground-water flow and the advective transport of chromium-contaminated ground water in the aquifers of the Potomac-Raritan-Magothy aquifer system in the Pennsauken Township area. An 11-layer model was used to represent the complex hydrogeologic framework. The model was calibrated using steady-state water-level data from March 1998, April 1998, and April 2001. Water-level recovery during the shutdown of Puchack 1 during March to April 1998 was

  6. Geochemical Characteristics of Aquifer system in Taichung Area, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Fen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    For understanding the relationship between water bodies and host rocks and getting more information for groundwater in Taichung area, Central Taiwan, we systematically analyzed the stable isotopes (hydrogen and oxygen), helium isotopes and radon concentrations of dissolved gases from 54 groundwater, 39 river and 4 rain samples collected from Taichung Basin in wet and dry seasons of the year 2015. In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples, it appears that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution of precipitation by seasons using the mass balance equation. Results show that the precipitation in the rainy season is the major source of groundwater. The helium isotopic ratio in dissolved gases of most groundwater samples are close to 1 RA (RA = 3He/4He ratio of air), except the sample from Wu-Feng well that exhibits 0.3 RA. This sample also has an older C-14 age (˜27000 yrs.) than others (<200 yrs.), implying that the dissolved helium is likely affected by radiogenic 4He of surrounding rocks. The average concentration of radon for groundwater in the northern section of Taichung Basin is 20.3 Bq/L, which is higher than that of the southern section (14.5 Bq/L). Variations of radon concentrations in the two sections may be related to the different drainage systems (Paleo-Dajia River vs. Wu River), in which sediments from Paleo-Dajia River may contain higher uranium concentrations. On the other hand, water in rivers usually contains undetectable radon (<0.37 Bq/L) because it rapidly escapes to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites

  7. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  9. Central solar heating plants with seasonal storage. Evaluation of systems concepts based on heat storage in aquifers

    SciTech Connect

    Chant, V.G.; Breger, D.S.

    1984-10-01

    The work undertaken by the aquifer seasonal thermal energy storage team from the USA and Canada is documented. The analytic effort was divided between heat pump systems and systems without heat pumps. The aquifer-based system configurations that have been analyzed are defined, and the approach and methodology employed in this analysis are outlined. Principal results are presented in terms of optimum designs for reference cases, and sensitivity results around the reference cases for selected variables. Characteristics of system designs are given for a wide range of key design parameters. Finally, a detailed list of system parameter values and more detailed results of the analysis are presented. (LEW)

  10. Recharge to the surficial aquifer system in Lee and Hendry counties, Florida

    USGS Publications Warehouse

    Krulikas, R.K.; Giese, G.L.

    1995-01-01

    Protection of ground-water recharge areas against contamination is of great interest in Florida, a State whose population depends heavily on ground water and that is experiencing rapid growth. The Florida Legislature is considering implementation of a tax incentive program to owners of high-rate recharge lands that remain undeveloped. High-rate recharge was arbitrarily set at 10 or more inches per year. The U.S. Geological Survey, in cooperation with the South Florida Water Management District, conducted a study to investigate the efficacy of several methods for estimating recharge to the surficial aquifer system in southwestern Florida and to map recharge at a scale of 1:100,000. Four maps were constructed at a scale of 1:100,000 for Lee and Hendry Counties, depicting the configuration of the water table of the surficial aquifer system, direction of ground-water flow, general soil characteristics, and recharge rates. Point recharge rates calculated for 25 sites in Lee County from comparisons of chloride concentrations in precipitation and in water from the surficial aquifer system ranged from 0.6 to 9.0 inches per year. Local recharge rates estimated by increases in flow along theoretical flow tubes in the surficial aquifer system were 8.0 inches per year in a part of Lee County and 8.2 inches per year in a part of Hendry County. Information on oxygen isotopes in precipitation and water from the surficial aquifer system was used to verify that the source of chlorides in the aquifer system was from precipitation rather than upward leakage of saline water. Soil maps and general topographic and hydrologic considerations were used with calculated point and local recharge rates to regionalize rates throughout Lee and Hendry Counties. The areas of greatest recharge were found in soils of flatwoods and sloughs, which were assigned estimated recharge rates of 0 to 10 inches per year. Soils of swamps and sloughs were assigned values of 0 to 3.0 inches per year; soils of

  11. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  12. Geostatistical description of lithofacies distribution in the aquifer system of Cremona, Italy.

    NASA Astrophysics Data System (ADS)

    Guadagnini, L.; Riva, M.; Salmaso, M.; Saraceni, F.; Straface, S.; Guadagnini, A.

    2009-04-01

    We develop two alternative conceptual models to describe the heterogeneous spatial distribution of geomaterials within the groundwater system in the proximity of the city of Cremona, Italy. The key hydrogeologic feature of the region is the occurrence of the Springs Belt which develops across the entire Lombardia region and provides a major source of fresh water for agricultural needs. During recent years the natural springs of the Cremona aquifer have been increasingly threatened by over-abstraction and contamination by agricultural fertilizers. The area investigated includes the main natural springs in the region, and is located between the Adda and the Serio rivers, covering a surface of approximately 785 km2. The groundwater system is constituted by two main productive aquifers, which are separated by a locally discontinuous aquitard. The vertical variability of geomaterials distribution inferred from available well logs suggests that the system is relatively heterogeneous on the given observation scale. Lithofacies distribution within each identified aquifer is estimated upon considering two alternative conceptual models: (a) a composite medium scheme, and (b) a multiple-continua approach. In the former scenario, the system is conceptualized as composed by disjoint blocks of different materials, the boundaries of which can be uncertain. The latter approach assumes that the porous medium is composed by a set of overlapping continua, whose relative fraction at a given location can be uncertain. We start by classifying available sedimentological information and group the various identified lithotypes into five separate clusters. An extension of the indicator-based approach of Guadagnini et al. [2004] is then developed in order to provide a geostatistical chracterization of lithotypes distribution when the system is described as a composite medium. A multi-continua description is achieved by means of multiple indicator Kriging techniques. With the aid of formal

  13. Contamination by Arsenate in Oxidizing Groundwater, Southern Gulf Coast Aquifer System, Texas

    NASA Astrophysics Data System (ADS)

    Gates, J. B.; Nicot, J.; Reedy, R. C.; Scanlon, B. R.

    2009-12-01

    Groundwater arsenic concentrations exceed the U.S. EPA maximum contaminant level for drinking water (10 μg/L) in about one-third of wells in the southern Gulf Coast Aquifer System (GCAS) in Texas, representing a potential public health hazard and an environmental compliance challenge to numerous small public water supply systems. The aim of this study is to better understand the hydrogeochemical mechanisms underpinning the widespread distribution of elevated groundwater arsenic concentrations in the region. Here we focus upon arsenic contamination in unconfined portions of the aquifer system. The investigation is based upon chemical analyses of a field transect of 27 groundwater samples collected from across three units of the GCAS; stratified water quality sampling from one additional well; and relevant water chemistry data from the Texas Water Development Board groundwater database (more than 500 samples). Chemical results from the field study showed that carbonate weathering and active recharge in the unconfined zone result in circum-neutral pH and oxidizing redox conditions, which are typically amenable to arsenic immobilization by adsorption of As(V) onto mineral oxides and clays. However, arsenic concentrations were found up to 129 μg/L (median 12 μg/L), and As(V) represented nearly 100% of total arsenic. Concentrations generally decreased with increasing distance from the Catahoula Formation (which contains abundant volcanic ash presumed to be the original arsenic source), through the overlying Jasper, Evangeline and Chicot Aquifers. Statistically significant pairwise correlations with arsenic were found for vanadium, silica and potassium, all of which were released during weathering of volcanic sediments and their degradation products. Silica that was co-released with arsenic may compete for sorption sites and reduce the capacity for arsenic adsorption. An important role for variable arsenic source availability was suggested by regional spatial

  14. Different spatial discretization methods of fault systems on heat transport processes in hard rock aquifers

    NASA Astrophysics Data System (ADS)

    Kruppa, Lisa; König, Christoph M.; Becker, Martin; Seidel, Torsten

    2016-04-01

    Most hard rock aquifers, which are important for geothermal use, contain fractures of different type and scale. These fault systems are of major significance for heat flow in the groundwater. The hydrogeological characterization of fault systems must therefore be part of any site investigation in hard rock aquifers and hydraulically important fault systems need to be appropriately represented in associated numerical models. This contribution discusses different spatial discretization methods of fault systems in three-dimensional groundwater models and their impact on the simulated groundwater flow field as well as density and viscosity dependent heat transport. The analysis includes a comparison of the convergence behavior and numerical stability of the different discretization methods. To ensure defendable results, the utilized numerical model SPRING was first verified against data from the Hydrocoin Level 1 Case 2 project. After verification, the software was used to evaluate the impact of different discretization strategies on steady-state and transient groundwater flow and transport model results. The results show a significant influence of the spatial discretization strategy on predicted flow rates and subsequent mass fluxes as well as energy balances.

  15. Assessing groundwater availability in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.

    2011-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability throughout the United States to gain a better understanding of the status of the Nation's groundwater resources and how changes in land use, water use, and climate may affect those resources. The goal of this National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for the Nation's principal aquifer systems to help characterize how much water is currently available, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). The concept of groundwater availability is more than just how much water can be pumped from any given aquifer. Groundwater availability is a function of many factors, including the quantity and quality of water and the laws, regulations, economics, and environmental factors that control its use. The primary objective of the North Atlantic Coastal Plain groundwater-availability study is to identify spatial and temporal changes in the overall water budget by more fully determining the natural and human processes that control how water enters, moves through, and leaves the groundwater system. Development of tools such as numerical models can help hydrologists gain an understanding of this groundwater system, allowing forecasts to be made about the response of this system to natural and human stresses, and water quality and ecosystem health to be analyzed, throughout the region.

  16. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China.

    PubMed

    Jiao, Jiu Jimmy; Wang, Ya; Cherry, John A; Wang, Xusheng; Zhi, Bingfa; Du, Haiyan; Wen, Dongguang

    2010-10-01

    High-nitrogen loadings of rivers and aquifers systems are a major concern because of potential effects on human health and water quality impacts such as eutrophication of lakes and coastal zones. This nitrogen enrichment is commonly attributed to anthropogenic sources such as sewage and agricultural and industrial wastes. The aims of this study were to delineate spatial distribution of groundwater ammonium in the coastal aquifer system in Pearl River Delta (PRD), China and to identify the origin of the abnormally high ammonium. A total of 40 boreholes were drilled to collect core samples of the aquitard and groundwater samples in the basal aquifer. The core samples were used for extraction of pore water for centrifugation and bulk chemical analyses in laboratory. Unlike previous studies which focused mainly on the aquifer, this study treated the aquifer-aquitard system as a hydrogeochemical continuum. The results show that the aquifer-aquitard system contains an exceptionally large total ammonium mass. Ammonium occurred at concentrations up to 390 mg/L in the basal sand Pleistocene aquifer 20-50 m deep, the largest concentration reported for groundwater globally. This ammonium was natural, areally extensive (1600 km(2)) and originated in the overlying Holocene-Pleistocene aquitard and entered the aquifer by groundwater transport and diffusion. Total ammonium in the aquifer (190 × 10(6) kg) was exceeded by total ammonium in the aquitard (8600 × 10(6) kg) by a factor of 45. Much organic nitrogen remained in the aquitard available for conversion to ammonium. This natural ammonium in the aquifer was slowly transported into the PRD river channels and the estuary of the South China Sea. The rate of this contribution will likely be greatly increased by sand dredging in the river channels and estuary. Although the ammonium in PRD groundwater occurred in the largest concentrations and mass reported globally, the literature shows no reports of other delta aquitards having

  17. Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia

    USGS Publications Warehouse

    Harlow,, George E.; Orndorff, Randall C.; Nelms, David L.; Weary, David J.; Moberg, Roger M.

