Science.gov

Sample records for aquifers case study

  1. Geothermal development of the Madison group aquifer: a case study

    SciTech Connect

    Martinez, J.A.

    1981-01-01

    A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

  2. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  3. Aquifer characterization using geoelectrical modelling, a case study

    NASA Astrophysics Data System (ADS)

    Meyer, Rena; Sauter, Martin; Weller, Andreas

    2014-05-01

    Surface geophysical investigations offer inexpensive and complementary information for hydrogeological issues. The quality and feasibility of geophysical models can be improved considerably by incorporating geological and hydrogeological a-priori information. In the presented study, densely spaced surface geoelectrical measurements were performed at the hydrogeological testsite Stegemühle, Göttingen, Germany. Twelve parallel profiles, 100 m long, with an electrode spacing of 0.5 m were measured using the averaged half Wenner configuration. The study area consists of a gravel-sand partially confined aquifer. Thanks to former studies a good hydraulic and geological data base is available. Vertical electrical soundings (VES) as well as 2D and 3D inversions were carried out with the purpose of building a subsurface resistivity model of the aquifer. Commercial software (res2/3Dinv) as well as non-commercial inversion algorithms (VES4, AC2DSIRT) are applied for data analysis. The interpretation of geoelectrical models generally suffers an ambiguity due to the principle of equivalence that hinders the independent determination of layer resistivity and thickness. To overcome this problem, information from certain borehole profiles and conductivity logs were included to calibrate VES and constrain AC2DSIRT modelling. Inversions using AC2DSIRT with an initial model according to the calibrated results of VES generate a 2D resistivity distribution that is significantly more feasible in terms of root mean square and geological data than those without any constraints. Apart from this, a field specific linear relationship between electrical resistivity and hydraulic conductivity is determined at six well locations. This relation is used to extrapolate the hydraulic conductivity distribution over the whole study area. In conclusion, the presented field study shows the importance of integration of a-priori geological and hydrological information to improve the output of

  4. Value of information analysis for groundwater quality monitoring network design Case study: Eocene Aquifer, Palestine

    NASA Astrophysics Data System (ADS)

    Khader, A.; McKee, M.

    2010-12-01

    Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the Eocene Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.

  5. Origins of seawater intrusion in a coastal aquifer - A case study of the Pajaro Valley, California

    USGS Publications Warehouse

    Bond, L.D.; Bredehoeft, J.D.

    1987-01-01

    Seawater may enter and contaminate stratified coastal aquifers through a number of different pathways. These pathways and their relative contribution are examined in the Pajaro Valley, California, a coastal area with extensive groundwater development. This study considers three pathways of possible intrusion of the primary confined aquifer: (1) onshore leakage from brackish sources, the estuary and sloughs, through the confining layer; (2) near-shore leakage from the ocean through the confining layer; and (3) offshore flow from the ocean through the submarine canyon outcrop of the aquifer. Groundwater flow and seawater intrusion are simulated using an areal, two-dimensional solute-transport computer model. This analysis indicates that leakage through confining layers is the principal mechanism of recharge to the aquifer. Although lateral flow through the offshore outcrop contaminates the aquifer, as a whole, at a higher rate, vertical leakage through the sea floor initially is the main pathway of seawater intrusion to the onshore portion of the aquifer. It is likely that leakage generally is the dominant mechanism of recharge and initial cause of seawater intrusion for poorly-confined, stratified coastal aquifers. This analysis suggests that a significant time interval follows the initial observation of seawater intrusion, during which remedial action can be taken to control lateral flow through the offshore outcrop, which ultimately will be the largest component of future intrusion in these aquifers. ?? 1987.

  6. Boise Geothermal Aquifer Study

    SciTech Connect

    Not Available

    1990-01-01

    This report is the final product of a detailed review and quantitative evaluation of existing data for the Boise Front Geothermal Aquifer. Upon review of the many publications, and raw data for the Boise geothermal aquifer, it became clear that adequate data only exists for analysis of current and proposed development within a limited area. This region extends approximately 1.5 miles southeast of the State Capitol to 0.5 mile northwest. Though there are geothermal wells located along the Boise Front outside of this area, the lack of production and water level data preclude any detailed discussions and analysis of their relationship to the central resource. As a result, discussion will concentrate on major users such as the Capitol Mall (CM) Boise Geothermal LTD. (BGL), Veterans Administration (VA) and Boise Warm Springs Water District (BWSWD). The objectives of this study are: Define the inter-relationship of the existing wells and/or portions of the geothermal aquifer; evaluate the effects of current and proposed development on the geothermal aquifer; estimate longevity of the geothermal resource; and make recommendations for an on-going monitoring program. 44 refs., 40 figs., 9 tabs.

  7. Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico.

    PubMed

    Esteller, M V; Rodríguez, R; Cardona, A; Padilla-Sánchez, L

    2012-09-01

    The impact of intensive aquifer exploitation has been observed in numerous places around the world. Mexico is a representative example of this problem. In 2010, 101 out of the 653 aquifers recognized in the country, showed negative social, economic, and environmental effects related to intensive exploitation. The environmental effects include, among others, groundwater level decline, subsidence, attenuation, and drying up of springs, decreased river flow, and deterioration of water quality. This study aimed at determining the hydrochemical changes produced by intensive aquifer exploitation and highlighting water quality modifications, taking as example the Valle de Toluca, Salamanca, and San Luis Potosi aquifers in Mexico's highlands. There, elements such as fluoride, arsenic, iron, and manganese have been detected, resulting from the introduction of older groundwater with longer residence times and distinctive chemical composition (regional flows). High concentrations of other elements such as chloride, sulfate, nitrate, and vanadium, as well as pathogens, all related to anthropogenic pollution sources (wastewater infiltration, irrigation return flow, and atmospheric pollutants, among others) were also observed. Some of these elements (nitrate, fluoride, arsenic, iron, and manganese) have shown concentrations above Mexican and World Health Organization drinking water standards. PMID:21997844

  8. Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico.

    PubMed

    Esteller, M V; Rodríguez, R; Cardona, A; Padilla-Sánchez, L

    2012-09-01

    The impact of intensive aquifer exploitation has been observed in numerous places around the world. Mexico is a representative example of this problem. In 2010, 101 out of the 653 aquifers recognized in the country, showed negative social, economic, and environmental effects related to intensive exploitation. The environmental effects include, among others, groundwater level decline, subsidence, attenuation, and drying up of springs, decreased river flow, and deterioration of water quality. This study aimed at determining the hydrochemical changes produced by intensive aquifer exploitation and highlighting water quality modifications, taking as example the Valle de Toluca, Salamanca, and San Luis Potosi aquifers in Mexico's highlands. There, elements such as fluoride, arsenic, iron, and manganese have been detected, resulting from the introduction of older groundwater with longer residence times and distinctive chemical composition (regional flows). High concentrations of other elements such as chloride, sulfate, nitrate, and vanadium, as well as pathogens, all related to anthropogenic pollution sources (wastewater infiltration, irrigation return flow, and atmospheric pollutants, among others) were also observed. Some of these elements (nitrate, fluoride, arsenic, iron, and manganese) have shown concentrations above Mexican and World Health Organization drinking water standards.

  9. Groundwater Vulnerability Assessment Using Fuzzy Logic: A Case Study in the Zayandehrood Aquifers, Iran

    NASA Astrophysics Data System (ADS)

    Rezaei, Farshad; Safavi, Hamid R.; Ahmadi, Azadeh

    2013-01-01

    Groundwater is an important source of water, especially in arid and semi-arid regions where surface water is scarce. Groundwater pollution in these regions is consequently a major concern, especially as pollution control and removal in these resources are not only expensive but at times impossible. It is, therefore, essential to prevent their contamination in the first place by properly identifying vulnerable zones. One method most commonly used for evaluating groundwater pollution is the DRASTIC method, in which the Boolean logic is used to rank and classify the parameters involved. Problems arise, however, in the application of the Boolean logic. In this paper, the fuzzy logic has been used to avoid the problems. For this purpose, three critical cases of minimum, maximum, and mean values have been considered for the net recharge parameter. The process has been performed on the Zayandehrood river basin aquifers. The fuzzy-DRASTIC vulnerability map thus obtained indicates that the western areas of the basin generally have the maximum pollution potential followed by the areas located in the east. The central parts of the study area are found to have a low pollution potential. Finally, two sensitivity analyses are performed to show the significance of each value of the net recharge parameter in the calculation of vulnerability index.

  10. Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran.

    PubMed

    Rezaei, Farshad; Safavi, Hamid R; Ahmadi, Azadeh

    2013-01-01

    Groundwater is an important source of water, especially in arid and semi-arid regions where surface water is scarce. Groundwater pollution in these regions is consequently a major concern, especially as pollution control and removal in these resources are not only expensive but at times impossible. It is, therefore, essential to prevent their contamination in the first place by properly identifying vulnerable zones. One method most commonly used for evaluating groundwater pollution is the DRASTIC method, in which the Boolean logic is used to rank and classify the parameters involved. Problems arise, however, in the application of the Boolean logic. In this paper, the fuzzy logic has been used to avoid the problems. For this purpose, three critical cases of minimum, maximum, and mean values have been considered for the net recharge parameter. The process has been performed on the Zayandehrood river basin aquifers. The fuzzy-DRASTIC vulnerability map thus obtained indicates that the western areas of the basin generally have the maximum pollution potential followed by the areas located in the east. The central parts of the study area are found to have a low pollution potential. Finally, two sensitivity analyses are performed to show the significance of each value of the net recharge parameter in the calculation of vulnerability index.

  11. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  12. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    NASA Astrophysics Data System (ADS)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  13. Estimating the uncertainty of the impact of climate change on alluvial aquifers. Case study in central Italy

    NASA Astrophysics Data System (ADS)

    Romano, Emanuele; Camici, Stefania; Brocca, Luca; Moramarco, Tommaso; Pica, Federico; Preziosi, Elisabetta

    2014-05-01

    There is evidence that the precipitation pattern in Europe is trending towards more humid conditions in the northern region and drier conditions in the southern and central-eastern regions. However, a great deal of uncertainty concerns how the changes in precipitations will have an impact on water resources, particularly on groundwater, and this uncertainty should be evaluated on the basis of that coming from 1) future climate scenarios of Global Circulation Models (GCMs) and 2) modeling chains including the downscaling technique, the infiltration model and the calibration/validation procedure used to develop the groundwater flow model. With the aim of quantifying the uncertainty of these components, the Valle Umbra porous aquifer (Central Italy) has been considered as a case study. This aquifer, that is exploited for human consumption and irrigation, is mainly fed by the effective infiltration from the ground surface and partly by the inflow from the carbonate aquifers bordering the valley. A numerical groundwater flow model has been developed through the finite difference MODFLOW2005 code and it has been calibrated and validated considering the recharge regime computed through a Thornthwaite-Mather infiltration model under the climate conditions observed in the period 1956-2012. Future scenarios (2010-2070) of temperature and precipitation have been obtained from three different GMCs: ECHAM-5 (Max Planck Institute, Germany), PCM (National Centre Atmospheric Research) and CCSM3 (National Centre Atmospheric Research). Each scenario has been downscaled (DSC) to the data of temperature and precipitation collected in the baseline period 1960-1990 at the stations located in the study area through two different statistical techniques (linear rescaling and quantile mapping). Then, stochastic rainfall and temperature time series are generated through the Neyman-Scott Rectangular Pulses model (NSRP) for precipitation and the Fractionally Differenced ARIMA model (FARIMA

  14. An integrated geophysical study wajid formation of water-bearing aquifers: Case study at Wadi Aldwasir area-Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alasmari, Abdulsalam; Suliman, Asim

    2015-04-01

    Wadi Aldwasir area is very important province in Saudi Arabia. It contains the main water aquifer that attains a proven groundwater reserve (Wajid aquifer). This study aims to investigate the subsurface features of this aquifer (thickness, depth to basement, overlying section and the structural elements) using an integrated gravity survey (2D profiles) and aeromagnetic interpretation (RTP, low pass and high-pass maps). Gravity data are measured in the field using CG-5 AutoGrav, while magnetic data are taken from a survey made by Saudi Geological Survey. The interpretation of aeromagnetic data revealed structural elements trending towards N-S, NNE-SSW, WNW and NNW-SSE directions. Positive magnetic anomalies are found indicating the presence of anticlinal blocks and strike-slip fault patterns. These structural elements are associated with the prevailing Najd fault and the transform fault systems. Gravity data showed that the depth to basement vary from 600 m to 1150 m, giving rise to a considerable range for aquifer thickness of 250 m to 700 m. Local basins of good thicknesses are indicated. Finally, a basement relief map is conducted based on an integrated interpretation of the magnetic and gravity outputs. It shows an increase of depth from south to north (good aquifer thickness).

  15. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia).

    PubMed

    Menció, A; Korbel, K L; Hose, G C

    2014-05-01

    In contrast to surface water ecosystems, groundwater ecosystems are usually considered to have relatively stable conditions and physically inert environments. However, many groundwater ecosystems undergo substantial changes through space and time, related to fluxes in groundwater flow, exchange and nutrient imports. In this study we used hydrochemical data to: 1) determine the different hydrogeological conditions in an alluvial system, the shallow Gwydir River alluvial aquifer (located in Northern New South Wales, Australia); and 2) analyze the relationship between hydrochemical conditions and the composition of stygofauna assemblages in the aquifer. Using hydrochemical modeling and multivariate analyses, four main hydrogeological situations were defined as occurring in the aquifer. Bores were classified as having either a high, low or no influence from or exchange with the river. The latter group was further subdivided into those of low and high salinity. Further analysis combining the biological and hydrochemical data identified two main groups of samples. The first group was composed mainly of samples related to the aquifer groundwater which had higher richness and abundance of fauna compared to samples in the second group which was comprised of samples affected by stream water leakage and samples related to the highest salinities. These results suggest that more stable conditions (mainly related to steadier groundwater head levels) and lower nitrate concentrations promoted a more diverse and abundant stygofauna community.

  16. Hydrogeochemical Modelling for Groundwater in Neyveli Aquifer, Tamil Nadu, India, Using PHREEQC: A Case Study

    SciTech Connect

    Chidambaram, S.; Anandhan, P.; Prasanna, M. V.; Ramanathan, AL.; Srinivasamoorthy, K.; Senthil Kumar, G.

    2012-09-15

    Sophisticated geochemical models have been used to describe and predict the chemical behaviour of complex natural waters and also to protect the groundwater resources from future contamination. One such model is used to study the hydrogeochemical complexity in a mine area. Extraction of groundwater from the coastal aquifer has been in progress for decades to mine lignite in Neyveli. This extraction has developed a cone of depression around the mine site. This cone of depression is well established by the geochemical nature of groundwater in the region. 42 groundwater samples were collected in a definite pattern and they were analysed for major cations, anions and trace elements. The saturation index (SI) of the groundwater for carbonate, sulphate and silica minerals was studied and it has been correlated with the recharge and the discharge regions. The SI of alumino silicates has been used to decipher the stage of weathering. The SI{sub Gibbsite} - SI{sub K-feldspar} has been spatially distributed and the regions of discharge and recharge were identified. Then two flow paths A1 and A2 were identified and inverse modelling using PHREEQC were carried out to delineate the geochemical process that has taken place from recharge to discharge. The initial and final solutions in both the flow paths were correlated with the thermodynamic silicate stability diagrams of groundwater and it was found that the state of thermodynamic stability of the end solutions along the flow path were approaching similar states of equilibrium at the discharge.

  17. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem.

  18. Chemical Source Tracking of Bacterial Contamination Using Micropollutants - A Karst Aquifer Case Study

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Schiperski, Ferry; Stange, Claudia; Tiehm, Andreas; Scheytt, Traugott

    2015-04-01

    Karst aquifers are important drinking water resources in many parts of the world, though they are well known for their high vulnerability to contamination. Rainfall and snowmelt often trigger temporary contamination of karst water resources. Free-range animal breeding and application of manure on the one hand and sewage leakage or spillage on the other hand are usually regarded as main sources for fecal contamination. But distinction of their respective contributions is difficult. This study investigates the feasibility to track the origin of fecal contamination from the occurrences of indicator bacteria and chemical source indicators in karst spring water. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (combined sewer system) are known to impact water quality at the spring. There is no free-range animal breeding in the catchment but intense application of manure. Following two heavy rainfall events with overflow of the stormwater detention basin, spring water was sampled over several days. Samples were analysed for indicator bacteria (total Coliform, E. coli, Enterococci) and 57 micropollutants, among them cyclamate and metazachlor. For the Gallusquelle catchment the artificial sweetener cyclamate and the herbicide metazachlor have been established as source specific indicators, the former for the sewer system and the latter for cropland. Though recharge in the Gallusquelle catchment is predominantly diffuse, there is a significant portion of direct recharge reflected by distinct breakthrough curves for cyclamate and metazachlor. The breakthrough of indicator bacteria coincides very well with the occurrence of both, cyclamate and metazachlor. However, indicator bacteria cannot be unambiguously tracked back to a specific source.

  19. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    NASA Astrophysics Data System (ADS)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  20. Future groundwater extraction scenarios for an aquifer in a semiarid environment: case study of Guadalupe Valley Aquifer, Baja California, Northwest Mexico.

    PubMed

    Campos-Gaytan, Jose Ruben; Kretzschmar, Thomas; Herrera-Oliva, Claudia Soledad

    2014-11-01

    Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984-2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007-2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.

  1. Future groundwater extraction scenarios for an aquifer in a semiarid environment: case study of Guadalupe Valley Aquifer, Baja California, Northwest Mexico.

    PubMed

    Campos-Gaytan, Jose Ruben; Kretzschmar, Thomas; Herrera-Oliva, Claudia Soledad

    2014-11-01

    Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984-2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007-2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region. PMID:25086715

  2. Managed Aquifer Recharge of Surplus Desalinated Seawater: a MARSOL Case Study from Israel

    NASA Astrophysics Data System (ADS)

    Kurtzman, Daniel; Ganot, Yonatan; Russak, Ammos; Nitzan, Ido; Bernstein, Anat; Katz, Yoram; Guttman, Yossi

    2015-04-01

    MARSOL is an EU-funded project on demonstrating managed aquifer recharge (MAR) as a solution to water scarcity and drought. Among other activities in MARSOL, 7 demo-sites in Mediterranean countries were chosen for research and demonstration of different types of MAR (e.g. soil aquifer treatment, river infiltration basins etc.). One of these demo sites is the Menashe infiltration basin (Israel) in which MAR of surplus desalinated sea water is demonstrated, monitored and investigated in the last year. Different operational circumstances create periods in which water from the Hadera seawater desalination plant cannot be distributed through the national water carrier to consumers. A solution was set in MAR of this water through sandy infiltration ponds to the Israeli coastal aquifer which is consisted mainly from calcareous sandstone. Hydrological and geochemical aspects are of interest in this MAR operation due to the high discharge rates of low-salinity chlorinated water to the infiltration pond. Monitoring of operational events, laboratory experiments, controlled field-experiments and modelling are carried out aiming at clarifying the following issues: infiltration rates - spatial and temporal variability; recharge and withdrawal operation; disinfection by-products due to infiltration of chlorinated water; changes in hydraulic properties due to dissolution/precipitation processes; and using MAR of desalinated water as a remineralization treatment. We will present some results concerning these aspects concentrating on the last one. Observations show that desalinated water dissolve carbonates relatively fast in the unsaturated zone and shallow groundwater of the infiltration site. This process which increases significantly the water's alkalinity also enriches the water with magnesium which its deficiency in desalinated seawater is an unsolved concern. Further increase in calcium and magnesium concentration requires flow in the aquifer through the calcareous

  3. Case study for delineating a contributing area to a well in a fractured siliciclastic-bedrock aquifer near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Barton, Gary J.; Risser, Dennis W.; Galeone, Daniel G.; Goode, Daniel J.

    2003-01-01

    A supply well used by the North Penn Water Authority near Lansdale, Pa., was selected as a case study for delineating a contributing area in a fractured siliciclastic-bedrock aquifer. The study emphasized the importance of refining the understanding of factors that control ground-water movement to the well by conducting (1) geophysical logging and flow measurements, (2) ground-water level monitoring, (3) aquifer testing, and (4) geochemical sampling. This approach could be applicable for other wells in siliciclastic-bedrock terranes, especially those of Triassic age in southeastern Pennsylvania. The principal methods for refining the understanding of hydrology at supply well MG-1125 were aquifer testing, water-level measurements, and geophysical logging. Results of two constant-discharge aquifer tests helped estimate the transmissivity of water-producing units and evaluate the anisotropy caused by dipping beds. Results from slug tests provided estimates of transmissivity that were used to evaluate the results from the constant-discharge aquifer tests. Slug tests also showed the wide distribution of transmissivity, indicating that ground-water velocities must vary considerably in the well field. Water-level monitoring in observation wells allowed maps of the potentiometric surface near the well field to be drawn. The measurements also showed that the hydraulic gradient can change abruptly in response to pumping from nearby supply wells. Water levels measured at a broader regional scale in an earlier study also provided a useful view of the potentiometric surface for purposes of delineating the contributing area. Geophysical logging and measurements of flow within wells showed that about 60 percent of water from supply well MG-1125 probably is contributed from relatively shallow water-producing fractures from 60 to 125 feet below land surface, but measurable amounts of water are contributed by fractures to a depth of 311 feet below land surface. Chemical samples

  4. Delineating groundwater aquifer and subsurface structures by using geoelectrical data: Case study (Dakhla Oasis, Egypt)

    NASA Astrophysics Data System (ADS)

    Mohamaden, Mahmoud Ismail Ismail

    2016-06-01

    Geoelectric technique has been used to detect the subsurface stratigraphy and structures around Dakhla Oasis, Egypt. 1D inversion approach has been applied to interpret the geoelectrical data obtained along 10 vertical electrical soundings (VES) using the well known Schlumberger array of AB/2 with electrode spacing varying from 3 to 400 m in successive steps. A preliminary quantitative interpretation of the vertical electrical sounding curves was achieved firstly by using two-layer standard curves and generalized Cagniard graphs. The final models were obtained in 1D using IPI2 WIN program. The modeling results were used to construct a geoelectrical section. Three geoelectric units were identified: The superficial geoelectrical layer is composed mainly of sand and gravel with relatively high resistivity values (7.61-346 Ω m) and thin thicknesses (0.252-9.19 m), of late Pleistocene to Holocene (Quaternary deposits). The second geoelectrical layer is composed of shale (Dakhla Shale). It is characterized by relatively very low electrical resistivity values (0.3-8.68 Ω m). The maximum depth of this layer ranges from 4.18 to 56.4 m. The Nubian sandstone (upper aquifer) third layer with moderate electrical resistivity values (68.5-1585 Ω m) can be detected at the maximum depth of penetration.

  5. Mapping global vulnerability index in mining sectors: A case study Moulares-Redayef aquifer system, southwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Khelif, Nadia; Jmal, Ikram; Bouri, Salem

    2016-09-01

    Contrary to the DRASTIC model grouping together the saturated and unsaturated zones to compute a global intrinsic vulnerability index, the global vulnerability index method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping for the saturated zones. This concept depends on the behavior and the uses of the groundwater. The main aim of this study is to propose a scientific basis for sustainable land use planning and groundwater management of the Moulares-Reayef aquifer, located in Southwestern Tunisia. The overexploitation of this aquifer causes the threat of groundwater quality by various sources of pollution. The global vulnerability index was applied in the Moulares-Reayef aquifer. The results show that the most favorable zones to pollutant percolation are situated along the wadis (Tabaddit, Zallaz, Berka, …) which are drained by continuous discharges. The global vulnerability values were correlated with nitrates values for validation. It revealed a significant correlation showing that high values of nitrates occurred in highly vulnerable zones with a value of 0.69 for the Pearson coefficient. The global vulnerability evaluation shows that the aquifer is characterized by high vertical vulnerability and high susceptibility.

  6. Groundwater flow and transport modeling: A case study of alluvial aquifer in the Tuul River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Dandar, Enkhbayar; Carrera, Jesús; Nemer, Buyankhishig

    2016-04-01

    The Tuul River basin is located northern Mongolia. It includes Ulaanbaatar city, which hosts 48% of Mongolian population. Water supply to the city relies exclusively on groundwater withdrawn from alluvial aquifers along the Tuul River Basin. Water demand of the city has increased recently as a result of rapid industrial development and population growth due to migration from rural areas. The aim of this study is to characterize the aquifer by integrating existing data in a flow model. Unfortunately, existing data are not sufficient for unequivocal identification of model parameters (groundwater recharge, permeability, lateral inflow, etc.). Fluctuations of water temperature have been recognized as a natural tracer that may be used for hydrogeological characterization and model calibration. Temperatures within the aquifer are affected by the temperature of inflowing water as well as by conduction from the soil surface, which we suspect may control aquifer temperatures. Properly acknowledging these fluctuations would require a three dimensional model. Instead, we propose a semianalytical solution based on the use of memory and influence functions.

  7. Turbidity and nitrate transfer in karstic aquifers in rural areas: the Brionne Basin case-study.

    PubMed

    Nebbache, S; Feeny, V; Poudevigne, I; Alard, D

    2001-08-01

    The degradation of water quality in many groundwaters of Europe is a major source of concern. Rises in turbidity and nitrate concentrations represent present or potential threats for the quality of drinking water in rural areas. They are for the most part a consequence of agricultural intensification which has considerably affected land cover and land use in recent decades. In our case-study (a karstic catchment) the mechanisms which explain changes in water quality, as far as turbidity and nitrate are concerned, result from a strong continuity between surface and underground waters. The karstic system of the Brionne Basin can be considered as both the focus of rapid horizontal flows (runoff, a rapid process in which rainwater reaches the spring directly through sinkholes) and slow vertical flows (leaching, in which rainwater filters through the soil to the spring). A hierarchical approach to the water pollution problem of the basin suggests that turbidity or nitrate concentrations peak during heavy rain episodes and are short-term events. In terms of management, this implies that the solution to water pollution caused by such events is also short-term and can therefore be addressed at a local scale. The rise of nitrate concentrations during the past twenty years is the main concern. The solution can only be found at a global scale (all the catchment area must be taken in account: land plots and their spatial configuration), and by taking a long-term approach.

  8. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    NASA Astrophysics Data System (ADS)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  9. PTC simulations, stochastic optimization and safety strategies for groundwater pumping management: case study of the Hersonissos Coastal Aquifer in Crete

    NASA Astrophysics Data System (ADS)

    Stratis, P. N.; Dokou, Z. A.; Karatzas, G. P.; Papadopoulou, E. P.; Saridakis, Y. G.

    2016-06-01

    Recently, the well-known Princeton Transport Code (PTC), a groundwater flow and contaminant transport simulator, has been coupled with the ALgorithm of Pattern EXtraction (ALOPEX), a real-time stochastic optimization method, to provide a freshwater pumping management tool for coastal aquifers, aiming in preventing saltwater intrusion. In our previous work (Proceedings of INASE/CSCC-WHH 2015, Recent Advances in Environmental and Earth Sciences and Economics, pp 329-334, 2015), the PTC-ALOPEX approach was used in studying the saltwater contamination problem for the coastal aquifer at Hersonissos, Crete. Extending these results, in the present study the PTC-ALOPEX approach is equipped with a nodal safety strategy that effectively controls saltwater front's advancement inside the aquifer. In cooperation with an appropriate penalty system, the performance of PTC-ALOPEX algorithm is studied considering several pumping and weather condition scenarios. This study also establishes pumping/well scenarios that ensure the needed volume of fresh water to the local community without risking saltwater contamination.

  10. Development of unconfined conditions in multi-aquifer flow systems: a case study in the Rajshahi Barind, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; Zaman, M. Asaduz

    2016-08-01

    Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.

  11. Options of sustainable groundwater supply from safe aquifers in areas with elevated arsenic - a case study from Bangladesh

    NASA Astrophysics Data System (ADS)

    Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.

    2008-05-01

    Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be

  12. Groundwater Modeling of Fractured Aquifers in Mines: The Case Study of Gavorrano (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Garzonio, Carlo Alberto; Piccinini, Leonardo; Gargini, Alessandro

    2014-05-01

    In this paper, we describe the hydrogeological problems related to the closure of the mine at Gavorrano (Tuscany, Italy). The geological and geo-structural settings of the Gavorrano area affect the groundwater flow systems and their chemical composition; hence, the settings also affect the chance and modalities to rehabilitate and re-utilize these water resources. This paper reports the results of studies, analyses of existing data and the consequent implementation of preliminary numerical models with particular reference to the effects of controlled water recovery and the complex measures required for stopping dewatering. The study incorporates recent data and the available historical records in an analysis of the hydrodynamic impact of water recovery and an assessment of the consequences of water recovery for water resources restoration. The applied numerical simulations have been demonstrated to be a promising and effective tool for planning and managing the future applications of groundwater recovery in the Gavorrano mining area. Using these applications, it will be possible to implement mitigation measures and types of re-use that consider thermal, chemical and discharge features.

  13. Cross-well slug testing in unconfined aquifers: A case study from the Sleepers River Watershed, Vermont

    USGS Publications Warehouse

    Belitz, K.; Dripps, W.

    1999-01-01

    Normally, slug test measurements are limited to the well in which the water level is perturbed. Consequently, it is often difficult to obtain reliable estimates of hydraulic properties, particularly if the aquifer is anisotropic or if there is a wellbore skin. In this investigation, we use partially penetrating stress and observation wells to evaluate specific storage, radial hydraulic conductivity and anisotropy of the aquifer, and the hydraulic conductivity of the borehole skin. The study site is located in the W9 subbasin of the Sleepers River Research Watershed, Vermont. At the site, ~3 m of saturated till are partially penetrated by a stress well located in the center of the unconfined aquifer and six observation wells located above, below, and at the depth of the stress well at radial distances of 1.2 and 2.4 m. The observation wells were shut in with inflatable packers. The semianalytical solution of Butler (1995) was used to conduct a sensitivity analysis and to interpret slug test results. The sensitivity analysis indicates that the response of the stress well is primarily sensitive to radial hydraulic conductivity, less sensitive to anisotropy and the conductivity of the borehole skin, and nearly insensitive to specific storage. In contrast, the responses of the observation wells are sensitive to all four parameters. Interpretation of the field data was facilitated by generating type curves in a manner analogous to the method of Cooper et al. (1967). Because the value of radial hydraulic conductivity is obtained from a match point, the number of unknowns is reduced to three. The estimated values of radial hydraulic conductivity and specific storage are comparable to those derived from the methods of Bouwer and Rice (1976) and Cooper et al. (1967). The values and skin conductivity, however, could not have been obtained without the use of observation wells.Normally, slug test measurements are limited to the well in which the water level is perturbed

  14. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    NASA Astrophysics Data System (ADS)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  15. Mapping of groundwater quality in the Turonian aquifer of Oum Er-Rabia Basin, Morocco: a case study

    NASA Astrophysics Data System (ADS)

    Ettazarini, Said

    2006-08-01

    This study takes the groundwater of the Moroccan limestone aquifer of Oum Er-Rabia as an example of statistical and cartographical approaches in water resources management. Statistical analyses based on frequency distribution and PCA methods revealed the homogeneity of waters with the existence of abnormal points and have helped to assess correlations between the studied variables. The mapping approach illustrated that waters are influenced by the lithology of the surrounding rocks and are of Ca Mg HCO3, Ca Mg Cl SO4, and mixed types according to the Piper classification. The quality of water is of high to medium, north of the basin, but it is of medium to bad, NE and south, due to excessive contents of chloride, sulfate and nitrate. According to the US Salinity Laboratory classification, water used for irrigation in the eastern and the southern parts of the basin should take into consideration the drainage conditions, the nature of plants and the addition of gypsum doses.

  16. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving

  17. The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA.

    PubMed

    Ryan, Peter C; West, David P; Hattori, Keiko; Studwell, Sarah; Allen, David N; Kim, Jonathan

    2015-02-01

    Elevated As occurs in many meta-sedimentary bedrock aquifers where elevated bulk-rock As content is one of the primary controls on the concentration of As in groundwater. This study was designed to determine As concentrations in a black shale, black slate and black phyllite sequence that comprises the bedrock aquifer system of the Taconic Mountain region of southwestern Vermont and adjacent New York State. Variability in groundwater As concentrations provides the impetus for this study: 25% of wells in weakly metamorphosed shales and slates (study and previous research indicates that depletion of As from metapelites tends to occur once the rocks reach upper chlorite zone or lower biotite zone, corresponding to metamorphic temperatures of ~250-350 °C. This suggests that, in the absence of subsequent hydrothermal mineralization (e.g. arsenopyrite in late-stage veins), metapelites metamorphosed to upper chlorite zone or higher will be less likely to foster elevated As in groundwater compared to their lower-grade shale and slate counterparts.

  18. The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA.

    PubMed

    Ryan, Peter C; West, David P; Hattori, Keiko; Studwell, Sarah; Allen, David N; Kim, Jonathan

    2015-02-01

    Elevated As occurs in many meta-sedimentary bedrock aquifers where elevated bulk-rock As content is one of the primary controls on the concentration of As in groundwater. This study was designed to determine As concentrations in a black shale, black slate and black phyllite sequence that comprises the bedrock aquifer system of the Taconic Mountain region of southwestern Vermont and adjacent New York State. Variability in groundwater As concentrations provides the impetus for this study: 25% of wells in weakly metamorphosed shales and slates (study and previous research indicates that depletion of As from metapelites tends to occur once the rocks reach upper chlorite zone or lower biotite zone, corresponding to metamorphic temperatures of ~250-350 °C. This suggests that, in the absence of subsequent hydrothermal mineralization (e.g. arsenopyrite in late-stage veins), metapelites metamorphosed to upper chlorite zone or higher will be less likely to foster elevated As in groundwater compared to their lower-grade shale and slate counterparts. PMID:24867678

  19. Groundwater stress and vulnerability in rural coastal aquifers under competing demands: a case study from Sri Lanka.

    PubMed

    Jayasekera, Dumindu L; Kaluarachchi, Jagath J; Villholth, Karen G

    2011-05-01

    Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO(3)-N), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km(2) per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth. PMID:20559710

  20. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla

    NASA Astrophysics Data System (ADS)

    Saggaï, Sofiane; Bachi, Oum Elkheir; Saggaï, Ali

    2016-07-01

    In Ouargla's oasis, which is one of urban conglomerations of Algerian Sahara, the exploitation and/or the overexploitation of the deep aquifers of continental intercalary and of complex terminal that contain waters of mediocre quality (salty and hot), and the rejection of waters of drainage, urban residual waters and non-treated industrial waters are responsible, at the same time, of the degradation of the quality of waters of the groundwater and its upwelling. This situation has led to: (i) the deterioration of the environment and (ii) the deterioration of constructions (houses, roads, etc…). The present paper consists in giving in detail the causes of the water upwelling of phreatic aquifers in our regions, the quality of water of this aquifer and the influence of the quality of phreatic aquifer water on environment and constructions in Ouargla city by analyzing water samples of 10 points of this town.

  1. Groundwater studies: principal aquifer surveys

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth

    2014-01-01

    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  2. The diagnostic plot analysis of artesian aquifers with case studies in Table Mountain Group of South Africa

    NASA Astrophysics Data System (ADS)

    Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang

    2015-05-01

    Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.

  3. Inferring the interconnections between surface water bodies, tile-drains and an unconfined aquifer-aquitard system: A case study

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Di Giuseppe, D.; Faccini, B.; Ferretti, G.; Mastrocicco, M.; Coltorti, M.

    2016-06-01

    Shallow lenses in reclaimed coastal areas are precious sources of freshwater for crop development, but their seasonal behaviour is seldom known in tile-drained fields. In this study, field monitoring and numerical modelling provide a robust conceptual model of these complex environments. Crop and meteorological data are used to implement an unsaturated flow model to reconstruct daily recharge. Groundwater fluxes and salinity, water table elevation, tile-drains' discharge and salinity are used to calibrate a 2D density-dependent numerical model to quantify non-reactive solute transport within the aquifer-aquitard system. Results suggest that lateral fluxes in low hydraulic conductivity sediments are limited, while water table fluctuation is significant. The use of depth-integrated monitoring to calibrate the model results in poor efficiency, while multi-level soil profiles are crucial to define the mixing zone between fresh and brackish groundwater. Measured fluxes and chloride concentrations from tile-drains not fully compare with calculated ones due to preferential flow through cracks.

  4. Modeling of nitrate concentration in groundwater using artificial intelligence approach--a case study of Gaza coastal aquifer.

    PubMed

    Alagha, Jawad S; Said, Md Azlin Md; Mogheir, Yunes

    2014-01-01

    Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making.

  5. Numerical evaluation of community-scale aquifer storage, transfer and recovery technology: A case study from coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Barker, Jessica L. B.; Hassan, Md. Mahadi; Sultana, Sarmin; Ahmed, Kazi Matin; Robinson, Clare E.

    2016-09-01

    Aquifer storage, transfer and recovery (ASTR) may be an efficient low cost water supply technology for rural coastal communities that experience seasonal freshwater scarcity. The feasibility of ASTR as a water supply alternative is being evaluated in communities in south-western Bangladesh where the shallow aquifers are naturally brackish and severe seasonal freshwater scarcity is compounded by frequent extreme weather events. A numerical variable-density groundwater model, first evaluated against data from an existing community-scale ASTR system, was applied to identify the influence of hydrogeological as well as design and operational parameters on system performance. For community-scale systems, it is a delicate balance to achieve acceptable water quality at the extraction well whilst maintaining a high recovery efficiency (RE) as dispersive mixing can dominate relative to the small size of the injected freshwater plume. For the existing ASTR system configuration used in Bangladesh where the injection head is controlled and the extraction rate is set based on the community water demand, larger aquifer hydraulic conductivity, aquifer depth and injection head improve the water quality (lower total dissolved solids concentration) in the extracted water because of higher injection rates, but the RE is reduced. To support future ASTR system design in similar coastal settings, an improved system configuration was determined and relevant non-dimensional design criteria were identified. Analyses showed that four injection wells distributed around a central single extraction well leads to high RE provided the distance between the injection wells and extraction well is less than half the theoretical radius of the injected freshwater plume. The theoretical plume radius relative to the aquifer dispersivity is also an important design consideration to ensure adequate system performance. The results presented provide valuable insights into the feasibility and design

  6. Can We Mitigate Climate Extremes using Managed Aquifer Recharge: Case Studies California Central Valley and South-Central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Faunt, C. C.; Pool, D. R.; Uhlman, K.

    2015-12-01

    Frequent long-term droughts interspersed with intense floods in the southwestern U.S. underscore the need to store more water to manage these climate extremes. Here we show how managed aquifer recharge can enhance drought resilience in the southwestern U.S. with ~ 70% of California under extreme drought and 75% of Arizona under moderate drought. Data on water sources, transportation, and users were compiled for managed aquifer recharge systems in the Central Valley and south-central Arizona. Groundwater depletion of 115 to 145 km3 in the 1900s created large subsurface reservoirs in thick alluvial basins in these regions. Large canals and aqueducts up to several 100 km long allow water to be imported from reservoirs, mostly in more humid regions. Imported water is either used instead of groundwater or is applied in surface spreading basins primarily during wet periods (≤1.3 km3/yr Central Valley, ≤0.7 km3/yr Arizona) and is extracted during droughts. The dominant water users include irrigators and municipalities both within and outside the managed aquifer recharge systems. Groundwater modeling indicates that recharge basins significantly increase groundwater storage in the Central Valley. Managed aquifer recharge systems significantly enhance drought resilience and increase sustainability of water resources in semiarid regions, complementing surface water reservoirs and conjunctive surface water/groundwater use by providing longer term storage.