    2005-01-01

    The carbonate aquifer system of the northern Shenandoah Valley provides an important water supply to local communities, including Frederick County, Va., which depends on ground water as a source of water supply. The county and surrounding area are undergoing increased urbanization, and increased demands on the carbonate aquifer system are expected. A study was conducted between October 2000 and March 2004 by the U.S. Geological Survey (USGS), in cooperation with the County of Frederick, Va., to describe the hydrogeology and ground-water availability in the carbonate aquifer system underlying the county. The study area encompasses about 25 percent (105 square miles) of the county that is underlain by carbonate bedrock. The carbonate aquifer system of Frederick County is in the Shenandoah Valley region of the Valley and Ridge Physiographic Province. Approximately 10,000 feet of folded and fractured Middle Cambrian to Upper Ordovician sedimentary rocks are exposed and are overlain by Pleistocene (?) and Holocene surficial deposits. All geologic units in the study area are considered to be aquifers. The geologic units are generally unconfined, fractured-rock aquifers that are recharged by precipitation and discharge locally to streams and springs, and by evapotranspiration. Stream density in the carbonate study area is less than in the remainder of the county, which is underlain by siliciclastic rock units. Most streams flow normal to strike (from the northwest towards the southeast) across the study area. These streams are characterized by shallow incisement and are usually limited to a single stream channel. In the southern third of the study area, streams flow parallel to strike (from the northeast towards the southwest) towards the deeply intrenched Cedar Creek. Springs are commonly located at the start of flows for all streams in the carbonate study area, and spring discharges are often a large portion of the streamflow (especially during drought conditions). The

  18. Estimation of hydraulic conductivity of a riverbed and aquifer system on the Susquehanna River in Broome County, New York

    USGS Publications Warehouse

    Yager, Richard M.

    1993-01-01

    A three-dimensional finite-difference model of groundwater flow was used to estimate the hydraulic conductivity of riverbed and aquifer material in a 1-square-mile valley-fill aquifer system near a large river in which induced infiltration due to pumping cannot be measured directly. The aquifer consists of a 30- to 70-foot thickness of sand and gravel containing discontinuous layers of compact and silty sand and gravel. Horizontal hydraulic conductivity of the aquifer material, estimated through trial-and-error calibration of simulated water levels to drawdowns measured during an aquifer test, ranged from 500 to 10,000 feet per day; anisotropy (ratio of horizontal to vertical hydraulic conductivity) ranged from 125:1 to 250:1. The vertical hydraulic conductivity of the riverbed was estimated to be 0.1 to 0.5 foot per day, whereas permeameter tests on samples of silty sand and gravel layers from the riverbed yielded vertical hydraulic conductivity of 10 -3 foot per day. A sensitivity analysis indicated that a narrow range of anisotropy values gave the smallest residual error in simulated drawdowns. Residual error increased sharply when the maximum hydraulic conductivity value for the aquifer was lowered to less than 5,000 feet per day. Residual error also was large for large values of vertical hydraulic conductivity of the riverbed, but decreased to a constant amount for values less than 0.1 foot per day. Residual error was relatively insensitive to changes in the storage coefficient and specific yield. A nonlinear regression method that approximated the sensitivity matrix with a perturbation technique was applied to refine the estimates of these parameters and compute standard error of the estimates. The nonlinear regression indicated that the model was sensitive to hydraulic conductivity of the aquifer and anisotropy of the upper part of the aquifer but not to anisotropy of the lower part, and that vertical hydraulic conductivity of the riverbed was less than 0

  19. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  20. GRACE-Based Analysis of Total Water Storage Trends and Groundwater Fluctuations in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer in Northwest Africa

    NASA Astrophysics Data System (ADS)

    Lezzaik, K. A.; Milewski, A.

    2013-12-01

    Optimal water management practices and strategies, in arid and semi-arid environments, are often hindered by a lack of quantitative and qualitative understanding of hydrological processes. Moreover, progressive overexploitation of groundwater resources to meet agricultural, industrial, and domestic requirements is drawing concern over the sustainability of such exhaustive abstraction levels, especially in environments where groundwater is a major source of water. NASA's GRACE (gravity recovery and climate change experiment) mission, since March 2002, has advanced the understanding of hydrological events, especially groundwater depletion, through integrated measurements and modeling of terrestrial water mass. In this study, GLDAS variables (rainfall rate, evapotranspiration rate, average soil moisture), and TRMM 3B42.V7A precipitation satellite data, were used in combination with 95 GRACE-generated gravitational anomalies maps, to quantify total water storage change (TWSC) and groundwater storage change (GWSC) from January 2003 to December 2010 (excluding June 2003), in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer System in northwestern Africa. Separately processed and computed GRACE products by JPL (Jet Propulsion Laboratory, NASA), CSR (Center of Space Research, UT Austin), and GFZ (German Research Centre for Geoscience, Potsdam), were used to determine which GRACE dataset(s) best reflect total water storage and ground water changes in northwest Africa. First-order estimates of annual TWSC for NWSAS (JPL: +5.297 BCM; CSR: -5.33 BCM; GFZ: -9.96 BCM) and Tindouf Aquifer System (JPL: +1.217 BCM; CSR: +0.203 BCM; GFZ: +1.019 BCM), were computed using zonal averaging over a span of eight years. Preliminary findings of annual GWSC for NWSAS (JPL: +2.45 BCM; CSR: -2.278 BCM; GFZ: -6.913 BCM) and Tindouf Aquifer System (JPL: +1.108 BCM; CSR: +0.094 BCM; GFZ: +0.910 BCM), were calculating using a water budget approach, parameterized by GLDAS

  1. Description and evaluation of the effects of urban and agricultural development on the surficial aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Miller, W.L.

    1988-01-01

    The surficial aquifer system in Palm Beach County was studied during 1982-85 to determine the effects of increased urban and agricultural development on groundwater levels, flow directions, and quality. The surficial aquifer system and its geologic matrix are divisible into three zones on the bases of relative permeabilities and lithologic characteristics. The two greatest water users in the county, public supply utilities and agricultural irrigators, increased total water withdrawals by 123 and 50%, respectively, during 1970-80. By 1980, 76% of public supply withdrawals were from zones I and II of the surficial aquifer system, whereas groundwater pumpage for irrigation decreased to 9% of the total irrigation water used. Increases in groundwater withdrawals for public supply were greatest in the southeast and central coastal parts of the county and served as an indicator for potential changes of flow directions and water quality in the surficial aquifer system. Residual seawater, emplaced in the aquifer system during the Pleistocene Epoch, is still prevalent in the central and western parts of Palm Beach County where low permeabilities in the geologic matrix have retarded its dilution. Chemical analyses of canal-water and groundwater samples collected in April 1984 were used to evaluate the effects of groundwater/surface water exchange on the quality of water during canal conveyance across the area containing residual seawater. (USGS)

  2. A surrogate model for simulation-optimization of aquifer systems subjected to seawater intrusion

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed S.; Javadi, Akbar A.; Ahangar-Asr, Alireza; Farmani, Raziyeh

    2015-04-01

    This study presents the application of Evolutionary Polynomial Regression (EPR) as a pattern recognition system to predicate the behavior of nonlinear and computationally complex aquifer systems subjected to seawater intrusion (SWI). The developed EPR models are integrated with a multi objective genetic algorithm to examine the efficiency of different arrangements of hydraulic barriers in controlling SWI. The objective of the optimization is to minimize the economic and environmental costs. The developed EPR model is trained and tested for different control scenarios, on sets of data including different pumping patterns as inputs and the corresponding set of numerically calculated outputs. The results are compared with those obtained by direct linking of the numerical simulation model with the optimization tool. The results of the two above-mentioned simulation-optimization (S/O) strategies are in excellent agreement. Three management scenarios are considered involving simultaneous use of abstraction and recharge to control SWI. Minimization of cost of the management process and the salinity levels in the aquifer are the two objective functions used for evaluating the efficiency of each management scenario. By considering the effects of the unsaturated zone, a subsurface pond is used to collect the water and artificially recharge the aquifer. The distinguished feature of EPR emerges in its application as the metamodel in the S/O process where it significantly reduces the overall computational complexity and time. The results also suggest that the application of other sources of water such as treated waste water (TWW) and/or storm water, coupled with continuous abstraction of brackish water and its desalination and use is the most cost effective method to control SWI. A sensitivity analysis is conducted to investigate the effects of different external sources of recharge water and different recovery ratios of desalination plant on the optimal results.

  3. GPS observation of compaction or expansion of the Perth basin aquifer system

    NASA Astrophysics Data System (ADS)

    Jia, M.; English, P.; Commander, P.; Johnston, G.

    2007-12-01

    Solutions from reprocessing over ten years (1997-2006) of continuous GPS (CGPS) data from the Australia region using absolute GPS satellite antenna and receiver antenna phase correction models in the latest IGS05 reference frame (the IGS realisation of the ITRF2005 reference frame) have made estimation of vertical velocity at a resolution of 1mm/yr practicable. The accuracy of CGPS vertical velocity can reliably detect a small vertical land motion caused by groundwater level change in response to prolonged periods of groundwater pumping and recharge. Three CGPS sites, namely HAL1 (Hillary), PERT (Perth) and YAR2 (Yarragadee) located in the Perth Basin in Western Australia, record subsidence of 5mm/yr (in HIL1 and PERT) and uplift of 2mm/yr (in YAR2). These changes are all statistically significant using different short memory and long memory time series noise models. The key source for the changes is correlated with groundwater levels. In the Perth metropolitan area, potentiometric head in the confined aquifers has declined significantly over the past decade in response to high groundwater extraction rates due to drought conditions. The GPS vertical velocity in HIL1 and PERT reflects elastic compaction of the aquifer system. In agricultural areas north of Perth, such as typified by the location of YAR2 CGPS station, groundwater levels have risen by as much as 0.4m/yr during recent decades. This is due to increased recharge through replaced perennial native vegetation by annual pasture and crops. Accordingly, upward GPS vertical velocity in YAR2 may reflect vertical expansion of strata in the semi-confined aquifer system. In addition, the significant annual signal in YAR2 is strongly correlated to the seasonal rainfall change in the region.

  4. Hydrology of the unconfined aquifer system, Mullica River basin, New Jersey, 1991-92

    USGS Publications Warehouse

    Johnson, Melissa L.; Watt, Martha K.

    1996-01-01

    The Kirkwood-Cohansey aquifer system, an unconfined aquifer system, is a major source of water in the Mullica River Basin in southern New Jersey. A water-level map was constructed from water levels measured in 197 wells and at 156 stream sites in the basin. Water levels in six observation wells were evaluated for seasonal fluctuations. The horizontal hydraulic conductivity of the unconfined aquifer ranges from 20 to 130 feet per day. Mean annual discharge at three streamflow-gaging stations in the Mullica River Basin during 1928-91 was 106 cubic feet per second; annual base flow at these three stations during 1928-91 ranged from 34 to 149 cubic feet per second. Mean discharge and base flow at 17 low-flow partial-record sites were determined by means of low-flow-correlation analyses. Mean annual precipitation in the study area, measured at 3 weather stations, was 45 inches during 1927-91. Annual potential evapotranspiration is estimated to be 28 inches. Twenty-five ground- and 14 surface-water-sampling sites were selected for water-quality analysis. The predominant cation in the ground and surface water is sodium; the predominant anion in the surface water is chloride and the predominant anions in the ground water are chloride and sulfate. Total consumptive water use in the study area is estimated to be more than 3,300 million gallons per year: 526 million gallons for public and private domestic water supply, 2,768 million gallons for for irrigation, and 18 million gallons for industry and mining. A water budget calculated for the Mullicat River Basin indicates that ground-water recharge is about 19 inches per year.