  7. Evidence of Hydrogeological Connection between the Mountain and Plio-Plistocene Aquifer Systems, Using Pharmaceutical Residual- case study Jericho area/Lower Jordan Valley

    NASA Astrophysics Data System (ADS)

    Marei, Amer; Schmidt, Natali; Tiehm, Andreas

    2013-04-01

    Jericho Oases (-258 m b.s.l) is known through the history for its fertile soil, date trees, and sweet fruits. Groundwater is the only water sources for domestic and agricultural activities, where about 8 MCM/a discharge form three major springs groups, in addition to 20 MCM are taped from 45 shallow boreholes (10-180 m) in the Plio-Plistocene aquifer system. The current and future availability of groundwater of the shallow Plio-Plistocene aquifer system is the key factor for the economical development of agricultural sector, where during the last 10 years around 50 million USD are invested in this sector. Green houses agriculture, and date trees farming become the major groundwater consumers. From the hydrological point view, the study area is part of the eastern Wadi Al Quilt drainage system, where recharge take place along the mountain range in the western part of the catchment area. The shallow aquifer system consists of gravel; sand and silt inter fingering with clay layers. Chalk and chalky limestone formation of Senonian age separate the shallow aquifer from Mountain aquifer which consists of limestone, and dolomite. Both aquifer systems are part from the Eastern Basin where groundwater flows towards the Jordan River-Dead Sea basin. Direct recharge from rainfall to the shallow aquifer system is neglected due to the high evaporation rates, and only about 1 MCM/a of flooding water infiltrate into this aquifer. The hypotheses of this study is an indirect groundwater replenishment take places in certain sites along the N-S-major fault system, and groundwater flow through passages into the Plio-Plistocene aquifer systems. We tried to use pharmaceutical residuals to trace groundwater flow regimes in the Mountain and Plio-Plistocene aquifer system. Twenty eight water samples were collected during the hydrological year 2011 (in March and July) from 19 sampling sites (springs and boreholes). Few samples were collected from Al Bereh waste water treatment plant as well

  8. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  9. Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer

    USGS Publications Warehouse

    Medina, C.R.; Rupp, J.A.; Barnes, D.A.

    2011-01-01

    The Upper Cambrian Mount Simon Sandstone is recognized as a deep saline reservoir that has significant potential for geological sequestration in the Midwestern region of the United States. Porosity and permeability values collected from core analyses in rocks from this formation and its lateral equivalents in Indiana, Kentucky, Michigan, and Ohio indicate a predictable relationship with depth owing to a reduction in the pore structure due to the effects of compaction and/or cementation, primarily as quartz overgrowths. The regional trend of decreasing porosity with depth is described by the equation: ??(d)=16.36??e-0.00039*d, where ?? is the porosity and d is the depth in m. The decrease of porosity with depth generally holds true on a basinwide scale. Bearing in mind local variations in lithologic and petrophysical character within the Mount Simon Sandstone, the source data that were used to predict porosity were utilized to estimate the pore volume available within the reservoir that could potentially serve as storage space for injected CO2. The potential storage capacity estimated for the Mount Simon Sandstone in the study area, using efficiency factors of 1%, 5%, 10%, and 15%, is 23,680, 118,418, 236,832, and 355,242 million metric tons of CO2, respectively. ?? 2010 Elsevier Ltd.

  10. Characterizing and Modelling Preferential Flow Path in Fractured Rock Aquifer: A Case Study at Shuangliou Fractured Rock Hydrogeology Research Site

    NASA Astrophysics Data System (ADS)

    Hsu, Shih-Meng; Ke, Chien-Chung; Lo, Hung-Chieh; Lin, Yen-Tsu; Huang, Chi-Chao

    2016-04-01

    On the basis of a relatively sparse data set, fractured aquifers are difficult to be characterized and modelled. The three-dimensional configuration of transmissive fractures and fracture zones is needed to be understood flow heterogeneity in the aquifer. Innovative technologies for the improved interpretation are necessary to facilitate the development of accurate predictive models of ground-water flow and solute transport or to precisely estimate groundwater potential. To this end, this paper presents a procedure for characterizing and modelling preferential flow path in the fractured rock aquifer carried out at Fractured Rock Hydrogeology Research Site in Shuangliou Forest Recreation Area, Pingtung County, Southern Taiwan. The Shuangliou well field is a 40 by 30-meter area consisting of 6 wells (one geological well, one pumping well and four hydrogeological testing wells). The bedrock at the site is mainly composed of slate and intercalated by meta-sandstone. The overburden consists of about 5.6 m of gravel deposits. Based on results of 100 m geological borehole with borehole televiewer logging, vertical flow logging and full-wave sonic logging, high transmissivity zones in the bedrock underlying the well field were identified. One of transmissivity zone (at the depths of 30~32 m) and its fracture orientation(N56/54) selected for devising a multiple well system with 4 boreholes (borehole depths :45m, 35m, 35m and 25m, respectively), which were utilized to perform cross-borehole flow velocity data under the ambient flow and pumped flow conditions to identify preferential flow paths. Results from the cross-borehole test show the preferential flow pathways are corresponding to the predicted ones. Subsequently, a 3-D discrete fracture network model based on outcrop data was generated by the FracMan code. A validation between observed and simulated data has proved that the present model can accurately predict the hydrogeological properties (e.g., number of fractures

  11. Case study for delineating a contributing area to a water-supply well in a fractured crystalline-bedrock aquifer, Stewartstown, Pennsylvania

    USGS Publications Warehouse

    Barton, Gary J.; Risser, Dennis W.; Galeone, Daniel G.; Conger, Randall W.

    1999-01-01

    The Trouts Lane well field in Stewartstown, Pa., was selected as a case study for delineating a contributing area in a fractured crystalline-bedrock aquifer. The study emphasized the importance of refining the understanding of boundary conditions and major heterogeneities that affect ground-water movement to the supply well by conducting (1) fracture-trace mapping, (2) borehole logging and flow measurements, (3) ground-water level monitoring, (4) aquifer testing, and (5) geochemical sampling. Methods and approach used in this study could be applicable for other wells in crystalline-bedrock terranes in southeastern Pennsylvania. Methods of primary importance for refining the understanding of hydrology at the Trouts Lane well field were the aquifer tests, water-level measurements, and geophysical logging. Results from the constant-discharge aquifer test helped identify a major north-south trending hydraulic connection between supply well SW6 and a domestic-supply well. Aquifer-test results also indicated fractures that transmit most water to the supply well are hydraulically well-connected to the shallow regolith and highly weathered schist. Results from slug tests provided estimates of transmissivity and the nonuniform distribution of transmissivity throughout the well field, indicating the water-producing fractures are not evenly distributed and ground-water velocities must vary considerably throughout the well field.Water levels, which were easy to measure, provided additional evidence of hydraulic connections among wells. More importantly, they allowed the water-table configuration to be mapped. Borehole geophysics and flow measurements within the well were very useful because results indicated water entered supply well SW6 through bedrock fractures at very shallow depths?less than 60 ft below land surface; therefore, the area providing recharge to the well is probably in the immediate vicinity. Preliminary delineations of the contributing area and the 90-day

  12. Analytical Versus Numerical Estimates of Water-Level Declines Caused by Pumping, and a Case Study of the Iao Aquifer, Maui, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Meyer, William

    2001-01-01

    Comparisons were made between model-calculated water levels from a one-dimensional analytical model referred to as RAM (Robust Analytical Model) and those from numerical ground-water flow models using a sharp-interface model code. RAM incorporates the horizontal-flow assumption and the Ghyben-Herzberg relation to represent flow in a one-dimensional unconfined aquifer that contains a body of freshwater floating on denser saltwater. RAM does not account for the presence of a low-permeability coastal confining unit (caprock), which impedes the discharge of fresh ground water from the aquifer to the ocean, nor for the spatial distribution of ground-water withdrawals from wells, which is significant because water-level declines are greatest in the vicinity of withdrawal wells. Numerical ground-water flow models can readily account for discharge through a coastal confining unit and for the spatial distribution of ground-water withdrawals from wells. For a given aquifer hydraulic-conductivity value, recharge rate, and withdrawal rate, model-calculated steady-state water-level declines from RAM can be significantly less than those from numerical ground-water flow models. The differences between model-calculated water-level declines from RAM and those from numerical models are partly dependent on the hydraulic properties of the aquifer system and the spatial distribution of ground-water withdrawals from wells. RAM invariably predicts the greatest water-level declines at the inland extent of the aquifer where the freshwater body is thickest and the potential for saltwater intrusion is lowest. For cases in which a low-permeability confining unit overlies the aquifer near the coast, however, water-level declines calculated from numerical models may exceed those from RAM even at the inland extent of the aquifer. Since 1990, RAM has been used by the State of Hawaii Commission on Water Resource Management for establishing sustainable-yield values for the State?s aquifers. Data

  13. Integrated characterization of groundwater contamination in an alluvial system. Case study of Allier alluvial aquifer (Massif Central, France).

    NASA Astrophysics Data System (ADS)

    Mohammed, Nabaz; Celle-Jeanton, Hélène; Batisson, Isabelle; Bardot, Corinne; Colombet, Jonathan; Huneau, Frédéric; Le Coustumer, Philippe; Clauzet, Marie-Laure; Lavastre, Véronique

    2013-04-01

    Hydrogeology is an intrinsically multi-disciplinary field because of the critical role water plays in both human health and natural ecosystems. The NAA (Nappe Alluviale de l'Allier) project proposes an integrated research (hydrodynamic, hydrochemistry and biology) on the shallow aquifer of the Allier River (one of the main tributaries of the Loire River). This aquifer plays an important role in the regional water supply for it represents more than 60% of the total water abstraction. As an example, the sampling site, located near the city of Clermont-Ferrand (France) constitutes the major source of drinking water supply for more than 100 000 inhabitants and then plays a major role on the local socio-economy. A biweekly following sampling, that concerns hydrodynamical parameters, major ions and isotopes (oxygen-18, deuterium and carbon-13), has been achieved during two years on 2 rivers, 1 pond, 2 springs and 17 boreholes with the aim of defining the functioning of the aquifer in terms of quality and quantity of the water resources and then on the main processes that governs hydrodynamic and hydrochemistry. Preliminary results allowed discriminating different origins of groundwater with a part due to surface waters/groundwater interactions and a secondary origin that implies water circulating from the surrounding hills. A monthly following sampling of pesticides, pharmaceuticals and traces ions provides information on contaminants sources. In parallel, the dynamics of the microbial communities (bacteria, pico-cyanobacteria and pico-eukaryotes) was followed by flow cytometer. The bacterial diversity has been measured through PCR-DGGE analysis in order to evaluate the impact of the occurrence of contaminants.

  14. Response to Comment by H. Lough, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, on the Paper " Stream Depletion Predictions using Pumping Test Data from A Heterogeneous Stream-Aquifer System (A Case Study from the Gr

    SciTech Connect

    Kollet, S J; Zlotnik, V A

    2004-12-20

    We thank H. Lough for her interest in our data set and the attempt to re-analyze our results (Kollet and Zlotnik, 2003) using the recent model by Hunt (2003). We welcome others to share our unique data set of the pumping test from the Prairie Creek site, Nebraska, USA. Nevertheless we believe that this particular attempt failed, because H. Lough selected a wrong model of semi-confined aquifer conditions for the interpretation of the pumping test data, which was collected in an unconfined aquifer. H. Lough based her selection on the three distinct drawdown segments observed during the test. It is well known that geologically distinct aquifers can yield a three-segment drawdown response under pumping conditions (e.g., Streltsova, 1988). Examples include unconfined aquifers (e.g., Neuman, 1972; Moench, 1997), aquifers with double porosity or fractures (e.g., Barenblatt et al., 1960; Boulton and Streltsova-Adams, 1978), and (semi-) confined aquifers in contact with aquitards (e.g. Cooley and Case, 1973; Moench, 1985). At the Prairie Creek site the aquifer is unconfined. The interpretation of the pumping test data collected at the site using type curves that are valid for an aquifer-aquitard system is a mistake. In fact, this approach illustrates a typical problem associated with inverse modeling: drastically different models can closely reproduce a system response and yield some parameter estimates, although the models do not represent the real system adequately. Here, the improper model yields some parameter estimates for an aquitard, although the aquitard does not exist at the Prairie Creek test site. We must also unequivocally state that the model by Hunt (2003) is clearly formulated and correct for stream-aquifer-aquitard systems within the stated limitations (pumping wells screened only in the lowest stratigraphic layer, etc.). However, the Hunt (1999) or BZT (Butler et al., 2001) models should be used for interpreting pumping tests near streams in non

  15. A Geohydrologic Analysis of an Upland-Dome Aquifer System, a Case Study of Ester Dome, Alaska

    NASA Astrophysics Data System (ADS)

    Youcha, E. K.; Lilly, M. R.; Hinzman, L. D.

    2001-12-01

    We are investigating the Ester Dome upland-dome aquifer system located seven miles west of Fairbanks, Alaska. The bedrock of the Fairbanks area is composed primarily of pre-Cambrian to mid-Paleozoic metamorphic rocks of the Yukon-Tanana metamorphic complex (Forbes, 1982). Common geomorphic structures in the Tanana-Yukon Uplands are bedrock domes. Igneous intrusives underlie many of Interior Alaska's dome structures. The Fairbanks Mining District is dominated by either upland bedrock aquifers or valley alluvial aquifers. The geohydrology of an upland dome is characterized by open boundaries. A typical watershed approach is to define a drainage system and define no-flow boundaries. Alaska Interior dome systems are the inverse of this approach. Boundaries are more likely to be all discharging ground water and surface water. A ground-water monitoring network of 50 observation wells on Ester Dome allows us to obtain field data to help interpret upland-dome geohydrologic processes. Seasonal and pumping water-level fluctuations occur in several wells, but many wells show no seasonal or short-term variation in water levels. Geologic variation on Ester Dome helps explain these differences. Ester Dome consists of four major stratigraphic units: quaternary alluvial and eolian deposits, Fairbanks Schist, Muskox Amphibolite and Schist, and cretaceous plutonic rocks. Additionally, permafrost is present in much of the low-lying valleys and north-facing slopes of the dome. Water levels in wells will exhibit different responses since the hydrogeologic properties of each unit differ. Snow surveys and precipitation recorders were established at varying elevations on Ester Dome to examine the changes in precipitation spatially and to evaluate recharge processes. In general, precipitation on the dome increases with elevation. The amount of unknown information on Ester Dome makes simplified analysis approaches harder to evaluate taking into account all the possible geohydrologic models

  16. Ecohydrological effects of stream-aquifer water interaction: a case study of the Heihe River basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Jia, Binghao; Qin, Peihua; Chen, Yaning

    2016-06-01

    A scheme describing the process of stream-aquifer interaction was combined with the land model CLM4.5 to investigate the effects of stream water conveyance over riparian banks on ecological and hydrological processes. Two groups of simulations for five typical river cross sections in the middle reaches of the arid-zone Heihe River basin were conducted. The comparisons between the simulated results and the measurements from water wells, the FLUXNET station, and remote sensing data showed good performance of the coupled model. The simulated riparian groundwater table at a propagation distance of less than 1 km followed the intra-annual fluctuation of the river water level, and the correlation was excellent (R2 = 0.9) between the river water level and the groundwater table at the distance 60 m from the river. The correlation rapidly decreased as distance increased. In response to the variability of the water table, soil moisture at deep layers also followed the variation of river water level all year, while soil moisture at the surface layer was more sensitive to the river water level in the drought season than in the wet season. With increased soil moisture, the average gross primary productivity and respiration of riparian vegetation within 300 m from the river in a typical section of the river increased by approximately 0.03 and 0.02 mg C m-2 s-1, respectively, in the growing season. Consequently, the net ecosystem exchange increased by approximately 0.01 mg C m-2 s-1, and the evapotranspiration increased by approximately 3 mm day-1. Furthermore, the length of the growing season of riparian vegetation also increased by 2-3 months due to the sustaining water recharge from the river. Overall, the stream-aquifer water interaction plays an essential role in the controlling of riparian hydrological and ecological processes.

  17. In situ microcosms in aquifer bioremediation studies.

    PubMed

    Mandelbaum, R T; Shati, M R; Ronen, D

    1997-07-01

    The extent to which aquifer microbiota can be studied under laboratory or simulated conditions is limited by our inability to authentically duplicate natural conditions in the laboratory. Therefore, extrapolation of laboratory results to real aquifer situations is often criticized, unless validation of the data is performed in situ. Reliable data acquisition is critical for the estimation of chemical and biological reaction rates of biodegradation processes in groundwater and as input data for mathematical models. Typically, in situ geobiochemical studies relied on the injection of groundwater spiked with compounds or bacteria of interest into the aquifer, followed by monitoring the changes over time and space. In situ microcosms provide a more confined study site for measurements of microbial reactions, yet closer to natural conditions than laboratory microcosms. Two basic types of in situ aquifer microcosm have been described in recent years, and both originated from in situ instruments initially designed for geochemical measurements. Gillham et al. [Ground Water 28 (1990) 858-862] constructed an instrument that isolates a portion of an aquifer for in situ biochemical rate measurements. More recently Shati et al. [Environ. Sci. Technol. 30 (1996) 2646-2653] modified a multilayer sampler for studying the activity of inoculated bacteria in a contaminated aquifer Keeping in mind recent advances in environmental microbiology methodologies such as immunofluorescence direct counts, oligonucleotide and PCR probes, fatty acid methyl esther analysis for the detection and characterization of bacterial communities, measurement of mRNA and expression of proteins, it is evident that much new information can now be gained from in situ work. Using in situ microcosms to study bioremediation efficiencies, the fate of introduced microorganisms and general geobiochemical aquifer processes can shed more realistic light on the microbial underworld. The aim of this paper is to

  18. A new artificial recharge approach using direct push wells for aquifer storage and recovery in near-surface aquifers: A case study in the Lower Republican River basin, Kansas

    NASA Astrophysics Data System (ADS)

    Liu, G.; Knobbe, S.; Reboulet, E. C.; Whittemore, D. O.; Händel, F.; Butler, J. J., Jr.

    2014-12-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. In recent years, interest in ASR has increased due to various concerns such as declining groundwater resources, vulnerability of surface water supplies to contamination and reservoir sedimentation, and unfavorable projections of future climate change. In this study, we evaluate a new recharge method for ASR in near-surface unconsolidated aquifers using small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR was compared with a surface infiltration basin at a field site in the Lower Republic River basin, north-central Kansas. Initial DP-based characterization of the shallow, unconsolidated subsurface indicates that both the vadose and saturated zones have many low permeability silt and clay layers constraining vertical flow. The performance of the surface basin as a recharge approach was poor at the test site due to the presence of a continuous clay layer at a depth of 1.5 to 3 m, which prevented the downward movement of infiltrated water and significantly reduced the recharge capacity of the basin. The DP well, on the other hand, penetrated through this clay layer and was able to recharge water at a much higher rate without use of a pump (water moved by gravity alone). Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. The low cost of DP wells can significantly expand the applicability of ASR as a water resources management tool to regions with limited resources, such as many small municipalities and rural communities. Our field results have clearly demonstrated the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.

  19. Use of treated wastewater for managed aquifer recharge in highly populated urban centers: a case study in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abiye, Tamiru Alemayehu; Sulieman, Hameed; Ayalew, Michael

    2009-07-01

    Fast population growth and rapid industrialization, on one hand, and lack of sewerage network and poor living condition, on the other, have led to the deterioration of surface and ground water quality in the city of Addis Ababa. The urban wastewater is discharged largely into streams that drain the city. Only less than 3% join the wastewater treatment facilities. Due to sporadic rainfall that causes shortage in groundwater recharge, managed aquifer recharge (MAR) experiment was tested on soil column collected from Akaki Well Field which is located in the southern part of the city using water from the Big Akaki River that crosses the same well field and effluent from Kaliti Wastewater Treatment Plant. Water quality analysis for 17 different parameters was done for both the inflow and outflow water samples and soils were tested for electrical conductivity and cation exchange capacity. The results indicate improved water quality as a result of higher attenuation/filtration capacity of the vadose zone in the well field due to the presence of vertisols. The main geochemical processes that have acted in the soil column could be cation exchange, dissolution, precipitation, oxidation, nitrification, die off etc. that are responsible for the effectiveness of vadose zone for MAR.

  20. Distribution of nitrogen species in groundwater aquifers of an industrial area in alluvial Indo-Gangetic Plains--a case study.

    PubMed

    Singh, Kunwar P; Singh, Vinod K; Malik, Amrita; Basant, Nikita

    2006-10-01

    The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO(3)-N), nitrite-nitrogen (NO(2)-N), ammonical-nitrogen (NH(4)-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO(3)-N, NO(2)-N, NH(4)-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84-202.16, 1.39-198.97 and 8.89-219.43 mg l(-1), respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l(-1) for NO(3)-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.

  1. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey)

    NASA Astrophysics Data System (ADS)

    Sener, Erhan; Sener, Sehnaz; Davraz, Aysen

    2009-12-01

    Aquifer vulnerability has been assessed in the Senirkent-Uluborlu Basin within the Egirdir Lake catchment (Turkey) using the DRASTIC method, based on a geographic information system (GIS). There is widespread agriculture in the basin, and fertilizer (nitrate) and pesticide applications have caused groundwater contamination as a result of leaching. According to hydrogeological data from the study area, surface water and groundwater flow are towards Egirdir Lake. Hence, aquifer vulnerability in the basin should be determined by water quality in Egirdir Lake. DRASTIC layers were prepared using data such as rainfall, groundwater level, aquifer type, and hydraulic conductivity. These data were obtained from hydrogeological investigations and literature. A regional-scale aquifer-vulnerability map of the basin was prepared using overlay analysis with the aid of GIS. A DRASTIC vulnerability map, verified by nitrate in groundwater data, shows that the defined areas are compatible with land-use data. It is concluded that 20.8% of the basin area is highly vulnerable and urgent pollution-preventions measures should be taken for every kind of relevant activity within the whole basin.

  2. Declining water budget in a deep regional aquifer assessed by geostatistical simulations of stable isotopes: Case study of the Saharan "Continental Intercalaire"

    NASA Astrophysics Data System (ADS)

    Gonçalvès, Julio; Vallet-Coulomb, Christine; Petersen, Jade; Hamelin, Bruno; Deschamps, Pierre

    2015-12-01

    The stable isotopes of water were used to improve the determination of the groundwater budget of the deep Saharan "Continental Intercalaire" (CI), a deep confined aquifer. Mixing processes between the CI and shallower aquifers have been described in several regional studies over the last few decades, based on observed isotopic differences between local water masses. Here, we improve the quantitative determination of the discharge flux of this aquifer in one of its main outlet regions, the Djeffara plain in Tunisia, based on geostatistics and a simple mass balance mixing model, applied before and after the beginning of extensive pumping in the 1970s. First, the average values of δ18O and δ2H were precisely documented in the mixing zone between CI water and the local recharge, based on conditional simulations using spatially distributed isotopic data. Together with the available estimate of local recharge and conservative hypotheses on the isotopic end-members, we estimate the discharge flux of the CI in the Djeffara plain at 1.78 ± 1.03 m3 s-1 in 1970, probably near natural steady-state, reduced to 1.02 ± 0.58 m3 s-1 in 2004 under strong anthropogenic pressure, related to the drastic increase in pumping rates in the deep CI aquifer during this period. Considering the general groundwater budget over the entire CI aquifer, we estimate a recharge value of 5.13 m3 s-1, or 6.5 mm yr-1 over the 25,000 km2 of recharge area in the Saharan Atlas. This value is in line with the evaluation of 2.1 mm yr-1 obtained recently from the GRACE satellite gravity data for the overall outcrops considering that recharge occurs mostly in the Atlas region.

  3. Basin-fill Aquifer Modeling with Terrestrial Gravity: Assessing Static Offsets in Bulk Datasets using MATLAB; Case Study of Bridgeport, CA

    NASA Astrophysics Data System (ADS)

    Mlawsky, E. T.; Louie, J. N.; Pohll, G.; Carlson, C. W.; Blakely, R. J.

    2015-12-01

    Understanding the potential availability of water resources in Eastern California aquifers is of critical importance to making water management policy decisions and determining best-use practices for California, as well as for downstream use in Nevada. Hydrologic well log data can provide valuable information on aquifer capacity, but is often proprietarily inaccessible or economically unfeasible to obtain in sufficient quantity. In the case of basin-fill aquifers, it is possible to make estimates of aquifer geometry and volume using geophysical surveys of gravity, constrained by additional geophysical and geological observations. We use terrestrial gravity data to model depth-to-basement about the Bridgeport, CA basin for application in preserving the Walker Lake biome. In constructing the model, we assess several hundred gravity observations, existing and newly collected. We regard these datasets as "bulk," as the data are compiled from multiple sources. Inconsistencies among datasets can result in "static offsets," or artificial bull's-eye contours, within the gradient. Amending suspect offsets requires the attention of the modeler; picking these offsets by hand can be a time-consuming process when modeling large-scale basin features. We develop a MATLAB script for interpolating the residual Bouguer anomaly about the basin using sparse observation points, and leveling offset points with a user-defined sensitivity. The script is also capable of plotting gravity profiles between any two endpoints within the map extent. The resulting anomaly map provides an efficient means of locating and removing static offsets in the data, while also providing a fast visual representation of a bulk dataset. Additionally, we obtain gridded basin gravity models with an open-source alternative to proprietary modeling tools.

  4. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Mace, Robert E.; Barrett, Michael E.; Smith, Brian

    2003-05-01

    Various approaches can be used to simulate groundwater flow in karst systems, including equivalent porous media distributed parameter, lumped parameter, and dual porosity approaches, as well as discrete fracture or conduit approaches. The purpose of this study was to evaluate two different equivalent porous media approaches: lumped and distributed parameter, for simulating regional groundwater flow in a karst aquifer and to evaluate the adequacy of these approaches. The models were applied to the Barton Springs Edwards aquifer, Texas. Unique aspects of this study include availability of detailed information on recharge from stream-loss studies and on synoptic water levels, long-term continuous water level monitoring in wells throughout the aquifer, and spring discharge data to compare with simulation results. The MODFLOW code was used for the distributed parameter model. Estimation of hydraulic conductivity distribution was optimized by using a combination of trial and error and automated inverse methods. The lumped parameter model consists of five cells representing each of the watersheds contributing recharge to the aquifer. Transient simulations were conducted using both distributed and lumped parameter models for a 10-yr period (1989-1998). Both distributed and lumped parameter models fairly accurately simulated the temporal variability in spring discharge; therefore, if the objective of the model is to simulate spring discharge, either distributed or lumped parameter approaches can be used. The distributed parameter model generally reproduced the potentiometric surface at different times. The impact of the amount of pumping on a regional scale on spring discharge can be evaluated using a lumped parameter model; however, more detailed evaluation of the effect of pumping on groundwater levels and spring discharge requires a distributed parameter modeling approach. Sensitivity analyses indicated that spring discharge was much more sensitive to variations in

  5. Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA)

    NASA Astrophysics Data System (ADS)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Padilla, Ingrid Y.; Alshawabkeh, Akram

    2016-04-01

    In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.

  6. Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA)

    NASA Astrophysics Data System (ADS)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Padilla, Ingrid Y.; Alshawabkeh, Akram

    2016-09-01

    In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.

  7. A new approach for the assessment of groundwater quality and its suitability for irrigation: a case study of the Korba Coastal Aquifer (Tunisia, Africa).

    PubMed

    El Ayni, Foued; Cherif, Semia; Jrad, Amel; Trabelsi-Ayadi, Malika

    2012-08-01

    Groundwater is the main source of water in Mediterranean, water-scarce, semiarid regions of Tunisia, Africa. In this study of the Korba coastal aquifer, 17 water wells were studied to assess their suitability for irrigation and drinking purposes. Assessment parameters include pH, salinity, specific ion toxicity, sodium adsorption ratio, nutrients, trace metals pollutants, and fecal indicators and pathogens. Results indicate that salinity of groundwater varied between 0.36 dS/m and 17.4 dS/m; in addition, its degree of restriction is defined as "none", "slight to moderate", and "severe" for 18, 23, and 59% of the studied wells, respectively. To control salts brought in by irrigation waters, the question arises as to how much water should be used to reach crop and soil requirements. To answer this question, a new approach that calculates the optimum amount of irrigation water considering the electrical conductivity of well water (ECw), field crops, and the semiarid meteorological local conditions for evapotranspiration and rainfall is developed. This is applied to the authors' case study area; barley and lettuce were selected among the commonly grown crops because they are high- and low-salinity tolerant, respectively. Leaching requirements were found to be independent of the crop selected, and depend only on the season, that is, 250 to 260 mm/month in the driest season, with a minimum of 47 mm/month though all seasons. A high bacteriological contamination appears in almost all samples. However, if disinfected and corrected for pH, all the well waters can be used for animal farming (including livestock and poultry), although only 29% could be used for human consumption.

  8. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  9. Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia)

    NASA Astrophysics Data System (ADS)

    Kouzana, Lamia; Benassi, Ramdhane; Ben mammou, Abdallah; Sfar felfoul, Mennoubi

    2010-09-01

    Coastal aquifers serve as major sources for freshwater supply in many countries around the world, especially in arid and semi arid zones. The fact that coastal zones contain some of the densely populated areas in the world makes the need for freshwater even more acute. The intensive extraction of groundwater from coastal aquifers reduces freshwater outflow to the sea and creates local water aquifer depression, causing seawater migration inland and rising toward the wells. This phenomenon, called seawater intrusion, has become one of the major constraints imposed on groundwater utilization. As seawater intrusion progresses, existing pumping wells become saline and have to be abandoned. In this paper, we have the results of the seawater intrusion study of the Korba aquifer by the geophysical and hydrochemical methods. In order to locate the zones affected by saltwater intrusion, 38 Vertical electrical sounding (VES) were distributed over the coastal area between Korba and Oued Lebna. The interpretation of these electric soundings using Winsev software, based on mechanical boreholes, carry out iso-resistivity and iso-depth maps of seawater intrusion. The maps of apparent iso-resistivity having different lengths of line and the pseudosections differentiate dry grounds, grounds saturated with fresh water and those saturated with brackish water and saltwater. Mapping of the boundaries between freshwater and saltwater is an ideal application for resistivity surveys because of the high electrical conductivity of the saltwater and its contrast with that of fresh water. The correlation of the different electric surveys allowed realizing geo-electric sections showing the vertical configuration of seawater intrusion. It comes out from this study that saltwater intrusion reached approximately a distance of 3 km inland. The high groundwater salinity anomaly observed in Diar El Hajjej, Garaet Sassi and Takelsa-Korba zones was explained by the presence of seawater intrusion in

  10. Studies and projections of hydraulic conductivity of Devonian Plavinu and Daugava carbonate aquifers in Latvia

    NASA Astrophysics Data System (ADS)

    Perkone, E.; Delina, A.; Saks, T.; Raga, B.; Jātnieks, J.; Klints, I.; Popovs, K.; Babre, A.; Bikše, J.; Kalvāns, A.; Retike, I.; Ukass, J.

    2012-04-01

    Carbonate aquifers show a very wide range of hydrogeological characteristics. Carbonate rock hydrogeology display two extremes: on one hand hydrogeological properties of the carbonates are governed by the pathways of the preferential groundwater flow typical in karstic regions, on the other - some carbonate aquifers behave almost like a homogeneous, isotropic, porous medium. Most lie between these extremes, but these case variations complicates the study of carbonate aquifer properties. In this study the results of the hydraulic conductivity in carbonate aquifers measurements, hydraulic conductivity correlation between sediments lithology and the aquifer surface depth and fractures research is presented. Upper Devonian Frasnian stage Pļaviņu and Daugava carbonate aquifers in the Latvian part of the Baltic basin is considered. The aim of this research is to elaborate characteristic hydraulic conductivity values for each aquifer based on existing data of the pumping test results and other aquifer properties. Pļaviņu and Daugava carbonate aquifers mainly consist of jointed dolomite with intermediate layers of dolomitic marlstone, limestone, clays and gypsum. These aquifers are prevalent in most of the study area, except Northern and South - Eastern parts of the territory. In geological structure Daugava aquifer lies above Pļaviņu aquifer. Daugava aquifer depth changes from 10 - 20 and even less meters in Eastern part to 250 - 300 m in South - West part of study area, but thickness varies from few meters to 30 m. Pļaviņu aquifer surface depth varies from 20 - 30 m, but in uplands surface depth reaches more than 120 m, in Eastern part to more than 300 m in South - West part of study area. Aquifer average thickness varies from 20 - 40 m, but in areas with buried valleys thickness can be less than 10 meters. Outcrops of these sediments are occurring in banks of largest rivers and in some areas aquifers are karstified. In studies of the carbonate aquifers it is

  11. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)

    NASA Astrophysics Data System (ADS)

    Gastmans, Didier; Hutcheon, Ian; Menegário, Amauri Antônio; Chang, Hung Kiang

    2016-04-01

    Groundwater from the fractured basalt Serra Geral Aquifer (SGA) represents an important source for water supply in Northeastern São Paulo state (Brazil). Groundwater flow conditions in fractured aquifers hosted in basaltic rocks are difficult to define because flow occurs through rock discontinuities. The evaluation of hydrodynamic information associated with hydrochemical data has identified geochemical processes related to groundwater evolution, observed in regional flowpaths. SGA groundwaters are characterized by low TDS with pH varying from neutral to alkaline. Two main hydrochemical facies are recognized: Ca-Mg-HCO3, and Na-HCO3 types. Primarily, the geochemical evolution of SGA groundwater occurs under CO2 open conditions, and the continuous uptake of CO2 is responsible for mineral dissolution, producing bicarbonate as the main anion, and calcium and magnesium in groundwater. Ion exchange between smectites (Na and Ca-beidelites) seems to be responsible for the occurrence of Na-HCO3 groundwater. Toward the Rio Grande, in the northern portion of the study area, there is mixing between SGA groundwater and water from the sandstones of the Guarani Aquifer System, as evidenced by the chemical and isotopic composition of the groundwater. Inverse mass balance modeling performed using NETPATH XL produces results in agreement with the dissolution of minerals in basalt (feldspars and pyroxenes) associated with the uptake of atmospheric CO2, as well as the dissolution of clay minerals present in the soil. Kaolinite precipitation occurs due to the incongruent dissolution of feldspars, while Si remains almost constant due to the precipitation of silica. The continuous uptake of CO2 under open conditions leads to calcite precipitation, which in addition to ion exchange are responsible by Ca removal from groundwater and an increase in Na concentrations. Down the flow gradientCO2 is subject to closed conditions where the basalts are covered by the sediments of Bauru Group or

  12. A Comparison of deterministic and probabilistic approaches for assessing risks from contaminated aquifers: an Italian case study.

    PubMed

    Rivera-Velasquez, Maria Fernanda; Fallico, Carmine; Guerra, Ignazio; Straface, Salvatore

    2013-12-01

    In this article we consider the methods of deterministic and probabilistic risk analysis regarding the presence of chemical contaminants in soil, water and air, with a broader meaning than usual for the latter, as we extended the probabilistic treatment to the parameters that influence the transport to a greater extent, in particular hydraulic conductivity and partition coefficient. These parameters, to which only one value is assigned, are considered here as random variables. The objective of the study reported herein was to demonstrate that application of the probabilistic method of risk assessment is preferable to the use of the deterministic method. Both methods yield contaminant removal levels that will reduce adverse effects on human health and the environment, but results from the deterministic method are typically more conservative than necessary, and are thus more costly to achieve. In addition, we found it essential to consider the importance of random variables (the parameters influencing the flow and the transport), such as the hydraulic conductivity and the partition coefficient, when assessing health risks. Both methodologies of health risk analysis, deterministic and probabilistic, were applied to a site in southern Italy, contaminated by heavy metals. The results obtained confirm the purposes of this study. PMID:24293229

  13. A Comparison of deterministic and probabilistic approaches for assessing risks from contaminated aquifers: an Italian case study.

    PubMed

    Rivera-Velasquez, Maria Fernanda; Fallico, Carmine; Guerra, Ignazio; Straface, Salvatore

    2013-12-01

    In this article we consider the methods of deterministic and probabilistic risk analysis regarding the presence of chemical contaminants in soil, water and air, with a broader meaning than usual for the latter, as we extended the probabilistic treatment to the parameters that influence the transport to a greater extent, in particular hydraulic conductivity and partition coefficient. These parameters, to which only one value is assigned, are considered here as random variables. The objective of the study reported herein was to demonstrate that application of the probabilistic method of risk assessment is preferable to the use of the deterministic method. Both methods yield contaminant removal levels that will reduce adverse effects on human health and the environment, but results from the deterministic method are typically more conservative than necessary, and are thus more costly to achieve. In addition, we found it essential to consider the importance of random variables (the parameters influencing the flow and the transport), such as the hydraulic conductivity and the partition coefficient, when assessing health risks. Both methodologies of health risk analysis, deterministic and probabilistic, were applied to a site in southern Italy, contaminated by heavy metals. The results obtained confirm the purposes of this study.

  14. Impact of CO2 concentration on autotrophic metabolisms and carbon fate in saline aquifers - A case study

    NASA Astrophysics Data System (ADS)

    Dupraz, Sebastien; Fabbri, Antonin; Joulian, Catherine; Dictor, Marie-Christine; Battaglia-Brunet, Fabienne; Ménez, Bénédicte; Crouzet, Catherine; Henry, Benoît; Garrido, Francis

    2013-10-01

    The purpose of this study was to identify and quantify the fate and speciation of carbon that can occur in mixtures of geological media (crushed rock) and autotrophic microbial communities. A sulfate reducing bacterium (Desulfotomaculum geothermicum) and a methanogenic archaeon (Methanothermococcus thermolithotrophicus) were both tested separately and together, with and without crushed sedimentary rock (carbonaceous sandstone) for different CO2 partial pressures (0.22, 0.88, 3.52, and 8 bar) at 54 °C in saline artificial groundwater. In order to quantify the respective metabolic activities, the inorganic gases of interest (H2, CH4, H2S and CO2) were measured and the speciation of carbon was assessed by measuring volatile, non-purgeable, total and dissolved organic carbon as well as total and dissolved inorganic carbon. Despite a protective effect of the mineral matrix, the results showed a high sensitivity of autotrophic microorganisms to the stress induced by pressures of CO2 superior to one bar and revealed that a part of this stress was due to direct toxic effects. M. thermolithotrophicus demonstrated a better tolerance to CO2 and was dominating the consortia. This ascendancy was interpreted as resulting from equilibrium displacement due to transport effects of methane between the liquid and gas phases. Abiotic dissolution was observed but some biomineralization processes of carbonates were also identified for D. geothermicum. Both strains displayed very different patterns in their conversion of inorganic carbon: while M. thermolithotrophicus was mainly producing methane, D. geothermicum induced the formation of biomass. The availability of crushed rock increased the proportion of sessile biofilms. All these results were analyzed in correlation with a successful PHREEQC simulation and demonstrate the strong influence of the microbial activities and diversity on the carbon fate in the immediate surroundings of geological CCS storage zones.