  5. Understanding the sources and fate of nitrate in a highly developed aquifer system

    NASA Astrophysics Data System (ADS)

    Murgulet, Dorina; Tick, Geoffrey R.

    2013-12-01

    Understanding the processes affecting the transport and fate of nitrate in coastal aquifers has become of great interest in recent years due to concerns of nutrient loading to coastal waters. Novel dual isotopic methods have shown promise for identifying sources and fate of nitrate in shallow groundwater. However, in relatively deep dynamic aquifer systems, the isotopic signatures may be overprinted by mixing of different end-member waters and biogeochemical processes. In this study, δ15N and δ18O of groundwater nitrate are coupled with other forensic geochemistry methods such as Cl/Br, SO4/Cl, and Cl/NO3 mass ratios and land use analysis in order to constrain the isotope correlations and better understand contaminant sources and biogeochemical processes. Most δ15NNO3 values were within ranges expected for nitrate formed by ammonia nitrification in soil. Furthermore, the persistent presence of nitrate in concentrations above background levels (median 2.3 mg/L) and the relatively low δ15NNO3 and δ18ONO3 (median: 4.5 ± 0.2‰ AIR and 5.2 ± 0.5‰ VSMOW, respectively) indicate no direct evidence of denitrification. However, denitrification was inferred for a few samples whereby more enriched δ15NNO3 and δ18ONO3 values coupled with an increase in SO4/Cl and Cl/NO3 ratios were observed. Finally, mixing trends were identified for a few of the samples as indicated by δ15NO3 and δ18ONO3 mixing ratios and were consistent with the study area's land-use/land-cover distribution. The combination of methods utilized in this study revealed that in some cases mass ratios were better diagnostics in elucidating the impact of denitrification, mixing processes, and source identification within dynamic aquifer systems than the dual-isotope technique.

  6. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  7. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  8. Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida

    USGS Publications Warehouse

    McKenzie, D.J.; Irwin, G.A.

    1984-01-01

    Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

  9. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  10. Hydrogeochemical evolution and potability evaluation of saline contaminated coastal aquifer system of Rajnagar, Odisha, India: A geospatial perspective

    NASA Astrophysics Data System (ADS)

    Das, P. P.; Sahoo, H. K.; Mohapatra, P. P.

    2016-08-01

    The present article reports the results of a comprehensive hydrogeochemical study carried out across the coastal aquifer system of Rajnagar block, Kendrapara district, Odisha, India. The research involved collection of representative groundwater samples during the pre- and post-monsoon seasons with in situ as well as laboratory measurement of various hydrogeochemical variables. Analysis of the subsurface water samples portrays an alkali dominated water type during the pre-monsoon season whereas alkaline earth has a significantly increased influence during the post-monsoon period. However, the aquifer system displays an even distribution of strong and weak acids for both the monsoonal regimes. The hydrogeochemistry is controlled by aquifer lithology with a general occurrence of ion exchange and acid-base reaction processes across the study area. Spatial disposition of major cations indicates freshening of this coastal aquifer system in S-N and SW-NE directions. Potability analysis of the samples is suggestive of widespread unsuitability for domestic, agriculture and industrial uses. The extensive occurrence of salinity hazards, sodium hazards and magnesium hazards across the terrain makes the groundwater unsafe for domestic and agricultural utilization while industrial potability analysis suggests the aquifer system is moderately corrosive but non-incrusting. Post-monsoon however, the subsurface waters display a general decrease in hazardous nature with increased suitability for various uses.

  11. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of

  12. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  13. Conceptual Model of Hydrologic and Thermal Conditions of the Eastbank Aquifer System near Rocky Reach Dam, Douglas County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Cox, Stephen E.; Huffman, Raegan L.; Curran, Christopher A.

    2008-01-01

    The Lower and Combined Aquifers of the Eastbank Aquifer system, located in a river-terrace deposit along the Columbia River near Rocky Reach Dam, Washington, are primarily recharged by the Columbia River and provide water to the Eastbank Hatchery and the regional water system servicing the cities of Wenatchee, East Wenatchee, and parts of unincorporated Chelan and Douglas Counties. In 2006, mean annual pumpage from the aquifers by the hatchery and regional water system was about 43 and 16 cubic feet per second, respectively. Reportedly, temperatures of ground water pumped by the hatchery have been increasing, thereby making water potentially too warm for salmonid fish production. An evaluation of hourly ground-water and river temperatures from January 1991 through August 2007 indicates increasing interannual trends in temperatures in most of the Lower and Combined Aquifers from 1999 through 2006 that correspond to increasing trends in the annual mean and annual maximum river temperatures during the same period of 0.07 and 0.17?C per year, respectively. There were no trends in the annual minimum river temperatures from 1999 through 2006, and there were no trends in the annual minimum, mean, and maximum river temperatures from 1991 through 1998 and from 1991 through 2007. Increases in river temperatures from 1999 through 2006 are within the natural variability of the river temperatures. Most of the Lower and Combined Aquifers reached thermal equilibrium?defined by constant time lags between changes in river temperatures and subsequent changes in ground-water temperatures?during 1991?98. The only exceptions are the Combined Aquifer north of the well field of the regional water system, which had not reached thermal equilibrium by 2006, and the Lower Aquifer west of the well fields of the hatchery and the regional water system, which reached thermal equilibrium prior to 1991. Because most of the Lower and Combined Aquifers were in thermal equilibrium from 1999 through

  14. Sources and Mechanisms of Aquifer Recharge: a Hydrochemical and Isotopic Study in a Complex and Scantily Investigated Hydrogeologic System

    NASA Astrophysics Data System (ADS)

    Damtew, A. D.; Wohnlich, S.

    2013-12-01

    geologic covers. Shallow and deep aquifers in the southern section along the shores of Lakes Abaya and Chamo, the two rift lakes in the study area, show highly variable recharge mechanisms as noted from the diversity of the chemical and isotopic properties of the waters. Flow from the lakes into the shallow and deep aquifer bodies surrounding these lakes is poorly marked by the stable isotope content or by the major ion constituents and the physical properties of the waters. The shallow aquifers are generally recharged from local precipitation percolating via the unsaturated layer after heavy rainfall events as there is a clear change in salinity and dissolved oxygen of the waters measured in a given hydrologic year that consists a wet and dry seasons. The deep aquifers in these section receive structurally controlled recharge originated both from regional and local precipitation. It is seen that the mechanism of aquifer recharge in the area is diverse and complex. The hydrochemical and isotopic methods combined with basin attributes give a better picture to understand the sources and flow mechanisms of water into the different types of aquifer systems in the area.

  15. Natural radionuclides in major aquifer systems of the Paraná sedimentary basin, Brazil.

    PubMed

    Bonotto, Daniel Marcos

    2011-10-01

    This paper describes the natural radioactivity of groundwater occurring in sedimentary (Bauru and Guarani) and fractured rock (Serra Geral) aquifer systems in the Paraná sedimentary basin, South America that is extensively used for drinking purposes, among others. The measurements of gross alpha and gross beta radioactivity as well the activity concentration of the natural dissolved radionuclides ⁴⁰K, ²³⁸U, ²³⁴U, ²²⁶Ra, ²²²Rn, ²¹⁰Po and ²¹⁰Pb were held in 80 tubular wells drilled in 21 municipalities located at São Paulo State and its border with Mato Grosso do Sul State in Brazil. Most of the gross alpha radioactivity data were below 1 mBq/L, whereas values exceeding the gross beta radioactivity detection limit of 30 mBq/L were found. The radioelement solubility in the studied systems varied according to the sequence radon>radium>other radionuclides and the higher porosity of sandstones relatively to basalts and diabases could justify the enhanced presence of dissolved radon in the porous aquifer. The implications of the data obtained in terms of standards established for defining the drinking water quality have also been discussed. The population-weighted average activity concentration for these radionuclides was compared to the guideline value of 0.1 mSv/yr for the total effective dose and discussed in terms of the choice of the dose conversion factors.

  16. Iron in the aquifer system of Suffolk County, New York, 1990-98

    USGS Publications Warehouse

    Brown, Craig J.; Walter, Donald A.; Colabufo, Steven

    1999-01-01

    High concentrations of dissolved iron in ground water contribute to the biofouling of public-supply wells, and the treatment and remediation of biofouling are costly. Water companies on Long Island, N.Y., spend several million dollars annually to recondition, redevelop, and replace supply wells and distribution lines; treat dissolved iron with sequestering agents or by filtration; and respond to iron-related complaints by customers. This report summarizes the results of studies done by the U.S. Geological Survey, in cooperation with the Suffolk County Water Authority, to characterize the geochemistry and microbiology of iron in the aquifer system of Suffolk County. This information should be helpful for the siting and operation of supply wells. Concentrations of dissolved iron in Long Island?s ground water, and the frequency of iron biofouling of wells, are highest in ground-water-discharge zones, particularly near the south shore. Ground water along a deep north-south flowpath of the Magothy aquifer in southwestern Suffolk County becomes anaerobic (oxygen deficient) and Fe(III) reducing at a distance of 8 to 10 kilometers south of the ground-water divide, and this change coincides with the downgradient increase in dissolved iron concentrations. The distribution of organic carbon, and the distribution and local variations in reactivity of Fe(III), in Magothy aquifer sediments have resulted in localized differences in redox microenvironments. For example, Fe(III)-reducing zones are associated with anaerobic conditions, where relatively large amounts of Fe(III) oxyhydroxide grain coatings are present, whereas sulfate-reducing zones are associated with lignite-rich lenses of silt and clay and appear to have developed in response to the depletion of available Fe(III) oxyhydroxides. The sulfate-reducing zones are characterized by relatively low concentrations of dissolved iron (resulting from iron-disulfide precipitation) and may be large enough to warrant water

  17. The Beijing Geothermal System, PR China: Natural state and exploitation modelling study of a low temperature basement aquifer system

    SciTech Connect

    Hochstein, M.P.; Zhongke, Yang

    1988-01-01

    Computer modeling of the Beijing low temperature, basement aquifer system has shown that secular natural convection of meteoric waters down to depths greater than 5 km can produce a temperature field which is similar to that observed in deep wells. Secular convection occurs within a crustal block with the approximate dimensions of 45 km {times} 60 km {times} 10 km; the Beijing system is probably one of the largest secular convecting systems described so far. It is driven entirely by the crustal heatflow which appears to be slightly lower (i.e. 54 mW/m{sup 2}) than the average continental heat flux. Several geophysical implications are described.

  18. Mantle fluids in the San Andreas fault system, California

    USGS Publications Warehouse

    Kennedy, B.M.; Kharaka, Y.K.; Evans, William C.; Ellwood, A.; DePaolo, D.J.; Thordsen, J.; Ambats, G.; Mariner, R.H.

    1997-01-01

    Fluids associated with the San Andreas and companion faults n central and south-central California have high 3He/4He ratios. The lack of correlation between helium isotopes and fluid chemistry or local geology requires that fluids enter the fault system from the mantle. Mantle fluids passing through the ductile lower crust must enter the brittle fault zone at or near lithostatic pressures; estimates of fluid flux based on helium isotopes suggest that they may thus contribute directly to fault-weakening high-fluid pressures at seismogenic depths.

  19. A Weather Analysis and Forecasting System for Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information

  20. Hydrogeology and the distribution of salinity in the Floridan Aquifer system, southwestern Florida

    USGS Publications Warehouse

    Reese, R.S.

    2000-01-01

    In most of the study area, the Floridan aquifer system can be divided into a brackish-water zone, a salinity transition zone, and a saline-water zone. The brackish-water zone contains water with a dissolved-solids concentration of less than 10,000 milligrams per liter. The saline-water zone has a dissolved-solids concentration of at least 35,000 milligrams per liter and a salinity similar to that of seawater. The salinity transition zone that separates these two zones is usually 150 feet or less in thickness. The altitude of the base of the brackish-water zone was mapped primarily using geophysical logs; it ranges from as shallow as 565 feet below sea level along the coast to almost 2,200 feet below sea level inland. This mapping indicated that the boundary represents a salinity interface, the depth of which is controlled by head in the brackish-water zone. Chloride concentrations in the upper part of the brackish-water zone range from 400 to 4,000 milligrams per liter. A large area of relatively low salinity in north-central Collier County and to the northwest, as defined by a 1,200-milligram-per-liter chloride-concentration line, coincides with a high area on the basal contact of the Hawthorn Group. As this contact dips away from this high area to central Hendry and southwestern Collier Counties, chloride concentration increases to 2,000 milligrams per liter or greater. However, the increase in salinity in these areas occurs only in the basal Hawthorn unit or Suwannee Limestone, but not in deeper units. In central Hendry County, the increase occurs only in the basal Hawthorn unit in an area where the unit is well developed and thick. These areas of higher salinity could have resulted from the influx of seawater from southwestern Collier County into zones of higher permeability in the Upper Floridan aquifer during high sea-level stands. The influx may only have occurred in structurally low areas and may have experienced incomplete flushing subsequently by the

  1. Origins of the California System: How the Junior College Movement Came to California.

    ERIC Educational Resources Information Center

    Wattenbarger, James L.; Witt, Allen A.

    1995-01-01

    Describes the debate over how and when the community college movement spread from the Midwest to California. Presents evidence that the University of Chicago's William Rainey Harper was working in 1900 to convince three California colleges to drop their upper division and become junior colleges. Considers the role of David Starr Jordan in the…

  2. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available

  3. A Laboratory Scale Aquifer-Well System for Analyzing Near-well Processes

    NASA Astrophysics Data System (ADS)

    Kalwa, Fritz; Bonilla, José; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    Managed Aquifer Recharge (MAR) is constantly gaining popularity and one very promising technique in this context is infiltration by vertical wells. However, the near-well surrounding of these wells is still object of many open questions, related to - among others - clogging, screen design and the effects of underground heterogeneities. As a tool for a better understanding of these processes, a physical laboratory-scale aquifer-well model was designed. The physical model was assembled in a cylindrical tank with a height of 1.1 m and a diameter of 1 m. Water can be introduced via a small-diameter well screen (inner diameter: 2.54 cm) in the center of the tank and leaves the system via side outlets. These outlets were connected hydraulically to a single outflow system, allowing the adjustment of the same outflow head for all side outlets. Furthermore, a drainage system was attached to the tank's wall to assure circular flow from the well to the wall. The drainage system was chosen after preliminary tests of different drainage materials to determine the best performing setup. Remaining impoundment heights of up to 30 cm were observed in the tank, due to pressure losses at the outflow system. To include the resulting impoundment into a numerical model using Hydrus 2D/3D, a half-empirical formula was derived, plotting impoundment heights against infiltration rates and considering the pressure losses in the outflow system as well as in the drainage layer. Using the predicted impoundment heights for correction, the numerical model allowed satisfying simulation of the flow pattern in the tank for infiltration rates. The study shows how to develop an approach combining numerical and physical modeling as a base for future investigation of near-well processes under well-defined laboratory conditions.

  4. Hydrogeophysical Data Fusion and Geostatistical Approach to Characterize Hydrogeological Structure of the Baton Rouge Aquifer System in Louisiana

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Tsai, F. T.; Hanor, J. S.

    2012-12-01

    The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana is fluvial in origin and is characterized by strongly binary heterogeneity of sandy units and mudstones as pervious and impervious hydrofacies. Two distinct east-west trending geologic faults, the Baton Rouge fault and the Denham Springs-Scotlandville fault, cut across East Baton Rouge Parish. Data from the USGS water wells suggest that the Baton Rouge fault is a low permeable fault that historically separates a sequence of freshwater aquifers north of the fault from brackish aquifers south of the fault. However, the Denham Springs-Scotlandville fault appears to be pervious. In this study we utilize wireline geophysical data and lithologic data to characterize the Baton Rouge aquifer system and delineate flow pathways thought the faults. To avoid non-uniqueness associated with the use of a single geophysical data type particularly with the presence of salinization, we interpret the sand and shale hydrofacies for each well log based on wireline short normal electrical resistivity, single-point resistance, spontaneous-potential and gamma ray. For geological model calibration we use lithologic data from drillers logs representing the actual lithology with depth. Using geophysical data for hydrogeological structure construction and using lithologic data for model calibration, we implement a generalized parameterization indicator scheme. First, we show that this methodology can effectively analyze a binary siliciclastic aquifer by depicting the spatial extent of major water bearing units, their interconnections and preferential flow paths within each unit. Second, mapping of the binary fault stratigraphy assists in the assessment of hydraulic continuity and saltwater intrusion in the siliciclastic aquifer system, which exhibits discontinuous heterogeneity due to fault throw. By juxtaposing sand units from both sides of the fault plane, horizontal flow pathways are identified if sands

  5. Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification

    NASA Astrophysics Data System (ADS)

    Baudron, Paul; Alonso-Sarría, Francisco; García-Aróstegui, José Luís; Cánovas-García, Fulgencio; Martínez-Vicente, David; Moreno-Brotóns, Jesús

    2013-08-01

    Accurate identification of the origin of groundwater samples is not always possible in complex multilayered aquifers. This poses a major difficulty for a reliable interpretation of geochemical results. The problem is especially severe when the information on the tubewells design is hard to obtain. This paper shows a supervised classification method based on the Random Forest (RF) machine learning technique to identify the layer from where groundwater samples were extracted. The classification rules were based on the major ion composition of the samples. We applied this method to the Campo de Cartagena multi-layer aquifer system, in southeastern Spain. A large amount of hydrogeochemical data was available, but only a limited fraction of the sampled tubewells included a reliable determination of the borehole design and, consequently, of the aquifer layer being exploited. Added difficulty was the very similar compositions of water samples extracted from different aquifer layers. Moreover, not all groundwater samples included the same geochemical variables. Despite of the difficulty of such a background, the Random Forest classification reached accuracies over 90%. These results were much better than the Linear Discriminant Analysis (LDA) and Decision Trees (CART) supervised classification methods. From a total of 1549 samples, 805 proceeded from one unique identified aquifer, 409 proceeded from a possible blend of waters from several aquifers and 335 were of unknown origin. Only 468 of the 805 unique-aquifer samples included all the chemical variables needed to calibrate and validate the models. Finally, 107 of the groundwater samples of unknown origin could be classified. Most unclassified samples did not feature a complete dataset. The uncertainty on the identification of training samples was taken in account to enhance the model. Most of the samples that could not be identified had an incomplete dataset.

  6. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  7. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  8. Determination of migration pathways of DNAPL and dissolved phase volatile organic compounds in heterogeneous aquifer systems

    SciTech Connect

    Lamb, B. ); Prucha, R.

    1993-10-01

    Before an effective ground-water extraction system can be designed, it is essential to determine the distribution of chemicals of concern in ground-water and preferential pathways for chemical migration. At the study site, determining the chemical migration pathways and spatial distribution of chemicals are complicated by the presence of halogenated volatile organic compounds (VOCs) and dense nonaqueous phase liquids (DNAPL) coupled with the heterogeneous nature of the aquifer. DNAPL is denser than ground water and therefore sinks due to gravity while the dissolved components tend to be dominated by regional ground-water advective flow. The study area is a former industrial site. The aquifer is a low permeability unit with thin lenses of sandy material. Dissolved phase chemicals preferentially migrate in these sand units. To determine pathways for the migration of chemicals both laterally and horizontally, borehole lithologic data, hydraulic data, and chemical data were synthesized into a computer database and used as input for graphical illustrations using computer aided drafting (CAD). The CAD software was also used to provide the basis for 2-D and 3-D visualization to interpret field data which aided in development of a detailed conceptual site model and in construction of a numerical ground-water flow model for the site.

  9. Sustainable development and management of an aquifer system in western Turkey

    NASA Astrophysics Data System (ADS)

    Sakiyan, Jale; Yazicigil, Hasan

    This study presents the establishment of sustainable development and management policies for the Küçük Menderes River Basin aquifer system in western Turkey. Geological, hydrogeological, and geophysical data are used conjunctively to define various hydrogeological units and their geometry. Distributions of hydraulic-parameter values and recharge are estimated by geostatistical methods and hydrologic simulations, respectively. A finite-difference groundwater flow model is used to represent the unconfined flow in the aquifer system. The model has been calibrated under steady state and transient conditions. The resulting model was used to test seven management scenarios for a planning period of 21 years to determine the so-called safe yield and sustainable yield of the aquifer system and to investigate the potential impacts of four planned surface water reservoirs on groundwater resources in the basin. The results demonstrate that the continuation of the present pumping rates exceeds both the safe yield and the sustainable yield of the aquifer system. Consequently, the growing need for irrigation water should be met by the construction of the planned surface water reservoirs and the implementation of efficient water management policies and plans. Cette étude présente la proposition d'une politique de développement et de gestion durables du système aquifère du bassin du Petit Mendérès dans l'ouest de la Turquie. Des données géologiques, hydrogéologiques et géophysiques ont été utilisées conjointement pour définir les différentes unités hydrogéologiques et leur géométrie. Les distributions des paramètres hydrauliques et de la recharge ont été estimées respectivement par des méthodes géostatistiques et des simulations hydrologiques. Un modèle d'écoulement souterrain aux éléments finis a été utilisé pour représenter l'écoulement non captif dans le système aquifère. Le modèle a été calibré dans des conditions de r

  10. Sustainable development and management of an aquifer system in western Turkey

    NASA Astrophysics Data System (ADS)

    Sakiyan, Jale; Yazicigil, Hasan

    This study presents the establishment of sustainable development and management policies for the Küçük Menderes River Basin aquifer system in western Turkey. Geological, hydrogeological, and geophysical data are used conjunctively to define various hydrogeological units and their geometry. Distributions of hydraulic-parameter values and recharge are estimated by geostatistical methods and hydrologic simulations, respectively. A finite-difference groundwater flow model is used to represent the unconfined flow in the aquifer system. The model has been calibrated under steady state and transient conditions. The resulting model was used to test seven management scenarios for a planning period of 21 years to determine the so-called safe yield and sustainable yield of the aquifer system and to investigate the potential impacts of four planned surface water reservoirs on groundwater resources in the basin. The results demonstrate that the continuation of the present pumping rates exceeds both the safe yield and the sustainable yield of the aquifer system. Consequently, the growing need for irrigation water should be met by the construction of the planned surface water reservoirs and the implementation of efficient water management policies and plans. Cette étude présente la proposition d'une politique de développement et de gestion durables du système aquifère du bassin du Petit Mendérès dans l'ouest de la Turquie. Des données géologiques, hydrogéologiques et géophysiques ont été utilisées conjointement pour définir les différentes unités hydrogéologiques et leur géométrie. Les distributions des paramètres hydrauliques et de la recharge ont été estimées respectivement par des méthodes géostatistiques et des simulations hydrologiques. Un modèle d'écoulement souterrain aux éléments finis a été utilisé pour représenter l'écoulement non captif dans le système aquifère. Le modèle a été calibré dans des conditions de r

  11. Documentation of revisions to the regional aquifer system analysis model of the New Jersey coastal plain

    USGS Publications Warehouse

    Voronin, Lois M.