  15. Lineaments: Their value in assessing groundwater availability and quality in bedrock aquifers of glaciated metamorphic terrains. A case study

    SciTech Connect

    Mabee, S.B.

    1992-01-01

    A lineament analysis for Georgetown, Maine, a 44 km[sup 2] island community situated on the central Maine coast, was performed to evaluate the relationship between mapped lineaments and (1) outcrop fractures, (2) well productivity (35 wells), and (3) groundwater quality determined from a sample of 87 existing bedrock wells. Lineaments were drawn by three observers using two scales of imagery (SLAR and a 1:80,000 Aerial Photograph). Rigorous reproducibility testing indicates that the ability of individual observers to reproduce lineaments at the same geographic location is low; more than 55% of all lineaments mapped by any observer were not reproducible. This casts doubt as to how many lineaments may be considered real features. In addition, when azimuthal sets of near-vertical outcrop fractures are compared with reproducible lineament domains of similar azimuth on a regional basis, distinct areas of overlap are defined across the island. The extent of this overlap is not uniform. In regard to well productivity, wells located [open quotes]on[close quotes] lineaments, specifically those lineaments showing a geographic correlation with similar-trending fracture domains, are generally more productive than non-lineament wells. If the same analysis is repeated, but is performed without considering whether or not the lineaments used in the analysis are geographically correlative with fracture domains, no differences are observed between the productivities of lineament and non-lineament wells. However, in this study, other geologic factors exhibit strong influences on high productivity in bedrock wells. Groundwater chemistry is controlled primarily by bedrock type, topographic setting, structural position, and overburden type and thickness. The chemical character of groundwater sampled from bedrock wells is generally not influenced by the proximity of a well to a lineament.

  16. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge. PMID:26774392

  17. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge.

  18. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    NASA Astrophysics Data System (ADS)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  19. Feasibility studies of aquifer thermal energy storage

    SciTech Connect

    Hall, S. H.

    1993-01-01

    Determining the feasibility of using aquifer thermal energy storage (ATES) for a particular heating or cooling application is an interdisciplinary effort, requiring (at a minimum) expertise in engineering and hydrology. The feasibility study should proceed in two distinct stages. The first stage, which is limited in scope and detail, is intended to show if an ATES system is technically and economically suited to the application. Focus of this preliminary investigation is on revealing the existence of factors that might weigh heavily against the use of ATES methods, and, in the absence of such factors, on choosing a suitable scale for the ATES plant and well field. The results of the preliminary investigation are used to determine if more detailed investigation--including field studies--are justified, and to facilitate comparing the advantages of ATES to those of other means of providing heating or cooling. The second stage of the feasibility study focuses on detailed aquifer characterization, refinement of engineering design and cost estimates, and economic and environmental risk analysis. The results of this investigation, if favorable, will be used to justify the expense of constructing the ATES system.

  20. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer

    NASA Astrophysics Data System (ADS)

    Kass, A.; Gavrieli, I.; Yechieli, Y.; Vengosh, A.; Starinsky, A.

    2005-01-01

    Differences in the impact of irrigation with freshwater versus wastewater on the underlying shallow groundwater quality were investigated in the Coastal Aquifer of Israel. Seven research boreholes were drilled to the top-most 3-5 m of the saturated zone (the water table region-WTR) in the agricultural fields. The unsaturated zone and the WTR below the irrigated fields consist mainly of clayey sands, while the main aquifer comprises mainly of calcareous sandstones and sands. We show that the salinity and composition of the groundwater at the WTR are highly variable over a distance of less than 1 km and are controlled by the irrigating water and the processes in the overlying unsaturated zone. Tritium data in this groundwater (4.6 tritium units (TU)) support that these water are modern recharge. The water at the WTR is more saline and has a different chemical composition relative to the overlying irrigation water. High SAR values (sodium adsorption ratio) in wastewater irrigation lead to absorption of Na + onto the clay and release of Ca 2+ into the recharging water, resulting in low Na/Cl (0.4 compared to 1.2 in the wastewater) and high Ca/Cl ratios. In contrast, in the freshwater-irrigated field the irrigation water pumped from the aquifer (Na/Cl=0.9; SAR=0.6) is modified into Na-rich groundwater (Na/Cl=2.0) due to reverse base-exchange reactions. The high NO 3 concentration (>100 mg/l) in the WTR below both fields is derived from the agricultural activities. In the freshwater field, the source of NO 3 is fertilizer leachates, whereas in the wastewater field, where less fertilizers are applied, nitrate is probably derived from nitrification of the NH 4 in the wastewater. Some of the original inorganic nitrogen in the wastewater is consumed by the agricultural plants, resulting in a lower inorganic-N/Cl ratio in the WTR as compared to that in the wastewater. This study demonstrates the important role of the composition of irrigation water, combined with lithology

  1. Hydraulic head applications of flow logs in the study of heterogeneous aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    2001-01-01

    Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.

  2. Assessing different airborne EM systems for delivering information on aquifer geometry and character: A case study from the Musgrave Province South Australia

    NASA Astrophysics Data System (ADS)

    Munday, T. J.; Ley-Cooper, A. Y.

    2012-12-01

    When developing their pre-competitive data bases in support of the minerals industry, State and Federal Government agencies in Australia are now looking at the conjunctive use of airborne geophysics. This is particularly so for AEM data sets, which are now being acquired to promote exploration. This reflects a recognition that in the arid regions of Australia development of a given mineral deposit will, in part, be determined by the availability of water to support mining and mineral processing. An emerging trend, linked to the availability of new data processing procedures, sees AEM data now being actively employed for a combination of applications linked to minerals exploration including geological mapping, aquifer characterization and groundwater assessment. New surveys are being commissioned with attention being given as to whether AEM systems are capable of resolving the complexity of aquifer systems. In addition to new surveys, historical AEM data sets acquired to target potential mineralization are being re-processed for groundwater related applications. As part of the South Australian Goyder FLOWS project, regional and local scale AEM data sets are being examined to develop hydrogeological conceptual models in the remote Musgrave Province in the States north. The work has required the re-processing of historical data, including those acquired by TEMPEST, HoisTEM and VTEM. More recently, the project also acquired co-incident data from several new AEM systems, including the new SkyTEM508 (a helicopter TDEM system) and the SPECTREM2000 (a fixed wing TDEM system). Their acquisition aims to inform State agencies about options for acquiring further pre-competitive AEM data to support mineral exploration whilst also addressing groundwater resource requirements for the region. In this paper we examine the results from a comparative study of these systems for defining the variability of aquifers that are expected to provide the main source of groundwater for any

  3. Salinization in a stratified aquifer induced by heat transfer from well casings

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir

    2015-12-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased

  4. Contamination of fluoride in groundwater and its effect on human health: a case study in hard rock aquifers of Siddipet, Telangana State, India

    NASA Astrophysics Data System (ADS)

    Narsimha, A.; Sudarshan, V.

    2016-06-01

    Hydrogeochemical investigation has been carried out in the granitic terrain of Siddipet area, Medak district, Telangana State, India with an aim to understand the distribution of fluoride in the groundwater and to understand the relationship of fluoride with other major ions, and also to identify the high fluoride-bearing groundwater zones. 104 groundwater samples were analyzed in the study area for fluoride and other major ions like calcium, magnesium, chloride, carbonate, bicarbonate, sodium, potassium, sulfate, and nitrate in addition to pH and electrical conductivity. The studies revealed that the concentration of fluoride in groundwater is ranging from 0.2 to 2.2 mg L-1 with a mean of 1.1 mg L-1. Nearly 22 % of groundwater has more than the permissible limit of fluoride (1.5 mg L-1), which is responsible for the endemic dental fluorosis in the area concerned. Geochemical classification of groundwater shows that Na-HCO3, Ca-Cl, and Ca-HCO3-Na are the dominant hydrochemical facies. Gibbs diagram shows rock-water interaction dominance and evaporation dominance, which are responsible for the change in the quality of water in the hard rock aquifer of the study area. The groundwater in villages and its environs are affected by fluoride contamination, and consequently majority of the population living in these villages suffer from dental fluorosis. Hence, they are advised to consume drinking water which has less than 1.5 mg L-1 fluoride to avoid further fluorosis risks.

  5. Isotopic and hydrogeochemical characterization of high-altitude karst aquifers in complex geological settings. The Ordesa and Monte Perdido National Park (Northern Spain) case study.

    PubMed

    Lambán, L J; Jódar, J; Custodio, E; Soler, A; Sapriza, G; Soto, R

    2015-02-15

    The Ordesa and Monte Perdido National Park, located in the Southern Pyrenees, constitutes the highest karst system in Western Europe. No previous studies regarding its geochemical and isotopic groundwater characterization are available in this area. This work presents the results of field and sampling campaigns carried out between July 2007 and September 2013. The groundwater presents high calcium bicarbonate contents due to the occurrence of upper Cretaceous and lower Paleocene-Eocene carbonate materials in the studied area. Other relevant processes include dissolution of anhydrite and/or gypsum and incongruent dissolution of Mg-limestone and dolomite. The water stable isotopes (δ(18)O, δ(2)H) show that the oceanic fronts from the Atlantic Ocean are responsible for the high levels of precipitation. In autumn, winter, and spring, a deuterium excess is found in the recharge water, which could be related to local atmospheric transport of low-altitude snow sublimation vapour and its later condensation on the snow surface at higher altitude, where recharge is mostly produced. The recharge zones are mainly between 2500m and 3200ma.s.l. The tritium content of the water suggests short groundwater transit times. The isotopic composition of dissolved sulphate points to the existence of regional fluxes mixed with local discharge in some of the springs. This work highlights the major role played by the altitude difference between the recharge and discharge zones in controlling the chemistry and the vertical variability of the isotopic composition in high-altitude karst aquifers. PMID:25437764

  6. Isotopic and hydrogeochemical characterization of high-altitude karst aquifers in complex geological settings. The Ordesa and Monte Perdido National Park (Northern Spain) case study.

    PubMed

    Lambán, L J; Jódar, J; Custodio, E; Soler, A; Sapriza, G; Soto, R

    2015-02-15

    The Ordesa and Monte Perdido National Park, located in the Southern Pyrenees, constitutes the highest karst system in Western Europe. No previous studies regarding its geochemical and isotopic groundwater characterization are available in this area. This work presents the results of field and sampling campaigns carried out between July 2007 and September 2013. The groundwater presents high calcium bicarbonate contents due to the occurrence of upper Cretaceous and lower Paleocene-Eocene carbonate materials in the studied area. Other relevant processes include dissolution of anhydrite and/or gypsum and incongruent dissolution of Mg-limestone and dolomite. The water stable isotopes (δ(18)O, δ(2)H) show that the oceanic fronts from the Atlantic Ocean are responsible for the high levels of precipitation. In autumn, winter, and spring, a deuterium excess is found in the recharge water, which could be related to local atmospheric transport of low-altitude snow sublimation vapour and its later condensation on the snow surface at higher altitude, where recharge is mostly produced. The recharge zones are mainly between 2500m and 3200ma.s.l. The tritium content of the water suggests short groundwater transit times. The isotopic composition of dissolved sulphate points to the existence of regional fluxes mixed with local discharge in some of the springs. This work highlights the major role played by the altitude difference between the recharge and discharge zones in controlling the chemistry and the vertical variability of the isotopic composition in high-altitude karst aquifers.

  7. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.

    PubMed

    Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain

    2016-03-01

    An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. PMID:26212855

  8. Pumping tests in nonuniform aquifers - The radially symmetric case

    USGS Publications Warehouse

    Butler, J.J.

    1988-01-01

    Traditionally, pumping-test-analysis methodology has been limited to applications involving aquifers whose properties are assumed uniform in space. This work attempts to assess the applicability of analytical methodology to a broader class of units with spatially varying properties. An examination of flow behavior in a simple configuration consisting of pumping from the center of a circular disk embedded in a matrix of differing properties is the basis for this investigation. A solution describing flow in this configuration is obtained through Laplace-transform techniques using analytical and numerical inversion schemes. Approaches for the calculation of flow properties in conditions that can be roughly represented by this simple configuration are proposed. Possible applications include a wide variety of geologic structures, as well as the case of a well skin resulting from drilling or development. Of more importance than the specifics of these techniques for analysis of water-level responses is the insight into flow behavior during a pumping test that is provided by the large-time form of the derived solution. The solution reveals that drawdown during a pumping test can be considered to consist of two components that are dependent and independent of near-well properties, respectively. Such an interpretation of pumping-test drawdown allows some general conclusions to be drawn concerning the relationship between parameters calculated using analytical approaches based on curve-matching and those calculated using approaches based on the slope of a semilog straight line plot. The infinite-series truncation that underlies the semilog analytical approaches is shown to remove further contributions of near-well material to total drawdown. In addition, the semilog distance-drawdown approach is shown to yield an expression that is equivalent to the Thiem equation. These results allow some general recommendations to be made concerning observation-well placement for pumping

  9. Determination of aquifer roof extending under the sea from variable-density flow modelling of groundwater response to tidal loading: case study of the Jahe River Basin, Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jianmei; Chen, Chongxi; Ji, Menrui

    The main task of studies on salt-water intrusion into coastal confined aquifers is to predict the position of the fresh- salt-water interface, which can be determined from the length of the aquifer roof extending under the sea. Records of groundwater level affected by tides can be used to infer hydrological conditions and determine hydraulic parameters of an aquifer extending under the sea. In this paper, a three-dimensional, variable-density groundwater flow model has been developed to determine the equivalent roof length of an aquifer extending under the sea from the tidal-effected data of groundwater level in the Jahe River Basin, Shandong Province, China. The seaward boundary is obtained by converging hydraulic head fluctuations observed in drill holes with calculated values, and the aquifer parameters in the extending zone are estimated. The impacts of aquifer roof length and aquifer parameters on the fluctuation of tidal groundwater are studied. It is concluded that the length of the aquifer roof extending under the sea should correspond with certain aquifer parameters in the extrapolation zone. Therefore, the seaward boundary determined from tidal-effect information is the equivalent boundary in hydrodynamic characteristics rather than the true boundary of the confined aquifer Les sujets principaux des études d'instrusion saline dans les aquifères confinés en zone côtière sont la prédiction de la position de l'interface entre l'eau salée et l'eau fraîche, qui peut être déterminée à partir de l'extention du toit de l'aquifère sous la mer. Les enregistrements des niveaux des eaux souterraines influencés par les marées peuvent être utilisés pour préciser les conditions hydrologiques et déterminer les paramètres hydrauliques d'un aquifère possédant une extension sous la mer. Dans cet article, un modèle tridimensionnel comprenant des eaux souterraines de densité variable a été développé pour déterminer la longueur équivalente du toit

  10. The spatial variability of nitrogen and phosphorus concentration in a sand aquifer influenced by onsite sewage treatment and disposal systems: a case study on St. George Island, Florida.

    PubMed

    Corbet, D Reide; Dillon, Kevin; Burnett, William; Schaefer, Geoff

    2002-01-01

    Groundwater from a shallow freshwater lens on St. George Island, a barrier island located in the Panhandle of Florida, eventually discharges into Apalachicola Bay or the Gulf of Mexico. Nutrient concentrations in groundwaters were monitored downfield from three onsite sewage treatment and disposal systems (OSTDS) on the island. Estimates of natural groundwater nutrient concentrations were obtained from an adjacent uninhabited island. Silicate, which was significantly higher in the imported drinking water relative to the surficial aquifer on St. George Island (12.2+/-1.9 mg Si l(-1) and 2.9+/-0.2 mg Si l(-1), respectively), was used as a natural conservative tracer. Our observations showed that nitrogen concentrations were attenuated to a greater extent than that of phosphorus relative to the conservative tracer. At the current setback distance (23 m), both nitrogen and phosphate concentrations are still elevated above natural levels by as much as 2 and 7 times, respectively. Increasing the setback distance to 50 m and raising the drainfields 1 m above the ground surface could reduce nutrient levels to natural concentrations (1.1+/-0.1 mg N l(-1), 0.20+/-0.02 mg P l(-1)).

  11. Lineaments: Their value in assessing regional groundwater availability and quality in bedrock aquifers of glaciated metamorphic terrains--A case study

    SciTech Connect

    Mabee, S.B. . Geology Dept.)

    1993-03-01

    A lineament analysis was performed for Georgetown, Maine, a 44 km[sup 2] island community on the central Maine coast in order to evaluate the relationship between mapped lineaments and (1) outcrop fractures, (2) the productivity of 35 existing bedrock wells, and (3) groundwater quality determined from a sample of 87 bedrock wells. Lineaments were drawn by three observers using two scales of imagery (SLAR and 1:80,000 Aerial Photograph). However, the extent of the overlap is not uniform. Some lineament domains (165[degree]), although reproducible, exhibit no correlation with fracture fabric whereas other lineament domains (120[degree]) only show a correlation with fracture fabric in a very limited geographic area. The productivity of wells located on'' lineaments, particularly those that geographically overlap similar-trending fracture domains, are generally more productive than non-lineament wells. However, in this, other geologic factors exhibit strong influences on high productivity in bedrock wells. Bedrock type (amphibolite) is the dominant and only statistically significant influence on well productivity followed by depth to the water table (shallow depths), proximity to lineaments (specifically those that correlate geographically with outcrop fractures), topographic position, and proximity to surface water bodies, in order of decreasing importance. Groundwater chemistry is controlled primarily by bedrock type, topographic setting, structural position, and overburden type and thickness, and not by a well's position with respect to lineaments. In this particular area of Maine, lineament analyses are generally ineffective for characterizing bedrock aquifers over large regions when more obvious and simpler explanations for the variations in chemical character of groundwater and water-bearing properties of the bedrock appear appropriate.

  12. Long-term pumping test to study the impact of an open-loop geothermal system on seawater intrusion in a coastal aquifer: the case study of Bari (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Masciale, Rita; Masciopinto, Costantino; De Carlo, Lorenzo

    2016-04-01

    The high cost and scarcity of fossil fuels have promoted the increased use of natural heat for a number of direct applications. Just as for fossil fuels, the exploitation of geothermal energy should consider its environmental impact and sustainability. Particular attention deserves the so-called open loop geothermal groundwater heat pump (GWHP) system, which uses groundwater as geothermal fluid. From an economic point of view, the implementation of this kind of geothermal system is particularly attractive in coastal areas, which have generally shallow aquifers. Anyway the potential problem of seawater intrusion has led to laws that restrict the use of groundwater. The scarcity of freshwater could be a major impediment for the utilization of geothermal resources. In this study a new methodology has been proposed. It was based on an experimental approach to characterize a coastal area in order to exploit the low-enthalpy geothermal resource. The coastal karst and fractured aquifer near Bari, in Southern Italy, was selected for this purpose. For the purpose of investigating the influence of an open-loop GWHP system on the seawater intrusion, a long-term pumping test was performed. The test simulated the effects of a prolonged withdrawal on the chemical-physical groundwater characteristics of the studied aquifer portion. The duration of the test was programmed in 16 days, and it was performed with a constant pumping flowrate of 50 m3/h. The extracted water was outflowed into an adjacent artificial channel, by means of a piping system. Water depth, temperature and electrical conductivity of the pumped water were monitored for 37 days, including also some days before and after the pumping duration. The monitored parameters, collected in the pumping and in five observation wells placed 160 m down-gradient with respect to the groundwater flow direction, have been used to estimate different scenarios of the impact of the GWHP system on the seawater intrusion by mean of a

  13. Poor understanding of the hydrogeological structure is a main cause of hand-dug wells failure in developing countries: A case study of a Precambrian basement aquifer in Bugesera region (Burundi)

    NASA Astrophysics Data System (ADS)

    Bakundukize, Charles; Mtoni, Yohana; Martens, Kristine; Van Camp, Marc; Walraevens, Kristine

    2016-09-01

    This study investigates a Precambrian basement aquifer in Bugesera region, a typical African rural area in northeastern Burundi. Domestic water supply relies on groundwater which is tapped through hand-dug wells. Despite several attempts to increase the number of water points in the area, the water demand is still far from being met as a result of the high rate of well failure. This paper seeks to understand whether the hydrogeological structure and the spatial distribution of hydraulic parameters can explain the low productivity and the high failure rate of hand-dug wells. The hydrogeological structure inferred from the interpretation of a large number of vertical electrical soundings (VES) reveals a typical sequence of geoelectrical layers, which is characterized by an overall upwards fining from the fresh basement, over the fractured/weathered basement, to the overburden or saprolite with a clay-rich layer on top. Whereas the overall aquifer potential mainly depends on the thickness of the weathered overburden, the aquifer potential for shallow hand-dug wells is determined by the hydraulic conductivity of the upper few meters of the saturated zone. This upper zone was investigated in the pumping tests. The spatial distribution of the specific capacity reveals a wide variation of hydraulic parameters, depending on the well's position in the depth profile of the aquifer's hydraulic conductivity. The thickness of the potential aquifer is highest in the central part of the study area (pegmatitic and granitic intrusions) which has the highest overall aquifer potential compared to the surrounding metasedimentary formations. However, a thick weathered overburden will increase the groundwater potential of an aquifer for deep boreholes, whereas for hand-dug wells, the productivity can only be high if the thickness of the weathered overburden is small enough, or the water table is deep enough, to allow to tap the coarse part at the base of the overburden and/or part of

  14. A study of deep aquifers underlying coastal Orange County, California

    USGS Publications Warehouse

    Moreland, Joe A.; Singer, John A.

    1969-01-01

    zone, the depth to the base of aquifers containing fresh water ranges from 1,000 to 2,500 feet below mean sea level. The aquifers are composed of fine to medium sand with locally occurring beds of coarse sand and gravel. Permeability generally ranges from less than 50 gallons per day per square foot to 300 gallons per day per square foot. Pressure head increases with depth of the aquifer to as much as 40 feet above land surface near the base of fresh water. The water is of the sodium bicarbonate type, increasing in salinity with depth. Organic material imparts an amber color to the water, which becomes more distinct with depth. A test well, drilled to 926 feet and perforated from 784 to 884 feet, yielded 1,950 gallons per minute with about 90 feet of drawdown. The water is of the sodium bicarbonate type with dissolved solids of 225 mg/1. Additional studies are needed to evaluate the possibilities of subsidence due to pumping from the deep aquifers, to determine the vertical and horizontal permeabilities of confining beds, and to monitor the changes in water quality and water level.

  15. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Xianjun; Wang, Yanxin; Ellis, Andre; Su, Chunli; Li, Junxia; Li, Mengdi; Duan, Mengyu

    2013-01-01

    SummaryStrontium isotopic compositions and major ion chemistry were used to delineate flow paths in an arsenic affected groundwater flow system in the Datong basin, China. Total of 28 samples including one spring and one river water were collected for major ions and strontium isotopic compositions and concentration analysis. The ion ratios indicate that dissolution of silicates and carbonates is the dominant geochemical process controlling the hydrochemistry of groundwater from two recharge areas at the basin margins, while the water chemistry in the center of the basin is affected by the dissolution of evaporites (including gypsum and halite). Groundwater from eastern and western margin areas have relatively high 87Sr/86Sr values ranging from 0.72114 to 0.72604 and from 0.71119 to 0.71151, which are consistent with expected values for groundwater dominantly affected by dissolution of silicates. However, in the discharge area, the groundwater samples had lower 87Sr/86Sr values and varied between 0.71016 and 0.71753. The contour map of δ87Sr in groundwater shows the general tendency of decrease from the western and eastern margin areas to the discharge area. The plot of 87Sr/86Sr vs. Sr/Na indicates that interactions between Quaternary aquifer sediment and groundwater in the recharge areas along the flow paths control the hydrochemistry and strontium isotopic compositions of groundwater. By contrast, groundwater samples from the discharge area are plotted on the mixing line, indicating that mixing of groundwater from recharge area with low 87Sr/86Sr values groundwater could be the controlling factor on their hydrochemistry and strontium isotopic compositions. Four main flow paths of groundwater were inferred from hydrochemical and isotopic data. The results of PHREEQC inverse modeling matched quite well with the results of strontium isotopic and ion compositions along the flow paths. The distribution of high arsenic groundwater in this area could be attributed to

  16. Simulation of the transfer of hydrocarbons in unconfined aquifer in tropical zone: the case of benzene

    NASA Astrophysics Data System (ADS)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Derron, Marc-Henri; Kouamé, Kan Jean

    2016-04-01

    Groundwater is the largest global reserves of continental freshwater (Bosca, 2002) and also an important source of drinking water in many parts of the world (Brassington. 2007). However, this resource is today threatened by pollution such as inadequate supply of drinking water services, inaccessibility and / or dilapidated sanitation facilities and excessive use fertilizers, and industrial wastewater and solid waste pesticides (Boubacar, 2010) and the rapid urbanization in great cities (Foster, 2001). Abidjan, the largest city in Côte d'Ivoire is also facing pollution problems such as illegal dumping of waste, waste oil spilled garages, land application of domestic and industrial wastewater, automotive workshops, overexploitation of sand in the Ebrié lagoon, open waste dump of Akouédo and the spill of about 400,000 liters of toxic waste from the ship "Probo Koala" in August 2006. The Abidjan aquifer or the Continental terminal aquifer is the main source of supply drinking water. It is mainly composed of sandy and it is an unconfined aquifer as a whole (Jourda, 1987). According to Gilli and al., (2012), the recharge of unconfined aquifers comes mostly from the infiltration of surface water including rainwater. These waters on their transport in the basement could carry certain pollutants into groundwater. Kouamé (2007) reports a potential groundwater pollution of the "Continental terminal" aquifer in Abidjan. In addition to the cases cited pollution, there has been a proliferation of service stations in the district of Abidjan and this can cause possible pollution. We deemed it necessary to conduct a study on the groundwater pollution of Abidjan by oil in general. We chose benzene to simulate organic pollution in case of accident. To observe the likely evolution of such contaminants in the subsurface, we developed hydrogeological models that couple groundwater flow and benzene transport with FEFLOW software in steady and transient states. The models are composed

  17. Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  18. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy)

    NASA Astrophysics Data System (ADS)

    Brunetti, Elio; Jones, Jon P.; Petitta, Marco; Rudolph, David L.

    2013-03-01

    The development of large-scale bedrock quarry operations often requires high-volume and long-term groundwater extraction to maintain a sustainable working environment. These dewatering activities often influence groundwater levels and flow patterns regionally. In the present study, the influence of the dewatering of the travertine quarry operations near the city of Tivoli, Italy, are quantitatively investigated through an integrated analysis of field data and numerical modeling. Lowering of regional groundwater levels in the vicinity of the quarry has led to destructive land subsidence and alterations to the flow system sustaining a hot-spring area. The study employs a finite element numerical model (FEFLOW) to evaluate and quantify the impact of the extensive dewatering on fault-controlled regional groundwater flow in the Acque Albule basin. By incorporating the physical field data and historical hydrologic information, the numerical model was calibrated against three groundwater scenarios, reproducing the effects of different exploitation activities, coupled with natural changes over the course of the quarry operation. The results indicate that groundwater withdrawals by the mining industry and by "Terme di Roma" spa resulted in the cessation of flow from the primary thermal spring and a drop in the phreatic level in the area consequently affected by land subsidence.

  19. Effectiveness of a physical barrier for contaminant control in an unconfined coastal plain aquifer: the case study of the former industrial site of Bagnoli (Naples, southern Italy).

    PubMed

    Arienzo, Michele; Allocca, Vincenzo; Manna, Ferdinando; Trifuoggi, Marco; Ferrara, Luciano

    2015-12-01

    A vertical engineered barrier (VEB) coupled with a water treatment plant was surveyed in the framework of a vast remedial action at the brownfield site of the former ILVA of Bagnoli steel making facility located in western Naples, Italy. The VEB was put in place to minimize contaminant migration from the brownfield site toward the sea at the shorelines sites of Bagnoli and Coroglio. The efficiency of the VEB was monitored through 12 piezometers, 8 at the Bagnoli shoreline and 4 at the Coroglio shoreline. Concentrations of inorganic and organic pollutants were examined in upstream and downstream groundwater relative to the VEB. The mean levels of Al, As, Fe, and Mn largely exceeded the legal limits, 10-15-fold, whereas that of Hg was up to 3-fold the rules. The VEB decreased the outlet concentrations only at certain specific location of the barrier, four times for Al, 6-fold for Hg, and by 20% for Mn with means largely exceeding the rules. At the other sites, the downstream water showed marked increases of the pollutants up to 3-fold. Outstanding levels of the hydrocarbons > 12 were detected in the inlet water with means of some hundred times the limits at both sites. Likewise most of screened inorganic pollutants, the downstream water showed marked increases of the hydrocarbons up to ~113%. The treatment plant was very effective, with removal efficiencies >80% for As, Al, Fe, and Mn. The study evidenced the need to put alternative groundwater remedial actions.

  20. Effectiveness of a physical barrier for contaminant control in an unconfined coastal plain aquifer: the case study of the former industrial site of Bagnoli (Naples, southern Italy).

    PubMed

    Arienzo, Michele; Allocca, Vincenzo; Manna, Ferdinando; Trifuoggi, Marco; Ferrara, Luciano

    2015-12-01

    A vertical engineered barrier (VEB) coupled with a water treatment plant was surveyed in the framework of a vast remedial action at the brownfield site of the former ILVA of Bagnoli steel making facility located in western Naples, Italy. The VEB was put in place to minimize contaminant migration from the brownfield site toward the sea at the shorelines sites of Bagnoli and Coroglio. The efficiency of the VEB was monitored through 12 piezometers, 8 at the Bagnoli shoreline and 4 at the Coroglio shoreline. Concentrations of inorganic and organic pollutants were examined in upstream and downstream groundwater relative to the VEB. The mean levels of Al, As, Fe, and Mn largely exceeded the legal limits, 10-15-fold, whereas that of Hg was up to 3-fold the rules. The VEB decreased the outlet concentrations only at certain specific location of the barrier, four times for Al, 6-fold for Hg, and by 20% for Mn with means largely exceeding the rules. At the other sites, the downstream water showed marked increases of the pollutants up to 3-fold. Outstanding levels of the hydrocarbons > 12 were detected in the inlet water with means of some hundred times the limits at both sites. Likewise most of screened inorganic pollutants, the downstream water showed marked increases of the hydrocarbons up to ~113%. The treatment plant was very effective, with removal efficiencies >80% for As, Al, Fe, and Mn. The study evidenced the need to put alternative groundwater remedial actions. PMID:26581607

  1. AQUIFER TESTING AND REBOUND STUDY IN SUPPORT OF THE 100-H DEEP CHROMIUM INVESTIGATION

    SciTech Connect

    SMOOT JL

    2010-11-05

    The 100-HR-3 Groundwater Operable Unit (OU) second Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 5-year review (DOEIRL-2006-20, The Second CERCLA Five-Year Review Report for the Hanford Site) set a milestone to conduct an investigation of deep hexavalent chromium contamination in the sediments of the Ringold upper mud (RUM) unit, which underlies the unconfined aquifer in the 100-H Area. The 5-year review noted that groundwater samples from one deep well extending below the aquitard (i.e., RUM) exceeded both the groundwater standard of 48 parts per billion (ppb) (Ecology Publication 94-06, Model Toxics Control Act Cleanup Statute and Regulation) and the federal drinking water standard of 100 {mu}g/L for hexavalent chromium. The extent of hexavalent chromium contamination in this zone is not well understood. Action 12-1 from the 5-year review is to perform additional characterization of the aquifer below the initial aquitard. Field characterization and aquifer testing were performed in the Hanford Site's 100-H Area to address this milestone. The aquifer tests were conducted to gather data to answer several fundamental questions regarding the presence of the hexavalent chromium in the deep sediments of the RUM and to determine the extent and magnitude of deeper contamination. The pumping tests were performed in accordance with the Description of Work for Aquifer Testing in Support of the 100-H Deep Chromium Investigation (SGW-41302). The specific objectives for the series of tests were as follows: (1) Evaluate the sustainable production of the subject wells using step-drawdown and constant-rate pumping tests. (2) Collect water-level data to evaluate the degree of hydraulic connection between the RUM and the unconfined (upper) aquifer (natural or induced along the well casing). (3) Evaluate the hydraulic properties of a confined permeable layer within the RUM.; (4) Collect time-series groundwater samples during testing to

  2. Using stable isotopes and multi-spatial variable parameters in characterising the karstic aquifer of the Ajloun area, NW-Jordan - A case study of the Tanour and Rasoun springs

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Ptak, Thomas; Licha, Tobias; Toll, Mathias; Margane, Armin; Sauter, Martin

    2015-04-01

    Key words: Karst systems, Groundwater vulnerability, Stable isotopes, Jordan. Water resources are extremely scarce in Jordan, which is considered as one of the poorest countries in the world with respect to water resources availability (UNDP 2014), with more than 90% of the country receiving less than 200 mm/year of rainfall (Al Kharadsheh et al. 2012). The most important aquifer for drinking-water purposes in Jordan is the upper Cretaceous limestone aquifer. The karstic springs of Tanour and Rasoun, located in the Ajloun governorate around 75 kilometres northwest of the capital of Amman, have been selected for this study. These springs are the main source for the local domestic water supply, with an average discharge between the years 2000 and 2012 of 200 m3/h and 60 m3/h, respectively (MWI, 2013). During the past few years, the water supply from these two springs had to be discontinued due to high contamination of the groundwater either by microbiological contaminants or by wastewater from local olive oil presses. This wastewater is locally called 'Zeebar'. Understanding of the karst aquifer system, the pathways and movement within the epikarst, and estimation of the travel and residence time within the aquifer is important for managing and evaluating the pollution risk, which affects the usability of groundwater for drinking purposes. For a better understanding of the karstic system and its behaviour, different methods are applied: 1. Analysis of the stable isotope composition of δ2H and δ18O during the winter season for both (a) Tanour and Rasoun groundwater, and (b) rainfall samples collected from several locations at different elevations within the catchment. 2. Analysis of major ion concentrations in groundwater of the Tanour and Rasoun springs. 3. Long-term measurements of different physico-chemical parameters from the Tanour and Rasoun springs (temperature, conductivity, turbidity, TOC, etc.) using multiparameter probes with telemetric data transfer. 4

  3. Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanfeng; Illman, Walter A.; Yeh, Tian-Chyi J.; Berg, Steven J.; Mao, Deqiang

    2015-06-01

    In this study, we demonstrate the effectiveness of hydraulic tomography (HT) that considers variably saturated flow processes in mapping the heterogeneity of both the saturated and unsaturated zones in a laboratory unconfined aquifer. The successive linear estimator (SLE) developed by Mao et al. (2013c) for interpreting HT in unconfined aquifers is utilized to obtain tomograms of hydraulic conductivity (K), specific storage (Ss), and the unsaturated zone parameters (pore size parameter (α) and saturated water content (θs)) for the Gardner-Russo's model. The estimated tomograms are first evaluated by visually comparing them with stratigraphy visible in the sandbox. Results reveal that the HT analysis is able to accurately capture the location and extent of heterogeneity including high and low K layers within the saturated and unsaturated zones, as well as reasonable distribution patterns of α and θs for the Gardner-Russo's model. We then validate the estimated tomograms through predictions of drawdown responses of pumping tests not used during the inverse modeling effort. The strong agreement between simulated and observed drawdown curves obtained by pressure transducers and tensiometers demonstrates the robust performance of HT that considers variably saturated flow processes in unconfined aquifers and the unsaturated zone above it. In addition, compared to the case using the homogeneous assumption, HT results, as expected, yield significantly better predictions of drawdowns in both the saturated and unsaturated zones. This comparison further substantiates the unbiased and minimal variance of HT analysis with the SLE algorithm.

  4. Initial study of thermal energy storage in unconfined aquifers. [UCATES

    SciTech Connect

    Haitjema, H.M.; Strack, O.D.L.

    1986-04-01

    Convective heat transport in unconfined aquifers is modeled in a semi-analytic way. The transient groundwater flow is modeled by superposition of analytic functions, whereby changes in the aquifer storage are represented by a network of triangles, each with a linearly varying sink distribution. This analytic formulation incorporates the nonlinearity of the differential equation for unconfined flow and eliminates numerical dispersion in modeling heat convection. The thermal losses through the aquifer base and vadose zone are modeled rather crudely. Only vertical heat conduction is considered in these boundaries, whereby a linearly varying temperature is assumed at all times. The latter assumption appears reasonable for thin aquifer boundaries. However, assuming such thin aquifer boundaries may lead to an overestimation of the thermal losses when the aquifer base is regarded as infinitely thick in reality. The approach is implemented in the computer program UCATES, which serves as a first step toward the development of a comprehensive screening tool for ATES systems in unconfined aquifers. In its present form, the program is capable of predicting the relative effects of regional flow on the efficiency of ATES systems. However, only after a more realistic heatloss mechanism is incorporated in UCATES will reliable predictions of absolute ATES efficiencies be possible.

  5. Bench-scale column experiments to study the containment of Cr(VI) in confined aquifers by bio-transformation.

    PubMed

    Shashidhar, T; Philip, Ligy; Murty Bhallamudi, S

    2006-04-17

    Bench-scale soil column experiments were conducted to study the effectiveness of Cr(VI) containment in confined aquifers using in situ bio-transformation. Batch adsorption studies were carried out to estimate the adsorption capacities of two different soils for Cr(VI) and Cr(III). Bio-kinetic parameters were evaluated for the enriched microbial system. The inhibition constant, evaluated using Monod's inhibition model, was found to be 11.46 mg/L of Cr(VI). Transport studies indicated that it would not be possible to contain Cr(VI) by adsorption alone. Transport and bio-transformation studies indicated that the pore velocity and the initial bio-mass concentration significantly affect the containment process. In situ bio-remediation is effective in the case of silty aquifers. Cr(VI) concentration of 25 mg/L was effectively contained within 60 cm of a confined silty aquifer. Cr(VI) containment could be achieved in sandy aquifers when the pore velocity was very low and the initial augmented bio-mass was high. A bio-barrier of approximately one meter width would be able to contain Cr(VI) if the initial Cr(VI) concentration is as much as 25 mg/L.

  6. Glacial aquifer systems in the northeastern United States: a study plan

    SciTech Connect

    Lyford, F.P.; Dysart, J.E.; Randall, A.D.; Kontis, A.L.

    1984-01-01

    The US Geological Survey in 1982 designed a study of the availability and quality of water in glacial aquifers in the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and Ohio. The study is one of several being conducted nationwide to assemble information on major aquifer systems. The work, scheduled for completion in 1986, focuses on general principles that define aquifer geometry, hydraulic properties, recharge, and discharge; physical-chemical properties of water, interactions between water and rock; and mechanisms for mixing of water from multiple sources. Planned project activities include compilation and analysis of available data for a regional summary of glacial-aquifer systems, studies of selected system components such as recharge and chemical processes, classification of aquifers with regard to water-supply potential, and construction of generalized ground-water models to predict responses of several types of aquifer systems to pumping and climatic stress. This report describes the general characteristics of glacial aquifer systems in the northeastern United States and the planned work elements of the study.

  7. Plan of study for the northern Midwest regional aquifer-system analysis

    USGS Publications Warehouse

    Steinhilber, W.L.; Young, H.L.

    1979-01-01

    Sedimentary rocks of Cambrian and Ordovician age form a major aquifer system in most of Wisconsin and Iowa, northern Illinois, northwestern Indiana, southeastern Minnesota, and northern Missouri. Many metropolitan areas depend on the aquifer for all or part of their water supplies. Declines in potentiometric head have been large in the most heavily pumped areas, most notably Chicago, Milwaukee-Waukesha, Minneapolis-St. Paul, and Des Moines. A thorough understanding of the aquifer system is needed for sound management decisions. Thus, a 4-year study of the aquifer, beginning in October 1978, is included in the U.S. Geological Survey 's program of Regional Aquifer-System Analysis. The study will evaluate the aquifer 's water-supply potential, describe its water quality, and, through computer models of the ground-water flow system, provide the means to evaluate regional aquifer response to different patterns of ground-water development. This report describes the objectives, work plan, and organization of this study. (Woodard-USGS)

  8. Nitrate pollution study in the aquifer of Dakar (Senegal).

    PubMed

    Tandia, A A; Diop, E S; Gaye, C B; Travi, Y

    2000-01-01

    Dakar is a peninsula inhabited by a population of about 2 million people in 1996. In some dug wells and piezometers, the nitrate content (NO3.) in the groundwater is above the World Health Organization (WHO) limit of 50 mg/l. In the unconfined part of the aquifer of the peninsula, all the samples from wells are contaminated by high nitrate contents which increased over time from 100 mg/l in 1987 to more than 250 mg/l in 1996. Only a limited area is affected by nitrate pollution in the confined layer. The results indicate anthropogenic pollution, a fact which indicates the increasing risk of pollution of drinking-water resources. Studies in the unsaturated zone and familiarity with the sanitation practices in the area indicate that the horizontal and vertical flux are linked mainly to defective septic tanks and direct organic waste elimination into the soil by more than 40% of the inhabitants. The correlation between tritium values (3H) and nitrate shows that the source of nitrate is recent. The relation of oxygen 18 (18O) to deuterium (2H) in water with high nitrate levels indicates that the concentrations of nitrate have been identified in evaporated points.

  9. Optimizing remediation monitoring by evaluating depth-specific water velocity in a polluted aquifer: The borehole dilution test applied to multilevel samplers, a case study at the AGTROL industrial site, Bordeaux (France)

    NASA Astrophysics Data System (ADS)

    Bourg, A. C.; Kedziorek, M. A.; Dupuy, A.

    2009-12-01

    For contaminant plumes in hydraulically stratified aquifers, identifying depths of preferential groundwater flow is essential because this is where the actual transport takes place and therefore might be where dedicated monitoring should be done. We present here a method (adapted from the single borehole dilution tracer test) in which a volume of tracer solution is injected into a port of a multi-level sampler at a given depth and small volumes of water are retrieved through the same port at specific times. The correlation between tracer concentration and time is used to calculate the renewal time of a volume of water in the aquifer and estimate pore velocity (or specific discharge). The method is tested on a fill phreatic aquifer in Southwestern France, polluted by sulfuric acid and copper (pH as low as 1 and dissolved sulfate and copper as high as 45 and 30 g/L, respectively, near the source of the contaminant plume). Core sample analyses indicate that copper is trapped on the edge of the plume as a solid at specific depths that correspond to carbonate depletion (water pH increasing due to pH buffer). Groundwater flows more rapidly at these depths. As a result, these aquifer layers are not only permeable and water transmittive but also geochemically reactive. Natural attenuation should therefore be monitored at these depths.

  10. An integrated approach for aquifer vulnerability mapping using GIS and rough sets: study from an alluvial aquifer in North India

    NASA Astrophysics Data System (ADS)

    Khan, Arina; Khan, Haris Hasan; Umar, Rashid; Khan, Muneeb Hasan

    2014-06-01

    A modified DRASTIC model in a geographic information system (GIS) environment coupled with an information-analytic technique called `rough sets' is used to understand the aquifer vulnerability characteristics of a segment of the lower Kali watershed in western Uttar Pradesh, India. Since the region is a flat plain, topography (T) is removed as a potential control. Other parameters are the same as in DRASTIC, hence the new model is termed as DRASIC. The rough set technique is employed to provide insight into the relative vulnerabilities of different administrative units (blocks) within the study area. Using rough sets, three important factors are computed: strength, certainty and coverage. Strength indicates how the vulnerability characteristics vary in the entire area, certainty gives the relative fractions of low, medium and high vulnerability regions within a particular block, and coverage computes the percentage of a particular vulnerability state in each block. The purpose of the work is to demonstrate the utility of this integrated approach in classifying different administrative blocks in the study area according to their aquifer vulnerability characteristics. This approach is particularly useful for block-level planning and decision making for sustainable management of groundwater resources.

  11. Digital Surfaces and Thicknesses of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS)

    USGS Publications Warehouse

    Hart, Rheannon M.; Clark, Brian R.; Bolyard, Susan E.

    2008-01-01

    Digital surfaces of selected Tertiary and younger age hydrogeologic units within the Mississippi embayment aquifer system were created using more than 2,600 geophysical logs for an area that covers approximately 70,000 square miles and encompasses parts of eight states. The digital surfaces were developed to define and display the hydrogeologic framework for the Mississippi Embayment Regional Aquifer Study (MERAS). The digital surfaces also provide a foundation of the selected hydrogeologic units for development of a steady-state and transient regional ground-water flow model of the Mississippi embayment aquifer system from the top of the Midway confining unit upwards to land surface. The ground-water flow model is under development as part of the U.S. Geological Survey Ground-Water Resources Program. Using a Geographic Information System, nine digital surfaces of the tops of selected hydrogeologic units were created using the Australian National University Digital Elevation Model method as an interpolation scheme. Thickness maps also were constructed using the Geographic Information System by calculating the difference between the altitude of the interpreted base of an overlying unit and the altitude of the interpreted top of an underlying unit. In general, the highest hydrogeologic unit altitudes are located along the eastern edge of the study area in the outcrop, and the lowest altitudes, in general, are located along the southern edge of the study area along the axis of the embayment. The Mississippi River Valley alluvial aquifer and the lower Claiborne aquifer are the thinnest aquifers of importance in the study area; the thickest aquifer of importance is the middle Claiborne aquifer.

  12. Pilot study of in-situ thermal treatment for the remediation of pentachlorophenol-contaminated aquifers.

    PubMed

    Tse, K K; Lo, S L; Wang, J W

    2001-12-15

    A field pilot study of a steam injection method for the treatment of pentachlorophenol (PCP)-contaminated soil and groundwater has shown potential advantages over the traditional pump-and-treatment method. Low-pressure steam was injected 10 m below the ground surface. The ground water temperature was raised to 118 degrees C over a period of 3 months. Five soil and groundwater sampling events were performed during the pilot test. Results of sample analysis showed that the PCP concentrations in deep aquifer soil decreased dramatically whereas those in shallow aquifer soil increased. It was concluded that raising the groundwater temperature caused PCP in deep aquifer soil to be desorbed, and as the hot, deep groundwater circulated upward, it brought the desorbed PCP to the shallow aquifer. By using steam injection, PCP can be desorbed from soil and moved upward to the ground surface so that it can be removed more easily through pump-and-treatment.

  13. Glacial aquifer systems in the northeastern United States; a plan for study

    USGS Publications Warehouse

    Lyford, F.P.; Dysart, J.E.; Randall, A.D.; Kontis, A.L.

    1984-01-01

    The U.S. Geological Survey project designed to study the availability and quality of water in glacial aquifers in the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and Ohio is scheduled for completion in 1986. It will focus on general principles that define aquifer geometry, hydraulic properties of sediments, recharge, discharge, physical-chemical properties of water, rock and water-rock interactions, and mechanisms for mixing of water from multiple sources. Planned project activities include compilation and analysis of available data for a regionwide analysis of glacial-aquifer systems, studies of selected system components such as recharge and chemical processes, classification of aquifers with regard to water-supply potential, and construction of generalized ground-water models to predict responses of types of aquifer systems to pumping and climatic stress. This report describes the general characteristics of glacial aquifer systems in the Northeastern United States and of planned work elements of the study. (USGS)

  14. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case

    USGS Publications Warehouse

    Kiro, Yael; Yechieli, Yoseph; Voss, Clifford I.; Starinsky, Abraham; Weinstein, Yishai

    2012-01-01

    We present a new approach to studying the behavior of radium isotopes in a coastal aquifer. In order to simulate radium isotope distributions in the dynamic flow field of the Dead Sea aquifer, a multi-species density dependent flow model (SUTRA-MS) was used. Field data show that the activity of 226Ra decreases from 140 to 60 dpm/L upon entering the aquifer from the Dead Sea, and then further decreases linearly due to mixing with Ra-poor fresh water. On the other hand, an increase is observed in the activity of the shorter-lived isotopes (up to 52 dpm/L 224Ra and 31 dpm/L 223Ra), which are relatively low in Dead Sea water (up to 2.5 dpm/L 224Ra and 0.5 dpm/L 223Ra). The activities of the short lived radium isotopes also decrease with decreasing salinity, which is due to the effect of salinity on the adsorption of radium. The relationship between 224Ra and salinity suggests that the adsorption partition coefficient (K) is linearly related to salinity. Simulations of the steady-state conditions, show that the distance where equilibrium activity is attained for each radium isotope is affected by the isotope half-life, K and the groundwater velocity, resulting in a longer distance for the long-lived radium isotopes. K affects the radium distribution in transient conditions, especially that of the long-lived radium isotopes. The transient conditions in the Dead Sea system, with a 1 m/yr lake level drop, together with the radium field data, constrains K to be relatively low (226Ra cannot be explained by adsorption, and it is better explained by removal via coprecipitation, probably with barite or celestine.

  15. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Yechieli, Yoseph; Voss, Clifford I.; Starinsky, Abraham; Weinstein, Yishai

    2012-07-01

    We present a new approach to studying the behavior of radium isotopes in a coastal aquifer. In order to simulate radium isotope distributions in the dynamic flow field of the Dead Sea aquifer, a multi-species density dependent flow model (SUTRA-MS) was used. Field data show that the activity of 226Ra decreases from 140 to 60 dpm/L upon entering the aquifer from the Dead Sea, and then further decreases linearly due to mixing with Ra-poor fresh water. On the other hand, an increase is observed in the activity of the shorter-lived isotopes (up to 52 dpm/L 224Ra and 31 dpm/L 223Ra), which are relatively low in Dead Sea water (up to 2.5 dpm/L 224Ra and 0.5 dpm/L 223Ra). The activities of the short lived radium isotopes also decrease with decreasing salinity, which is due to the effect of salinity on the adsorption of radium. The relationship between 224Ra and salinity suggests that the adsorption partition coefficient (K) is linearly related to salinity. Simulations of the steady-state conditions, show that the distance where equilibrium activity is attained for each radium isotope is affected by the isotope half-life, K and the groundwater velocity, resulting in a longer distance for the long-lived radium isotopes. K affects the radium distribution in transient conditions, especially that of the long-lived radium isotopes. The transient conditions in the Dead Sea system, with a 1 m/yr lake level drop, together with the radium field data, constrains K to be relatively low (<10). Thus, the sharp decrease in 226Ra cannot be explained by adsorption, and it is better explained by removal via coprecipitation, probably with barite or celestine.

  16. Case Study: Testing with Case Studies

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  17. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and

  18. Geochemical controls on fluoriferous groundwaters of the Pliocene and the more recent aquifers: The case of Aigion region, Greece

    NASA Astrophysics Data System (ADS)

    Katsanou, K.; Siavalas, G.; Lambrakis, N.

    2013-12-01

    High fluoride concentrations (> 8 mg/L) in the groundwater of the Plio-Pleistocene sediments are rare; however, this is the case around Aigion town, where teeth fluorosis has been detected since the 80s. Aiming to investigate the origin and the mobility mechanism of fluorine in groundwater and sediments a hydrogeological and geochemical research has been conducted. The hydrogeological research revealed that the Na-HCO3 water type of boreholes aligned along a fault and hosted in the confined aquifers display the higher fluoride content. The unconfined aquifer is mostly dominated by Na-Ca-Mg-HCO3-SO4 water, which displays much lower fluoride concentrations. The most permeable sectors of this aquifer host fresh water of Ca-HCO3 type. The geochemical research revealed significant amount of fluorine in the base of a lignite sequence hosted in the Plio-Pleistocene sediments.

  19. State-of-the-art of aquifer restoration. Volume 2: appendices A through G. Final Report, 1979-1984

    SciTech Connect

    Knox, R.C.; Canter, L.W.; Kincannon, D.F.; Stover, E.L.; Ward, C.H.

    1984-11-01

    A summary of the state-of-the-art of aquifer restoration is presented. The appendices include: (1) case studies of aquifer restoration; (2) considerations regarding an aquifer restoration information center; (3) information for public participation in aquifer restoration decision making; and (4) an annotated bibliography of 225 selected references. The state-of-the-art of aquifer restoration is a rapidly changing technology, with many uses of single or combined techniques in planning or recently implemented.

  20. Plan of study for the Northern Atlantic Coastal Plain Regional Aquifer System Analysis

    USGS Publications Warehouse

    Meisler, Harold

    1980-01-01

    Sediments of Cretaceous to Holocene age compose the Northern Atlantic Coastal Plain aquifer system in an area of 50,000 square miles in parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The aquifer system is a major source of water supply in the area. About 1.4 billion gallons is withdrawn from its aquifers each day. Increasing withdrawal of ground water has created or intensified several problems such as declining water levels, development of large cones of depression, saltwater intrusion, spreading of ground-water contamination, and land subsidence. The U.S. Geological Survey has begun a comprehensive study that will define the geology, hydrology, and geochemistry of the aquifer system. The effects of future utilization of the aquifer system will be determined and alternative plans for water withdrawal will be evaluated through computer simulation modeling. This report describes the objectives, organization, and work plans of the study, and describes the work to be accomplished in each U.S. Geological Survey District of the study area.

  1. An integrated study of spatial multicriteria analysis and mathematical modelling for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza coastal aquifer.

    PubMed

    Rahman, Mohammad Azizur; Rusteberg, Bernd; Uddin, Mohammad Salah; Lutz, Annegret; Saada, Muath Abu; Sauter, Martin

    2013-07-30

    This paper describes an integrated approach of site suitability mapping and ranking of the most suitable sites, for the implementation of Managed Aquifer Recharge (MAR) projects, using spatial multicriteria decision analysis (SMCDA) techniques and mathematical modelling. The SMCDA procedure contains constraint mapping, site suitability analysis with criteria standardization and weighting, criteria overlay by analytical hierarchy process (AHP) combined with weighted linear combination (WLC) and ordered weighted averaging (OWA), and sensitivity analysis. The hydrogeological impacts of the selected most suitable sites were quantified by using groundwater flow and transport modelling techniques. Finally, ranking of the selected sites was done with the WLC method. The integrated approach is demonstrated by a case study in the coastal aquifer of North Gaza. Constraint mapping shows that 50% of the total study area is suitable for MAR implementation. About 25% of the total area is "very good" and 25% percent is "good" for MAR, according to the site suitability analysis. Six locations were selected and ranked against six representative decision criteria. Long term (year 2003 to year 2040) groundwater flow and transport simulations were performed to quantify the selected criteria under MAR project operation conditions at the selected sites. Finally, the suitability mapping and hydrogeological investigation recommends that the location of the existing infiltration ponds, constructed near the planned North Gaza Wastewater Treatment Plant (NGWWTP) is most suitable for MAR project implementation. This paper concludes that mathematical modelling should be combined with the SMCDA technique in order to select the best location for MAR project implementation. Besides MAR project implementation, the generalised approach can be applicable for any other water resources development project that deals with site selection and implementation. PMID:23603773

  2. A multiscale modeling study for the convective mass transfer in a subsurface aquifer

    NASA Astrophysics Data System (ADS)

    Alam, Jahrul M.

    2015-09-01

    Quantitative and realistic computer simulations of mass transfer associated with disposal in subsurface aquifers is a challenging endeavor. This article has proposed a novel and efficient multiscale modeling framework, and has examined its potential to study the penetrative mass transfer in a plume that migrates in an aquifer. Numerical simulations indicate that the migration of the injected enhances the vorticity generation, and the dissolution of has a strong effect on the natural convection mass transfer. The vorticity decays with the increase of the porosity. The time scale of the vertical migration of a plume is strongly dependent on the rate of dissolution. Comparisons confirm the near optimal performance of the proposed multiscale model. These primary results with an idealized computational model of the migration in an aquifer brings the potential of the proposed multiscale model to the field of heat and mass transfer in the geoscience.

  3. LABORATORY STUDIES ON THE STABILITY AND TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL

    EPA Science Inventory

    The stability and transport of radio-labeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study included flow rate, pH, i...

  4. Enumeration and Biomass Estimation of Bacteria in Aquifer Microcosm Studies by Flow Cytometry

    PubMed Central

    DeLeo, P. C.; Baveye, P.

    1996-01-01

    Flow cytometry was used to enumerate and characterize bacteria from a sand column microcosm simulating aquifer conditions. Pure cultures of a species of Bacillus isolated from subsurface sediments or Bacillus megaterium were first evaluated to identify these organisms' characteristic histograms. Counting was then carried out with samples from the aquifer microcosms. Enumeration by flow cytometry was compared with more-traditional acridine orange direct counting. These two techniques gave statistically similar results. However, counting by flow cytometry, in this case, surveyed a sample size 700 times greater than did acridine orange direct counting (25 (mu)l versus 0.034 (mu)l) and required 1/10 the time (2 h versus 20 h). Flow cytometry was able to distinguish the same species of bacteria grown under different nutrient conditions, and it could distinguish changes in cell growth patterns, specifically single cell growth versus chained cell growth in different regions of an aquifer microcosm. A biomass estimate was calculated by calibrating the total fluorescence of a sample from a pure culture with the dry weight of a freeze-dried volume from the original pure culture. Growth conditions significantly affected histograms and biomass estimates, so the calibration was carried out with cells grown under conditions similar to those in the aquifer microcosm. Costs associated with using flow cytometry were minimal compared with the amount of time saved in counting cells and estimating biomass. PMID:16535470

  5. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    NASA Astrophysics Data System (ADS)

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  6. ENVIRONMENTAL FACTORS INFLUENCING METHANOGENESIS IN A SHALLOW ANOXIC AQUIFER: A FIELD AND LABORATORY STUDY

    EPA Science Inventory

    The environmental factors influencing methanogenesis in a shallow anoxic aquifer were probed in a combined field and laboratory study. Field data collected over a year revealed that in situ rates of methane production were depressed in winter and elevated in summer. Over the same...

  7. Case Study: Writing a Journal Case Study

    ERIC Educational Resources Information Center

    Prud'homme-Genereux, Annie

    2016-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes incorporating a journal article into the classroom by first converting it into a case study.

  8. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  9. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  10. Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study.

    PubMed

    Weaver, L; Webber, J B; Hickson, A C; Abraham, P M; Close, M E

    2015-05-01

    Groundwater is used as a precious resource for drinking water worldwide. Increasing anthropogenic activity is putting increasing pressure on groundwater resources. One impact of increased groundwater abstraction coupled with increasing dry weather events is the lowering of groundwater levels within aquifers. Biofilms within groundwater aquifers offer protection to the groundwater by removing contaminants entering the aquifer systems from land use activities. The study presented investigated the impact of desiccation events on the biofilms present in groundwater aquifers using field and laboratory experiments. In both field and laboratory experiments a reduction in enzyme activity (glucosidase, esterase and phosphatase) was seen during desiccation compared to wet controls. However, comparing all the data together no significant differences were seen between either wet or desiccated samples or between the start and end of the experiments. In both field and laboratory experiments enzyme activity recovered to start levels after return to wet conditions. The study shows that biofilms within groundwater systems are resilient and can withstand periods of desiccation (4 months).

  11. Annual and nycthemeral studies of the survival and circulation of indicator bacteria in a schist aquifer.

    PubMed

    Grisey, Elise; Belle, Emilien; Mudry, Jacques; Aleya, Lotfi

    2011-07-01

    Escherichia coli and Enterococci are widely used as indicators of faecal contamination of groundwater while total coliforms, which are of environmental but also of faecal origin, are indicators of the overall quality of the water. The survival of bacteria in groundwater is dependent on many factors including temperature, competition with indigenous bacteria and entrapment in aquifer material. Previous studies showed two sources of faecal contamination of a schist aquifer: infiltration into the ground from nearby septic tank effluents and seepage of landfill leachate. Water samples for bacterial analysis were collected from a piezometer on a monthly basis (15 months) and every six hours over two non-consecutive days. The intermittent sampling showed relatively stable concentrations of bacteria over time after the removal of stagnant water. Therefore, a continuous bacterial contamination without significant daily variation exists. The ratio of E. coli densities to total coliforms densities (EC/TC) allowed differentiation between the sources of faecal pollution in groundwater by comparing the populations of faecal bacteria with those of environmental bacteria. Enumeration indicated that the densities of bacteria were much higher in this schist aquifer than those in alluvial aquifers contaminated by a septic tank reported in the literature.

  12. Regional flow in the Dakota aquifer; a study of the role of confining layers

    USGS Publications Warehouse

    Bredehoeft, John D.; Neuzil, C.E.; Milly, P.C.

    1983-01-01

    The Dakota Sandstone in South Dakota is one of the classic artesian aquifers; it was first studied by N. H. Darton at the turn of the century. Since then, hydrogeologists have debated the source of the large quantities of water which have been discharged by artesian flow from the Dakota. Among suggestions for the source of this water are (1) recharge of the aquifer at outcrops in the Black Hills, (2) compaction and compressive storage within the aquifer, (3)leakage through confining layers, and (4) upward flow from the underlying Madison Group limestones. A series of increasingly refined models of the aquifer system in South Dakota have been developed and used for numerical simulations of the ground-water flow. The simulations have provided estimates of leakage through the confining layers. The results indicate that, before development, most of the flow into and out of the Dakota Sandstone occurred as leakage through confining layers and, since development, most of the water released from storage has come from the confining layers. In situ and laboratory hydraulic conductivity measurements have been made for the Cretaceous shale confining layer which overlies the Dakota. These data indicate hydraulic conductivities which are one to three orders of magnitude lower than the conductivities indicated by the numerical analyses; this suggests that the leakage through the confining layer is largely through fractures. The fractures apparently did not influence the laboratory and in situ measurements. To test the conception of flow in the aquifer-confining layer system derived from our analyses, the transport of sulfate in the system was simulated. Simulations using a numerical ground-water transport model were reasonably successful in explaining the present distribution of sulfate in the system. This result increases confidence in the flow system implied by the flow simulations in which leakage through confining layers is dominant.

  13. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.

    PubMed

    Abusaada, Muath; Sauter, Martin

    2013-01-01

    The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date.

  14. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  15. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2014-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  16. Fault Zone Hydrogeology of Crystalline and Sedimentary Aquifers in Arid Regions: The Case Sinai Peninsula, Egypt.

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Mohamed, L.; Sultan, M.; Farag, A. Z. A.

    2015-12-01

    Structural control on the groundwater flow in arid regions is still poorly understood. Understanding the distribution of structural discontinuities (i.e. faults, joints and shear zones), their cross cutting relationships, and their relation with the regional hydraulic gradient are critical for deciphering the complexity of water resources distribution in the highly fractured crystalline and sedimentary aquifers in Sinai. In order to achieve that, we conducted an integrated approach using remote sensing, geophysical and hydrogeological datasets: (1) identification of the spatial and temporal rainfall events using Tropical Rainfall Measuring Mission (TRMM) data; (2) delineation of major faults and shear zones using Landsat 8 and ASTER image ratioing, geological datasets and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) validation of the water-channeling discontinuities using Very Low Frequency (VLF) method; (5) generation of regional groundwater flow and isotopic (18O and 2H ) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer; (6) developing a conceptual model for the groundwater flow in the fractured crystalline and sedimentary aquifers; (7) testing the model accuracy using Vertical Electrical Sounding (VES) method in seven locations. Our findings include: (1) in the crystalline aquifer, discontinuities that are sub-parallel to groundwater flow direction act as preferred pathways for groundwater flow, whereas those that intersect groundwater flow directions at high angles act as barriers causing considerable groundwater accumulations at the upstream side; (2) in the sedimentary aquifer, high angle E-W discontinuities (i.e. Themed shear zone and Sinai Hinge Belt) cause a considerable groundwater elevation, redirection of the groundwater

  17. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    NASA Astrophysics Data System (ADS)

    Tziritis, E.; Lombardo, L.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  18. Plan of study for the regional aquifer systems analysis of the Michigan Basin

    USGS Publications Warehouse

    Mandle, Richard J.

    1986-01-01

    Quaternary glacial deposits and Pennsylvanian and Mississippian sandstones, -the Saginaw Formation and Marshall Sandstone--are the major aquifers in the Michigan basin. These aquifers supply approximately 188 million gal/day to municipalities in the 29 ,000 sq mi study area. The most significant problems related to groundwater supplies are the identification of potable sources of groundwater in large quantities and the migration of saline groundwater toward pumping centers. Saline water underlies the entire lower Peninsula of Michigan at indeterminate depth in the deeper parts of the Saginaw Formation and Marshall Sandstone in the center of the Michigan basin. In places, saline water is present in glacial deposits. Overdraft has resulted in severe drawdown in the Lansing area and the abandonment of wells near Flint because of saline water encroachment. Increased demand on the groundwater resources of the study area are expected to cause further problems. In 1985, the U.S. Geological Survey began a 5-yr study to define the geohydrologic framework, describe the geochemistry of groundwater in the glacial and bedrock aquifers, and analyze regional groundwater flow patterns. The scope, plan of study, organization and work elements are described in this report. (Author 's abstract)

  19. Gravimetry contributions to the study of the complex western Haouz aquifer (Morocco): Structural and hydrogeological implications

    NASA Astrophysics Data System (ADS)

    Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert

    2016-03-01

    This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.

  20. Numerical simulation of a steam-injection pilot study for a PCP-contaminated aquifer.

    PubMed

    Tse, Ken K C; Liou, Tai-Sheng; Lo, Shang-Lien

    2006-07-01

    The following study was focused on the simulation of a steam-injection field pilottest conducted in our past research. The scope of research contained two main subjects: heat transfer and contaminant transport when steam was injected into a pentachlorophenol (PCP)-contaminated aquifer. Numerical simulation of the heat transfer during the field test showed that vertical permeability is more influential to the distribution of water temperature than the horizontal permeability. If the vertical permeability is relatively high, the steam in the aquifer has a higher tendency to migrate upward and cause the aquifer temperature to rise faster. The simulation results also showed that heat convection is very sensitive to the soil permeability. Therefore, high permeability media makes the effect of heat convection more important on applying the steam-injection method. Heat conduction dominates the heat transfer within the hot aqueous zone. However, the hot aqueous zone is relatively smaller than the steam zone when steam is injected into the aquifer. Therefore, heat conduction is not as important as heat convection within the steam zone, which is the same result observed in the field test. Specific heat of soil media is also a sensitive factor. A numerical simulator, T2VOC, was utilized to simulate the PCP transport in the aquifer when steam was injected into the aquifer. The results showed that the shape of PCP distribution was identical to that of steam. It illustrated thatthe steam carried PCP upward and laterally. The high vertical soil permeability causes the steam to migrate upward with PCP easily. A low partitioning coefficient allows PCP to be desorbed easier, also an important factor. A majority of the PCP in the soil was transferred to the aqueous phase as the water temperature increased, showing similar results to those observed in the field test. According to the sensitivity analysis, PCP transport is more sensitive to the vertical permeability than the

  1. Provenance of buried esker groundwater: the case of Vars-Winchester esker aquifer, Eastern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Sauriol, Jacques

    2016-02-01

    An innovative mode of groundwater recharge to a buried esker aquifer is considered. The current conceptual model affords a natural safeguard to underlying aquifers from the overlying muds. A hypothesis of groundwater recharge to a buried esker aquifer via preferential pathways across its overlying muds is tested here by heuristic numerical one-dimensional and two-dimensional modeling simulations. The hypothesis has been tested against two other conventionally accepted scenarios involving: (1) distal esker outcrop areas and (2) remote shallow-bedrock recharge areas. The main evidence comes from documented recharge pressure pulses in the overlying mud aquitard and in the underlying esker hydraulic-head time series for the Vars-Winchester esker aquifer in Eastern Ontario, Canada. These perturbations to the potentiometric surface are believed to be the aquifer response to recharge events. The migration rate of these pressure pulses is directly related to the hydraulic diffusivity of the formation. The measured response time and response amplitude between singular radar precipitation events and well hydrographs constituted the heuristic model calibration targets. The main evidence also includes mud-layering deformation (water escape features) which was observed in seismic surveys of the over-esker muds. These disturbed stratigraphic elements provide a realistic mechanism for migrating water to transit through the muds. The effective hydraulic conductivities of these preferential pathways in the muds were estimated to be between 2 × 10-6 and 7 × 10-6 m/s. The implications of these findings relate to the alleged natural safeguard of these overlying muds.

  2. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  3. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    NASA Astrophysics Data System (ADS)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson

  4. Joint streambed and aquifer heterogeneity in modeling stream-aquifer interactions

    NASA Astrophysics Data System (ADS)

    Glenz, D.; Renard, P.; Brunner, P.

    2011-12-01

    The understanding of groundwater - surface water interaction is a critical point when planning restoration of alluvial rivers which are interacting with alluvial aquifers. As hydraulic properties of stream bed and aquifer sediments are often spatially very heterogeneous in an alluvial plain, the comprehension of the influence of heterogeneity on river-groundwater interactions is a major issue in the assessment of the impact of restoration works on the system. However, heterogeneity of hydraulic conductivity is often only considered in either the streambed or the aquifer in modeling studies. Hydrologists focusing on streambed biogeochemistry and hydroecology typically work on small scales and highlight the importance of streambed heterogeneity. Likewise, groundwater hydrologists typically consider the heterogeneity of the aquifer only, whereas streambeds are often represented as homogeneous zones, even in cases where river - groundwater interactions are simulated. The joint influence of streambed and aquifer heterogeneity has thus received limited attention so far. In this work, we use PEST to identify both the spatial variability of the hydraulic conductivity of the aquifer and of the leakage coefficients along the river by using pilot points. The model area comprises the alpine alluvial aquifer of the Rhone River on a reach of about 50 km length. The aim is to reproduce approximately the 731 available mean hydraulic head values measured in the area. We then compare the results of this model with simpler models involving less complex parametrization (e.g. homogeneous leakage, homogeneous aquifer, etc.) both in terms of parameter identifiability and prediction uncertainty.

  5. Review of the general geology and solid-phase geochemical studies in the vicinity of the Central Oklahoma aquifer

    USGS Publications Warehouse

    Mosier, Elwin L.; Bullock, John H.

    1988-01-01

    The Central Oklahoma aquifer is the principal source of ground water for municipal, industrial, and rural use in central Oklahoma. Ground water in the aquifer is contained in consolidated sedimentary rocks consisting of the Admire, Council Grove, and Chase Groups, Wellington Formation, and Garber Sandstone and in the unconsolidated Quaternary alluvium and terrace deposits that occur along the major stream systems in the study area. The Garber Sandstone and the Wellington Formation comprise the main flow system and, as such, the aquifer is often referred to as the 'Garber-Wellington aquifer.' The consolidated sedimentary rocks consist of interbedded lenticular sandstone, shale, and siltstone beds deposited in similar deltaic environments in early Permian time. Arsenic, chromium, and selenium are found in the ground water of the Central Oklahoma aquifer in concentrations that, in places, exceed the primary drinking-water standards of the Environmental Protection Agency. Gross-alpha concentrations also exceed the primary standards in some wells, and uranium concentrations are uncommonly high in places. As a prerequisite to a surface and subsurface solid-phase geochemical study, this report summarizes the general geology of the Central Oklahoma study area. Summaries of results from certain previously reported solid-phase geochemical studies that relate to the vicinity of the Central Oklahoma aquifer are also given; including a summary of the analytical results and distribution plots for arsenic, selenium, chromium, thorium, uranium, copper, and barium from the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) Program.

  6. Stable groundwater quality in deep aquifers of Southern Bangladesh: the case against sustainable abstraction.

    PubMed

    Ravenscroft, P; McArthur, J M; Hoque, M A

    2013-06-01

    In forty six wells >150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children.

  7. Field study of hydrogeologic characterization methods in a heterogeneous aquifer.

    PubMed

    Alexander, Matthew; Berg, Steven J; Illman, Walter A

    2011-01-01

    Hydraulic conductivity (K) and specific storage (S(s)) are required parameters when designing transient groundwater flow models. The purpose of this study was to evaluate the ability of commonly used hydrogeologic characterization approaches to accurately delineate the distribution of hydraulic properties in a highly heterogeneous glaciofluvial deposit. The metric used to compare the various approaches was the prediction of drawdown responses from three separate pumping tests. The study was conducted at a field site, where a 15 m × 15 m area was instrumented with four 18-m deep Continuous Multichannel Tubing (CMT) wells. Each CMT well contained seven 17 cm × 1.9 cm monitoring ports equally spaced every 2 m down each CMT system. An 18-m deep pumping well with eight separate 1-m long screens spaced every 2 m was also placed in the center of the square pattern. In each of these boreholes, cores were collected and characterized using the Unified Soil Classification System, grain size analysis, and permeameter tests. To date, 471 K estimates have been obtained through permeameter analyses and 270 K estimates from empirical relationships. Geostatistical analysis of the small-scale K data yielded strongly heterogeneous K fields in three-dimensions. Additional K estimates were obtained through slug tests in 28 ports of the four CMT wells. Several pumping tests were conducted using the multiscreen and CMT wells to obtain larger scale estimates of both K and S(s). The various K and S(s) estimates were then quantitatively evaluated by simulating transient drawdown data from three pumping tests using a 3D forward numerical model constructed using HydroGeoSphere (Therrien et al. 2005). Results showed that, while drawdown predictions generally improved as more complexity was introduced into the model, the ability to make accurate drawdown predictions at all CMT ports was inconsistent.

  8. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    USGS Publications Warehouse

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state

  9. Unprotected karst resources in western Iran: the environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province

    NASA Astrophysics Data System (ADS)

    Taheri, Kamal; Taheri, Milad; Parise, Mario

    2015-04-01

    Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and

  10. Sources and Mechanisms of Aquifer Recharge: a Hydrochemical and Isotopic Study in a Complex and Scantily Investigated Hydrogeologic System

    NASA Astrophysics Data System (ADS)

    Damtew, A. D.; Wohnlich, S.

    2013-12-01

    Over 90% of domestic water supply in the study area is tapped from shallow and deep aquifers. However, sources and mechanisms of recharge that sustain these aquifers in the area are scantily researched. To understand aquifer recharge processes in this complex geo-hydrologic environment which is confined within the southern sector of the Main Ethiopian Rift, interpretations on the hydrochemical, stable and unstable isotope constituents of waters, in conjunction with some of the basin attributes that influence on the processes of aquifer recharge are made. The study reveals meteoric sources as the main source of aquifer recharge, and complex mechanisms of recharge in the different zones of the study area. Low salinity warm waters drawn from deep aquifers around the northwestern part of the area plotted close to the Local Meteoric Water Line are replenished via local normal faults. The confined aquifers in the northern part with the characteristics of high salinity, warm, isotopically depleted waters sourced from areas less affected by rift faults, replenished by regional recharge from distant western highlands, however, recharge is considered as modern as the tritium levels in those waters signify post bomb origin. Deep aquifers around the north-eastern and the north-central parts of the study area bear isotopically depleted and cold waters. These areas are characterized by low to very low drainage density and fracture density, gentle slope, covered dominantly by unwelded tuffs, pumaceous deposits, and fractured ignimbrites. Aquifer recharge in this particular zone may occur after heavy rainfall events percolating along fractures of the ignimbritic layers and voids of the loose deposits. The depleted levels of deuterium and δ18O may explain the amount effect on isotopic fractionation. The rather high tritium counts and moderately low salinity may further imply recent recharge and relatively faster transport by both focused and diffused mechanisms at the respective

  11. Effects of Karst and geological structure on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Burg, Avi; Gvirtzman, Haim

    2010-08-01

    SummaryThis study demonstrates the significant influences of the geological structure (especially folding and lithology) and the karst system on groundwater flow regime. Folds divert groundwater flow from the general hydraulic gradient; marly layers sustain several perched sub-aquifers above the regional aquifer; and karstification increases the hydraulic conductivity by several orders of magnitude. These phenomena are quantitatively demonstrated within the Yarqon-Taninim (YT) basin, Israel, which is a complex groundwater system, combining several (extremely) opposite characteristics: humid and arid recharge zones, phreatic and confined parts, shallow and deep sub-aquifers, stratified and relatively-homogeneous sub-basins, saline and fresh water bodies, as well as stagnant and fast-flowing groundwater regions. We have introduced a 3D geological-based grid for the basin (for the first time). It was implemented into a numerical code (FEFLOW), which was used thereafter to analyze quantitatively the flow regime, the groundwater mass balance, and the aquifer hydraulic properties. We present up to date conceptual understanding and numerical modeling of the YT flow field, especially at its mountainous parts. Based on the calibration procedure and the sensitivity analyses, we obtained the best-fitted hydraulic conductivity values for the aquifer mesh. The general phenomenon observed is that as groundwater flow quantity increases, the hydraulic conductivity also increases. We interpret this result by the karstification mechanism (including paleo-karst). Thus, where groundwater flow-lines converge and where groundwater discharge amount increases, the karstification process intensifies and permeability increases. Consequently, at the mountainous region, along the syncline axes, where groundwater flow-lines converge, higher conductivities are found. Modeling results also exhibit that at the lowland confined area, the geological structure does not play a major role in directing

  12. Anaerobic degradation of naphthalene in a fluvial aquifer: a radiotracer study.

    PubMed

    Bianchin, Mario; Smith, Leslie; Barker, James F; Beckie, Roger

    2006-03-20

    A radiotracer study was conducted in a creosote-contaminated aquifer beneath the Fraser River, British Columbia Canada to investigate the in situ degradation of naphthalene. The groundwater is anaerobic, with abundant methane, ferrous iron and carbon dioxide. This study followed earlier work at the site where the contaminant distribution could only be explained by invoking a mass loss through degradation, even though extensive field and laboratory microcosm studies closer to the source zone onshore could not confirm degradation. Accordingly, 14C-naphthalene was injected into the aquifer offshore, further from the source zone where modeling suggested degradation was occurring. During the 230-day monitoring period, 14CO2 was detected, confirming the degradation of the radio-labeled naphthalene tracer. A zero-order degradation rate of naphthalene of 5 microg/L-day was estimated based on the decrease in 14C-naphthalene concentration with time. While the degradation pathway could not be determined from the radiotracer study alone, the geochemistry of the site suggests that either iron reduction or methanogenesis is the terminal electron accepting processes responsible for naphthalene oxidation. PMID:16487624

  13. The case study approach

    PubMed Central

    2011-01-01

    The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports. PMID:21707982

  14. Migration of alternative de-icers in unsaturated zone of aquifers--in vitro study.

    PubMed

    Hellstén, P; Nystén, T

    2003-01-01

    The migration of organic de-icers in the shallow aquifers typical in Finland is not well known and we need to find solutions to minimise the negative impacts of de-icing on groundwater quality. The objective of the MIDAS project is to find de-icers which have the least harmful impacts on groundwater quality. Migration of sodium chloride as a tracer and five alternative de-icers in aquifers was studied. The alternative de-icers were calcium chloride, magnesium chloride, calcium-magnesium-acetate, potassium acetate and potassium formate. The research consists of leaching of heavy metals from roadsides in the area of Highway 1 in southern Finland; an in vitro study, which represented the full length of winter at low temperatures; and the subsequent on-going field research in south-eastern Finland. So far, in our studies potassium formate caused fewer changes to the quality of the infiltrated water than the chlorides and acetates. After finishing the on-going research the results will be used to choose a preferred de-icer from the existing chemicals and for the development of new less harmful de-icers. The information will be used mainly in Scandinavia and North America where the hydrogeological conditions are similar to those in Finland. PMID:14703138

  15. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.