    2004-01-01

    The model, which simulates flow in the New Jersey Coastal Plain sediments, developed for the U.S. Geological Survey Regional Aquifer System Analysis (RASA) program was revised. The RASA model was revised with (1) a rediscretization of the model parameters with a finer cell size, (2) a spatially variable recharge rate that is based on rates determined by recent studies and, (3) ground-water withdrawal data from 1981 to 1998. The RASA model framework, which subdivided the Coastal Plain sediments into 10 aquifers and 9 confining units, was preserved in the revised model. A transient model that simulates flow conditions from January 1, 1968 to December 31, 1998, was constructed using 21 stress periods. The model was calibrated by attempting to match the simulated results with (1) estimated base flow for five river basins, (2) measured water levels in long-term hydrographs for 28 selected observation wells, and (3) potentiometric surfaces in the model area for 1978, 1983, 1998, 1993, and 1998 conditions. The estimated and simulated base flow in the five river basins compare well. In general, the simulated water levels matched the interpreted potentiometric surfaces and the measured water levels of the hydrographs within 25 feet.

  12. Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.; Kauffman, L.J.; Barringer, T.H.; Stackelberg, P.E.; Ivahnenko, T.; Rajagopalan, S.; Krabbenhoft, D.P.

    2005-01-01

    Concentrations of total mercury (Hg) from 2 ??g/L (the USEPA maximum contaminant level) to 72 ??g/L in water from about 600 domestic wells in residential parts of eight counties in southern New Jersey have been reported by State and county agencies. The wells draw water from the areally extensive (7770 km2) unconfined Kirkwood-Cohansey aquifer system, in which background concentrations of Hg are about 0.01 ??g/L or less. Hg is present in most aquifer materials at concentrations 0.1 ??g/L did not correlate significantly with concentrations of the inorganic constituents. Hgf concentrations near or exceeding 2 ??g/L were found only in water from wells in areas with residential land use, but concentrations were at background levels in most water samples from undeveloped land. The spatial distribution of Hg-contaminated ground water appears to be locally and regionally heterogeneous; no extensive plumes of Hg contamination have yet been identified. ?? 2004 Elsevier B.V. All rights reserved.

  13. Configuration of the base of the Edwards-Trinity aquifer system and hydrogeology of the underlying pre-Cretaceous rocks, west-central Texas

    USGS Publications Warehouse

    Barker, Rene A.; Ardis, Ann F.

    1992-01-01

    The most permeable pre-Cretaceous rocks are in the eastern half of the study area where they compose the Hickory aquifer (in Upper Cambrian rocks), Ellenburger-San Saba aquifer (Upper Cambrian- Lower Ordovician), and Marble Falls aquifer (Lower Pennsylvanian). These aquifers are hydraulically connected to the northeastern fringe of the Edwards-Trinity aquifer system, as their up-turned margins crop out around the flanks of the breached Llano uplift. The Rustler aquifer in rocks of Late Permian age underlies parts of the Trans-Pecos region, where it yields small amounts of greatly mineralized water for industrial and agricultural purposes. The Dockum aquifer in rocks of Late Triassic age directly underlies the Edwards-Trinity aquifer system in western parts of the study area, and locally increases the saturated thickness of the ground-water-flow system by an average of about 200 feet. Despite these notable exceptions, the collective effect of the pre-Cretaceous rocks is that 01 a barrier to ground-water flow, which limits the exchange of water across the base of the Edwards-Trinity aquifer system.

  14. An assessment of recharge possibility to North-Western Sahara Aquifer System (NWSAS) using environmental isotopes

    NASA Astrophysics Data System (ADS)

    Al-Gamal, Samir Anwar

    2011-02-01

    SummaryA comprehensive understanding of the groundwater dynamics of a transboundary aquifer system is highly needed for any successful transboundary cooperation policy. Moreover, an analysis of the NWSAS can be of particular interest for policy makers and researchers. This paper aims to reveals and to assess the renewability of North-Western Sahara Aquifer System (NWSAS) as one of the major transboundary multi-layered aquifer system, in North Africa, shared by Algeria, Tunisia, and Libya and is often referred to as the Système Aquifère du Sahara Septentrional (SASS). The paper is primarily intended for exploring whether it receives a considerable fraction of modern water as recharge or it is at risk of being depleted and excessively pumped, where the main challenge for NWSAS, is that it should be abstracted rationally for equitable use. Environmental isotopes data of δ 18O, δ 2H, 3H, 14C as well as characteristics of d-excess are used to illustrate whether NSWAS is renewable or non-renewable resource. Geochemical, hydrological and statistical evidences supporting the renewability of NWSAS are provided through pairs of cross-plots. The study has clearly indicated that NWSAS is receiving a considerable fraction of modern water as recharge to the aquifer because of the following reasons: Firstly, the moderately depleted delta values of δ 18O and δ 2H of water from Sahara Atlas in Algeria and the Dahar and the Dj. Nefoussa in Tunisia and Libya with δ 18O content (-6.0‰ to -5.0‰) compared with that of palaeowater (-7.0‰ to -9.0‰) indicate an appreciable fraction of modern water recharging NWSAS. This appreciable fraction of modern water should be attributed to originate from the present-day precipitation (-6.5‰). Secondly, the presence of significant amount of 14C > 2% and 3H > 5 TU, frequently found in data should be attributed to a mixing with shallow and modern water, where old water practically contains no 14C. The foregoing facts are in good

  15. Heterogeneities and interconnections in groundwater: Coupled B, and Li isotope variations in a large aquifer system (Eocene sand aquifer, south western France)

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    When dealing with a large aquifer system that requires a better characterization in terms of geochemistry and a multi-isotopic approach for a more rational management, the monitoring of combined B and Li isotopes may supply key information concerning the release of specific minerals into groundwater through the weathering of rocks. Such release has been demonstrated to be responsible for the spatial variability of groundwater geochemistry within an aquifer. Furthermore, the understanding and analysis of such variability can help in recognizing interconnections between groundwater layers. The B- and Li-isotope ratios of groundwater in the large Eocene Sand aquifer system (SW France) were studied and are discussed in the present study. This system extends over the Adour-Garonne district (116,000 km2, one-fifth of the French territory), being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres that comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. Groundwater in the present study displays large ranges of B concentrations (7 to 2550 µg L-1) and δ11B (-17.96‰ to +36.25‰). The scatter of B concentrations and δ11B values reflects the different rock types contributing to the supply of dissolved boron and clay fractionation. Comparing the δ11B and B concentrations shows evidence of mixing between the four sources of B from rock types (carbonates, evaporites and silicates) as well as an input from rainwater. Some points are related to fractionation processes in which

  16. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward L.; Bauer, Glenn R.

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Résumé Le système aquifère littoral du sud d'Oahu (Hawaii, États-Unis) est constitué par des aquifères de terrains volcaniques très perméables, recouverts par des roches volcaniques altérées, et interstratifiés avec des sédiments marins et continentaux de perméabilité aussi bien forte que faible. Les roches volcaniques altérées et les sédiments sont globalement considérés comme une couverture, parce qu'ils s'opposent à l'écoulement de l'eau souterraine provenant des aquifères volcaniques sous-jacents. Les contrôles hydrogéologiques sur le système aquifère régional du sud-ouest d'Oahu ont étéévaluées au moyen d'un modèle d'écoulement et de transport sur une section transversale. Ces contrôles prennent en compte la conductivit

  17. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward L.; Bauer, Glenn R.

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Résumé Le système aquifère littoral du sud d'Oahu (Hawaii, États-Unis) est constitué par des aquifères de terrains volcaniques très perméables, recouverts par des roches volcaniques altérées, et interstratifiés avec des sédiments marins et continentaux de perméabilité aussi bien forte que faible. Les roches volcaniques altérées et les sédiments sont globalement considérés comme une couverture, parce qu'ils s'opposent à l'écoulement de l'eau souterraine provenant des aquifères volcaniques sous-jacents. Les contrôles hydrogéologiques sur le système aquifère régional du sud-ouest d'Oahu ont étéévaluées au moyen d'un modèle d'écoulement et de transport sur une section transversale. Ces contrôles prennent en compte la conductivit

  18. Hydrostratigraphic Framework and Selection and Correlation of Geophysical Log Markers in the Surficial Aquifer System, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Wacker, Michael A.

    2007-01-01

    The surficial aquifer system is the major source of freshwater for public water supply in Palm Beach County, Florida, yet many previous studies of the hydrogeology of this aquifer system have focused only on the eastern one-half to one-third of the county in the more densely populated coastal area (Land and others, 1973; Swayze and others, 1980; Swayze and Miller, 1984; Shine and others, 1989). Population growth in the county has resulted in the westward expansion of urbanized areas into agricultural areas and has created new demands on the water resources of the county. Additionally, interest in surface-water resources of central and western areas of the county has increased. In these areas, plans for additional surface-water storage reservoirs are being made under the Comprehensive Everglades Restoration Plan originally proposed by the U.S. Army Corps of Engineers and the South Florida Water Management District (1999), and stormwater treatment areas have been constructed by the South Florida Water Management District. Surface-water and ground-water interactions in the Everglades are thought to be important to water budgets, water quality, and ecology (Harvey and others, 2002). Most of the previous hydrogeologic and ground-water flow simulation studies of the surficial aquifer system have not utilized a hydrostratigraphic framework, in which stratigraphic or sequence stratigraphic units, such as those proposed in Cunningham and others (2001), are delineated in this stratigraphically complex aquifer system. A thick zone of secondary permeability mapped by Swayze and Miller (1984) was not subdivided and was identified as only being within the Anastasia Formation of Pleistocene age. Miller (1987) published 11 geologic sections of the surficial aquifer system, but did not delineate any named stratigraphic units in these sections. This limited interpretation has resulted, in part, from the complex facies changes within rocks and sediments of the surficial aquifer

  19. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  20. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  1. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  2. Transmissivity and water quality of water-producing zones in the intermediate aquifer system, Sarasota County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Bowman, Geronia

    1998-01-01

    The intermediate aquifer system is an important water source in Sarasota County, Florida, because the quality of water in it is usually better than that in the underlying Upper Floridan aquifer. The intermediate aquifer system consists of a group of up to three water-producing zones separated by less-permeable units that restrict the vertical movement of ground water between zones. The diverse lithology, that makes up the intermediate aquifer system, reflects the variety of depositional environments that occurred during the late Oligocene and Miocene epochs. Slight changes in the depositional environment resulted in aquifer heterogeneity, creating both localized connection between water-producing zones and abrupt culmination of water-producing zones that are not well documented. Aquifer heterogeneity results in vertical and areal variability in hydraulic and water-quality properties. The uppermost water-producing zone is designated producing zone 1 but is not extensively used because of its limited production capability and limited areal extent. The second water-producing zone is designated producing zone 2, and most of the domestic- and irrigation-supply wells in the area are open to this zone. Additionally, producing zone 2 is utilized for public supply in southern coastal areas of Sarasota County. Producing zone 3 is the lowermost and most productive water-producing zone in the intermediate aquifer system. Public-supply well fields serving the cities of Sarasota and Venice, as well as the Plantation and Mabry Carlton Reserve well fields, utilize producing zone 3. Heads within the intermediate aquifer system generally increase with aquifer depth. However, localized head-gradient reversals occur in the study area, coinciding with sites of intense ground-water withdrawals. Heads in producing zones 1, 2, and 3 range from 1 to 23, 0.2 to 34, and 7 to 42 feet above sea level, respectively. Generally, an upward head gradient exists between producing zones 3 and 2

  3. The calculation of aquifer chemistry in hot-water geothermal systems

    USGS Publications Warehouse

    Truesdell, Alfred H.; Singers, Wendy

    1974-01-01

    The temperature and chemical conditions (pH, gas pressure, and ion activities) in a geothermal aquifer supplying a producing bore can be calculated from the enthalpy of the total fluid (liquid + vapor) produced and chemical analyses of water and steam separated and collected at known pressures. Alternatively, if a single water phase exists in the aquifer, the complete analysis (including gases) of a sample collected from the aquifer by a downhole sampler is sufficient to determine the aquifer chemistry without a measured value of the enthalpy. The assumptions made are that the fluid is produced from a single aquifer and is homogeneous in enthalpy and chemical composition. These calculations of aquifer chemistry involving large amounts of ancillary information and many iterations require computer methods. A computer program in PL-1 to perform these calculations is available from the National Technical Information Service as document PB-219 376.