  16. [Case and studies].

    PubMed

    Schubert, András

    2015-11-15

    Case studies and case reports form an important and ever growing part of scientific and scholarly literature. The paper deals with the share and citation rate of these publication types on different fields of research. In general, evidence seems to support the opinion that an excessive number of such publications may negatively influence the impact factor of the journal. In the literature of scientometrics, case studies (at least the presence of the term "case study" in the titles of the papers) have a moderate share, but their citation rate is practically equal to that of other publication types.

  17. Groundwater Mounding in Non-uniform Aquifers with Implications for Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Noel, P.; Kacimov, A. R.; Al Maktoumi, A. K.

    2015-12-01

    Many areas of the world (e.g. the Middle East and North Africa countries) are deficient in observation networks and hydrogeological data needed for Managed Aquifer Recharge (MAR) design. Therefore, diagnostic analytical approaches are appropriate for feasibility studies of MAR. It was found that the common assumption of aquifer thickness uniformity often does not hold, especially in mountainous watersheds. However, the only practical result available for non-uniform aquifers was developed for well hydraulics applications (point sinks or sources) by Hantush (1962), while the recharge zones may cover large areas on the scale of kilometers, such as temporarily filled impoundments (natural and engineered reservoirs in wadis, depressions, trenches, etc.) or perennial streams accepting massive treated wastewater discharge. To address these important, but overlooked MAR problems in sloping aquifers, a set of new closed-form analytical solutions for water table elevations were obtained. Interestingly, the 2D groundwater flow equation acquires the advection-dispersion equation form in these cases. The quadratures in closed-form solutions obtained by the Green's function method converge rapidly. These models account for both shapes and orientations of sources with respect to the direction of the aquifer base gradient. Qualitatively, solutions in sloping aquifers have an important trait: the mounding is limited in time and space, unlike in aquifers with a horizontal base. Aquifers with the greater slopes have the lesser potential of waterlogging from the rising water table and different storage characteristics (height and volume of locally stored water). Computational aspects of these solutions for MAR analyses are illustrated by example utilizing regional aquifer properties near Az Zarqa River, Jordan. (This study was supported by a grant from USAID-FABRI, project contract: AID-OAA-TO-11-00049, Subcontract: 1001624 -12S-19745).

  18. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  19. Work Sharing Case Studies.

    ERIC Educational Resources Information Center

    McCarthy, Maureen E.; And Others

    Designed to provide private sector employers with the practical information necessary to select and then to design and implement work sharing arrangements, this book presents case studies of some 36 work sharing programs. Topics covered in the case studies include the circumstances leading to adoption of the program, details of compensation and…

  20. Case Study: Challenging Change.

    ERIC Educational Resources Information Center

    May, Steven K.

    2003-01-01

    Discusses a case study involving organizational change and its effect on employees. Presents three responses to the case study: "Paradox of Ordering Change: I Insist That We Work as a Team" (Paaige K. Turner); "Managing Change Is Managing Meaning" (Greg Hearn and Abraham Ninan); and "The Psychodynamics of an Organizational Change Initiative"…

  1. [Qualitative case study].

    PubMed

    Debout, Christophe

    2016-06-01

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised. PMID:27338694

  2. [Qualitative case study].

    PubMed

    Debout, Christophe

    2016-06-01

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised.

  3. SETDA Case Studies 2012

    ERIC Educational Resources Information Center

    State Educational Technology Directors Association, 2012

    2012-01-01

    The State Educational Technology Directors Association (SETDA) published a series of case studies from 28 states to showcase examples of how ARRA EETT ("American Recovery and Reinvestment Act of 2009 Enhancing Education Through Technology") grant funds have impacted teaching and learning. SETDA collected data for the case studies through a variety…

  4. The study of buried drift aquifers in Minnesota by seismic geophysical methods

    USGS Publications Warehouse

    Woodward, D. G.

    1984-01-01

    Buried-drift aquifers are stratified sand and (or) gravel aquifers in glacial deposits that cannot be seen or inferred at the land surface. During the Pleistocene Epoch, four continental glaciations advanced and retreated across Minnesota, blanketing the bedrock surface with drift as much as 700 feet thick (fig. 1). Most of the drift consists of till, an unsorted, un-stratified mixture of clay silt, sand, and gravel that usually is not considered to be an aquifer. Permeable, stratified sand and gravel, deposited as outwash, alluvium, and (or) ice-contact deposits usually during an earlier glacial episode and subsequently covered (buried) with till, form the buried-drift aquifers.

  5. A 10-year plan to study the aquifer system of Indian Wells Valley, California

    USGS Publications Warehouse

    Lipinski, Paul; Knochenmus, Darwin D.

    1981-01-01

    Water needs of the population of Indian Wells Valley, Calif., must be met through further development of ground-water resources. Studies show that annual ground-water pumpage there has increased since 1945 and has exceeded mean annual recharge since 1966. Continued and increased stress on the aquifer system of the valley is expected because population in the valley is predicted to double by 1998 and triple by 2020, based on 1977 population figures. The U.S. Geological Survey proposes a 10-year program to develop a data base to aid in evaluation of future water-management alternatives. A study plan has been developed that describes present and potential problems and objectives of the program, and outlines work items to be undertaken in the study area. (USGS)

  6. Proposed 10-year plan for continuation of hydrologic studies of the Edwards Aquifer, San Antonio area, Texas

    USGS Publications Warehouse

    Land, Larry F.

    1984-01-01

    Some of the topics identified for special study include: (1) The potential of saline water entering the freshwater zone from the downdip boundary; (2) the possibility of water leaking into the aquifer from an overlying aquifer; (3) the effects of urbanization on ground-water quality in local areas; (4) the movement and dissipation of a recharge water plume; (5) the influx of water from the Glen Rose Formation; (6) the effects of the fault barriers, regional dense bed, and irregular geologic framework on ground-water flow patterns; (7) natural recharge-discharge relationships; (8) the aquifer stage-storage relationship; (9) natural water-quality evolution; and (10) a refinement of the hydrogeologic framework in a local area. 

  7. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material.

    PubMed

    Barbieri, Manuela; Carrera, Jesús; Sanchez-Vila, Xavier; Ayora, Carlos; Cama, Jordi; Köck-Schulmeyer, Marianne; López de Alda, Miren; Barceló, Damià; Tobella Brunet, Joana; Hernández García, Marta

    2011-11-01

    The natural processes occurring in subsurface environments have proven to effectively remove a number of organic pollutants from water. The predominant redox conditions revealed to be one of the controlling factors. However, in the case of organic micropollutants the knowledge on this potential redox-dependent behavior is still limited. Motivated by managed aquifer recharge practices microcosm experiments involving aquifer material, settings potentially feasible in field applications, and organic micropollutants at environmental concentrations were carried out. Different anaerobic redox conditions were promoted and sustained in each set of microcosms by adding adequate quantities of electron donors and acceptors. Whereas denitrification and sulfate-reducing conditions are easily achieved and maintained, Fe- and Mn-reduction are strongly constrained by the slower dissolution of the solid phases commonly present in aquifers. The thorough description and numerical modeling of the evolution of the experiments, including major and trace solutes and dissolution/precipitation of solid phases, have been proven necessary to the understanding of the processes and closing the mass balance. As an example of micropollutant results, the ubiquitous beta-blocker atenolol is completely removed in the experiments, the removal occurring faster under more advanced redox conditions. This suggests that aquifers constitute a potentially efficient alternative water treatment for atenolol, especially if adequate redox conditions are promoted during recharge and long enough residence times are ensured. PMID:22115096

  8. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material

    NASA Astrophysics Data System (ADS)

    Barbieri, Manuela; Carrera, Jesús; Sanchez-Vila, Xavier; Ayora, Carlos; Cama, Jordi; Köck-Schulmeyer, Marianne; López de Alda, Miren; Barceló, Damià; Tobella Brunet, Joana; Hernández García, Marta

    2011-11-01

    The natural processes occurring in subsurface environments have proven to effectively remove a number of organic pollutants from water. The predominant redox conditions revealed to be one of the controlling factors. However, in the case of organic micropollutants the knowledge on this potential redox-dependent behavior is still limited. Motivated by managed aquifer recharge practices microcosm experiments involving aquifer material, settings potentially feasible in field applications, and organic micropollutants at environmental concentrations were carried out. Different anaerobic redox conditions were promoted and sustained in each set of microcosms by adding adequate quantities of electron donors and acceptors. Whereas denitrification and sulfate-reducing conditions are easily achieved and maintained, Fe- and Mn-reduction are strongly constrained by the slower dissolution of the solid phases commonly present in aquifers. The thorough description and numerical modeling of the evolution of the experiments, including major and trace solutes and dissolution/precipitation of solid phases, have been proven necessary to the understanding of the processes and closing the mass balance. As an example of micropollutant results, the ubiquitous beta-blocker atenolol is completely removed in the experiments, the removal occurring faster under more advanced redox conditions. This suggests that aquifers constitute a potentially efficient alternative water treatment for atenolol, especially if adequate redox conditions are promoted during recharge and long enough residence times are ensured.

  9. Applications of universal kriging to an aquifer study in New Jersey

    USGS Publications Warehouse

    Pucci, A.A., Jr.; Murashige, J.A.E.

    1987-01-01

    Describes the use of kriging for optimizing data collection and utility in a regional groundwater investigation of the Potomac-Raritan-Magothy aquifer system in central New Jersey, Kriging was used to 1) estimate the altitude of an aquifer surface, 2) estimate hydraulic conductivities from point data, and 3) estimate the associated kriged errors. -from Authors

  10. A hydrogeological study of the confined aquifers below the Boom Clay in NE-Belgium: combining a piezometric analysis with groundwater modelling

    NASA Astrophysics Data System (ADS)

    Vandersteen, Katrijn; Gedeon, Matej

    2013-04-01

    For more than 35 years, SCKCEN has been investigating the possibility of high-level and/or long-lived radioactive waste disposal in the Boom Clay in north-eastern Belgium. This research, defined in the long term management programme for high-level and/or long-lived waste of ONDRAF/NIRAS, includes studying the regional hydrogeology of the aquifer systems surrounding the Boom Clay. In this context, a hydrogeological study of the confined aquifers below the Boom Clay was performed. To properly address the conceptual uncertainties related to the poorly characterized domain featuring large uncertainty in the forcing data, a combination of a piezometric data analysis and hydrogeological modelling was used. The study area represents the confined part of the groundwater system located stratigraphically below the Boom Clay in NE-Belgium. This so-called deep aquifer system includes, with increasing depth, parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer. Due to the considerable pumping from these aquifers in combination with a limited recharge to the deep aquifer system, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. The analysis of the piezometry of the confined deep aquifer system allowed gaining more insight on the system response to the intensive pumping. Since the Oligocene aquifer has a significantly lower permeability compared to the Ledo-Paniselian-Brusselian aquifer, the Oligocene pumping triggers only local effects on groundwater levels. Hence, the regional effects (constant decrease of groundwater levels) in the Oligocene aquifer are presumably caused by pumping in the Ledo-Paniselian-Brusselian aquifer, whereby the hydraulically isolating Maldegem Formation (Bartoon aquitard) dampens these effects. The amount of this dampening is given by the spatial distribution of the hydraulic properties of the Maldegem Formation and/or its variable thickness. For the

  11. A case study of DNAPL remediation in northeastern Brazil.

    PubMed

    Daus, A D; Kent, B; Bianchi Mosquera, G C

    2001-09-01

    Aquifer restoration in the United States is recognized as a technically challenging objective when dense non-aqueous phase liquids (DNAPLs) are present (1). In fact, only a few aquifers impacted by DNAPLs have been restored. Factors that have typically contributed to the lack of successful aquifer restoration include the chemical properties of the DNAPL, the physical properties of the aquifer, the absence of cost-effective technologies, and an incomplete or inaccurate development of a conceptual hydrogeological model for the site. In Latin America, environmental studies historically have been related to biological quality of surface water and groundwater. Recently, the U.S. and Canada have experienced an increased influx of foreign students and professionals interested in studying specialized courses in environmental engineering, or participating in conferences. This exposure to current topics has strengthened the awareness of these professionals regarding groundwater contamination from gasoline-derived compounds and chlorinated solvents. As a result of this increased awareness, Latin American hydrogeologists and environmental regulators have been able to recognize the potential problems that could result from DNAPL spills that may impact groundwater and have learned to approach them using locally available technology and resources. A case study of such an example is presented below.

  12. MULTIPLE CONTAMINANTS CASE STUDIES

    EPA Science Inventory

    The presentation provides information taken from the arsenic demonstration program projects that have treatment systems removing multiply contaminants from drinking water. The case studies sited in the presentation consist of projects that have arsenic along with either nitrate, ...

  13. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Geophysical Log Database for the Mississippi Embayment Regional Aquifer Study (MERAS)

    USGS Publications Warehouse

    Hart, Rheannon M.; Clark, Brian R.

    2008-01-01

    The Mississippi Embayment Regional Aquifer Study (MERAS) is an investigation of ground-water availability and sustainability within the Mississippi embayment as part of the U.S. Geological Survey Ground-Water Resources Program. The MERAS area consists of approximately 70,000 square miles and encompasses parts of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. More than 2,600 geophysical logs of test holes and wells within the MERAS area were compiled into a database and were used to develop a digital hydrogeologic framework from land surface to the top of the Midway Group of upper Paleocene age. The purpose of this report is to document, present, and summarize the geophysical log database, as well as to preserve the geophysical logs in a digital image format for online access.

  15. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    USGS Publications Warehouse

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  16. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  17. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  18. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  19. Hydrochemical and statistical study of groundwaters in Gabes-south deep aquifer (south-eastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Ketata, Mouna; Hamzaoui, Fadoua; Gueddari, Moncef; Bouhlila, Rachida; Ribeiro, Luis

    Groundwater quality assessment is important to ensure sustainable safe use of water. In the region of Gabes, groundwaters represent the main source of water supply for drinking, agriculture and industry seeing the shortage in surface water. In the present paper, an attempt has been made, for the first time in this region, to study the spatial and temporal evolution of the hydrochemistry and to identify factors and phenomena governing the assessment parameters of Gabes-south groundwaters quality, based on (1) an integrated analysis of physical-chemical parameters (2) use of Geological Information System (GIS) and (3) statistical methods. To this purpose, water samples were collected during the period of 1995-2003 from nine boreholes to represent Gabes-south deep aquifer. The water samples were investigated with respect to salinity, concentrations of hydrogen (pH), calcium (Ca 2+), magnesium (Mg 2+), sodium (Na +), potassium (K +), chloride (Cl -), sulphate, SO42-, bicarbonates HCO3- and fluoride (F -). Spatial distribution maps of these parameters have been created using GIS contouring methods with Arcview 3.2. The analytical results obtained were interpreted using hydrochemical methods reinforced by statistical analysis (trend analysis, principal component analysis and correspondence analysis) which has been widely used to analyse large sets of variables in environmental studies. Chemical analysis show that during the considered period, salinity and major elements concentrations vary little with time, and decrease in the direction of the groundwater flow. The waters are mostly SO 4, Cl, Na and Ca type. The chemical composition of these waters is related to the lithology of the aquifer, to their origin and to the exploitation conditions. Water quality analysis indicates that Gabes-south groundwaters are mainly composed of SO 4, Cl, Na and Ca type. Results showed that fluoride concentrations exceed the World Health Organisation (WHO) maximum permissible limit of 1

  20. Studying the impact of climate change on coastal aquifers and adjacent wetlands

    NASA Astrophysics Data System (ADS)

    Stigter, Tibor; Ribeiro, Luís.; Oliveira, Rodrigo; Samper, Javier; Fakir, Younes; Fonseca, Luís.; Monteiro, José Paulo; Nunes, João. Pedro; Pisani, Bruno

    2010-05-01

    negligible, groundwater recharge is determined by evapotranspiration methods. WP3 involves the monitoring and modeling of groundwater. Water level, electrical conductivity (EC) and temperature measurements are made on a regular basis. At the Portuguese study site, continuous recording of these parameters is performed in the estuary and adjacent aquifer, studying the effect of tidal fluctuations and seasonal variations in recharge and abstractions. Groundwater flow and transport models are created or further developed, integrating the climate scenarios and recharge calculations of WP2, in order to simulate the impact on aquifer hydrodynamics and the movement of the fresh/salt water interface. In WP4 the response of coastal ecosystems to changes in groundwater inputs is assessed with the aid of ecological diversity indices and by using particular taxonomic groups of invertebrates as bioindicators. Mesofauna groups are also characterized in groundwater and their potential as indicators of changes in water composition is assessed. Preliminary results at the Portuguese study site allow understanding that low salinity is apparently relevant for the colonization of the macroinvertebrate species in the groundwater receiving wetland, as the typically estuarine species, which tolerate low salinity, are abundant.

  1. Analytical solution of two-dimensional solute transport in an aquifer-aquitard system.

    PubMed

    Zhan, Hongbin; Wen, Zhang; Huang, Guanhua; Sun, Dongmin

    2009-07-21

    This study deals with two-dimensional solute transport in an aquifer-aquitard system by maintaining rigorous mass conservation at the aquifer-aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient. PMID:19477033

  2. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation

    PubMed Central

    Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena

    2015-01-01

    Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862

  3. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation.

    PubMed

    Matteucci, Federica; Ercole, Claudia; Del Gallo, Maddalena

    2015-01-01

    Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo ("Val Vibrata"), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area.

  4. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  5. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River

    NASA Astrophysics Data System (ADS)

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3-) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3 years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.

  6. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River.

    PubMed

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3(-)) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.

  7. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River.

    PubMed

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3(-)) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems. PMID:27398641

  8. MIDAS case studies

    SciTech Connect

    Brusger, E.C.; Farber, M.A.; Sharpe Hayes, M.M.

    1989-07-01

    This series of three case studies illustrates the validity and usefulness of MIDAS, a microcomputer-based tool for integrated resource planning under uncertainty. The first, at Union Electric, serves to test and validate the model and to illustrate its use for demand/supply option evaluation. Focusing on nuclear plant life extension, the Virginia Power case demonstrates the model's extensive detail, particularly in the production cost and financial areas, as well as its flexibility in addressing approximately 70 uncertainty scenarios. Puget Sound Power Light, the third case, used MIDAS for the preparation of its integrated resource plan. A 108-endpoint decision tree illustrates the full power of the decision analysis capability.

  9. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  10. Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers

    PubMed Central

    Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.

    2016-01-01

    The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362

  11. Confined aquifer vulnerability induced by a pumping well in a leakage area

    NASA Astrophysics Data System (ADS)

    Meng, X.; Deng, B.; Shao, J.; Yin, M.; Liu, D.; Hu, Q.

    2015-05-01

    Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  12. Geothermal Case Studies

    DOE Data Explorer

    Young, Katherine

    2014-09-30

    database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  13. Unionfining: Technical case studies

    SciTech Connect

    Nguyen, T.A.; Skripek, M.

    1994-12-31

    Hydrotreating improves the quality of FCC feeds by reducing sulfur, nitrogen, metals, asphaltenes, and polynuclear aromatic content. Four case studies presented in this paper show the benefits of hydrotreating FCC feeds: higher conversion and gasoline yield, better quality products, and lower SO{sub x} emissions.

  14. Case Studies in Biology.

    ERIC Educational Resources Information Center

    Zeakes, Samuel J.

    1989-01-01

    A case study writing exercise used in a course on parasitology was found to be a powerful learning experience for students because it involved discipline-based technical writing and terminology, brought the students in as evaluators, applied current learning, caused interaction among all students, and simulated real professional activities. (MSE)

  15. Nesidioblastosis: a case study.

    PubMed

    Starbuck, A L

    1997-09-01

    Hypoglycemia is a common problem among neonates. Transient in nature, it usually resolves with an increase in glucose intake. However, as clinicians, we must recognize that prolonged hypoglycemia may be caused by increased insulin production. Nesidioblastosis is one cause of persistent hyperinsulinism of the newborn. This case study reviews fetal physiology, neonatal presentation, and treatment. PMID:9325879

  16. Case Studies in Education.

    ERIC Educational Resources Information Center

    Guceri, Meral; Akin, Ann Riddell

    1998-01-01

    Case studies have been welcomed by English-as-a-foreign-language professionals, especially by those involved in teaching English for Specific Purposes (ESP) in the Departmental English courses at Baskent University English Language School and the English Support Unit (ELSU) of Bilkent University School of English Language in Turkey. This article…

  17. Case study: mariner's TB.

    PubMed

    McLain, E H

    1989-08-01

    Mycobacterium marinum causes tuberculosis in fish and shellfish and cutaneous lesions in humans. It is transmitted from fish to humans by inoculation. The case presented involved a nodule on the wrist and was misdiagnosed as arthritis; the nodule was excised. Symptoms of tuberculosis persisted over a 2-year period. This case study can be generalized to a population of workers in the seafood industry, water hobbyists, and fish and shellfish enthusiasts. Education and research is needed to inform and protect populations at high risk for this disease.

  18. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  19. Integrating borehole logs and aquifer tests in aquifer characterization

    USGS Publications Warehouse

    Paillet, Frederick L.; Reese, R.S.

    2000-01-01

    Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the surficial aquifer system in and around Big Cypress National Preserve in eastern Collier County, Florida. Borehole flowmeter tests provide qualitative permeability profiles in most of 26 boreholes drilled in the Study area. Flow logs indicate the depth of transmissive units, which are correlated across the study area. Comparison to published studies in adjacent areas indicates that the main limestone aquifer of the 000000Tamiami Formation in the study area corresponds with the gray limestone aquifer in western Dade County and the water table and lower Tamiami Aquifer in western Collier County. Four strategically located, multiwell aquifer tests are used to quantify the qualitative permeability profiles provided by the flowmeter log analysis. The hydrostratigraphic model based on these results defines the main aquifer in the central part of the study area as unconfined to semiconfined with a transmissivity as high as 30,000 m2/day. The aquifer decreases in transmissivity to less than 10,000 m2/day in some parts of western Collier County, and becomes confined to the east and northeast of the study area, where transmissivity decreases to below 5000 m2/day.Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the

  20. A combined radio- and stable-isotopic study of a California coastal aquifer system

    USGS Publications Warehouse

    Swarzenski, Peter W.; Baskaran, Mark; Rosenbauer, Robert J.; Edwards, Brian D.; Land, Michael

    2013-01-01

    Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl−, SO42−), silica, alkalinity, select trace elements (Ba, B, Sr), dissolved oxygen, stable isotopes of hydrogen (δD), oxygen (δ18O), dissolved inorganic carbon (δ13CDIC), and radioactive isotopes (3H, 222Rn and 223,224,226,228Ra). In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl− concentrations attained seawater-like values and in conjunction with isotopically heavier δ18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU) was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc), groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ13CDIC in the absence of SO42− imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/238U (activity ratios ~1) in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights into aquifer

  1. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains (fig. 1A). Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers (fig. 2) knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone (fig. 3). However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer (figs. 1A and 1B). The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in

  2. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wörman, Anders; Wang, Heng; Wang, Xu-Sheng; Li, Hailong

    2015-10-01

    Although it has been reported that flowing artesian wells could be topographically controlled, there is no quantitative research on artesian flow conditions in unconfined aquifers. In this study, the water table, which has a lower amplitude than the land surface, is damped from the topography and used as the boundary condition to obtain the analytical solution of hydraulic head of a unit basin with a single flow system. The term artesian head is defined to characterize the condition of flowing artesian wells. The zone with positive artesian head is called artesian zone while with negative artesian head is nonartesian zone. The maximum artesian head and the size of artesian zones are found to increase with the damping factor and the anisotropy ratio, and decrease with the ratio of basin width to depth and the depth-decay exponent of hydraulic conductivity. Moreover, the artesian head increases with depth nearby the valley and decreases with depth near by the divide, and the variation rates are influenced by the decay exponent and the anisotropy ratio. Finally, the distribution of flowing artesian wells and the artesian head measurements in different depths of a borehole in a small catchment in the Ordos Plateau, Northwestern China is used to illustrate the theoretical findings. The change in artesian head with depth was used to estimate the anisotropy ratio and the decay exponent. This study opens up a new door to analyze basin-scale groundwater flow.

  3. Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect

    NASA Astrophysics Data System (ADS)

    Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der

    2013-04-01

    SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and

  4. A reconnaissance study of saltwater contamination in the El Dorado aquifer, Union County, Arkansas

    USGS Publications Warehouse

    Broom, Matthew E.; Kraemer, T.F.; Bush, William V.

    1984-01-01

    Since 1960 chloride concentrations in the El Dorado aquifer have increased near El Dorado, Arkansas. The aquifer is a major source for municipal and industrial water supply in Union County. Greatest withdrawal occurs near El Dorado. Because of this withdrawal, the potentiometric surface at El Dorado has been lowered more than 300 feet. Geologic, hydrologic, and chemical data indicate that water from a graben south and east of El Dorado is the source of contamination from salt within the El Dorado aquifer. The data indicates that surface brines and deeper aquifers are not the sources of chloride contamination. Lowering the potentiometric surface near El Dorado has caused water to move out of the graben toward El Dorado. Estimates based on interpretation of electric logs for two wells in the graben indicate chloride equivalents may be as high as 2,500 milligrams per liter in the aquifer. Concentrations outside the graben range from 130 to 650 milligrams per liter at the west end of the graben and from 25 to 150 milligrams per liter farther west and north. (USGS)

  5. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.

    PubMed

    Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2016-08-01

    Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 μm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants.

  6. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.

    PubMed

    Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2016-08-01

    Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 μm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants. PMID:27348254

  7. Resistivity imaging of Pleistocene alluvial aquifers in a contractional tectonic setting: A case history from the Po plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Mele, M.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.; Zaja, A.

    2013-06-01

    In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties. The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle-Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70-180 Ωm, thickness of 5-70 m) separated by low permeability aquitards (20-50 Ωm, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20-50

  8. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer. PMID:25647491

  9. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  10. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  11. A field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer

    PubMed Central

    Jung, Hun Bok; Charette, Matthew A.; Zheng, Yan

    2009-01-01

    A field, laboratory, and modeling study of As in groundwater discharging to Waquoit Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport of As in a coastal aquifer. Dissolved Fe(II) and As(III) in a reducing groundwater plume bracketed by an upper and a lower redox interface are oxidized as water flows towards the bay. This results in precipitation of Fe(III) oxides, along with oxidation and adsorption of As to sediment at the redox interfaces where concentrations of sedimentary HCl-leachable Fe (80~90% Fe(III)) are 734±232 mg kg-1, sedimentary phosphate extractable As (90~100% As(V)) are 316±111 μg kg-1, and are linearly correlated. Batch adsorption of As(III) onto orange, brown and gray sediments follows Langmuir isotherms, and can be fitted by a surface complexation model (SCM) assuming a diffuse layer for ferrihydrite. The sorption capacity and distribution coefficient for As increase with decreasing sediment Fe(II)/Fe. To allow accumulation of the amount of sediment As, similar hydrogeochemical conditions would have been operating for thousands of years at Waquoit Bay. The SCM simulated the observed dissolved As concentration better than a parametric approach based on Kd. Site specific isotherms should be established for Kd or SCM based models. PMID:19708362

  12. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, J. J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G.

    2016-03-01

    The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer's potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

  13. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    EPA Science Inventory

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  14. Water quality management of aquifer recharge using advanced tools.

    PubMed

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  15. Simulation of the transfer of organochlorine pollutants in an alluvial aquifer in an alpine valley: the case of tetrachloroethene

    NASA Astrophysics Data System (ADS)

    Kouamé, A. A.; Jaboyedoff, M.; Tacher, L.; Derron, M.-H.

    2012-04-01

    During a series of environmental analysis carried out in soil and groundwater in the Alpine Valley (Rhone valley Western Switzerland), were identified high levels of chlorinated solvents, particularly the tetrachloroethene. The leakage of this pollutant originates from industry. The geological substratum in this part of the valley is mainly composed of alluvial deposits and the deposit of a large rock avalanche. The sediments are composed of sandy silt, sandy clay, sand and gravel. The rock avalanche deposit which is the wall of the alluvial aquifer consists of fine materials, stones and large debris mainly of limestone. The investigations developed in this area have shown the presence of a contaminant plume of 60 m long and 35 m wide approximately. Thus the technique of venting / sparging was proposed as remediation measure. Despite the effectiveness of this technique, it turns out that there are still some pockets of contamination of groundwater in the area. In order to assess the potential pollution, a numerical modeling was developed by using the Visual Modflow software. The stages of this modeling are: • Selecting the parameters of the models; • Developing conceptual and numerical models; • Calibration and validation of the model; • Reproducing the observed concentrations; • Sensitivity analysis; • Making a parametric study to see at different stages the tetrachloroethene plume. The first results of the simulation show a slow leakage of the pollutant forming a pocket in the water flow direction.

  16. Harmonizing water management and social needs: a necessary condition for sustainable development. The case of Israel's coastal aquifer.

    PubMed

    Melloul, Abraham J; Collin, Martin L

    2003-04-01

    This study focuses on the problem of most efficiently fulfilling the water requirements of society for sustainable water resources management. The goal is to coordinate effectively the social needs of the resident population with operational water resources management planning.The proposed approach consists of a pyramidal hierarchy of water resource management needs, similar to that suggested by psychologist Abraham Maslow for human social needs. The two pyramidal hierarchies can be simultaneously employed to delineate guidelines to synchronize planning for sustainable water resources development with the concerns and expectations of the resident population. In both hierarchies, higher level needs remain irrelevant and difficult to attain until lower level needs of the resident population have been fulfilled. Management planning measures employed with regard to Israel's coastal aquifer have been used to illustrate this approach. Observation of Israel's experience indicates markedly reduced effectiveness where such measures have failed to be properly synchronised with societal needs. Conversely, where hydrological management measures were successfully synchronized with societal concerns, increased efficiency towards attaining sustainable groundwater management was evident.

  17. Plan of study for the High Plains regional aquifer-system analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Weeks, John B.

    1978-01-01

    The Ogallala Formation and associated Tertiary and Quarternary deposits from the principal aquifers supporting irrigation in the High Plains of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The volume of water in storage within the aquifers is declining in most of the High Plains because water is being withdrawn in excess of the rate of replenishment. The U.S. Geological Survey has initiated a 5-year study of the High Plains aquifer system to develop the geohydrologic data base and computer models of the ground-water flow system needed to evaluate the response of the aquifer system to ground-water management alternatives. This report describes the objectives, plan, and organization of the study and outlines the work to be accomplished in each State in the study area. (Woodard-USGS)

  18. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  19. Estimating harvested rainwater at greenhouses in south Portugal aquifer Campina de Faro for potential infiltration in Managed Aquifer Recharge.

    NASA Astrophysics Data System (ADS)

    Costa, Luís; Monteiro, José Paulo; Leitão, Teresa; Lobo-Ferreira, João Paulo; Oliveira, Manuel; Martins de Carvalho, José; Martins de Carvalho, Tiago; Agostinho, Rui

    2015-04-01

    value is a good indication of the total amount of the harvested rainfall that could be considered for future MAR solutions. Given the estimates on the greenhouse harvested rainwater and the infiltration capacity of the infiltration basins and large diameter wells, it is intended to develop groundwater flow models in order to assess the nitrate washing rate in the CF aquifer. This work is being developed under the scope of MARSOL Project (MARSOL-GA-2013-619120), in which Campina de Faro aquifer system is one of the several case studies. This project aims to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence in finding solutions to water scarcity in Southern Europe.

  20. A preliminary study of the distribution of saline water in the bedrock aquifers of eastern Wisconsin

    USGS Publications Warehouse

    Ryling, Roy W.

    1961-01-01

    The occurrence of saline water in the bedrock aquifers of eastern Wisconsin has been known for many years. Because of the ready availability of fresh water from other sources, little has been known of the extent of the saline-water area. Saline ground water is a potential source of contamination to wells if it moves into fresh-water zones.

  1. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  2. Human enteric viruses in groundwater from a confined bedrock aquifer.

    PubMed

    Borchardt, Mark A; Bradbury, Kenneth R; Gotkowitz, Madeline B; Cherry, John A; Parker, Beth L

    2007-09-15

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the pastfew decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed.

  3. Conducting and Reporting Case Studies.

    ERIC Educational Resources Information Center

    Lichtman, Merilyn; Taylor, Satomi Izumi

    Issues and elements of case study research are explored and illustrated with the example of a case study of a kindergarten in a suburb of Tokyo (Japan). Case study research is a type of qualitative research that concentrates on a single unit or entity, with boundaries established by the researcher. The case is an example drawn from a larger class,…

  4. Electric analog studies of flow to wells in the Punjab aquifer of West Pakistan

    USGS Publications Warehouse

    Mundorff, Maurice John; Bennett, G.D.; Ahmad, Masood

    1972-01-01

    A series of experiments was performed with a steady-state electric analog simulating a cylindrical segment of the aquifer underlying the plains of the Punjab region of West Pakistan. In most of the experiments recharge was assumed to be from the surface, within a specified radius of influence, and distributed uniformly over the area within this radius. Experiments were made with different anisotropies (ratios of lateral to vertical resistance) so that various possible combinations of aquifer thickness and effective radius or radius of influence and combinations .of lateral and vertical permeability could be included in the models. Flow nets were constructed to show distribution of potential in the vertical section and intersections of stream surfaces with the vertical plane. The series of experiments in which the screened interval is in the upper part of the aquifer shows that flow decreases and stream tubes shift progressively toward the upper part of the aquifer as anisotropy increases. Another series illustrates that total yield increases and yield per foot of screen decreases as screen length increases. The experiments indicate that, under conditions prevalent in the Punjab, the Distance-drawdown method for determining permeability gives results with an error of 10 percent or less provided that at least one piezometer or observation well is within a few feet of the pumped well and that no observation well or piezometer used is more than 100 feet from the pumped well. Relative traveltime for each of 10 stream tubes is given for three models. Relative traveltimes for one-fourth and one-half the effective radius are given for selected stream tubes. By substituting values for the aquifer parameters, actual traveltimes are computed from the relative-traveltime data.

  5. Plan of study for the regional aquifer-system analysis of the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    USGS Publications Warehouse

    Welder, G.E.

    1986-01-01

    The San Juan structural basin is an 18,000 sq mi area that contains several extensive aquifers. The basin includes three surface drainage basins and parts of New Mexico, Colorado, Arizona, and Utah. Surface water in the area is fully appropriated, and the steadily increasing demand for groundwater has resulted in water supply concerns. Competition is great between mining and electric power companies, municipalities, and Indian communities for the limited groundwater supplies. This report outlines a 4-year plan for a study of the regional aquifer system in the San Juan structural basin. The purposes of the study are to define and understand the aquifer system; to assess the effects of groundwater use on the aquifers and streams; and to determine the availability and quality of groundwater in the basin. (Author 's abstract)

  6. Monitoring a shallow geothermal experiment in a sandy aquifer using electrical resistivity tomography: a feasibility study

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Vandenbohede, Alexander; Nguyen, Frederic; Lebbe, Luc

    2010-05-01

    The use of low-enthalpy geothermal ressources is increasingly growing in Europe and around the world. This domain constitutes an essential field of research and development in the diversification of energy ressources to hinder global warming. The advantages of very low temperature systems are, first, that they are much more available than the geothermal high temperature, since the underground often contains important shallow aquifers (e.g. alluvial plains), and second, that their exploitation involve relatively low costs of implementation. Very low energy systems exhibit underground fluid with a temperature ranging from 5 to 30 ° C, which may be used for cooling or heating. The two main modes of exploitation of geothermal energy rely on the extraction of the hydrothermal fluid in the aquifer from wells and on the circulation of a heat transfer fluid in a closed and buried geothermal circuit. Underground heat exchange and overall exploitation system design may be undertaken in an optimized and sustainable fashion if the parameters governing the coupled heat transport and flow equations are know to a certain degree. As for many underground reservoir problems, sufficient knowledge on the distribution of the parameters of interests (e.g. thermal conductivity, thermal diffusivity, thermomechanic dispersitivity, effective porosity) must be obtained to perform reliable predictions. Designing novel experiments to estimate those parameters in-situ is therefore essential. In this framework, we examine the feasibility of a thermal tracer experiment similar to the ones performed in hydrogeology or hydrogeophysics. The test consists in following the evolution of a heat plume through the underground as it is injected in one well and pumped to another one. The thermal tracer evolution is followed by gathering electrical resistivity (ERT) images in a time-lapse framework over 10 days. In this contribution, we examine the potential of ERT to image such thermal plume and its

  7. A participatory approach to integrated aquifer management: The case of Guanajuato State, Mexico

    NASA Astrophysics Data System (ADS)

    Sandoval, Ricardo

    Guanajuato State, located in central Mexico, with less than 2% of the country's area, has almost 17,000 deep water wells, from which nearly 4,000 cubic hectometers (hm3) per year are being extracted, more than 1,000 hm3 over the estimated renewable yield. Since, in Mexico, water is administered under federal jurisdiction by the National Water Commission (CNA, for its Spanish acronym), the state government faces the challenge of ensuring its population's economic development without formal means of intervention. Being thus limited to apply mandatory policies and measures, the state water program has focused on the implementation of a two-sided strategy. First, basic hydrogeological studies and mathematical groundwater hydrodynamic models were developed upon a comprehensive survey of existing wells and a general revision of the state's geological framework. Second, a structure for water user's participation in water management actions was promoted (from the dissemination of information to the implementation of pilot efficient water use projects) with financial, technical and political support from the state. Simultaneously, a coordinated effort towards the completion of the water user's registry was performed with the federal authority along with other supporting measures such as training and monitoring programs. In this paper, a general overview of the project's achievements and challenges is presented. L'État de Guanajuato, situé dans la partie centrale du Mexique, avec moins de 2% de la surface du pays, a près de 17 000 puits profonds, d'où sont extraits près de 4 000 hm3 par an, soit plus de 1 000 hm3 de plus que le débit renouvelable estimé. Comme au Mexique l'eau est administrée dans le cadre d'une juridiction fédérale, le gouvernement de l'État fait tout son possible pour assurer le développement de sa population sans moyens formels d'intervention. Étant ainsi limité à appliquer des politiques et des mesures de recommandations, le programme Eau

  8. A participatory approach to integrated aquifer management: The case of Guanajuato State, Mexico

    NASA Astrophysics Data System (ADS)

    Sandoval, Ricardo

    Guanajuato State, located in central Mexico, with less than 2% of the country's area, has almost 17,000 deep water wells, from which nearly 4,000 cubic hectometers (hm3) per year are being extracted, more than 1,000 hm3 over the estimated renewable yield. Since, in Mexico, water is administered under federal jurisdiction by the National Water Commission (CNA, for its Spanish acronym), the state government faces the challenge of ensuring its population's economic development without formal means of intervention. Being thus limited to apply mandatory policies and measures, the state water program has focused on the implementation of a two-sided strategy. First, basic hydrogeological studies and mathematical groundwater hydrodynamic models were developed upon a comprehensive survey of existing wells and a general revision of the state's geological framework. Second, a structure for water user's participation in water management actions was promoted (from the dissemination of information to the implementation of pilot efficient water use projects) with financial, technical and political support from the state. Simultaneously, a coordinated effort towards the completion of the water user's registry was performed with the federal authority along with other supporting measures such as training and monitoring programs. In this paper, a general overview of the project's achievements and challenges is presented. L'État de Guanajuato, situé dans la partie centrale du Mexique, avec moins de 2% de la surface du pays, a près de 17 000 puits profonds, d'où sont extraits près de 4 000 hm3 par an, soit plus de 1 000 hm3 de plus que le débit renouvelable estimé. Comme au Mexique l'eau est administrée dans le cadre d'une juridiction fédérale, le gouvernement de l'État fait tout son possible pour assurer le développement de sa population sans moyens formels d'intervention. Étant ainsi limité à appliquer des politiques et des mesures de recommandations, le programme Eau

  9. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  10. Herbicides in ground water of the Midwest: A regional study of shallow aquifers, 1991-94

    USGS Publications Warehouse

    Kolpin, Dana W.; Stamer, J.K.; Goolsby, D.A.; Thurman, E.M.