  4. Regional-Scale Controls on Arsenic Contamination in the Multi-Aquifer System of the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Erban, L.; Gorelick, S.; Fendorf, S. E.

    2014-12-01

    Geogenic groundwater arsenic poses a considerable health threat to a large, largely agrarian population in the Mekong Delta, Vietnam. Demand for groundwater continues to rise despite limited information about where arsenic contamination occurs and how it may be affected by excessive pumping. We investigate arsenic measurements from over >40,000 wells found throughout the Delta's seven major exploited aquifers, relating trends in contamination to ancillary physico-chemical datasets. Logistic regression modeling shows that among wells in the most shallow aquifers, arsenic occurrence above the WHO standard (10 µg/L) is best described by a well's distance to 1) the Mekong River network and 2) delta front, its depth and location within fault-bounded areas of the delta. The shallow model is inadequate to capture contaminant occurrence in deeper aquifers (generally 200-500m) where wells are rarely contaminated except in near-river areas undergoing heavy pumping. Our results are the first to quantify how the probability of arsenic contamination varies in 3D throughout the complex aquifer system in relation to both natural and anthropogenically-mediated factors, and suggest that excessive extraction may be degrading the quality of deep aquifers. Findings may serve as a baseline for managing groundwater use for optimal human welfare and assessing any future changes in arsenic occurrence.

  5. 76 FR 29235 - California Independent System Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...] California Independent System Operator Corporation; Notice of FERC Staff Attendance The Federal Energy... participate in teleconferences and meetings to be conducted by the California Independent System Operator... Web site, http://www.caiso.com . May 17, 2011, Systems Interface User Group, Department of...

  6. "Groundwater ages" of the Lake Chad multi-layer aquifers system inferred from 14C and 36Cl data

    NASA Astrophysics Data System (ADS)

    Bouchez, Camille; Deschamps, Pierre; Goncalves, Julio; Hamelin, Bruno; Seidel, Jean-Luc; Doumnang, Jean-Claude

    2014-05-01

    Assessment of recharge, paleo-recharge and groundwater residence time of aquifer systems of the Sahel is pivotal for a sustainable management of this vulnerable resource. Due to its stratified aquifer system, the Lake Chad Basin (LCB) offers the opportunity to assess recharge processes over time and to link climate and hydrology in the Sahel. Located in north-central Africa at the fringe between the Sahel and the Sahara, the lake Chad basin (LCB) is an endorheic basin of 2,5.106 km2. With a monsoon climate, the majority of the rainfall occurs in the southern one third of the basin, the Chari/Logone River system transporting about 90% of the runoff generated within the drainage basin. A complex multi-layer aquifer system is located in the central part of the LCB. The Quaternary unconfined aquifer, covering 500 000 km2, is characterized by the occurrence of poorly understood piezometric depressions. Artesian groundwaters are found in the Plio-Pleistocene lacustrine and deltaic sedimentary aquifers (early Pliocene and Continental Terminal). The present-day lake is in hydraulic contact with the Quaternary Aquifer, but during past megalake phases, most of the Quaternary aquifer was submerged and may experience major recharge events. To identify active recharge area and assess groundwater dynamics, one hundred surface and groundwater samples of all layers have been collected over the southern part of the LCB. Major and trace elements have been analyzed. Measurements of 36Cl have been carried out at CEREGE, on the French 5 MV AMS National Facility ASTER and 14C activities have been analyzed for 17 samples on the French AMS ARTEMIS. Additionally, the stable isotopic composition was measured on the artesian aquifer samples. In the Quaternary aquifer, results show a large scatter with waters having very different isotopic and geochemical signature. In its southern part and in the vicinity of the surface waters, groundwaters are predominantly Ca-Mg-HCO3 type waters with very

  7. 75 FR 3223 - California Independent System Operator Corporation; Midwest Independent Transmission System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...; ER09-1051-000; ER09-1063-000; ER09-1142-000] California Independent System Operator Corporation; Midwest Independent Transmission System Operator, Inc; . Southwest Power Pool, Inc.; ISO New England, Inc. and New England Power Pool; PJM Interconnection, LLC; New York Independent System Operator,...

  8. Assessment of natural recharges of the Plio-Plistocene shallow aquifer system in Al Uja area /Lower Jordan Valley / Occupied Palestinian Territories

    NASA Astrophysics Data System (ADS)

    Manasra, Kayan; Marei, Amer; Sbiah, Mohamed; Uter, Hussam; Abu Thaher, Ayman

    2013-04-01

    Al Uja area locates in the Lower Jordan Valley/West Bank at 250 m below sea level. The availability of ground water, fertile soil, and warm climate during winter months make it remarkable for its agricultural activities where 600 hectares are under irrigation. Al Uja karstic spring that drain water from the Mountain carbonate aquifer system with a discharge rate between 0.5 and 8 MCM/a , and nine groundwater boreholes that tape water from the shallow Plio-Plistocene aquifer system, with an annual abstraction of 3.5 MCM are the water sources. The south-north fault system of the Jordan Rift Valley separates the two aquifer system. The shallow aquifer system locates to the east of the fault, where the Mountain aquifer system locates to the west. The Mountain aquifer consists of high fractured and karstified limestone and dolomite of Upper Cretaceous age, and the shallow aquifer system consists of gravel, sand, silt, and clay layers of the Dead Sea group. Groundwater recharge of the Mountain aquifer system takes place in the highland area in the West with an annual precipitation of about 550 mm. Formations of the shallow aquifer system crop out in the Jordan Valley where rainfall does not exceed 250 mm/a . Due to the high evaporation rate, direct recharge is neglected. Only small portion of flooding water about 0.4MCM/a infiltrate through wadi Al Uja drainage system in to the Alluvial deposits to the shallow aquifer system. In the other hand, and since more than 40 years, the nine groundwater boreholes are taping about 3 MCM/a, water table decline of about 5 m. Currently, water table locates between -290 m in the west and decrease to - 311 m in the east. Groundwater flows from the Mountain aquifer in the west to the Shallow aquifer in the east through the major fault system. The permeability of the Mountain carbonate layers is 2.49E-1 m/min and decrease to 1.6 E-2 m/min in the layers of the Shallow aquifer system, this decrease of Kf-value east wards cause a semi

  9. Geohydrologic framework of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Whitehead, R.L.

    1992-01-01

    Across most of the plain, Quaternary basalt aquifers overlie aquifers in the Tertiary Idavada Volcanics and Banbury Basalt of the Idaho Group. The older volcanic rocks are typically much less transmissive than the Quaternary basalt. Faults and frac- tures are permeable zones for water storage and conduits for water movement. In places near the margins of the plain, the Idavada Volcanics contains important geothermal aquifers.

  10. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  11. Guide for data collection to calibrate a predictive digital ground-water model of the unconfined aquifer in and near the city of Modesto, California

    USGS Publications Warehouse

    Page, R.W.

    1977-01-01

    The city of Modesto encompasses about 12 square miles in the northeastern part of the San Joaquin Valley, Calif. The ground-water model encompasses about 542 square miles. In the Modesto area, ground water occurs in an unconfined aquifer a confined aquifer. both of which are composed of unconsolidated materials, and a consolidated-rock aquifer. Only the unconfined aquifer was modeled, using several simplifying assumptions concerning hydrologic conditions in the ground-water basin. A program is used that computes the net rate of recharge and discharge under steady-state conditions. The model was then modified until reasonable values of recharge and discharge were computed. Testing of the model indicated that simulated water levels were especially sensitive to tansmissivity, storage coefficient, irrigation return, and riverbed hydraulic conductivity; amond the parameters that affected water levels least were the vertical hydraulic conductivity and specific storage of the confining bed, the so-called E-clay. (Woodard-USGS)

  12. System for efficiently exchanging heat with ground water in an aquifer

    SciTech Connect

    Riley, W.

    1984-05-15

    A method and means for using ground water in an aquifer as a heat source and heat sink are disclosed wherein heat is exchanged between the uniform temperature ground water and heat-exchanging apparatus at the earth's surface through a single well bore. The ground water is exchanged between an upper and lower portion of the aquifer, alternatively depending on the operating mode, in such a manner that a stratified lateral flow of the water after heat exchange is produced following natural convective paths in the top or bottom of the aquifer and resulting in wide laminar dissipation of the altered temperature water while avoiding thermal mixing between that water and the remaining uniform temperature water in the aquifer. This manner of exchange provides a continuous flow of heating or cooling water at or near the ambient aquifer temperature without any depletion of the aquifer. Embodiments are described wherein the aquifer water is brought to the earth's surface and wherein a separate heat-exchanging fluid is circulated between the aquifer and the earth's surface, and modifications are also disclosed involving a valved plenum device for use with the former embodiments and whereby the aquifer may be used to store solar heat.

  13. Hydrogeology and Simulation of Groundwater Flow in the Plymouth-Carver-Kingston-Duxbury Aquifer System, Southeastern Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Carlson, Carl S.; Walter, Donald A.; Other contributing authors: Bent, Gardner C.; Massey, Andrew J.

    2009-01-01

    The glacial sediments that underlie the Plymouth-Carver-Kingston-Duxbury area of southeastern Massachusetts compose an important aquifer system that is the primary source of water for a region undergoing rapid development. Population increases and land-use changes in this area has led to two primary environmental effects that relate directly to groundwater resources: (1) increases in pumping that can adversely affect environmentally sensitive groundwater-fed surface waters, such as ponds, streams, and wetlands; and (2) adverse effects of land use on the quality of water in the aquifer. In response to these concerns, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, began an investigation in 2005 to improve the understanding of the hydrogeology in the area and to assess the effects of changing pumping and recharge conditions on groundwater flow in the Plymouth-Carver-Kingston-Duxbury aquifer system. A numerical flow model was developed based on the USGS computer program MODFLOW-2000 to assist in the analysis of groundwater flow. Model simulations were used to determine water budgets, flow directions, and the sources of water to pumping wells, ponds, streams, and coastal areas. Model-calculated water budgets indicate that approximately 298 million gallons per day (Mgal/d) of water recharges the Plymouth-Carver-Kingston-Duxbury aquifer system. Most of this water (about 70 percent) moves through the aquifer, discharges to streams, and then reaches the coast as surface-water discharge. Of the remaining 30 percent of flow, about 25 percent of the water that enters the aquifer as recharge discharges directly to coastal areas and 5 percent discharges to pumping wells. Groundwater withdrawals are anticipated to increase from the current (2005) rate of about 14 Mgal/d to about 21 Mgal/d by 2030. Pumping from large-capacity production wells decreases water levels and increases the potential for effects on surface

  14. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, Marylynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  15. A conceptual framework and monitoring strategy for movement of saltwater in the coastal plain aquifer system of Virginia

    USGS Publications Warehouse

    Mcfarland, E. Randolph

    2015-09-04

    Some aspects of observation-well construction and sampling are of particular importance to monitoring saltwater movement in the Virginia Coastal Plain aquifer system. Observation wells should feature screened intervals generally of no more than 10 feet that isolate distinct parts of the aquifer, and be thoroughly developed for removal of drilling fluid and introduced water. Presample purging should fully displace stratified saltwater in the well casing upward to the pump. Stable flow should be maintained as field parameters are measured and sample containers are filled with filtered water isolated from the atmosphere and unaffected by surface temperature. Groundwater samples from both upconing and lateral-intrusion obse

  16. A conceptual framework and monitoring strategy for movement of saltwater in the coastal plain aquifer system of Virginia

    USGS Publications Warehouse

    Mcfarland, E. Randolph

    2015-01-01

    Some aspects of observation-well construction and sampling are of particular importance to monitoring saltwater movement in the Virginia Coastal Plain aquifer system. Observation wells should feature screened intervals generally of no more than 10 feet that isolate distinct parts of the aquifer, and be thoroughly developed for removal of drilling fluid and introduced water. Presample purging should fully displace stratified saltwater in the well casing upward to the pump. Stable flow should be maintained as field parameters are measured and sample containers are filled with filtered water isolated from the atmosphere and unaffected by surface temperature. Groundwater samples from both upconing and lateral-intrusion obse

  17. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  18. Integration of radiocarbon dating in the hydrodynamic scheme of north western Sahara aquifer system

    NASA Astrophysics Data System (ADS)

    Ould Baba Sy, M.; Besbes, M.

    2003-04-01

    Radiocarbon dating methods can be applied to obtain the age of ground water. Carbon exists in several naturally occurring isotopes, l2C, 13C, and 14C. Carbon 14 is formed in the atmosphere by the bombardment of 14N by cosmic radiation (DeVries 1959). The l4C forms CO2, so that the atmospheric CO2 has a constant radioactivity due to modern 14C. If the CO2 is incorporated into a form in which it is isolated from modern 14C, age determinations can be made from the 14C radioactivity as a percent of the original. The half-life of l4C is 5730 y, so that if one-fourth of the original activity is present, two half-lives, or 11,460 y, have elapsed. When precipitation soaks into the ground, it is saturated with respect to CO2, with a known 14C activity. Once the water has entered the soil, additional carbon may come from soil CO2 and the solution of carbonate minerals. The modern carbon is diluted by the inactive carbon from carbonate minerals. The raw dates obtained must be adjusted for this dilution. In the present research, we present a contribution of radiocarbon dating in the North Western Sahara Aquifer System, the NWSAS, shared by three countries (Algeria, Libya and Tunisia). This will be done while showing the utility of the log-linear function gotten by regression of some values representing the age of water by the activity of the carbon 14. This function has permitted to estimate the age of water for a sample of 72 water points. It leads, by interpolation on a cartographic support, to the distribution of the carbon 14 activities measured to the wells, translated in equivalent ages of water in the Continental Intercalaire aquifer, which is part of NWSAS and extends over one million square km. The reading of this ages map shows well the hydaulic behavior of the aquifer system.

  19. Biogeochemical properties of eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  20. Biogeochemical Properties of Eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-04-01

    The California Current System (CCS) is a coastal upwelling system characterized by intense mesoscale activity. This mesoscale activity plays a critical role in modulating biological production and exporting coastal biogeochemical materials offshore. To characterize and quantify the ability of mesoscale eddies to affect local and regional planktonic ecosystems in the CCS, we analyzed a 10-year-long physical-biological model simulation - with 5km horizontal resolution - using eddy detection and tracking to isolate the dynamics in cyclonic and anticyclonic eddies. At any given time, ~8% of the model domain was covered by eddies, and this small area belies ~50% of the cross-shelf biological transport. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms, and maintain locally elevated production, Anticyclones, on the other hand, have a limited impact on local production.

  1. Stable and radiogenic isotopic analysis of aquifer systems, Atlantic Rim, Carbon County, Wyoming: Implications for production of coalbed natural gas

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. Fred

    Coalbed natural gas (CBNG) production requires the extraction of considerable volumes of water from target formations. This process can dynamically alter local aquifers and affect the larger hydrologic systems of a producing area. An analytical method that provides immediate, cost-effective quantitative information on both resource (methane) and habitat (coalbed aquifer) would help to optimize gas production. This study used a combination of field measurements, water chemistry analysis, and isotopic analysis, both stable (delta13C DIC, deltaO, deltaD) and radiometric (87Sr/ 86Sr), to analyze and characterize the CBNG aquifers and hydrogeologic systems of Wyoming's Atlantic Rim. Waters were sampled and analyzed from streams, springs, and CBNG wells across the Atlantic Rim. Samples were first grouped on the basis of geologic location, and then additionally defined by isotopic and water chemistry analysis into Mesaverde Group springs, Lewis Shale springs, Steele Shale springs, Sand Hill springs, enriched delta 13CDIC springs, methane springs, and subsurface samples (monitoring and CBNG wells). Two distinct water chemistry types are evident in Atlantic Rim samples, Ca-Mg-SO4-type and Na-HCO3-type waters. Atlantic Rim samples also had distinct radiogenic isotopic signatures. Stream water sourced from the Sierra Madre and waters associated with the Mesaverde Group have the highest 87Sr/86Sr ratios, whereas spring samples from the Lewis Shale have the lowest 87Sr/ 86Sr. delta13CDIC, which is enriched by bacterial methanogenesis, was used to identify coalbed waters from other natural waters. Positive delta13CDIC identified spring waters that originated from Mesaverde coalbed aquifers, including methane springs. Strongly positive delta13CDIC of Atlantic Rim CBNG samples identified those coalbed aquifers that are hydraulically isolated, whereas lower delta13CDIC identified wells within open aquifer systems and wells with inefficient casing. This study demonstrated that delta

  2. Digital surfaces and thicknesses of selected hydrogeologic units within the Ozark Plateaus aquifer system, northwestern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.

    2014-01-01

    Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.

  3. Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming.

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1986-01-01

    Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors

  4. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  5. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  6. Using a Geographic Information System to Assess Site Suitability for Managed Aquifer Recharge using Stormwater Capture

    NASA Astrophysics Data System (ADS)

    Teo, E. K.; Harmon, R. E.; Beganskas, S.; Young, K. S.; Fisher, A. T.; Weir, W. B.; Lozano, S.

    2015-12-01

    We are completing a regional analysis of Santa Cruz and northern Monterey Counties, CA, to assess the conditions amenable to managed aquifer recharge using stormwater runoff. Communities and water supply agencies across CA are struggling to mitigate the ongoing drought and to develop secure and sustainable water supplies to support long-term municipal, agricultural, environmental and other needs. Enhanced storage of groundwater is an important part of this effort in many basins. This work is especially timely because of the recently enacted "Sustainable Groundwater Management Act" (SGMA), which requires the development of groundwater sustainability agencies and implementation of basin management plans in coming decades. Our analysis focuses specifically on the distributed collection of stormwater runoff, a water source that has typically been treated as a nuisance or waste, from drainages having an area on the order of 40-160 hectares. The first part of this project is a geographic information system (GIS) analysis using surface and subsurface data sets. Developing complete and accurate datasets across the study region required considerable effort to locate, assemble, co-register, patch, and reconcile information from many sources and scales. We have complete spatial coverage for surface data, but subsurface data is more limited in lateral extent. Sites that are most suitable for distributed stormwater capture supporting MAR have high soil infiltration capacity, are well-connected to an underlying aquifer with good transmissive and storage properties, and have space to receive MAR. Additional considerations include method of infiltration, slope, and land use and access. Based on initial consideration of surface data and slope, 7% of the complete study region appears to be "suitable or highly suitable" for MAR (in the top third of the rating system), but there is considerable spatial heterogeneity based on the distribution of shallow soils and bedrock geology.

  7. Water quality of a stream-aquifer system, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1984-01-01

    The chemical quality of the water resources in the Scioto River valley south of Columbus, Ohio, was evaluated on the basis of data collected from 74 wells and 4 surface-water sites. A very hard calcium bicarbonate water that is high in dissolved solids is characteristic of the aquifer. Mean pH of the ground water is 7.3, and bicaerbonate concentrations range from 238 to 530 milligrams per liter. Concentrations of dissolved iron in water samples (0.01 to 3.9 milligrams per liter) frequently exceed the drinking water standard of 0.3 milligrams per liter established by the Ohio Environmental Protection Agency. The chemical quality of local streams closely resembles the ground-water quality, except for higher concentrations of sodium, chloride, and sulfate in the surface water. Microbiological testing of ground water for fecal bacteria indicated concentrations ranging from 1 to 2,400 colonies per 100 milliliters. The higher concentrations were observed in one well on the Scioto River flood plain after a flood event. Mass-balance calculations of the chemical data indicate that pH is buffered primarily by the carbonate system. Data for pH, calculated Eh, and concentrations of ferrous iron and reduced sulfur show that areas of different chemical environments exist within the aquifer. A reaction model of an induced-infiltration radial collector system indicates the amount of mass transfer (chemical reactions that occur as ground water and surface water mix) is small, and that the mixing ratio between ground and surface waters is four to one.

  8. Tabulated Transmissivity and Storage Properties of the Floridan Aquifer System in Florida and Parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Kuniansky, Eve L.; Bellino, Jason C.

    2012-04-19

    A goal of the U.S. Geological Survey Groundwater Resources Program is to assess the availability of fresh water within each of the principal aquifers in the United States with the greatest groundwater withdrawals. The Floridan aquifer system (FAS), which covers an area of approximately 100,000 square miles in Florida and parts of Georgia, Alabama, Mississippi, and South Carolina, is one such principal aquifer, having the fifth largest groundwater withdrawals in the Nation, totaling 3.64 billion gallons per day in 2000. Compilation of FAS hydraulic properties is critical to the development and calibration of groundwater flow models that can be used to develop water budgets spatially and temporally, as well as to evaluate resource changes over time. Wells with aquifer test data were identified as Upper Floridan aquifer (UFA), Lower Floridan aquifer (LFA), Floridan aquifer system (FAS, Upper Floridan with some middle and/or Lower Floridan), or middle Floridan confining unit (MCU), based on the identification from the original database or report description, or comparison of the open interval of the well with previously published maps.This report consolidates aquifer hydraulic property data obtained from multiple databases and reports of the U.S. Geological Survey, various State agencies, and the Water Management Districts of Florida, that are compiled into tables to provide a single information source for transmissivity and storage properties of the FAS as of October 2011. Transmissivity calculated from aquifer pumping tests and specific-capacity data are included. Values for transmissivity and storage coefficients are intended for use in regional or sub regional groundwater flow models; thus, any tests (aquifer pumping tests and specific capacity data) that were conducted with packers or for open intervals less than 30 feet in length are excluded from the summary statistics and tables of this report, but are included in the database.The transmissivity distribution

  9. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    USGS Publications Warehouse

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the

  10. A Semi-Analytical Solution for Large-Scale Injection-Induced PressurePerturbation and Leakage in a Laterally Bounded Aquifer-AquitardSystem

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu

    2008-07-15

    A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a 'laterally bounded' system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.