    1998-01-01

    The intensive herbicide use associated with the 'Corn Belt' marks the Midwestern United States as a region where herbicide contamination of ground water could be a problem. To better understand the regional occurrence of herbicides in shallow aquifers of the Midwest, a sampling network of 303 wells across 12 States was developed. The results documented relatively widespread, low-level concentrations of herbicides in the shallow aquifers sampled. The most frequently detected compounds, however, were the transformation products of these herbicides. A relation was determined between herbicide occurrence and the general age of the ground water sampled. Water that recharged ground water within the past 40 years was much more likely to contain herbicides than water recharged earlier.

  11. The dynamics of stream-aquifer connectivity: an observational study in northern New Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, J. D.; Crossey, L. J.; Wilson, J. L.; Sherson, L. R.; Dahm, C.

    2015-12-01

    The bidirectional feedback between streams and aquifers changes over several spatio- temporal scales, requiring a complex, multi-variable observational network that captures the dominant processes taking place and the response to changes in hydrologic forcing. The importance of stream-aquifer connectivity is evidenced by its influence in the hydrologic response and in the fate and transport of solutes at the watershed scale. To better understand the dynamics of stream-aquifer connectivity and the effects that intra-annual weather variability has on physical and chemical processes, a monitoring network was installed at a meander bend of the East Fork of the Jemez River in the Valles Caldera National Preserve (VCNP), a snow-dominated watershed in northern New Mexico. This work summarizes four years of observations of groundwater-surface water interaction. Spatio-temporal patterns of water level, temperature, and electrical conductivity were measured in meander-bend wells and vertical fluxes to/from the stream were estimated using in-stream piezometers, subsurface thermal records, and distributed temperature sensing in the channel. A three-dimensional numerical model was used to synthesize data and draw general conclusions. The observational network has been collecting data since the summer of 2010 to present, overlapping the Las Conchas fire in the VCNP (largest wildfire on record in New Mexico's history), and therefore representing a valuable data set to evaluate the hydrological and biogeochemical implications of wildfire events.

  12. Enhancements to the Mississippi Embayment Regional Aquifer Study (MERAS) groundwater-flow model and simulations of sustainable water-level scenarios

    USGS Publications Warehouse

    Clark, Brian R.; Westerman, Drew A.; Fugitt, D. Todd

    2013-01-01

    Arkansas continues to be one of the largest users of groundwater in the Nation. As such, long-term planning and management are essential to ensure continued availability of groundwater and surface water for years to come. The Mississippi Embayment Regional Aquifer Study (MERAS) model was developed previously as a tool to evaluate groundwater availability within the Mississippi embayment, which encompasses much of eastern Arkansas where the majority of groundwater is used. The Arkansas Water Plan is being updated for the first time since 1990 and serves as the State’s primary, comprehensive water-resources planning and guidance document. The MERAS model was selected as the best available tool for evaluation of specific water-use pumping scenarios that are currently being considered by the State of Arkansas. The model, developed as part of the U.S. Geological Survey Groundwater Resources Program’s assessment of the Nation’s groundwater availability, is proving to be invaluable to the State as it works toward development of a sustained yield pumping strategy. One aspect of this investigation was to evaluate multiple methods to improve the match of observed to simulated groundwater levels within the Mississippi River Valley alluvial and middle Claiborne (Sparta) aquifers in the MERAS model. Five primary methods were evaluated: (1) explicit simulation of evapotranspiration (ET), (2) upgrade of the Multi-Node Well (MNW2) Package, (3) geometry improvement within the Streamflow Routing (SFR) Package, (4) parameter estimation of select aquifer properties with pilot points, and (5) modification of water-use estimates. For the planning purposes of the Arkansas Water Plan, three scenarios were developed to evaluate potential future conditions: (1) simulation of previously optimized pumping values within the Mississippi River Valley alluvial and the middle Claiborne aquifers, (2) simulated prolonged effects of pumping at average recent (2000–5) rates, and (3) simulation

  13. Natural Learning Case Study Archives

    ERIC Educational Resources Information Center

    Lawler, Robert W.

    2015-01-01

    Natural Learning Case Study Archives (NLCSA) is a research facility for those interested in using case study analysis to deepen their understanding of common sense knowledge and natural learning (how the mind interacts with everyday experiences to develop common sense knowledge). The database comprises three case study corpora based on experiences…

  14. Case Studies in Wilderness Medicine.

    ERIC Educational Resources Information Center

    Gray, Melissa; Tarter, Shana Lee

    Five case studies explore issues in wilderness medicine, with emphasis on evacuation decision making. The cases describe medical problems encountered during wilderness trips involving college or high school students. In each case, the situation and facts of the case are outlined, including the patient's medical history and vital signs, and at…

  15. Part 1: Vadose-zone column studies of toluene (enhanced bioremediation) in a shallow unconfined aquifer

    USGS Publications Warehouse

    Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.

    2005-01-01

    The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage

  16. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Schönenberger, René; Furrer, Gerhard; Zobrist, Jürg

    2003-07-01

    Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO 4 reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO 4-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO 4 in the influent to render the reduction of this species unimportant to the geochemical processes in the column. The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO 3(S)). In the column where significant SO 4 reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO 4 reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO 3(S)). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction. The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO 4 was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column

  17. Termination: A Case Study.

    PubMed

    Friedberg, Ahron L

    2015-12-01

    In this article I posit and examine certain criteria and qualities for ending an analysis. The case study describes the end phase of a four-year psychoanalysis in which the patient's decision to move to another area forced the end of his analysis. We continued to explore and work through his core neurotic conflicts that included issues of competitive rivalry, dominance and submission, control, and anxiety about birth and death. A shift in the transference from me as a negative father to me as a supportive but competitive older brother was also examined in the context of ending treatment as well as other aspects of the transference. In addition, we analyzed the meaning of his ending treatment based on an extra-analytic circumstance. In discussing this phase of treatment, the definition and history of the term "termination" and its connotations are reviewed. Various criteria for completing an analysis are examined, and technical observations about this phase of treatment are investigated. It was found that while a significant shift in the transference occurred in this phase of the patient's analysis, conflicts related to the transference were not "resolved" in the classical sense. Terminating treatment was considered as a practical matter in which the patient's autonomy and sense of choice were respected and analyzed. PMID:26583444

  18. Transboundary study of the Milk River aquifer (Canada, USA): geological, conceptual and numerical models for the sound management of the regional groundwater resources

    NASA Astrophysics Data System (ADS)

    Pétré, Marie-Amélie; Rivera, Alfonso; Lefebvre, René

    2016-04-01

    The Milk River transboundary aquifer straddles southern Alberta (Canada) and northern Montana (United States), a semi-arid and water-short region. The extensive use of this regional sandstone aquifer over the 20th century has led to a major drop in water levels locally, and concerns about the durability of the resources have been raised since the mid-1950. Even though the Milk River Aquifer (MRA) has been studied for decades, most of the previous studies were limited by the international border, preventing a sound understanding of the aquifer dynamics. Yet, a complete portrait of the aquifer is required for proper management of this shared resource. The transboundary study of the MRA aims to overcome transboundary limitations by providing a comprehensive characterization of the groundwater resource at the aquifer scale, following a three-stage approach: 1) The development of a 3D unified geological model of the MRA (50,000 km2). The stratigraphic framework on both sides of the border was harmonized and various sources of geological data were unified to build the transboundary geological model. The delineation of the aquifer and the geometry and thicknesses of the geological units were defined continuously across the border. 2) Elaboration of a conceptual hydrogeological model by linking hydrogeological and geochemical data with the 3D unified geological model. This stage is based on a thorough literature review and focused complementary field work on both sides of the border. The conceptual model includes the determination of the groundwater flow pattern, the spatial distribution of hydraulic properties, a groundwater budget and the definition of the groundwater types. Isotopes (3H, 14C, 36Cl) were used to delineate the recharge area as well as the active and low-flow areas. 3) The building of a 3D numerical groundwater flow model of the MRA (26,000 km2). This model is a transposition of the geological and hydrogeological conceptual models. A pre

  19. Application of a discrete-continuum model to karst aquifers in North China.

    PubMed

    Wu, Qiang; Zhou, Wanfang; Pan, Guoying; Ye, Siyuan

    2009-01-01

    A generalized discrete-continuum model is developed to simulate ground water flow in the karst aquifers of North China. The model is a hybrid numerical flow model, which takes into account both quick conduit flow and diffusive fissure flow. The conduit flow is represented by a discrete network model, and the fissure flow is modeled by a continuum approach. The developed model strongly emphasizes the function of the conduits in the flow fields. They control the general drainage pattern, as demonstrated in the simulation of a complex karst aquifer in North China. The model reproduces reasonably well the flow field in response to an unanticipated discharge of ground water from the karst aquifer into an underground mine based on the aquifer parameters that are manually calibrated from a multiple-well pumping test. Sensitivity of the model to the aquifer parameters was evaluated in the context of the case study.

  20. Valuing the subsurface pathogen treatment barrier in water recycling via aquifers for drinking supplies.

    PubMed

    Page, Declan; Dillon, Peter; Toze, Simon; Bixio, Davide; Genthe, Bettina; Jiménez Cisneros, Blanca Elena; Wintgens, Thomas

    2010-03-01

    A quantitative microbial risk assessment (QMRA) was performed at four managed aquifer recharge (MAR) sites (Australia, South Africa, Belgium, Mexico) where reclaimed wastewater and stormwater is recycled via aquifers for drinking water supplies, using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log(10) removal capacity much like for other water treatment technologies. This information was then integrated into a broader risk assessment to determine the human health burden from the four MAR sites. For the Australian and South African cases, managing the aquifer treatment barrier was found to be critical for the schemes to have low risk. For the Belgian case study, the large treatment trains both in terms of pre- and post-aquifer recharge ensures that the risk is always low. In the Mexico case study, the risk was high due to the lack of pre-treatment and the low residence times of the recharge water in the aquifer. A further sensitivity analysis demonstrated that human health risk can be managed if aquifers are integrated into a treatment train to attenuate pathogens. However, reduction in human health disease burden (as measured in disability adjusted life years, DALYs) varied depending upon the number of pathogens in the recharge source water. The beta-Poisson dose response curve used for translating rotavirus and Cryptosporidium numbers into DALYs coupled with their slow environmental decay rates means poor quality injectant leads to aquifers having reduced value to reduce DALYs. For these systems, like the Mexican case study, longer residence times are required to meet their DALYs guideline for drinking water. Nevertheless the results showed that the risks from pathogens can still be reduced and recharging via an aquifer is safer than discharging directly into surface water bodies.

  1. A Continuous Flow Column Study of Anaerobic PCE Transformation With the Evanite Culture and Hanford Aquifer Solids

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Behrens, S.; Azizian, M.; Sabalowsky, A.; Dolan, M.; Ruiz-Hass, P.; Ingle, J.; Spormann, A.

    2005-12-01

    Anaerobic reductive dehalogenation of tetrachloroethene (PCE) and trichoroethene (TCE) is a promising technology for the in situ treatment of high concentration source zones in contaminated aquifers. Continuous flow column studies were performed where a mixed dehalogenating culture (Evanite culture) that contains Dehalococcides-like microorganisms was bioaugmented into aquifer solids from the Hanford DOE site. Studies conducted prior to bioaugmentation showed PCE transport was retarded due to sorption onto the aquifer solids. Upon bioaugmentation and with continuous lactate addition, PCE (10 mg/L) was transformed to cis-dichloroethene ( cis-DCE), and enhanced transformation of sorbed PCE was observed. Prolonged production of cis-DCE was associated with iron reducing conditions, while eventual vinyl chloride (VC) reduction to ethene was associated with sulfate reducing conditions. Microbial processes included lactate fermentation to acetate and propionate, iron reduction, sulfate reduction, and reductive dehalogenation, with reductive dehalogenation utilizing 2 to 3% of the electron donor addition. PCE was completely transformed to ethene within a hydraulic residence time of one day. Upon competition of the column tests spatial samples of aquifer solids were analyzed using molecular methods and solids were used in batch microcosm activity tests. Dehalococcoides sp. 16S rRNA gene copy numbers dropped from ~ 74% of total Eubacterial 16S rRNA genes in the original inoculum, to about 0.5 to 4% through out the column, consistent with the estimates of electron donor utilization for dehalogenation reactions. Microcosm tests showed most of PCE transformation activity at the entrance of the column, consistent with the Dehalococcoides sp. 16S rRNA gene copy numbers being highest in that area. Roughly 20% of the Dehalococcoides sp. population in the column possessed a vcrA gene for the respiration of VC to ethene. The vcrA-positive subpopulation decreases to about 5% towards

  2. Karst aquifer dynamic modelling by evolutionary polynomial regression

    NASA Astrophysics Data System (ADS)

    Doglioni, Angelo; Giustolisi, Orazio; Simeone, Vincenzo

    2010-05-01

    Evolutionary Polynomial Regression (EPR) is an evolutionary modelling technique which has been successfully applied to multiple problems related to environmental engineering. In particular, it proved quite effective at modelling the dynamic relationship between groundwater levels and rainfall heights for a specific case study related to a porous aquifer. This paper introduces an application of EPR aimed at modelling the relationship between rainfall heights and groundwater tables of a karst aquifer. From a hydrogeological point of view, a karst aquifer is characterized by a quick response to rainfall due to the preferential paths through the ground. It has been monitored over the years thus producing a reasonably long dataset covering about 44 years. On the one hand, these data show some discontinuities, but on the other hand, they are available from a well located in a neighbourhood where there is almost no pumping as well as further disturbances related to human activities. The use of multiobjective EPR will allow finding a set of feasible symbolic models which helps to make a robust choice of models as well as to investigate about the structures of the models and how the aquifer response is influenced by rainfall. The authors makes also a comparison with the results they found for the porous aquifer, thus trying to assess which differences exist, from the physical point of view, between the two cases study and the capability of EPR at catching a quicker dynamics. Finally, it is noteworthy that the investigated aquifer is relatively geographically close to the already investigated one, about 40 km. This will also allow for investigating the effect of rainfall change, in terms of intensity variations, on differently structured aquifers whereas there is a similar climate regime.

  3. Teaching Pharmacology by Case Study.

    ERIC Educational Resources Information Center

    Jordan, Sue

    1997-01-01

    Using pharmacology case studies with nursing students encourages theory-practice links and infuses real-life content. Cases provide rich qualitative data for evaluating curriculum. However, they are not a substitute for evidence-based practice. (SK)

  4. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of

  5. A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India

    NASA Astrophysics Data System (ADS)

    Thilagavathi, R.; Chidambaram, S.; Prasanna, M. V.; Thivya, C.; Singaraja, C.

    2012-12-01

    Geochemical signatures of groundwater in the Pondicherry region, south India, were determined. The coastal aquifers are fragile and this situation becomes more intense in layered aquifer systems like that of the Pondicherry region. In this region, groundwater occurs in alluvium, Lower Cuddalore, Upper Cuddalore, Tertiary, Cretaceous and mixed aquifers. The geochemical signature of groundwater in these formations was studied by collecting 93 groundwater samples. The collected samples from specific formations were analysed for physical parameters, such as electrical conductivity (EC), pH and major ion concentrations, such as Ca, Mg, Na, K, Cl, HCO3, PO4 and SO4. The results of the analysis were interpreted with geology; the ionic concentrations in the groundwater vary spatially and temporally. The abundance of these ions are in the following order: Na > Ca > Mg > K = Cl > HCO3 > SO4. Interpretation of analytical data shows that Ca-Na and Cl-SO4-HCO3 is the dominant facies in all the formations. Groundwater in the area is generally hard and fresh-brackish in most of the formations and brackish in nature in alluvium formation. The sodium absorption ratio shows that most of the samples are grouped under excellent category to good category in all the formations. The residual sodium carbonate also are in good category in all the formations. Chloro-alkaline indices reveal that the majority of samples show negative values in all the litho units indicating the exchange of Na and K in groundwater with Mg or Ca in rock. Scholler classification of water indicates that longer residence time of water with more prominent base exchange. High EC and TDS values in certain locations of alluvial, Upper Cuddalore and Cretaceous formations prove to be unsuitable for drinking and irrigation purposes.

  6. A field tracer study of attenuation of atrazine, hexazinone and procymidone in a pumice sand aquifer.

    PubMed

    Pang, L; Close, M E

    2001-12-01

    A field tracer experiment, simulating point source contamination, was conducted to investigate attenuation and transport of atrazine, hexazinone and procymidone in a volcanic pumice sand aquifer. Preliminary laboratory incubation tests were also carried out to determine degradation rates. Field transport of the pesticides was observed to the significant under non-equilibrium conditions. Therefore, a two-region/two-site non-equilibrium transport model, N3DADE, was used for analysis of the field data. A lump reduction rate constant was used in this paper to encompass all the irreversible reduction processes (e.g. degradation, irreversible adsorption, complexation and filtration for the pesticides adsorbed into particles and colloids) which are assumed to follow a first-order rate law. Results from the field experiment suggest that (a) hexazinone was the most mobile (retardation factor R = 1.4) and underwent least mass reduction; (b) procymidone was the least mobile (R = 9.26) and underwent the greatest mass reduction; (c) the mobility of atrazine (R = 4.45) was similar to that of rhodamine WT (R = 4.10). Hence, rhodamine WT can be used to delimit the appearance of atrazine in pumice sand groundwater. Results from the incubation tests suggest that (a) hexazinone was degraded only in the mixture of groundwater and aquifer material (degradation rate constant = 4.36 x 10(-3) day-1); (b) procymidone was degraded not only in the mixture of groundwater and aquifer material (rate constant = 1.12 x 10(-2) day-1) but also in the groundwater alone (rate constant = 2.79 x 10(-2) and-1); (c) atrazine was not degraded over 57 days incubation in either the mixture of aquifer material and groundwater or the groundwater alone. Degradation rates measured in the batch tests were much lower than the total reduction rates. This suggests that not only degradation but also other irreversible processes are important in attenuating pesticides under field conditions. Hence, the use of

  7. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  8. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain).

    PubMed

    Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía

    2014-02-01

    Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution.

  9. Hydrogeological study of the intensely exploited aquifer of the Santa Croce leather-producing district, Tuscany (central Italy)

    NASA Astrophysics Data System (ADS)

    Grassi, Sergio; Doveri, Marco; Cortecci, Gianni; Amadori, Michele

    2011-05-01

    A hydrogeological study was undertaken to define the groundwater circulation in the Santa Croce area (Tuscany, central Italy) where the existing multilayered aquifer has long been intensively exploited. Investigations carried out on about 150 wells revealed the existence of a deep piezometric depression (to 20 m below sea level) which drains groundwater from the entire surrounding area. Samples from about 70 water points, collected twice in 2007, were analysed for major elements and stable isotope composition. Three major groups of waters, which mix in the study area, have been distinguished: (1) waters of the Ca-Mg-HCO3 type mainly flowing along the Arno River Plain; (2) waters of the Na-K-Cl/Ca-Mg-HCO3-SO4, type with SO4 content up to 275 mg/L, inflowing from the Pisane Hills; (3) relatively high-salinity waters mainly of the Na-HCO3 type which, with Cl concentrations up to 750 mg/L, likely arise from a normal fault located at the foot of the northern hills. The characteristics of the different components are greatly affected by significant modifying processes such as cation exchange and sulfate reduction. The achieved conceptual model suggests the southern hills as the main recharging area of the aquifer system from which water circulation, characterized by pathways of different length and depth, develops.

  10. Plan of study for the Regional Aquifer-System Analysis, Columbia Plateau, Washington, northern Oregon, and northwestern Idaho

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The U.S. Geological Survey began a 4-year study of the regional aquifer system underlying the Columbia Plateau, in central and eastern Washington, northern Oregon, and northwestern Idaho in October 1983, as part of the Regional Aquifer System Analysis program. The study will describe the geohydrology, geochemistry, and quality of water in the Columbia River Basalt Group, the Miocene rocks that underlie 70,000 square miles in three States. Water from the basalts is used for municipal and industrial purposes, and most importantly, for agriculture. As more land is brought under cultivation and surface water becomes totally allocated, the groundwater is an increasingly important supply for agriculture and related activities. In addition, the basalts are being considered as a repository site for high-level nuclear wastes. For management agencies to make the best decisions regarding the future development of this area, the regional groundwater flow system, its relation to the surfacewater system , and the quality of the water need to be quantified. This report describes the geohydrologic setting, hydrologic problems, objectives, and approach for the region. (USGS)

  11. Post-injection feasibility study with the reflectivity method for the Ketzin pilot site, Germany (CO2 storage in a saline aquifer)

    NASA Astrophysics Data System (ADS)

    Ivanova, Alexandra; Kempka, Thomas; Huang, Fei; Diersch [Gil], Magdalena; Lüth, Stefan

    2016-04-01

    3D time-lapse seismic surveys (4D seismic) have proven to be a suitable technique for monitoring of injected CO2, because when CO2 replaces brine as a free gas it considerably affects elastic properties of porous media. Forward modeling of a 4D seismic response to the CO2-fluid substitution in a storage reservoir is an inevitable step in such studies. At the Ketzin pilot site (CO2 storage) 67 kilotons of CO2 were injected into a saline aquifer between 2008 and 2013. In order to track migration of CO2 at Ketzin, 3D time-lapse seismic data were acquired by means of a baseline pre-injection survey in 2005 and 3 monitor surveys: in 2009, 2012 and in 2015 (the 1st post-injection survey). Results of the 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at Ketzin are significant regarding both seismic amplitudes and time delays. These results prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. But reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered in this interpretation. Results of the 4D seismic forward modeling with the reflectivity method support the conclusion that even small amounts of injected CO2 can be monitored in such post-injected saline aquifer as the CO2 storage reservoir at the Ketzin pilot site both qualitatively and quantitatively with considerable uncertainties (Lüth et al., 2015). Reference: Lueth, S., Ivanova, A., Kempka, T. (2015): Conformity assessment of monitoring and simulation of CO2 storage: A case study from the Ketzin pilot site. - International Journal of Greenhouse Gas Control, 42, p. 329-339.

  12. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  13. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  14. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni. PMID:21186070

  15. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Wang, Y.; Zhang, J.; Delgado, J.

    2015-04-01

    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, three time series analysis methods, Holt-Winters (HW), integrated time series (ITS), and seasonal autoregressive integrated moving average (SARIMA), are explored to simulate the groundwater level in a coastal aquifer, China. The monthly groundwater table depth data collected in a long time series from 2000 to 2011 are simulated and compared with those three time series models. The error criteria are estimated using coefficient of determination (R 2), Nash-Sutcliffe model efficiency coefficient (E), and root-mean-squared error. The results indicate that three models are all accurate in reproducing the historical time series of groundwater levels. The comparisons of three models show that HW model is more accurate in predicting the groundwater levels than SARIMA and ITS models. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.

  16. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni.

  17. A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Qahman, Khalid; Lecca, Giuditta

    2015-03-01

    Seawater intrusion is one of the major threats to freshwater resources in coastal areas, often exacerbated by groundwater overexploitation. Mitigation measures are needed to properly manage aquifers, and to restore groundwater quality. This study integrates three computational tools into a unified framework to investigate seawater intrusion in coastal areas and to assess strategies for managing groundwater resources under natural and human-induced stresses. The three components are a three-dimensional hydrogeological model for density-dependent variably saturated flow and miscible salt transport, an automatic calibration procedure that uses state variable outputs from the model to estimate selected model parameters, and an optimization module that couples a genetic algorithm with the simulation model. The computational system is used to rank alternative strategies for mitigation of seawater intrusion, taking into account conflicting objectives and problem constraints. It is applied to the Gaza Strip (Palestine) coastal aquifer to identify a feasible groundwater management strategy for the period 2011-2020. The optimized solution is able to: (1) keep overall future abstraction from municipal groundwater wells close to the user-defined maximum level, (2) increase the average groundwater heads, and (3) lower both the total mass of salt extracted and the extent of the areas affected by seawater intrusion.

  18. Case Study: Case Studies and the Flipped Classroom

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman; Schiller, Nancy A.

    2013-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses the positive and negative aspects of the "flipped classroom." In the flipped classroom model, what is normally done in class and what is normally done as…

  19. In Brief: Assessing carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    An assessment of water quality in 12 carbonate aquifers, mostly in the eastern and central United States, found that while water quality in the aquifers was highly variable, most of the samples met drinking water standards. The study, “Factors affecting water quality in selected carbonate aquifers in the United States, 1993-2005,” was released by the U.S. Geological Survey (USGS) on 26 June. According to the study, carbonate aquifers provide about 20% of the groundwater used as drinking water in the United States. The study, which included sample results for 151 chemical constituents or physical properties in 1042 wells and springs across 20 states, found that contaminants “were most often detected at concentrations less than human-health benchmarks except for nitrate.” The study also indicated that “the occurrence of anthropogenic contaminants was related to contaminant sources but also was affected by degree of aquifer confinement, ground-water age, and redox status. Areas with higher amounts of agricultural or urban land in unconfined aquifers were the most likely to have elevated concentrations of anthropogenic contaminants.”

  20. Three Community College Case Studies

    ERIC Educational Resources Information Center

    Wojtysiak, Joseph; Sutton, William J., II; Wright, Tommy; Brantley, Linda

    2011-01-01

    This article presents three case studies that focus on specific projects that are underway or have been completed. In the first case study, Joseph Wojtysiak and William J. Sutton, II discuss the Green Center of Central Pennsylvania, which is designed to serve as the state's preeminent source for education, training and public information about…

  1. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  2. Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico

    USGS Publications Warehouse

    McAda, D.P.

    1996-01-01

    The Albuquerque Basin in central New Mexico covers an area of about 3,060 square miles. Ground water from the Santa Fe Group aquifer system of the Albuquerque Basin is the principal source of water for municipal, domestic, commercial, and industrial uses in the Albuquerque area, an area of about 410 square miles. Ground- water withdrawal in the basin has increased from about 97,000 acre-feet in 1970 to about 171,000 acre-feet in 1994. About 92 percent of the 1994 total was withdrawn in the Albuquerque area. Management of ground water in the Albuquerque Basin is related to the surface water in the Rio Grande. Because the aquifer system is hydraulically connected to the Rio Grande and water in the river is fully appropriated, the ability to reliably estimate the effects of ground-water withdrawals on flow in the river is important. This report describes the components of the Rio Grande/Santa Fe Group aquifer system in the Albuquerque area and the data availability and data and interpretation needs relating to those components, and presents a plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system. The information needs related to the components of the river/aquifer system are prioritized. Information that is necessary to improve the understanding or quantification of a component in the river/aquifer system is prioritized as essential. Information that could add additional understanding of the system, but would not be necessary to improve the quantification of the system, is prioritized as useful. The study elements are prioritized in the same manner as the information needs; study elements designed to provide information considered necessary to improve the quantification of the system are prioritized as essential, and those designed to provide information that would add additional understanding of the system, but would not be necessary to improve the quantification of the system, are prioritized as useful.

  3. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, 'Southwest') since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality. The synthesis consists of three major components: 1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report). 2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants. 3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination. Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  4. Recent climatic events controlling the hydrological and the aquifer dynamics at arid areas: The case of Huasco River watershed, northern Chile.

    PubMed

    Salas, I; Herrera, C; Luque, J A; Delgado, J; Urrutia, J; Jordan, T

    2016-11-15

    The investigation assesses the influence of recent climatic events in the water resources and the aquifer dynamics in the Huasco watershed by means of the analysis of precipitation, streamflow and piezometric levels during the last 50years. These hydrological and hydrogeological parameters were evaluated by an exploratory geostatistical analysis (semivariogram) and a spectral analysis (periodogram). Specifically, the hydrological and hydrogeological data analyses are organized according to three sub-basins, the Del Carmen River (Section I), the El Tránsito River (Section II), and the Huasco River (Section III). Data ranges for rainfall are from 1961 to 2015, for streamflow from 1964 to 2015, and for groundwater levels from 1969 to 2014, available from Water Authority of Chile. The analyses allowed the identification of cycles in the hydrological and hydrogeological records. The study area is located in a transient climatic fringe where the convergence of several climatic systems can be identified in the hydrological and hydrogeological records. Results indicate that the nival areas and the small glaciers are especially important to the recharge processes in the Huasco watershed during the spring-summer snowmelting. Water reservoirs in the main aquifer (Section III) and in the Santa Juana dam are highly sensitive to ENSO oscillation climatic patterns. The main climatic events that control this record are the El Niño and La Niña events. In addition, the climatic influence of the westerlies and the SE extratropical moisture were also identified. Spectral analysis identified the presence of a 22.9-yearcycle in piezometric levels of the alluvial aquifer of the Huasco River. This cycle is consistent with the 22-year Hale solar cycle, suggesting the existence of a solar forcing controlling the ENSO oscillations. Moreover, semivariogram and spectral analysis identified a 10.65-yearcycle and a 9.2-yearcycle in groundwater, respectively, which were attributed to the

  5. Recent climatic events controlling the hydrological and the aquifer dynamics at arid areas: The case of Huasco River watershed, northern Chile.

    PubMed

    Salas, I; Herrera, C; Luque, J A; Delgado, J; Urrutia, J; Jordan, T

    2016-11-15

    The investigation assesses the influence of recent climatic events in the water resources and the aquifer dynamics in the Huasco watershed by means of the analysis of precipitation, streamflow and piezometric levels during the last 50years. These hydrological and hydrogeological parameters were evaluated by an exploratory geostatistical analysis (semivariogram) and a spectral analysis (periodogram). Specifically, the hydrological and hydrogeological data analyses are organized according to three sub-basins, the Del Carmen River (Section I), the El Tránsito River (Section II), and the Huasco River (Section III). Data ranges for rainfall are from 1961 to 2015, for streamflow from 1964 to 2015, and for groundwater levels from 1969 to 2014, available from Water Authority of Chile. The analyses allowed the identification of cycles in the hydrological and hydrogeological records. The study area is located in a transient climatic fringe where the convergence of several climatic systems can be identified in the hydrological and hydrogeological records. Results indicate that the nival areas and the small glaciers are especially important to the recharge processes in the Huasco watershed during the spring-summer snowmelting. Water reservoirs in the main aquifer (Section III) and in the Santa Juana dam are highly sensitive to ENSO oscillation climatic patterns. The main climatic events that control this record are the El Niño and La Niña events. In addition, the climatic influence of the westerlies and the SE extratropical moisture were also identified. Spectral analysis identified the presence of a 22.9-yearcycle in piezometric levels of the alluvial aquifer of the Huasco River. This cycle is consistent with the 22-year Hale solar cycle, suggesting the existence of a solar forcing controlling the ENSO oscillations. Moreover, semivariogram and spectral analysis identified a 10.65-yearcycle and a 9.2-yearcycle in groundwater, respectively, which were attributed to the

  6. Sustainable yields from large diameter wells in shallow weathered aquifers

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; de Silva, C. S.

    2016-08-01

    Large diameter wells in shallow weathered aquifers provide a valuable source of water for domestic and agricultural purposes in many locations including the Indian subcontinent. However, when used for irrigation, these wells often fail towards the end of the dry season. By considering two case studies in the dry and intermediate rainfall zones of Sri Lanka, reasons for the limited yield of these wells are identified. The first case study is concerned with a sloping catchment; a significant proportion of the precipitation during the rainy season either becomes runoff or passes down-gradient through the aquifer and is discharged at the ground surface. Furthermore, during the dry season, groundwater discharge continues. In the second case study the topography is generally flat but, even though the aquifer fills most years during the rainy season, there is often only sufficient water to irrigate about half of each farmer's holding. These investigations are based on field information and the development of conceptual and computational models. Of critical importance in assessing the long term yield of a well is the formation of a seepage face on the side of the well, with the water table a significant distance above the pumping water level. Consequently the water table may only be lowered to about half the depth of the well. The paper concludes with recommendations for the exploitation of groundwater from shallow weathered aquifers to minimise the risk of failure during the dry season.

  7. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  8. Case Studies in Science Ethics

    NASA Astrophysics Data System (ADS)

    Williams, Karen

    2010-03-01

    Everyone in science should have ethics education training. I have seen graduate students taken advantage of by their mentors. Many of us have seen misconduct...but what should we do about it? Young scientists are often unaware of the rules in science and make mistakes because of their ignorance of the rules in that particular field of study. Then there are an increasing number of cases in the news of overt cases of misrepresentation in science. All are welcome to attend this discussion of case studies. A case study on topics such as: how to treat data properly, how our values in science affect our work, who gets authorship on scientific papers, who is first author on a paper, what you should do if you uncover misconduct or plagiarism in your university, and we will discuss the scientist's role in society. This will be a painless, non-confrontational small group, then large group discussion of each case

  9. A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia.

    PubMed

    Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser

    2014-08-01

    The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.

  10. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  11. Laboratory evidence of MTBE biodegradation in Borden aquifer material.

    PubMed

    Schirmer, Mario; Butler, Barbara J; Church, Clinton D; Barker, James F; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  12. Field evidence of hydraulic connections between bedrock aquifers and overlying granular aquifers: examples from the Grenville Province of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Richard, Sandra K.; Chesnaux, Romain; Rouleau, Alain; Morin, Roger; Walter, Julien; Rafini, Silvain

    2014-12-01

    Field evidence of hydraulic connections between a bedrock aquifer and an overlying granular aquifer in the Canadian Shield (Grenville Province) is presented. This issue is rarely considered and investigated despite its important hydraulic and chemical consequences and its widespread occurrence worldwide. The methodology employed is based on complementary field tests conducted at specific experimental sites instrumented both in the rock and in the overlying deposits. One of the bedrock sites revealed a natural hydraulic connection with the overlying granular aquifer caused by the weathered surface of the uppermost bedrock. Another site revealed an artificial hydraulic connection between the bedrock and the granular aquifer created by an improperly sealed casing. A regional study showed that hydraulic connections yield an erroneous interpretation of the true hydraulic properties of the tested aquifer. The detection of hydraulic connections is therefore essential to properly define well-capture areas and contamination conditions. It is recommended to practitioners that pumping tests be performed as well as hydrochemical comparisons of each existing aquifer unit. Falling-head permeability tests are also helpful in verifying the quality of the seal at the bedrock-casing contact. More effective procedural controls and better well-construction practices are necessary to reduce the risks of cross-contamination induced by defective seals.

  13. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  15. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  16. Nasopharyngeal Case-Control Study

    Cancer.gov

    A case-control study conducted in Taiwan between 1991-1994 among approximately 1,000 individuals to examine the role of viral, environmental, and genetic factors associated with the development of nasopharyngeal carcinoma

  17. Case Study: del Amo Bioventing

    EPA Science Inventory

    The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.

  18. Teaching astronomy with case studies

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-11-01

    Breaking the students into small, collaborative learning groups to solve a meaningful task together is one of the most successful and fully evaluated teaching techniques implemented over the last century. Although there are many ways to accomplish small group learning, a long-standing and consistently successful collaborative class activity is to use the case study teaching strategy. The use of case studies is common in medical schools and law schools, but not so common in the teaching of astronomy. Case studies create meaningful conversations among students and with the professor by focusing on life-like dilemmas to be solved. Case study tasks ask audience members to synthesize several ideas or evaluate scenarios that have not been explicitly presented to them in the lecture or in available readings.

  19. Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal).

    PubMed

    Re, Viviana; Cissé Faye, Seynabou; Faye, Abdoulaye; Faye, Serigne; Gaye, Cheikh Becaye; Sacchi, Elisa; Zuppi, Gian Maria

    2011-01-01

    In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate (δ¹⁵N and δ¹⁸O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.

  20. Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal).

    PubMed

    Re, Viviana; Cissé Faye, Seynabou; Faye, Abdoulaye; Faye, Serigne; Gaye, Cheikh Becaye; Sacchi, Elisa; Zuppi, Gian Maria

    2011-01-01

    In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate (δ¹⁵N and δ¹⁸O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions. PMID:20300838

  1. Arsenic and Humic Substances in Alluvial Aquifers of Bangladesh and Taiwan: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Reza, A.; Jean, J.; Lee, M.

    2007-12-01

    Humic substances in groundwater samples from the arsenicosis area in Bangladesh, northern Taiwan and the Blackfoot disease (BFD) area in southwestern Taiwan were characterized by Fluorescence Spectroscopy (FS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. As, Mn, Fe, Sr, Se levels in these groundwaters were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Major ions and selected water parameters including pH, electrical conductivity (EC), oxidation reduction potential (ORP), and dissolved oxygen (DO) were also determined. Groundwater As concentration ranges from 1.4 to 140 μg/L in the alluvial aquifers located in the Chapai-Nawabganj district of Bangladesh. As levels in groundwater ranges from 0.5 to 560 μg/L in the Ilan Plain of northern Taiwan. Geothermal waters in the Beitou hot springs contain high concentrations of inorganic As (up to 3,975 μg/L); geothermal activity is likely responsible for the significant discharge of arsenic to the downstream Kwandu Plain. As levels in the BFD area of southwestern Taiwan ranges from 25 μg/L to 967 μg/L. Interestingly, groundwater arsenic in the BFD area of southwestern Taiwan correlates positively with strong fluorescence (maximum relative fluorescence intensity upto 495) and the content of humic substances. In contrast, As-rich groundwaters from Chapai-Nawabganj district of Bangladesh and northern part of Taiwan generally have relatively low content of humic substances with weak fluorescence (maximum relative fluorescence intensity upto 65 and 121, respectively). Moreover, results of FTIR analysis show that humic substances extracted from water samples of the Taiwan BFD area contain phenolic and amines groups of humic substances, which tend to form organo-metal complexes with As and other trace elements. High levels of As and humic substances probably play a critical role in causing the Black foot disease in Chia-Nan plain of southwestern Taiwan.