  11. Summary of hydraulic properties of the Floridan Aquifer system in coastal Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Leeth, David C.; Taylor-Harris, DaVette; Painter, Jaime A.; Labowski, James L.

    2005-01-01

    Hydraulic-property data for the Floridan aquifer system and equivalent clastic sediments in a 67-county area of coastal Georgia and adjacent parts of South Carolina and Florida were evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples from 27 sites. Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area due to the heterogeneity (and locally to anisotropy) of the aquifer and to variations in the degree of confinement provided by confining units. Prominent structural features in the areathe Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Troughinfluence the thickness and hydraulic properties of the sediments comprising the Floridan aquifer system. Transmissivity of the Upper Floridan aquifer and equivalent updip units was compiled for 239 wells and ranges from 530 feet squared per day (ft2/d) at Beaufort County, South Carolina, to 600,000 ft2/d in Coffee County, Georgia. In carbonate rock settings of the lower Coastal Plain, transmissivity of the Upper Floridan aquifer generally is greater than 20,000 ft2/d, with values exceeding 100,000 ft2/d in the southeastern and southwestern parts of the study area (generally coinciding with the area of greatest aquifer thickness). Transmissivity of the Upper Floridan aquifer generally is less than 10,000 ft2/d in and near the upper Coastal Plain, where the aquifer is thin and consists largely of clastic sediments, and in the vicinity of the Gulf Trough, where the aquifer consists of low permeability rocks and sediments. Large variability in the range of transmissivity in Camden and Glynn Counties, Georgia, and Nassau County, Florida, demonstrates the anisotropic distribution of hydraulic properties that may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper

  12. Accountability, Program Budgeting, and the California Educational Information System: A Discussion and a Proposal.

    ERIC Educational Resources Information Center

    Farquhar, J. A.

    It has been argued that the answer to public and political demands for a more responsive educational system lies in the practice of accountability. The future implementation of program budgeting may offer an attractive vehicle for accountability. Currently, many California school districts use the California Educational Information System (CEIS)…

  13. 78 FR 79690 - California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of Filing Take notice that on December 20, 2013, the California Independent System Operator Corporation (CAISO) filed a refund report to be made by the...

  14. 76 FR 26719 - California Independent System Operator Corporation; Notice Establishing Comment Periods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice Establishing... April 28, 2011, to discuss issues related to California Independent System Operator Corporation's (CAISO... Wednesday, June 15, 2011, and are requested to be no longer than 15 pages. \\1\\ Cal. Indep. Sys....

  15. 76 FR 7186 - TGP Development Company, LLC v. California Independent System Operator Corporation; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Energy Regulatory Commission TGP Development Company, LLC v. California Independent System Operator... Power Act, 16 U.S.C. 824e and 825e (2006), filed a complaint against the California Independent System Operator Corporation (CAISO or Respondent), concerning the requirement that TGP post its second...

  16. 78 FR 25740 - Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meridian Energy USA, Inc. v. California Independent System Operator...) submitted a request for a limited waiver of Appendix Y of the California Independent System Operator...

  17. 77 FR 8250 - California Independent System Operator Corporation; Notice Establishing Comment Periods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice Establishing... conference to discuss issues related to the California Independent System Operator Corporation's proposal to... no longer than 15 pages. \\1\\ Cal. Indep. Sys. Operator Corp., 137 FERC ] 61,157 at P 1 (2011)....

  18. Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods.

    PubMed

    Kazakis, N; Vargemezis, G; Voudouris, K S

    2016-04-15

    Geoelectrical methods have been widely used for the estimation of aquifer hydraulic properties. In this study, geoelectrical methods were applied in a lithologically and hydrochemically complex porous aquifer to estimate its porosity, hydraulic conductivity and transmissivity. For this purpose, the electrical resistivity of the aquifer as well as the electrical conductivity of the groundwater was measured in 37 sites and wells. Initially, the Archie's law was used to generate sets of cementation factor (m) and alpha (α) parameter from which the mode values of α=0.98 and m=1.75 are representative of the studied aquifer. The transmissivity of the aquifer varies from 5.1×10(-3) to 3.1×10(-5)m(2)/s, whereas the mean value of its porosity is 0.45. The hydraulic conductivity of the aquifer which was calculated according to Archie's law varies from 2.08×10(-6) to 6.84×10(-5)m/s and is strongly correlated with the pumping test's hydraulic conductivity. In contrast, the hydraulic conductivity which was calculated using Dar-Zarrouk parameters presents lower correlation with the pumping test's hydraulic conductivity. Furthermore, a relation between aquifer resistivity and hydraulic conductivity was established for the studied aquifer to enable the estimation of these parameters in sites lacking data.

  19. Generalized File Management Systems: Their Implication for a California Junior College Data Base System.

    ERIC Educational Resources Information Center

    Fedrick, Robert John

    Criteria to use in evaluating data processing efficiency, factors of file and record definitions, convenience of use for non-programmers, report generating capabilities, and customer support for generalized file management systems for use by the California junior colleges are indicated by the author. The purchase of such a system at the state…

  20. Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

    2014-01-01

    The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area

  1. Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi site, Las Vegas, Nevada

    USGS Publications Warehouse

    Pavelko, Michael T.

    2004-01-01

    Land subsidence related to aquifer-system compaction and ground-water withdrawals has been occurring in Las Vegas Valley, Nevada, since the 1930's, and by the late 1980's some areas in the valley had subsided more than 5 feet. Since the late 1980's, seasonal artificial-recharge programs have lessened the effects of summertime pumping on aquifer-system compaction, but the long-term trend of compaction continues in places. Since 1994, the U.S. Geological Survey has continuously monitored water-level changes in three piezometers and vertical aquifer-system deformation with a borehole extensometer at the Lorenzi site in Las Vegas, Nevada. A one-dimensional, numerical, ground-water flow model of the aquifer system below the Lorenzi site was developed for the period 1901-2000, to estimate aquitard vertical hydraulic conductivity, aquitard inelastic skeletal specific storage, and aquitard and aquifer elastic skeletal specific storage. Aquifer water-level data were used in the model as the aquifer-system stresses that controlled simulated vertical aquifer-system deformation. Nonlinear-regression methods were used to calibrate the model, utilizing estimated and measured aquifer-system deformation data to minimize a weighted least-squares objective function, and estimate optimal property values. Model results indicate that at the Lorenzi site, aquitard vertical hydraulic conductivity is 3 x 10-6 feet per day, aquitard inelastic skeletal specific storage is 4 x 10-5 per foot, aquitard elastic skeletal specific storage is 5 x 10-6 per foot, and aquifer elastic skeletal specific storage is 3 x 10-7 per foot. Regression statistics indicate that the model and data provided sufficient information to estimate the target properties, the model adequately simulated observed data, and the estimated property values are accurate and unique.

  2. Recharge Mechanism to North-Western Sahara Aquifer System (NWSAS) Using Environmental Isotopes

    NASA Astrophysics Data System (ADS)

    Al-Gamal, Samir

    2010-05-01

    A comprehensive understanding is highly needed for any successful transboundary cooperation policy. Moreover, an analysis of the NWSAS can be of particular interest for policy makers and researchers. This paper aims to reveals and to assess the renewability of North Western Sahara Aquifer System(NWSAS) as one of the major transboundary multi-layered aquifer system, in North Africa, shared by Algeria, Tunisia, and Libya and is often referred to as the Système Aquifère du Sahara Septentrional (SASS).The paper is primarily intended for exploring whether it receives a considerable fraction of modern water as recharge or it is at risk of being depleted and excessively pumped, where the main challenge for NWSAS ,is that it should be abstracted rationally for equitable use. Environmental isotopes data of δ18O, δ2H, 3H ,14C as well as characteristics of d-excess are used to illustrate whether NSWAS is renewable or non-renewable resource.Geochemical, hydrological and statistical evidences supporting the renewability of NWSAS are provided through pairs of cross-plots . The study has clearly indicated that NWSAS is receiving a considerable fraction of modern water as recharge to the aquifer because of the following reasons; Firstly, the moderately depleted delta values of O-18 and H-2 of water from Sahara Atlas in Algeria and the Dahar and the Dj. Nefoussa in Tunisia and Libya with δ18O content (- 6.0‰ to -5.0‰) compared with that of palaeowater (-7.0 to -9.0 ‰) indicate a considerable fraction of modern water recharging NWSAS.This considerable fraction of modern water should be attributed to originate from the present-day precipitation (-6.5‰).Secondly, the presence of significant amount of 14C >2 % and 3H > 5TU., frequently found in data should be attributed to a mixing with shallow and modern water, where old water practically contains no 14C. The foregoing facts are in good agreement with the results of conventional hydrologic approach. This would contradicts

  3. Statistical analysis of aquifer-test results for nine regional aquifers in Louisiana

    USGS Publications Warehouse

    Martin, Angel; Early, D.A.

    1987-01-01

    This report, prepared as part of the Gulf Coast Regional Aquifer-System Analysis project, presents a compilation, summarization, and statistical analysis of aquifer-test results for nine regional aquifers in Louisiana. These are from youngest to oldest: The alluvial, Pleistocene, Evangeline, Jasper, Catahoula, Cockfield, Sparta, Carrizo, and Wilcox aquifers. Approximately 1,500 aquifer tests in U.S. Geological Survey files in Louisiana were examined and 1,001 were input to a computer file. Analysis of the aquifer test results and plots that describe aquifer hydraulic characteristics were made for each regional aquifer. Results indicate that, on the average, permeability (hydraulic conductivity) generally tends to decrease from the youngest aquifers to the oldest. The most permeable aquifers in Louisiana are the alluvial and Pleistocene aquifers; whereas, the least permeable are the Carrizo and Wilcox aquifers. (Author 's abstract)

  4. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The east-central Florida transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration, runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into evapotranspiration, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5

  5. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams

  6. An event-based model of braided river system aquifers heterogeneity based on Multiple Points Statistics

    NASA Astrophysics Data System (ADS)

    Renard, P.; Pirot, G.

    2012-12-01

    Braided-rivers are common in mountainous regions like the Swiss Alps. These dynamic systems generate highly heterogeneous deposits and form an important part of alluvial aquifers which are tapped for agriculture and drinking water supply. In this presentation, we propose to integrate large scale and high resolution LIDAR data in a pseudo genetic approach embedding Multiple Points Statistics (MPS) to model the heterogeneity of such aquifers. A way to build 3D sedimentary models is to use descriptive methods, which translate data into conceptual facies models but do not offer uncertainty quantification. Another possibility is the use of stochastic models but most of them do not include strong geological knowledge and their degree of realism can be rather weak. Another approach is to use process-based methods. In this work, we imitate the processes occurring during flood events, by building successive topographies with the Direct Sampling (DS) multiple point statistics algorithm. Each successive topography is conditioned by the previous one. All those steps are constrained by a series of LIDAR data sets allowing to train the algorithm. This is different from classical MPS models, since we do not directly use MPS to model the lithofacies directly, but instead to simulate the processes that lead to the heterogeneity in order to ensure that higher statistics that can be inferred from field data are accurately reproduced. The use of the DS is motivated by the fact that it an MPS technique allowing to co-simulate continuous variables. It is easy to condition to field data and offers a high degree of realism in the simulations. The underlying erosion-deposition process leaves some records of each event in the form of remaining layers, which are populated with facies of different granulometry, according to some predefined rules function of the geobody's shape and dimensions. Input parameters allow controlling the aggradation/degradation intensity.

  7. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  8. Carbon footprint and ammonia emissions of California beef production systems.

    PubMed

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, wh