  2. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study.

    PubMed

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ(34)S([SO(4)]) and δ(18)O([SO(4)]) sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of (34)S([SO(4)]) and (18)O([SO(4)]) present in Type A, caused by microbial-mediated reduction of sulfate, and high (18)O enrichment factor (ε([SO(4)-H(2)O])), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ(18)O([SO(4)]) and low δ(34)S([SO(4)]) values under mildly reducing conditions. Base on (18)O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O(2), caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater.

  3. Desegregation Case Studies. Volume II: Appendixes, Case Study Working Reports.

    ERIC Educational Resources Information Center

    Russell, Susan Higley; And Others

    This document contains the working report case studies of five urban school districts studied to determine the role of the Emergency School Aid Act (ESAA), Title IV of the Civil Rights Act, and Title IV enforcement by the Office of Civil Rights in school desegregation. Desegregation processes were examined in Dayton, Ohio, San Francisco,…

  4. Geoelectric resistivity sounding of riverside alluvial aquifer in an agricultural area at Buyeo, Geum River watershed, Korea: an application to groundwater contamination study

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hee; Doh, Seong-Jae; Yun, Seong-Taek

    2007-12-01

    Twenty profiles of vertical electric soundings (VES) were obtained in a riverside alluvium at the Buyeo area, South Korea, to examine the variations of subsurface geology and associated groundwater chemistry. The combination of the VES data with the borehole data provided useful information on subsurface hydrogeologic conditions. The vestige of an ancient river channel (e.g. oxbow lake) was identified on the resistivity profiles by the lateral continuation of a near-surface perched aquifer parallel to the river. Such a perched aquifer is typically developed in the area with a clay-rich silty surface alluvium which prohibits the infiltration of oxygen. Therefore, groundwater below the oxbow lake shows a very low nitrate concentration and Eh values under the strong anoxic condition. The distribution of water resistivity is correlated with that of measured total dissolved solids concentration in groundwater, while the earth resistivity of the aquifer shows a significant spatial variation. It is interpreted that the earth resistivity of the aquifer is mainly controlled by the soil type rather than by the water chemistry in the study area.

  5. Talar fractures: three case studies.

    PubMed

    Jimenez, A L; Morgan, J H

    2001-09-01

    Three case studies of fractures are presented that demonstrate the potential morbidity that these injuries can cause as well as the acceptable outcomes if treated appropriately. Two of the cases are talar fracture dislocations; the third is an osteochondral fracture of the talus. The importance of early treatment with open reduction and internal fixation is demonstrated. Success following surgical intervention in a nonhealed osteochondral fracture of the talus is also demonstrated.

  6. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Farid, Intissar; Zouari, Kamel; Rigane, Adel; Beji, Ridha

    2015-11-01

    Comprehensive investigations of groundwaters were performed in the detrital and carbonate aquifers of the Chougafiya basin, central Tunisia. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization, recharge conditions, flow pattern of groundwater and C chemistry in the investigated hydrological system. Analysis of the dissolved constituents revealed that several processes controlled the observed chemical composition: (i) the dissolution of evaporitic minerals, (ii) cation exchange reactions, (iii) sulfate reduction under anaerobic conditions, (iv) incongruent dissolution of carbonate minerals (calcite, dolomite) coupled with gypsum dissolution and calcite precipitation, and (v) silicates weathering. Data inferred from 18O and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower δ18O and δ2H values is interpreted as recharged by non-evaporated rainfall originating from Mediterranean and Atlantic air masses. However, water with relatively enriched δ18O and δ2H contents is thought to reflect the occurrence of an evaporation process related to the long term practice of flood irrigation. The radiogenic (3H) isotope data provided insight into the presence of two recharge periods in the investigated groundwaters. Waters with 3H contents of <1 TU indicated a pre-nuclear recharge. Waters with 3H contents of >1 TU clearly suggested the occurrence of a contemporaneous recharge probably during the last two decades. Carbon isotopes provided some insights into the timescales of groundwater flow, but mainly revealed that main sources of C are active in the system. These are likely: dissolved biogenic CO2, carbonate dissolution and incongruent reaction of the carbonate matrix. Mean residence times were determined after correction of the initial activities for dead C from the rock matrix and suggest ages ranging from the present day to the

  7. A GIS-based methodology to delineate potential areas for groundwater development: a case study from Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Pandey, Vishnu P.; Shrestha, Sangam; Kazama, Futaba

    2013-06-01

    For an effective planning of activities aimed at recovering aquifer depletion and maintaining health of groundwater ecosystem, estimates of spatial distribution in groundwater storage volume would be useful. The estimated volume, if analyzed together with other hydrogeologic characteristics, may help delineate potential areas for groundwater development. This study proposes a GIS-based ARC model to delineate potential areas for groundwater development; where `A' stands for groundwater availability, `R' for groundwater release potential of soil matrix, and `C' for cost for groundwater development. The model is illustrated with a case of the Kathmandu Valley in Central Nepal, where active discussions are going on to develop and implement groundwater management strategies. The study results show that shallow aquifers have high groundwater storage potential (compared to the deep) and favorable areas for groundwater development are concentrated at some particular areas in shallow and deep aquifers. The distribution of groundwater storage and potential areas for groundwater development are then mapped using GIS.

  8. Project Summary. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    EPA Science Inventory

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  9. Rapid Recharge of Parts of the High Plains Aquifer Indicated by a Reconnaissance Study in Oklahoma, 1999

    USGS Publications Warehouse

    Andrews, William J.; Osborn, Noel I.; Luckey, Richard R.

    2000-01-01

    The High Plains aquifer underlies about 174,000 square miles in parts of eight states, including about 7,100 square miles in northwestern Oklahoma (fig. 1). This aquifer consists of the saturated part of the Ogallala Formation and saturated materials of Quaternary Age that are hydraulically connected to the Ogallala. The High Plains aquifer in northwestern Oklahoma is the primary source of water to an important agricultural region. Most water is withdrawn from the aquifer for irrigating wheat and other grain crops, with the remainder used for livestock (primarily cattle and swine), municipal, and domestic needs. Historically, water from precipitation was thought to take hundreds or thousands of years to reach the water table because the depth of the water table is greater than 100 feet over most of the aquifer and the low-permeability beds in the Ogallala would impede downward flow. It also was thought that land uses would take a similar period of time to affect water quality in the aquifer.

  10. Experimental studies in stream-aquifer interaction along the Arkansas River in Central Kansas - Field testing and analysis

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vogler, L.D.; McClain, T.J.; Marks, E.T.; Coble, G.R.

    1988-01-01

    During the last several years, streamflows of a number of Kansas streams have been reduced as a result of groundwater declines. In order to better understand and quantify stream-aquifer interrelationships, an eight-day comprehensive stream-aquifer pumping test, followed by recovery monitoring, was conducted along the Arkansas River near Great Bend, Kansas. In addition to water level monitoring in numerous observation wells, streamflow data, streambed hydraulic gradients, neutron probe-based water content of dewatered sediments, water chemistry and other data were collected. The alluvial aquifer is shown to be highly transmissive (T = 1803 m2d-1) with the pumping stress (9538 m3d-1) having a radius of influence larger than 1.77 km, impacting both the aquifer levels and the streamflow in the nearby Arkansas River. Drawdown and recharge boundary effects were observed in all observation wells, including those on the opposite side of the river. The alluvial aquifer did not exhibit a water table behavior and responded as a leaky confined aquifer. A semiconfining clay layer less than 3 m thick and an additional recharge source from a nearby stream-alluvial system were the probable causes of the observed phenomena. Actual streamflow depletion is shown to be appreciably less than the computed depletion based on analytical solutions. ?? 1988.

  11. Modeling of aquifer movement due to seismic and hydraulic forces

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo

    A mathematical description of aquifer movement due to inertial and viscous forces is formulated by applying fundamental physical principles such as mass balance and momentum balance to a saturated aquifer system. An explicit interaction term in the momentum balance equation for the water phase sharing the same mathematical space with the solid phase introduced in the derivation of the governing equation system of aquifer movement distinguishes the development in this study from those of others such as Li's and that of Zienkiewicz and Bettess. The solid matrix is assumed to be a Helm-Li material which deforms as a highly non-linear viscous fluid rather than as the conventional poroelastic material. The finite element method is applied to solve three simplified situations: (a) negligible relative acceleration; (b) negligible acceleration of water; and (c) negligible bulk acceleration. Helm's bulk flux concept is applied in the simplifications. A computer code called Aquivis3d is developed in order to calculate the velocity and displacement of aquifer movement due to both inertial and viscous forces. Evaluation of the numerical model is accomplished by applying the code to different cases which include: standard laboratory consolidation tests; one dimensional radial movement of a Theis-Thiem aquifer; and a disturbance propagation. Simulation results favorably fit laboratory measurements for selected consolidation tests. Simulation results of one dimensional radial movement of a Theis-Thiem aquifer based in this study on poroviscosity are similar in general features to Helm's analytical results based on poroelasticity. Frequency dispersion and intensity attenuation of a disturbance propagation are fully simulated without any additional ad hoc damping assumption for dynamic aquifer movement. Sensitivity analyses are made for the viscous constitutive parameters and the hydraulic parameters in the consolidation and the one dimensional radial movement of a Theis

  12. Aquifer test at well SMW-1 near Moenkopi, Arizona

    USGS Publications Warehouse

    Carruth, Robert L.; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  13. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.

    PubMed

    Lookman, Richard; Bastiaens, Leen; Borremans, Brigitte; Maesen, Miranda; Gemoets, Johan; Diels, Ludo

    2004-10-01

    Chlorinated aliphatic hydrocarbons are common groundwater contaminants. One possible remediation option is in-situ reductive dechlorination by zero-valent iron, either by direct injection or as reactive barriers. Chlorinated ethenes (tetrachloroethene: PCE; trichloroethene: TCE) have received extensive attention in this context. However, another common groundwater pollutant, 1,1,1-trichlorethane (TCA), has attracted much less attention. We studied TCA reduction by three types of granular zero-valent irons in a series of batch experiments using polluted groundwater, with and without added aquifer material. Two types of iron were able to reduce TCA completely with no daughter product concentration increases (1,1-dichloroethane: DCA; chloroethane: CA). One type of iron showed slower reduction, with intermediate rise of DCA and CA concentrations. When evaluating the formation of daughter products, the tests on the groundwater alone showed different results than the groundwater plus aquifer batches: DCA did not temporarily accumulate in the batches with added aquifer material, contrary to the batches without added aquifer material. 1,1-dichloroethene (DCE, also present in the groundwater as an abiotic degradation product of TCA) was also reduced slower in the batches without added aquifer material than in the batches with aquifer material. Redox potentials gradually decreased to low values in batches with aquifer material without iron, while the batches with groundwater alone maintained a constant higher redox potential. Either adsorption processes or microbiological activity in the samples could explain these phenomena. Polymerase Chain Reaction (PCR: a targeted gene probe technique) for chlorinated aliphatic compound (CAH)-degrading bacteria confirmed the presence of Dehalococcoides sp. (chloroethene-degraders) but was negative for Desulfobacterium autotrophicum (a known co-metabolic TCA degrader). DCA reduction was rate determining: first-order half-lives of 300

  14. Impact of fluorochrome stains used to study bacterial transport in shallow aquifers on motility and chemotaxis of Pseudomonas species.

    PubMed

    Toepfer, J Amanda; Ford, Roseanne M; Metge, David; Harvey, Ronald W

    2012-07-01

    One of the most common methods of tracking movement of bacteria in groundwater environments involves a priori fluorescent staining. A major concern in using these stains to label bacteria in subsurface injection-and-recovery studies is the effect they may have on the bacterium's transport properties. Previous studies investigated the impact of fluorophores on bacterial surface properties (e.g. zeta potential). However, no previous study has looked at the impact of fluorescent staining on swimming speed and chemotaxis. It was found that DAPI lowered the mean population swimming speed of Pseudomonas putida F1 by 46% and Pseudomonas stutzeri by 55%. DAPI also inhibited the chemotaxis in both strains. The swimming speeds of P. putida F1 and P. stutzeri were diminished slightly by CFDA/SE, but not to a statistically significant extent. CFDA/SE had no effect on chemotaxis of either strain to acetate. SYBR(®) Gold had no effect on swimming speed or the chemotactic response to acetate for either strain. This research indicates that although DAPI may not affect sorption to grain surfaces, it adversely affects other potentially important transport properties such as swimming and chemotaxis. Consequently, bacterial transport studies conducted using DAPI are biased to nonchemotactic conditions and do not appear to be suitable for monitoring the effect of chemotaxis on bacterial transport in shallow aquifers.

  15. Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent iron barrier.

    PubMed

    Jia, Yu; Breedveld, Gijs D; Aagaard, Per

    2007-11-01

    Benzotriazole (BTA), a chemical with wide industrial applications, is a typical additive in deicer/anti-icer used at airport. To achieve a better understanding of the transport behaviour and environmental fate of BTA, laboratory column studies have been performed on subsoil samples from Oslo Airport, Gardermoen. To explore possibilities for aquifer remediation, BTA behaviour was also studied in a column of granular zerovalent iron (Fe(0)). The subsoil column study demonstrates a very limited retardation of BTA. Consecutive loadings of BTA of the subsoil column showed no change of the break-through curve (BTC) and complete desorption was observed. The sorption behaviour of BTA to metallic iron (Fe(0)) was rather complex. Considerable retardation was observed in the Fe(0) column and repeated BTA loading resulted in an earlier break-through. Between 20% and 50% of the input concentration was retained permanently in the iron (Fe(0)) column. The BTA sorption to metallic iron was found to be enhanced by chloride which lowered the break-through concentration (i.e the C/C(0) plateau). The fraction of BTA remaining in the iron column was found to vary with the flow rate, indicating a time dependant multilayer sorption mechanism. The steady increase in the amount of adsorbed BTA to the iron column during loading corresponds to a rather strong bonding of 4-15 BTA layers to the iron surface. A very slow desorption of BTA was observed; even after flushing with 753 pore volumes of BTA free water, 7.5% of the BTA remained in the column. A geochemical model was developed based on PHREEQC-2 to simulate the sorption and transport of BTA in the tested materials. The BTA sorption was modelled with Freundlich sorption isotherms, as earlier determined in batch experiments. A slight adjustment of the Freundlich parameters was required to fit the observed column break-through. However, our model was not able to simulate the long-term retainment of BTA in the granular iron columns. The

  16. Teaching Case: Enterprise Architecture Specification Case Study

    ERIC Educational Resources Information Center

    Steenkamp, Annette Lerine; Alawdah, Amal; Almasri, Osama; Gai, Keke; Khattab, Nidal; Swaby, Carval; Abaas, Ramy

    2013-01-01

    A graduate course in enterprise architecture had a team project component in which a real-world business case, provided by an industry sponsor, formed the basis of the project charter and the architecture statement of work. The paper aims to share the team project experience on developing the architecture specifications based on the business case…

  17. Quality of groundwater at and near an aquifer storage and recovery site, Bexar, Atascosa, and Wilson Counties, Texas, June 2004-August 2008

    USGS Publications Warehouse

    Otero, Cassi L.; Petri, Brian L.

    2010-01-01

    recovery wells likely indicate some degree of mixing of the two waters occurred rather than continued decay of radium-226 in the injected water. Geochemical and isotope data measured in samples collected in May 2005 from two Carrizo aquifer monitoring wells and in July 2008 from the three ASR production-only wells in the northern section of the ASR site indicate that injected Edwards aquifer water had not migrated to these five sites. Geochemical and isotope data measured in samples collected from Carrizo aquifer wells in 2004, 2005, and 2008 were graphically analyzed to determine if changes in chemistry could be detected. Major-ion, trace element, and isotope chemistry varied spatially in the samples collected from the Carrizo aquifer. With the exception of a few samples, major-ion concentrations measured in samples collected in Carrizo aquifer wells in 2004, 2005, and 2008 were similar. A slightly larger sulfate con-centration and a slightly smaller bicarbonate concentration were measured in samples collected in 2005 and 2008 from well NC1 compared to samples collected at well NC1 in 2004. Larger sodium concentrations and smaller calcium, magnesium, bicarbonate, and sulfate concentrations were measured in samples collected in 2008 from well WC1 than in samples collected at this well in 2004 and 2005. Larger calcium and magnesium concentrations and a smaller sodium concentration were measured in the samples collected in 2008 at well EC2 compared to samples collected at this well in 2004 and 2005. While in some cases the computed percent differences (compared to concentrations from June 2004) in dissolved iron and dissolved manganese concentrations in 11 wells sampled in the Carrizo aquifer in 2005 and 2008 were quite large, no trends that might have been caused by migration of injected Edwards aquifer water were observed. Because of the natural variation in geochemical data in the Carrizo aquifer and the small data set collected for this study, differences in major

  18. The Language Dilemma: Case Study.

    ERIC Educational Resources Information Center

    Teboul, J. C. Bruno

    2002-01-01

    Presents the case study involving a fictitious company's English-only policy and threats of legal action based on that policy. Includes the following responses: "Legal Issues Posed in the Language Dilemma" (Gregory S. Walden); "English Only: A Workplace Dilemma" (Alan Pakiela); "Problems with English-Only Policies" (Barbara Lynn Speicher); and…

  19. Case studies of uncommon headaches.

    PubMed

    Evans, Randolph W

    2006-05-01

    The following interesting and uncommon headache disorders are presented through case studies: exploding head syndrome, hypnic headache, neck-tongue syndrome, "Alice in Wonderland" syndrome, nummular headache, red ear syndrome, burning mouth syndrome, spontaneous intracranial hypotension syndrome, and cardiac cephalalgia. PMID:16684636

  20. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.; Jones, Marni Gail

    2010-01-01

    This article presents a due process hearing case study of a mother who contended that his son, D.J., has been denied of a free and appropriate public education (FAPE) of his School District after being suspended from school. D.J., an elementary student, had been described as hyperactive, inattentive, defiant, and often volatile. He was identified…

  1. Case Studies in Sports Nutrition.

    ERIC Educational Resources Information Center

    Clark, Nancy

    1988-01-01

    This article presents case studies of two athletes who wanted to affect a change in their body weight in order to enhance athletic performance. Each athlete's problem and the nutrition approach used to solve it are discussed. Caloric values of fast foods are listed. (JL)

  2. Case Studies in Applied Mathematics.

    ERIC Educational Resources Information Center

    Mathematical Association of America, Washington, DC.

    This collection of nine case studies in applied mathematics was written primarily for the use of the instructor by a Conference sponsored by the Committee on the Undergraduate Program in Mathematics (CUPM). Each chapter contains exercises of varying degrees of difficulty and several include student projects. The materials were used on a trial…

  3. Spatial organization of the impulse response in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Delbart, C.; Valdés, D.; Barbecot, F.; Tognelli, A.; Couchoux, L.

    2016-06-01

    Karst aquifers are characterized by a strong heterogeneity in their physical properties. The purpose of the study is the spatial variability of water transfers in a carbonated karstic aquifer. To this end, a high spatial density of information about the water transfer is needed. The characteristics of the site, a topographic hill of 13 km2 with eight boreholes, which was monitored hourly over four years, allows the study of the spatial variability of water transfers. The variability of the impulse response of the system is studied using autocorrelation and cross-correlation analysis between the rainfall and piezometric level time series. The shapes of the autocorrelation and cross-correlation functions vary according to the geographical location of the boreholes, that proves a spatial organization of the groundwater transfer. The response time varies depending on the thickness of the unsaturated zone by an unusual inverse correlation. In this case, the water level signal spatially integrates the signal transfer of the unsaturated zone and the signal transfer of the saturated part of the aquifer. Consequently, inertia and response time increased with the distance between the borehole and the top of piezometric dome. This description supports highly organized fast transfers in this karst aquifer and a highly connected fracture network.

  4. Investigation of Climate Change Impacts to the Coastal Aquifer of North Germany: A 3D Modelling Study

    NASA Astrophysics Data System (ADS)

    Ptak, T.; Yang, J.; Graf, T.

    2014-12-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify discharge of the river Weser flowing into the German Bight, which will alter both water levels and salinity distributions along the coast. To study the long-term effects of sea level rise and discharge variations to the salinity distribution, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density groundwater flow, surface-subsurface interaction, irregular land topography and anthropogenic structures (e.g. dykes, drainage canals, water gates). Using PEST, steady state groundwater flow of year 2009 is calibrated. In addition, 3 climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1 m, (ii) the salinity of the seaside boundary increased by 25 %, and (iii) the salinity of the seaside boundary decreased by 70 %. Results demonstrate the changes of fresh groundwater resources, surface water depths and salinity distribution. The obtained results are useful for coastal engineering practices, drinking water resources management and for the development of climate change adaptation strategies.

  5. Hydrogeology of the Scioto River Valley near Piketon, South-Central Ohio a quantitative study of ground-water yield and induced infiltration in a glacial outwash aquifer

    USGS Publications Warehouse

    Norris, Stanley Eugene; Fidler, Richard E.

    1969-01-01

    A systematic study was made of one of Ohio's principal aquifers, a sand and gravel outwash in the Scioto River Valley, to determine the feasibility of developing a ground-water supply of 20 million gallons per day at a site near Piketon. The first part of the study was spent in determining the thickness and physical properties of the sand and gravel aquifer and in drilling test wells to determine the best site for the supply wells. The second part of the investigation was an aquifer infiltration test to determine the hydraulic properties of the aquifer and the conditions of stream recharge. A well 83 feet deep was drilled on the flood plain and was pumped for 9 days at the rate of 1,000 gallons per minute. Tile effect on the hydrologic system during and after the pumping was determined by measuring the water levels in an array of deep and shallow observation wells and in 8 drive-point wells installed in the bed of the river. Seldom have more comprehensive data been collected showing the effects of pumping on a natural, unconfined, hydrologic system. From these data were calculated the coefficient of transmissibility (215,000 gallons per day per foot) and the rate of streambed infiltration (0.235 million gallons per day per acre per foot). The aquifer was tested near the end of a long drought; so the ground-water levels and the river stage were very nearly following a level trend. Because the ground-water levels were essentially unaffected by extraneous influences, the test data are probably as precise and uncomplicated as is practical to obtain in the field. These data proved to be valid for use as design criteria for the location, spacing, and construction of four supply wells. The third part of the investigation was the testing and quantitative evaluation of the four supply wells before they were put into service. The wells were found to perform about as predicted, indicating that the hydraulic properties of the aquifer, as determined by standard methods, are

  6. The fissured East Yorkshire Chalk, UK - a 'sustainable' aquifer under stress ?

    NASA Astrophysics Data System (ADS)

    Elliot, T.; Younger, P. L.; Chadha, D. S.

    2003-04-01

    The fissured Chalk is an important regional aquifer in East Yorkshire, UK, with a large potential for water supply to the Humberside region and especially the City of Hull. It has been exploited since the end of the 19th Century, but although there are more than a dozen long-established pumping wells in the Chalk these currently abstract only 7% of the total recharge the aquifer receives. The classical notion of ‘safe aquifer yield' equates the quantity of groundwater available for abstraction with the long-term natural recharge to the aquifer. An incautious hydrogeologist might be lead to conclude that this is a secure, under-developed resource. In this case study, the aquifer is shown to be already displaying early symptoms of hydrological stress (eg drought effects, overexploitation), and hydrogeochemical indicators point to further effects of anthropogenic pollution impacts in the unconfined aquifer and both recent and ancient saline intrusion in its semi-confined and confined zones. The hydrochemical evidence clearly reveals the importance both of recent aquifer management decisions and palaeohydrogeology in determining the distribution of water qualities within the aquifer. Waters encountered in the confined aquifer are identified as complex (and potentially dynamic) mixtures between recently recharged waters, modern seawater intrusion, and ancient seawater which entered the aquifer many millennia ago. Elliot, T. Younger, P.L. &Chadha, D.S. (1998) The future sustainability of groundwater resources in East Yorkshire - past and present perspectives. In H. Wheater and C. Kirby (Eds.) Hydrology in a Changing Environment, Vol. II, Proc. British Hydrological Society (BHS) International Conference, 6-10 July 1998, Exeter, UK. pp.21-31. Elliot, T., Chadha, D.S. &Younger, P.L. (2001) Water Quality Impacts and Palaeohydrogeology in the East Yorkshire Chalk Aquifer, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 34(4): 385-398. Younger, P.L., Teutsch

  7. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability. This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  8. The recharge process in alluvial strip aquifers in arid Namibia and implication for artificial recharge

    NASA Astrophysics Data System (ADS)

    Sarma, Diganta; Xu, Yongxin

    2016-10-01

    Alluvial strip aquifers associated with ephemeral rivers are important groundwater supply sources that sustain numerous settlements and ecological systems in arid Namibia. More than 70 % of the population in the nation's western and southern regions depend on alluvial aquifers associated with ephemeral rivers. Under natural conditions, recharge occurs through infiltration during flood events. Due to the characteristic spatial and temporal variability of rainfall in arid regions, recharge is irregular making the aquifers challenging to manage sustainably and they are often overexploited. This condition is likely to become more acute with increasing water demand and climate change, and artificial recharge has been projected as the apparent means of increasing reliability of supply. The article explores, through a case study and numerical simulation, the processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options. It is concluded that recharge processes in arid alluvial aquifers differ significantly from those processes in subhumid systems and viability of artificial recharge requires assessment through an understanding of the natural recharge process and losses from the aquifer. It is also established that in arid-region catchments, infiltration through the streambed occurs at rates dependent on factors such as antecedent conditions, flow rate, flow duration, channel morphology, and sediment texture and composition. The study provides an important reference for sustainable management of alluvial aquifer systems in similar regions.

  9. Reconsideration at Field Scale of the Relationship between Hydraulic Conductivity and Porosity: The Case of a Sandy Aquifer in South Italy

    PubMed Central

    2014-01-01

    To describe flow or transport phenomena in porous media, relations between aquifer hydraulic conductivity and effective porosity can prove useful, avoiding the need to perform expensive and time consuming measurements. The practical applications generally require the determination of this parameter at field scale, while most of the empirical and semiempirical formulas, based on grain size analysis and allowing determination of the hydraulic conductivity from the porosity, are related to the laboratory scale and thus are not representative of the aquifer volumes to which one refers. Therefore, following the grain size distribution methodology, a new experimental relation between hydraulic conductivity and effective porosity, representative of aquifer volumes at field scale, is given for a confined aquifer. The experimental values used to determine this law were obtained for both parameters using only field measurements methods. The experimental results found, also if in the strict sense valid only for the investigated aquifer, can give useful suggestions for other alluvial aquifers with analogous characteristics of grain-size distribution. Limited to the investigated range, a useful comparison with the best known empirical formulas based on grain size analysis was carried out. The experimental data allowed also investigation of the existence of a scaling behaviour for both parameters considered. PMID:25180202

  10. Geohydrology of the Cerro Prieto geothermal aquifer

    SciTech Connect

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  11. Geochemistry of the Arbuckle-Simpson Aquifer

    USGS Publications Warehouse

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  12. Continuing education case study quiz.

    PubMed

    2013-03-01

    Goal- The goal of this program is to educate pharmacists about the use of teriflunomide for the treatment of multiple sclerosis (MS). Objectives- At the completion of this program, the reader will be able to:Describe the pharmacology and pharmacokinetics of teriflunomide.Discuss the risks associated with the use of teriflunomide.Discuss the potential benefit of teriflunomide for an individual patient.Apply the information on the use of teriflunomide to a case study. PMID:24421468

  13. The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Morteani, Giulio; Kostitsyn, Y.; Preinfalk, C.; Gilg, H. A.

    2010-06-01

    The amethyst-bearing geodes found in the flood basalts of the Arapey formation at Artigas (Uruguay) were formed as protogeodes by bubbles of CO2-rich basalt-derived fluids. The formation of the celadonite rim and the lining of the geodes by agate followed by quartz and amethyst were driven by the artesian water of the Guaraní aquifer percolating the basalts from below. The temperature of the amethyst formation is estimated from fluid inclusion data to be between 50° and 120°C. Oxygen stable isotope data suggest a crystallization temperature of calcite of about only 24°C. The actual wellhead temperature of the water produced from the Guaraní aquifer in the study area is around 29°C.

  14. Initial Report for the Aquifer Background Study: Summary of Uranium and Plutonium Data from INEEL Groundwater Samples

    SciTech Connect

    Robert C. Roback; Don L. Koeppen

    2003-06-01

    As part of the “Aquifer Background Study,” Los Alamos National Laboratory (LANL) under contract with the Idaho National Engineering and Environmental Laboratory (INEEL) has undertaken a study to determine uranium and plutonium abundances and isotopic composition in groundwater samples collected at the INEEL. To date, four samples have been analyzed for uranium and plutonium and an additional nine samples have been analyzed for uranium. It is expected that several more samples will be analyzed for this study. This report summarizes the results from this initial set of samples. Of the 13 samples analyzed for uranium, four samples have 238U/235U ratios that differ from the natural value of 137.88. These four samples and two additional samples also contain 236U at 3-sigma level above detection limits. The presence of 236U and the non-natural 238U/235U ratios unequivocally indicate the presence of anthropic uranium in four of the samples. A small component of anthropic uranium is also present in two additional samples with positive 236U detection but natural 238U/235U isotope ratios. Two of the samples with anthropic uranium, as well as two samples with no detectable anthropic uranium were analyzed for plutonium. No plutonium was detected in these four samples at detection limits of approximately 5E7 239Pu atoms for three of the samples and approximately 1E8 239Pu atoms for the forth sample. These detection limits correspond to (239+240)Pu activity ratios (assuming a 240Pu/239Pu atom ratio of 0.18) of 0.002 and 0.004 pCi/L respectively.

  15. A study of caprock continuous-discontinuous fracturing process during CO2-injection into a brine aquifer

    NASA Astrophysics Data System (ADS)

    Pan, P.; Rutqvist, J.; Yan, F.; Feng, X.

    2012-12-01

    A numerical study of fracturing process during a deep underground injection of supercritical CO2 in a hypothetical brine aquifer/caprock system is conducted. The injection process is simulated using a newly developed numerical model for multi-phase analysis of CO2 and brine water flow, coupled with heat transfer and rock fracturing behavior. In the modeling, the domain to be solved is discretized into a system composed of cell elements in which the numerical grid and crack geometry are independent of each other. The level-set method is used for tracking the crack location and its propagation path. As a result, no explicit meshing for crack surfaces and no remeshing for crack growth are needed. Discontinuous displacement functions, i.e., the Heaviside function for crack surfaces and asymptotic crack-tip displacement fields, are introduced to represent the discontinuity. We use the "partition of unity" concept to improve the integral precision for elements, including crack surfaces and crack tips. From this, we develop a cellular automaton updating rule to calculate the stress field induced by CO2 injection. CO2 is injected at a constant rate over a 10-year period at a depth of 1,300-1,500 m. the injection zone is overlain by a 100-m-thick caprock, located at 1,200-1,300 m. The caprock is intersected by one or two initial faults with different inclinations. The hydraulic, mechanical as well as hydromechanical responses caused by the injection are studied with consideration of different geo-stress levels. This includes the spread of the CO2 plume(Figure 1), effective stress changes, crack contact, slip, opening and propagation(Figure 2), ground surface uplift, stress-induced or discontinuous deformation-induced permeability changes, and mechanical fracturing behavior. The study shows that the existence of fault and the fault geometries have great influence on stability of caprock and the CO2 migration across the caprock.; ;

  16. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges.

  17. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges. PMID:26433363

  18. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  19. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  20. COMBINED LABORATORY/FIELD STUDY ON THE USE OF NITRATE FOR IN SITU BIOREMEDIATION OF A FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A pilot demonstration project was conducted at Eglin Air Force Base, FL, to compare the extent of bioremediation of a fuel-contaminated aquifer using sprinkler application with and without nitrate addition on two adjacent 30 m x 30 m cells. Target compound groups included both B...

  1. Isotopic evolution of groundwater in a telogenetic karst aquifer: A method to study recharge and contaminant transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There exists a limited understanding of hydrogeologic flow and contaminant transport within karst aquifers, particularly in the epikarst zone, which are highly susceptible to natural and anthropogenic contamination, such as agricultural runoff, due to the interconnected nature of the surface and sub...

  2. Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field

    NASA Astrophysics Data System (ADS)

    Changli, Liu; Feng-E, Zhang; Yun, Zhang; Shuhong, Song; Sheng, Zhang; Hao, Ye; Hongbing, Hou; Lijuan, Yang; Ming, Zhang

    2005-10-01

    The water quality of shallow aquifers that have direct relationship to human heath and ecological safety has been seriously threatened by widespread dumping of industrial solid waste, urban and rural garbage. A garbage dump field with hydrogeological, environ-geological characteristics typical of the Beijing plain was selected for investigation. A hydrogeological model was constructed and the equations used to describe pollutant transport in one-dimensional (1D) steady, uniform groundwater flow to investigate the transport/diffusion processes. In addition to the coefficients for calculation, diffusion coefficient and other coefficients of the aquifer were obtained by conducting in situ diffusion experiments and sample tests. Velocity and scope of pollutant transport/diffusion process were calculated. Accordingly, the real pollution situation in the aquifer was evaluated through in situ drilling and sample testing. Transport/diffusion processes of pollutants within the aquifer abide by the solute equation applicable to 1D steady flow. The transport and diffusion dominate in the direction of groundwater flowing at a speed of about 120 m per year. Comparably, the lateral diffusive width is much smaller. Pollution degree decreases by the law of Y=1.08 exp(33.533/ X), where Y is the distance from the garbage dump field and X is the overall pollution index.

  3. Enhancements to the Mississippi Embayment Regional Aquifer Study (MERAS) groundwater-flow model and simulations of sustainable water-level scenarios

    USGS Publications Warehouse

    Clark, Brian R.; Westerman, Drew A.; Fugitt, D. Todd

    2013-01-01

    Arkansas continues to be one of the largest users of groundwater in the Nation. As such, long-term planning and management are essential to ensure continued availability of groundwater and surface water for years to come. The Mississippi Embayment Regional Aquifer Study (MERAS) model was developed previously as a tool to evaluate groundwater availability within the Mississippi embayment, which encompasses much of eastern Arkansas where the majority of groundwater is used. The Arkansas Water Plan is being updated for the first time since 1990 and serves as the State’s primary, comprehensive water-resources planning and guidance document. The MERAS model was selected as the best available tool for evaluation of specific water-use pumping scenarios that are currently being considered by the State of Arkansas. The model, developed as part of the U.S. Geological Survey Groundwater Resources Program’s assessment of the Nation’s groundwater availability, is proving to be invaluable to the State as it works toward development of a sustained yield pumping strategy. One aspect of this investigation was to evaluate multiple methods to improve the match of observed to simulated groundwater levels within the Mississippi River Valley alluvial and middle Claiborne (Sparta) aquifers in the MERAS model. Five primary methods were evaluated: (1) explicit simulation of evapotranspiration (ET), (2) upgrade of the Multi-Node Well (MNW2) Package, (3) geometry improvement within the Streamflow Routing (SFR) Package, (4) parameter estimation of select aquifer properties with pilot points, and (5) modification of water-use estimates. For the planning purposes of the Arkansas Water Plan, three scenarios were developed to evaluate potential future conditions: (1) simulation of previously optimized pumping values within the Mississippi River Valley alluvial and the middle Claiborne aquifers, (2) simulated prolonged effects of pumping at average recent (2000–5) rates, and (3) simulation

  4. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  5. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    PubMed

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation.

  6. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer

    NASA Astrophysics Data System (ADS)

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., FeII release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation.

  7. The Case: Generalisation, Theory and Phronesis in Case Study

    ERIC Educational Resources Information Center

    Thomas, Gary

    2011-01-01

    Arguments for the value of case study are vitiated by assumptions about the need for generalisation in the warrant of social scientific inquiry--and little generalisation is legitimate from case study, although an argument exists for the role of the case in the establishment of a form of generalisation in a certain kind of theory, a line of…

  8. Aquifer response to stream-stage and recharge variations. II. Convolution method and applications

    USGS Publications Warehouse

    Barlow, P.M.; DeSimone, L.A.; Moench, A.F.

    2000-01-01

    In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped

  9. A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies

    SciTech Connect

    Davis, J.M.

    1994-01-01

    Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.

  10. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  11. BATCH AND COLUMN STUDIES ON BTEX BIODEGRADATION BY AQUIFER MICROORGANISMS UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    The objective of these laboratory experiments was to determine the role nitrate plays in enhancing the biodegradation of fuel contaminated groundwater. Column studies were conducted to simulate the nitrate field demonstration project carried out earlier at Traverse City, MI so a...

  12. Potentiometric map of the Cockfield Aquifer in Mississippi, fall 1984

    USGS Publications Warehouse

    Darden, Daphne

    1986-01-01

    This map, the second in a series for the Cockfield aquifer in Mississippi, follows a map that delineated the 1980 potentiometric surface of the aquifer. This water level map is based on water level measurements made in about 80 wells in the Cockfield aquifer in the fall of 1984. The contours show altitudes at which water levels would have stood in tightly cased unpumped wells in fall 1984. (Lantz-PTT)

  13. Continuing education case study quiz.

    PubMed

    2013-01-01

    Goal- The goal of this program is to educate pharmacists about the use of elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate (df) combination tablet for the treatment of HIV infection. Objectives-At the completion of this program, the reader will be able to:Describe the pharmacology and pharmacokinetics of elvitegravir/cobicistat/emtricitabine/tenofovir df combination.Discuss the risks associated with the use of elvitegravir/cobicistat/emtricitabine/tenofovir df combination.Discuss the potential benefit of elvitegravir/cobicistat/emtricitabine/tenofovir df combination for an individual patient.Apply the information on the use of elvitegravir/cobicistat/emtricitabine/tenofovir df combination to a case study. PMID:24550569

  14. Physiologic amputation: a case study.

    PubMed

    Long, Jeri; Hall, Virginia

    2014-03-01

    Acute limb ischemia is a complication of severe peripheral arterial disease that can be a threatening limb as well as life. Multiple procedures exist today to help revascularize extremities; however, even with the latest technologies, surgical amputation of the limb may still be necessary. Cryoamputation, or physiologic amputation, is a method used to treat patients who are hemodynamically unstable for the operating room and who are in need of urgent amputation owing to arterial ischemia. This procedure is used in the rare instance where not only a persons' limb is threatened, but also their life. This is a case study regarding one patient who presented to the hospital with limb-threatening ischemia who became hemodynamically unstable owing to the rhabdomyolysis associated with the ischemia of his lower extremity. Cryoamputation was used to stabilize the patient and prevent further deterioration, so that he could safely undergo surgical amputation of the limb without an increase in mortality risk. Cryoamputation must be followed by formal surgical amputation when the patient is hemodynamically stabilized. It is not a limb salvaging, procedure but it is a life-saving procedure. This case study demonstrates the usefulness of the procedure and discusses the technique used for cryoamputation.

  15. Geohydrology and water quality of the Roubidoux Aquifer, northeastern Oklahoma

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.; Fairchild, R.W.

    1990-01-01

    ) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large radium-226 concentrations. Many wells in the mining area have been affected by mine-water contamination. At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. None of the data available to date demonstrate that mine water has migrated from the Boone Formation through the pores and fractures of the intervening geologic units to the Roubidoux aquifer. Ground water with large concentrations of sodium and chloride occurs at some depth throughout the study unit. In the eastern part of the study unit, chloride concentrations greater than 250 milligrams per liter are found at depths greater than approximately 1,200 to 1,500 feet. Data are too few to determine the depth to ground water with large concentrations of sodium and chloride in the southern and southwestern parts of the study unit. Large concentrations of gross-alpha radioactivity in ground water occur near the western edge of the transition zone. Generally, ground water with large concentrations of gross-alpha radioactivity was found to exceed the maximum contaminant level for radium-226. (available as photostat copy only)

  16. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia.

    PubMed

    Hassen, Imen; Hamzaoui-Azaza, Fadoua; Bouhlila, Rachida

    2016-03-01

    Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January-February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca-HCO3 to Mg-SO4 type and are controlled by water-rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards's diagrams. This aquifer has been classified as "excellent water" serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects. PMID:26842239

  17. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia.

    PubMed

    Hassen, Imen; Hamzaoui-Azaza, Fadoua; Bouhlila, Rachida

    2016-03-01

    Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January-February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca-HCO3 to Mg-SO4 type and are controlled by water-rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards's diagrams. This aquifer has been classified as "excellent water" serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects.

  18. Numerical study of solute transport in shallow beach aquifers subjected to waves and tides

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2015-02-01

    A numerical study was conducted to investigate the fate of solute in a laboratory beach in response to waves and tides. A new temporal upscaling approach labeled "net inflow" was introduced to address impacts of waves on solute transport within beaches. Numerical simulations using a computational fluid dynamic model were used as boundary conditions for the two-dimensional variably saturated flow and solute transport model MARUN. The modeling approach was validated against experimental data of solute transport due to waves and tides. Exchange fluxes across the beach face and subsurface solute transport (e.g., trajectory, movement speed, and residence time) were quantified. Simulation results revealed that waves increased the exchange fluxes, and engendered a wider exchange flux zone along the beach surface. Compared to tide-only forcing, waves superimposed on tide caused the plume to be deeper into the beach, and to migrate more seaward. The infiltration into the beach was found to be directly proportional to the general hydraulic gradient in the beach and inversely proportional to the matrix retention (or capillary) capacity. The simulations showed that a higher inland water table would attenuate wave-caused seawater infiltration, which might impact beach geochemical processes (e.g., nutrient recycle and redox condition), especially at low tide zone. The concept of biochemical residence time maps (BRTM) was introduced to account for the net effect of limiting concentration of chemicals on biochemical reactions. It was found that waves shifted the BRTMs downward and seaward in the beach, and subsequently they engendered different biochemical conditions within the beach.

  19. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  20. Deep aquifers detected in South Asia

    NASA Astrophysics Data System (ADS)

    Artesian aquifers below river basins in South Asia may be able to remedy water shortages in the region, according to a study conducted by the World Bank in Washington, D.C. Logs that record electrical resistance in wells drilled for petroleum were used to identify the aquifers and determine that they appear to hold fresh water.While electric logging of wells is a routine procedure in oil and gas exploration, it is less often applied in fresh water exploration. The logs record electrical resistance, or resistivity, of subsurface formations, permitting identification of aquifers and calculation of the salinity of the water in them without obtaining water samples.

  1. Case Study: A Picture Worth a Thousand Words? Making a Case for Video Case Studies

    ERIC Educational Resources Information Center

    Pai, Aditi

    2014-01-01

    A picture, they say, is worth a thousand words. If a mere picture is worth a thousand words, how much more are "moving pictures" or videos worth? The author poses this not merely as a rhetorical question, but because she wishes to make a case for using videos in the traditional case study method. She recommends four main approaches of…

  2. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    NASA Astrophysics Data System (ADS)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-05-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 yearsuc( BP), highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  3. Understanding connectivity of meandering streams and shallow aquifers: Lessons learned from an observational study in northern New Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, J. D.; Sherson, L. R.; Crossey, L. J.; Dahm, C.; Harvey, J. W.; Wilson, J. L.

    2014-12-01

    The bidirectional feedback between streams and aquifers changes over several spatio- temporal scales, requiring a complex, multi-variable observational network that captures the dominant processes taking place and the response to changes in hydrologic forcing. The importance of stream-aquifer connectivity is evidenced by its influence in the hydrologic response and in the fate and transport of solutes at the watershed scale. To better understand the dynamics of stream-aquifer connectivity and the effects that intra-annual weather variability has on physical and chemical processes, a monitoring network was installed at a meander bend of the East Fork of the Jemez River in the Valles Caldera National Preserve (VCNP), a snow-dominated watershed in northern New Mexico. This work summarizes four years of observations of groundwater-surface water interaction. Spatio-temporal patterns of water level, temperature, and electrical conductivity were measured in meander-bend wells and vertical fluxes to/from the stream were estimated using in-stream piezometers, subsurface thermal records, and distributed temperature sensing in the channel. A three-dimensional numerical model was used to synthesize data and draw general conclusions. The observational network has been collecting data since the summer of 2010 to present, overlapping the Las Conchas fire in the VCNP (largest wildfire on record in New Mexico's history), and therefore representing a valuable data set to evaluate the hydrological and biogeochemical implications of wildfire events.

  4. STS Case Study Development Support

    NASA Technical Reports Server (NTRS)

    Rosa de Jesus, Dan A.; Johnson, Grace K.

    2013-01-01

    The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.

  5. Aquifer development planning to supply a seaside resort: a case study in Goa, India

    NASA Astrophysics Data System (ADS)

    Lobo Ferreira, J. P. Cárcomo; da Conceição Cunha, Maria; Chachadi, A. G.; Nagel, Kai; Diamantino, Catarina; Oliveira, Manuel Mendes

    2007-09-01

    Using the hydrogeological and socio-economic data derived from a European Commission research project on the measurement, monitoring and sustainability of the coastal environment, two optimization models have been applied to satisfy the future water resources needs of the coastal zone of Bardez in Goa, India. The number of tourists visiting Goa since the 1970s has risen considerably, and roughly a third of them go to Bardez taluka, prompting growth in the tourist-related infrastructure in the region. The optimization models are non-linear mixed integer models that have been solved using GAMS/DICOPT++ commercial software. Optimization models were used, firstly, to indicate the most suitable zones for building seaside resorts and wells to supply the tourist industry with an adequate amount of water, and secondly, to indicate the best location for wells to adequately supply pre-existing hotels. The models presented will help to define the optimal locations for the wells and the hydraulic infrastructures needed to satisfy demand at minimum cost, taking into account environmental constraints such as the risk of saline intrusion.

  6. Regionally contaminated aquifers--toxicological relevance and remediation options (Bitterfeld case study).

    PubMed

    Heidrich, Susanne; Schirmer, Mario; Weiss, Holger; Wycisk, Peter; Grossmann, Jochen; Kaschl, Arno

    2004-12-15

    Large-scale contaminated megasites like Bitterfeld in eastern Germany are characterized by a regional contamination of soil, surface water and groundwater as a result of a long and varied history of chemical production. While the contaminants in soils and sediments mostly represent a localized problem, pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. From the toxicological point of view, the contaminants at the Bitterfeld megasite represent a dangerous cocktail of various harmful substances coming from a multitude of sources. Appropriate remediation techniques must be able to remedy the specific problems arising from hot spot areas within the megasite in addition to preventing a further extension of the contaminated zone towards uncontaminated compartments. Therefore, a combination of specifically designed remediation technologies based on the pump and treat-principle with in situ technologies, such as reactive walls and monitored/enhanced natural attenuation, is necessary to efficiently address the miscellaneous challenges at this megasite. In this paper, the currently known contaminant distribution, the associated problems for human health and the environment and possible remediation strategies are presented for the Bitterfeld megasite. PMID:15464625

  7. Vulnerability of karst aquifers to agricultural contaminants: A case study in the Pennyroyal Plateau of Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  8. Regionally contaminated aquifers--toxicological relevance and remediation options (Bitterfeld case study).

    PubMed

    Heidrich, Susanne; Schirmer, Mario; Weiss, Holger; Wycisk, Peter; Grossmann, Jochen; Kaschl, Arno

    2004-12-15

    Large-scale contaminated megasites like Bitterfeld in eastern Germany are characterized by a regional contamination of soil, surface water and groundwater as a result of a long and varied history of chemical production. While the contaminants in soils and sediments mostly represent a localized problem, pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. From the toxicological point of view, the contaminants at the Bitterfeld megasite represent a dangerous cocktail of various harmful substances coming from a multitude of sources. Appropriate remediation techniques must be able to remedy the specific problems arising from hot spot areas within the megasite in addition to preventing a further extension of the contaminated zone towards uncontaminated compartments. Therefore, a combination of specifically designed remediation technologies based on the pump and treat-principle with in situ technologies, such as reactive walls and monitored/enhanced natural attenuation, is necessary to efficiently address the miscellaneous challenges at this megasite. In this paper, the currently known contaminant distribution, the associated problems for human health and the environment and possible remediation strategies are presented for the Bitterfeld megasite.

  9. Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer-recharge project in Dhaka City, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Wiegand, Bettina A.; Badruzzaman, A. B. M.; Ptak, Thomas

    2013-08-01

    A preliminary feasibility assessment of managed aquifer-recharge (MAR) techniques was undertaken for Dhaka City, Bangladesh. Considering the top impermeable-layer (TIL) thickness and the land-use classification, four primary MAR techniques have been suggested: (1) soil-aquifer treatment (SAT) for TIL thickness 0-8 m, (2) cascade-type recharge trenches/pits for TIL thickness 9-30 m, (3) aquifer storage, transfer and recovery (ASR/ASTR) for TIL thickness 31-52 m, and (4) use of natural wetlands to recharge water collected from open spaces. The study suggests that recharge trenches and pits will be the most appropriate MAR techniques, which can be implemented in most parts of the recharge area (ca. 277 km2). In case of a recharge trench, the lower parts (15-20 m) that are in direct contact with the aquifer can be backfilled with biosand filters with a reactive layer containing metallic iron (Fe0) to offer pre-treatment of the infiltrated water. In addition to the suggested four techniques, the regional groundwater flow direction, from the northwest and northeast towards Dhaka City, may allow use of the aquifer as a natural treatment and transport medium for groundwater, if spreading basins are installed in the greater Dhaka area.

  10. Using Case Studies To Teach Science.

    ERIC Educational Resources Information Center

    Gabel, Connie

    Using case studies in science instruction develops problem solving and enhances listening and cooperative learning skills. Unlike other disciplines such as law and medicine, the case study method is rarely used in science education to enrich the curriculum. This study investigates the use of content-based case studies as a means of developing…

  11. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies.

    PubMed

    Kao, C M; Chen, S C; Wang, J Y; Chen, Y L; Lee, S Z

    2003-01-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop an in situ two-layer biobarrier system consisting of an organic-releasing material layer followed by an oxygen-releasing material layer. The organic-releasing material, which contained sludge cakes from a domestic wastewater treatment plant, is able to release biodegradable organics continuously. The oxygen-releasing material, which contained calcium peroxide, is able to release oxygen continuously upon contact with water. The first organic-releasing material layer was to supply organics (primary substrates) to reductively dechlorinate PCE in situ. The second oxygen-releasing material layer was to release oxygen to aerobic biodegrade or cometabolize PCE degradation byproducts from the first anaerobic layer. Batch experiments were conducted to design and identify the components of the organic and oxygen-releasing materials, and evaluate the organic substrate (presented as chemical oxygen demand (COD) equivalent) and oxygen release rates from the organic-releasing material and oxygen-releasing materials, respectively. The observed oxygen and COD release rates were approximately 0.0368 and 0.0416 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of PCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an organic-releasing material column, two consecutive soil columns, and an oxygen-releasing material column, followed by two other consecutive soil columns. Anaerobic acclimated sludges were inoculated in the first four columns, and aerobic acclimated sludges were inoculated in the last three columns to provide microbial consortia for contaminant biodegradation. Simulated PCE-contaminated groundwater with a

  12. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies.

    PubMed

    Kao, C M; Chen, S C; Wang, J Y; Chen, Y L; Lee, S Z

    2003-01-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop an in situ two-layer biobarrier system consisting of an organic-releasing material layer followed by an oxygen-releasing material layer. The organic-releasing material, which contained sludge cakes from a domestic wastewater treatment plant, is able to release biodegradable organics continuously. The oxygen-releasing material, which contained calcium peroxide, is able to release oxygen continuously upon contact with water. The first organic-releasing material layer was to supply organics (primary substrates) to reductively dechlorinate PCE in situ. The second oxygen-releasing material layer was to release oxygen to aerobic biodegrade or cometabolize PCE degradation byproducts from the first anaerobic layer. Batch experiments were conducted to design and identify the components of the organic and oxygen-releasing materials, and evaluate the organic substrate (presented as chemical oxygen demand (COD) equivalent) and oxygen release rates from the organic-releasing material and oxygen-releasing materials, respectively. The observed oxygen and COD release rates were approximately 0.0368 and 0.0416 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of PCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an organic-releasing material column, two consecutive soil columns, and an oxygen-releasing material column, followed by two other consecutive soil columns. Anaerobic acclimated sludges were inoculated in the first four columns, and aerobic acclimated sludges were inoculated in the last three columns to provide microbial consortia for contaminant biodegradation. Simulated PCE-contaminated groundwater with a

  13. Science for informed decision: A 3D unified conceptual model of the Milk River Transboundary Aquifer (Alberta-Montana)

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Pétré, M.

    2013-12-01

    The Milk River transboundary aquifer straddles southern Alberta (Canada) and northern Montana (United States), in a semi-arid region considered water short. This confined sandstone aquifer is a source for municipal supply and agricultural uses on the Canadian side, as well as for secondary oil recovery on the US-side of the border. The extensive use of this resource since the mid 1950's has led to a dramatic drop in the water level in some places and concerns about the durability of the resource have risen. The Milk River aquifer has been the object of many studies during the 20th century; however most of them were limited by the USCanada border, preventing a sound understanding of the global dynamics of the aquifer. The objectives of this transboundary study are to better understand the dynamics of the Milk River aquifer, following its natural limits, in order to make recommendations for a sustainable management and its good governance by the two international jurisdictions, as recommended in the UNGA resolution 63/124 on the Law of Transboundary Aquifers. Since 2009, the Milk River transboundary aquifer is part of the inventory of UNESCO ISARM-Americas initiative, which encourages riparian states to work cooperatively toward mutually beneficial and sustainable aquifer development However, the use of this shared resource is not ruled by any international agreement or convention between the USA and the Canada. Stakeholders from the two countries have been involved, at various levels of jurisdictions (municipal, provincial, state, federal) to establish a strong cooperation. In these contexts, models can constitute useful tools for informed decisions. In the case of the Milk River aquifer, models could support scientists and managers from both countries in avoiding potential tensions linked to the water shortage context in this region. Models can determine the conditions of overexploitation and provide an assessment of a sustainable yield. A unified conceptual model

  14. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    PubMed

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  15. Storm-damaged saline-contaminated boreholes as a means of aquifer contamination

    USGS Publications Warehouse

    Carlson, D.A.; Van Biersel, T. P.; Milner, L.R.

    2008-01-01

    Saline water from a storm surge can flow down storm-damaged submerged water supply wells and contaminate boreholes and surrounding aquifers. Using data from conventional purging techniques, aquifer test response analysis, chemical analysis, and regression analysis of chloride/silica (Cl/Si) ratio, equations were derived to estimate the volume of saline water intrusion into a well and a porous media aquifer, the volume of water needed to purge a well shortly following an intrusion event, and the volume of water needed after delay of several or more months, when the saline plume has expanded. Purging time required is a function of volume of water and pumping rate. The study site well is located within a shoreline community of Lake Pontchartrain, St. Tammany Parish, in southeastern Louisiana, United States, which was impacted by two hurricane storm surges and had neither been rehabilitated nor chlorinated prior to our study. Chemical analysis of water samples in fall 2005 and purging of well and aquifer in June 6, 2006, indicated saline water had intruded the well in 2005 and the well and aquifer in 2006. The volume of water needed to purge the study well was approximately 200 casing volumes, which is significantly greater than conventionally used during collection of water samples for water quality analyses. ?? 2007 National Ground Water Association.

  16. Macroscopic Thermal Energy Balance on Montane Valley Aquifers and Groundwater Recharge Source Identification

    NASA Astrophysics Data System (ADS)

    Trask, J. C.; Fogg, G. E.

    2010-12-01

    Several recent publications have highlighted the need to improve definition of groundwater flow patterns in montane regions, presenting case studies with several field investigative approaches. Determination of the depth of upland bedrock groundwater circulation and identification of valley aquifer recharge sources in montane areas is needed for improved characterization of montane groundwater flow patterns and for aquifer source protection planning. In most upland bedrock regions, wells and boreholes are scarce, adding to the challenges inherent to investigating groundwater flow in fractured rock systems. Approaches using natural environmental tracers have previously been shown to be effective in quantifying subsurface recharge into valley aquifers from groundwater flow within adjoining mountain-front and mountain-block areas. Thermal tracing of montane groundwater flow is easy and inexpensive relative to other environmental tracer and geophysical techniques, and can complement other approaches (e.g. Manning and Solomon, 2005). We present a heat flow tracer approach to identification of montane valley aquifer recharge sources. A novel application of a macroscopic thermal energy balance is introduced and used in recharge source analysis for two mountain-front bounding basin-fill aquifers located in the Sierra Nevada, USA. We show that robust upper and lower bounds on total heat flow and sources of recharge into montane valley aquifers may be determined without numerical modeling by using a macroscopic thermal energy balance. Several factors tend to enhance focusing of geothermal conductive heat flow from depth toward montane valley margins. Analytic bracketing techniques, applicable to domains with irregular boundary geometry and non-uniform thermal boundary conditions, are used together with thermal data to obtain quantitative bounds on conductive heat flow across aquifer domain boundaries. Thermal data required include: (i) a rough estimate of regional geothermal

  17. Case Study: The Chemistry of Cocaine

    ERIC Educational Resources Information Center

    Dewprashad, Brahmadeo

    2011-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's case study focuses on the chemistry of cocaine to teach a number of core concepts in organic chemistry. It also requires that students read and analyze an original research paper on…

  18. Business and Consumer Education Case Studies.

    ERIC Educational Resources Information Center

    Delta Pi Epsilon, Minneapolis, Minn. Phi Chapter.

    This publication contains 58 case studies for classroom use in teaching various business and consumer education subjects at the high school level. A supplement to a previous Phi Chapter publication, "Office Education Case Studies" (1973), the case studies are intended to create class discussions and help students acquire the ability to analyze…

  19. Qualitative Case Study in Gifted Education.

    ERIC Educational Resources Information Center

    Mendaglio, Sal

    2003-01-01

    From case study articles drawn from four journals in gifted education, two are identified as exemplars of qualitative case study research. The works of Coleman (2001) and Hebert and Beardsley (2001) are used to illustrate how researchers can plan qualitative case studies so that the perspectives of gifted students are included. (Contains…

  20. Real-Life Case Studies for Teachers.

    ERIC Educational Resources Information Center

    Hayes, William

    Case studies described in this book reflect conditions present in today's public schools. Situations described in these case studies are intended to introduce education students to the variety of problems existing in today's schools. The 38 case studies highlight: student cheating; teacher's observation by administrator; inclusion; contract…

  1. Allographic agraphia: A case study

    PubMed Central

    Menichelli, Alina; Rapp, Brenda; Semenza, Carlo

    2011-01-01

    We report the case of patient MN, diagnosed with frontotemporal dementia, who exhibited a severe impairment in writing letters and words in upper-case print in the face of accurate production of the same stimuli in lower-case cursive. In contrast to her written production difficulties, MN was unimpaired in recognizing visually presented letters and words in upper-case print. We find a modest benefit of visual form cueing in the written production of upper-case letters, despite an inability to describe or report visual features of letters in any case or font. This case increases our understanding of the allographic level of letter-shape representation in written language production. It provides strong support for previous reports indicating the neural independence of different types of case and font-specific letter-shape information; it provides evidence that letter-shape production does not require explicit access to information about the visual attributes of letter shapes and, finally, it reveals the possibility of interaction between processes involved in letter-shape production and perception. PMID:18489965

  2. Potentiometric surface of the Deadwood Aquifer in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these

  3. Potentiometric surface of the Minnelusa Aquifer in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these

  4. Potentiometric surface of the Inyan Kara Aquifer in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these

  5. Potentiometric surface of the Madison Aquifer in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory L.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these

  6. Potentiometric surface of the Minnekahta Aquifer in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these

  7. Concentrated photovoltaics, a case study

    NASA Astrophysics Data System (ADS)

    Antonini, Piergiorgio; Centro, Sandro; Golfetto, Stelvio; Saccà, Alessandro

    2014-12-01

    Concentrated Photovoltaics (CPV), once a niche technology, has now reached the maturity and reliability for large scale power generation. Especially in regions where temperatures are very high, the use of high efficiency triple junction solar cells with concentrating optics allows stable energy yield. Thus CPV can be seen as complementary and not in concurrence with silicon photovoltaics. The state of the art, the advantages and limitations of this technology will be shown. Among the main advantages of CPV is the possibility of a much higher energy supply, when compared to silicon photovoltaics, both comparing CPV and silicon with same area or the same installed power. The use of recycled and recyclable materials allows a more environmentally friendly production. The possibility to couple CPV with desalination facilities, energy storage will be analysed. As an example a case study of a CPV installation in Northern Italy is discussed. Here the use of mature technologies, derived from automotive and lighting sectors resulted in a simple and efficient module.

  8. Cleft palate. Selected case studies.

    PubMed

    Philips, B J

    1991-01-01

    These case studies provide small, selected samples of the results of assessments of articulation skills and their phonologic applications and give some information related to velopharyngeal function during speech. These illustrations were based chiefly on perceptual assessment of speech because this type of assessment is used routinely by SLPs, and does not require instrumentation. Indicators for referral and communication to a cleft palate team were derived from the perceptual evaluation. Other articles in this issue discuss procedures for evaluation in considerable detail. Early identification of possible velopharyngeal problems and early referral to a cleft palate team can help to resolve speech, language, and hearing disorders related to cleft palate and velopharyngeal dysfunction. People who comprise cleft palate and craniofacial teams are most likely to have the experience, and the special instrumentation necessary, to make a definitive diagnosis. The team's comprehensive multidisciplinary evaluation should lead to thorough consideration of the many factors that are important for treatment planning. The information and services provided by the team will assist the audiologist and SLP in the conduct of their services for these clients. In this way, the communication disorders specialist becomes an affiliate of the team. The affiliate not only acts as a referent, but also may provide the necessary longitudinal services. The best interests of the client are promoted by ongoing communication between the team and the affiliates of the team.

  9. An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand: Implications for colloid mobilization

    NASA Astrophysics Data System (ADS)

    Swartz, Christopher H.; Ulery, April L.; Gschwend, Philip M.

    1997-02-01

    Analytical and transmission electron microscopy (AEM-TEM) techniques were used to identify mineral juxtapositions at the nanometer-scale in the interstitial matrix of a shallow, Southeastern Coastal plain aquifer sand (Georgetown, South Carolina, USA). In doing so, we sought to infer particle-particle interaction mechanisms holding the matrix intact. The aquifer is a fine-to-medium quartz sand with approximately 12% by weight <63 μm size fraction composing the interstitial matrix. The clay-size fraction contains kaolinite, goethite, gibbsite, and vermiculite. The arrangement of the clay minerals is that of a framework of face-associated domains. Selective extraction revealed that goethite constituted 95% by weight of the free iron oxyhydroxides in the <63 μm size fraction, but AEM-TEM and high resolution TEM (HRTEM) indicated that the goethite occurred only in discrete aggregates among the clays. Conversely, the remaining 5% of the free iron oxyhydroxides comprised an amorphous iron phase which was found to be distributed throughout the matrix and directly associated with the clay particles. This evidence suggests that the amorphous iron oxyhydroxide phase could act as an effective binding intermediary among the clay-clay associations, possibly electrostatically or through bond linkages with the clay surfaces. In addition, HRTEM indicated the presence of another amorphous phase which appeared to hold the clay particle aggregates in a cementitious web. AEM suggested that this amorphous phase was silicon enriched, probably biogenic opal. This evidence suggests that instigating dissolution of the opaline silica phase may be necessary to induce substantial colloid mobilization in this aquifer sediment.

  10. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains

    NASA Astrophysics Data System (ADS)

    Faulkner, Jonathan; Hu, Bill X.; Kish, Stephen; Hua, Fei

    2009-11-01

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  11. Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China

    NASA Astrophysics Data System (ADS)

    Fu, Tonggang; Chen, Hongsong; Wang, Kelin

    2016-03-01

    Karst spring/stream discharge reflects the global configuration of the aquifer. However, quantitative description of the aquifer structure such as effective porosity (neff) and water storage capacity by the discharge analysis is difficult because of the complex conduit/fracture system. This study attempted to quantify the characteristics of karst aquifer based on discharge recession and time series analysis methods. Three recession models, including modified Maillet, Mangin and Boussinesq models, were evaluated to choose the most suitable one for analyzing the aquifer structure, and auto-correlation and cross-correlation functions were applied to study the aquifer response in both year and rainfall event time scales. The results showed that the modified Maillet model was more suitable in the study catchment with Mangin model overestimating and Boussinesq model underestimating the discharge. The neff was 3.73% for the total aquifer, and it was 0.07%, 0.33% and 3.33% for the conduit, fracture and matrix, respectively. Based on a case study of a rainfall event with precipitation of 68 mm, the water volumes drained by the three media were 25.43%, 33.40% and 41.17%, respectively. This indicates that, although conduit network is not very developed with lower neff, it is still an important water transmissive element (draining more than a quarter of water after the rainfall event). The memory time of the aquifer was 4 days for the year scale and 8 h for the rainfall event (68 mm) scale. This demonstrates that the aquifer has a well developed drainage system with a quick response to the rainfall. The above results provide further insights for hydrological processes modeling and water resources management for the small catchment in karst regions.

  12. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.

    PubMed

    Yang, Jie; Graf, Thomas; Ptak, Thomas

    2015-01-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management.

  13. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Graf, Thomas; Ptak, Thomas

    2015-06-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1 m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management.

  14. The Beijing Geothermal System, PR China: Natural state and exploitation modelling study of a low temperature basement aquifer system

    SciTech Connect

    Hochstein, M.P.; Zhongke, Yang

    1988-01-01

    Computer modeling of the Beijing low temperature, basement aquifer system has shown that secular natural convection of meteoric waters down to depths greater than 5 km can produce a temperature field which is similar to that observed in deep wells. Secular convection occurs within a crustal block with the approximate dimensions of 45 km {times} 60 km {times} 10 km; the Beijing system is probably one of the largest secular convecting systems described so far. It is driven entirely by the crustal heatflow which appears to be slightly lower (i.e. 54 mW/m{sup 2}) than the average continental heat flux. Several geophysical implications are described.

  15. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium.

    PubMed

    Stevenson, M E; Blaschke, A P; Toze, S; Sidhu, J P S; Ahmed, W; van Driezum, I H; Sommer, R; Kirschner, A K T; Cervero-Aragó, S; Farnleitner, A H; Pang, L

    2015-07-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.

  16. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium

    PubMed Central

    Blaschke, A. P.; Toze, S.; Sidhu, J. P. S.; Ahmed, W.; van Driezum, I. H.; Sommer, R.; Kirschner, A. K. T.; Cervero-Aragó, S.; Farnleitner, A. H.; Pang, L.

    2015-01-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water. PMID:25888174

  17. Demystifying Instructional Innovation: The Case of Teaching with Case Studies

    ERIC Educational Resources Information Center

    Kantar, Lina D.

    2013-01-01

    Issues emerging from instructional innovation are inevitable, yet basing any curriculum shift on a theoretical framework is paramount. This paper grounds the case-based pedagogy in three learning theories: behaviorism, cognitivism, and constructivism. The three theories are described and situated in relation to the case study method. An…

  18. Aquifer residence times for recycled water estimated using chemical tracers and the propagation of temperature signals at a managed aquifer recharge site in Australia

    NASA Astrophysics Data System (ADS)

    Bekele, Elise; Patterson, Bradley; Toze, Simon; Furness, Andrew; Higginson, Simon; Shackleton, Mark

    2014-09-01

    A prerequisite for minimizing contamination risk whilst conducting managed aquifer recharge (MAR) with recycled water is estimating the residence time in the zone where pathogen inactivation and biodegradation processes occur. MAR in Western Australia's coastal aquifers is a potential major water source. As MAR with recycled water becomes increasingly considered in this region, better knowledge of applied and incidental tracer-based options from case studies is needed. Tracer data were collected at a MAR site in Floreat, Western Australia, under a controlled pumping regime over a distance of 50 m. Travel times for bromide-spiked groundwater were compared with two incidental tracers in recycled water: chloride and water temperature. The average travel time using bromide was 87 ± 6 days, whereas the estimates were longer based on water temperature (102 ± 17 days) and chloride (98 ± 60 days). The estimate of average flow velocity based on water temperature data was identical to the estimate based on bromide within a 25-m section of the aquifer (0.57 ± 0.04 m day-1). This case study offers insights into the advantages, challenges and limitations of using incidental tracers in recycled water as a supplement to a controlled tracer test for estimating aquifer residence times.

  19. Cleanup of fractured rock aquifers: Implications of matrix diffusion.

    PubMed

    Mutch, R D; Scott, J I; Wilson, D J

    1993-01-01

    As contamination moves through a fractured rock aquifer, it tends to diffuse from the flowing fracture water into the rock's essentially stagnant pore water. This process tends both to retard a contamination plume's advance through a fractured rock aquifer and to substantially increase the difficulty of purging contamination from the aquifer. A mathematical model has been developed to evaluate the potential impact of this phenomenon upon water quality restoration in fractured rock aquifers. The numerical modeling reveals that cleanup of fractured rock aquifers will, in many cases, require many decades, even centuries, to achieve, particularly where substantial improvements in water quality are sought. The parameters which most strongly govern the degree to which matrix diffusion prolongs the aquifer restoration process are the rock's matrix porosity, fracture spacing, and matrix diffusivity, the chemical identity of the contaminant(s), and the length of time the aquifer has been contaminated.Since sedimentary rocks tend to have both relatively high matrix porosities and matrix diffusivities, it can be particularly difficult to purge contamination from sedimentary rock aquifers. Crystalline rocks, in contrast, typically have lower matrix porosities and matrix diffusivities, and therefore undergo more rapid cleanup. However, even in crystalline rocks, attainment of very high degrees of water quality improvement may be problematic. Numerical modeling also indicates that conventional groundwater 'pump and treat' programs are not likely to be very effective in speeding up aquifer restoration if the rate limiting step in the process is diffusion of contaminants from the rock matrix.

  20. Reusable experiment controllers, case studies

    NASA Astrophysics Data System (ADS)

    Buckley, Brian A.; Gaasbeck, Jim Van

    1996-03-01

    Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.

  1. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: Implications in the estimation of setback distances

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    water standards for the downgradient wells under natural gradient conditions. Based on the results of this study, a 7-log reduction would require 125-280 m travel in clean coarse gravel aquifers, 1.7-3.9 km travel in contaminated coarse gravel aquifers, 33-61 m travel in clean sandy fine gravel aquifers, 33-129 m travel in contaminated sandy fine gravel aquifers, and 37-44 m travel in contaminated river and coastal sand aquifers. These recommended setback distances are for a worst-case scenario, assuming direct discharge of raw effluent into the saturated zone of an aquifer. Filtration theory was applied to calculate collision efficiency ( α) from model-derived attachment rates ( katt), and the results are compared with those reported in the literature. The calculated α values vary by two orders-of-magnitude, depending on whether collision efficiency is estimated from the effective particle size ( d10) or the mean particle size ( d50). Collision efficiency values for MS-2 are similar to those previously reported in the literature (e.g. DeBorde et al., 1999) [DeBorde, D.C., Woessner, W.W., Kiley, QT., Ball, P., 1999. Rapid transport of viruses in a floodplain aquifer. Water Res. 33 (10), 2229-2238]. However, the collision efficiency values calculated for Bacillus subtilis spores were unrealistic, suggesting that filtration theory is not appropriate for theoretically estimating filtration capacity for poorly sorted coarse gravel aquifer media. This is not surprising, as filtration theory was developed for uniform sand filters and does not consider particle size distribution. Thus, we do not recommend the use of filtration theory to estimate the filter factor or setback distances. Either of the methods applied in this work (BTC or concentration vs. distance analyses), which takes into account aquifer heterogeneities and site-specific conditions, appear to be most useful in determining filter factors and setback distances.

  2. Effects of unsaturated zone on aquifer test analysis in a shallow-aquifer system

    USGS Publications Warehouse

    Halford, K.J.

    1997-01-01

    A comparison between two hypothetical flow models of an unconfined aquifer, one saturated and the other variably saturated, indicates that the variably saturated model which explicitly models drainage from the unsaturated zone provides a better conceptual framework for analyzing unconfined aquifer test data and better estimates of the lateral and vertical hydraulic conductivity in fine-grained sands. Explicitly accounting for multiple aquifers, well-bore storage, and the effects of delayed drainage from the unsaturated zone increases confidence in aquifer property estimates by removing some assumptions and allowing for the inclusion of early time data and water-table observations in an aquifer test analysis. The inclusion of the unsaturated zone expands the number of parameters to be estimated, but reasonable estimates of lateral and vertical hydraulic conductivity and specific storage of the unconfined aquifer can be obtained. For the cases examined, only the van Genuchten parameter ?? needed to be determined by the test, because the parameters n and ??(r) had a minimal effect on the estimates of hydraulic conductivities, and literature values could be used for these parameters. Estimates of lateral and vertical hydraulic conductivity using MODFLOW were not as good as the VS2DT based estimates and differed from the known values by as much as 30 percent. The hydraulic properties of a surficial aquifer system were estimated through a series of aquifer tests conducted at Cecil Field Naval Air Station in Jacksonville, Florida. Aquifer test results were analyzed by calibrating a variably saturated, radial flow model to the measured drawdowns. Parameter estimation was performed by minimizing the difference between simulated and measured drawdowns with an optimization routine coupled to VS2DT and was constrained by assuming that the hydraulic properties of each aquifer or confining unit were homogeneous. Given the hydrogeologic conditions at the field site, estimating

  3. Altering recharge dynamics through woody vegetation removal: a study on the Carrizo-Wilcox aquifer of south Texas

    NASA Astrophysics Data System (ADS)

    Mattox, A. M.

    2011-12-01

    Grasslands in many semi-arid regions of the world have seen an expansion of woody vegetation over the past century and many now exist largely as woodlands or shrublands. This "woody encroachment" results in numerous changes to ecosystem function, including alteration of element and water cycles. As in many parts of the world, these shrublands in south Texas have been subjected to a variety of management practices intended to reduce woody vegetation and increase the dominance of herbaceous vegetation. In addition to the intended change in vegetation structure, this activity has the potential to affect hydrologic fluxes and potentially increase deep drainage through reduced transpiration and rooting depths. However, there is significant uncertainty about the hydrologic response of vegetation to woody vegetation removal. We report here the results of a large manipulative experiment designed to assess the effects of woody vegetation removal on soil moisture movement in the vadose zone in an area that serves as a recharge zone for an unconsolidated sediment aquifer (Carrizo-Wilcox). In this study woody vegetation has been removed using a mechanical method (roller chopping) as well as a mechanical and chemical method (chainsaw removal + stump herbicide). The treated plots are located on three different soil types that represent the range of soils typical in this area. A water balance approach is used to assess soil moisture fluxes and potential deep drainage. In this first year of the study we quantified ecological and edaphic components that have the greatest effect on deep drainage, namely rooting depth, soil texture and antecedent soil water conditions. Exceptionally dry conditions this year have provided a unique opportunity to understand plant soil water interactions in the critical zone given the strong soil moisture limitations observed in the surface soil horizons. Understanding these interactions across different plant communities and soil textures are the

  4. Reflection on Four Multisite Evaluation Case Studies

    ERIC Educational Resources Information Center

    Brandon, Paul R.

    2011-01-01

    What do the findings of four National Science Foundation evaluation case studies suggest to an evaluation scholar who was not part of the research team that created them? This chapter carefully reviews the cases and summarizes their comparative findings. The four Beyond Use case studies add to the literature on levels of evaluation use, with the…

  5. Case Studies for Effective Business Instruction.

    ERIC Educational Resources Information Center

    McAlister-Kizzier, Donna

    This book is designed as a resource for educators who teach business content in a variety of instructional settings. It contains case studies representing all functional areas of business, including corporate training, for grades 7 through graduate education. Chapter 1 provides an overview of the case study method. The history of the case method,…

  6. Plan of study for the regional aquifer-system analysis of the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1981-01-01

    The 15,600-square-mile Snake River Plain is largely in southern Idaho and includes one of the Nation 's major regional aquifers. A comprehensive investigation of the area 's ground-water resources will be made as part of the U.S. Geological Survey 's Regional Aquifer-System Analysis (RASA) program. Basaltic and sedimentary rocks in the Snake River Plain yield large quantities of water that are vital to the area 's agricultural economy. Basaltic rocks predominate in the eastern Snake River Plain and have especially high water-yielding capabilities. Surface water, largely from the Snake River, is extensively used for irrigation and is a major source of recharge to the ground-water system. Springs issuing from basaltic rocks that form the Snake River Canyon wall near Twin Falls are the major points of ground-water discharge. Increased use of ground water for irrigation is causing concern as to the effect of large-scale withdrawals on spring flow. Ground-water flow models will be used to improve understanding of the hydrologic system, and, if feasible, to aid in evaluating management alternatives. Ground-water quality will be defined and geochemical techniques used to determine the effects of water-rock reactions on water quality. Several reports are planned on different phases of the project, concluding with a summary report. (USGS)

  7. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    SciTech Connect

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-05-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ({sup 40}K). However, {sup 137}Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations.

  8. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    PubMed

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  9. Two-dimensional flow-through microcosms - Versatile test systems to study biodegradation processes in porous aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, Robert D.; Rolle, Massimo; Kürzinger, Petra; Grathwohl, Peter; Meckenstock, Rainer U.; Griebler, Christian

    2009-05-01

    SummaryA fundamental prerequisite of any remedial activity is a sound knowledge of both the biotic and abiotic processes involved in transport and degradation of contaminants. Investigations of these aspects in situ often seem infeasible due to the complexity of interacting processes. A simplified portrayal of nature can be facilitated in laboratory-based two-dimensional (2D) sediment flow-through microcosms. This paper describes the versatility of such simple aquifer model systems with respect to biodegradation of aromatic hydrocarbons, i.e. toluene and ethylbenzene, under various environmental conditions. Initially constructed to study non-reactive and bioreactive transport of organic contaminants in homogeneous porous media under steady state hydraulic conditions, experimental setups developed towards more realistic heterogeneous sediment packing and transient hydraulic conditions. High-resolution spatial and temporal sampling allowed to obtain new insights on the distribution of bioactivities in contaminant plumes and associated controlling and limiting factors. Major biodegradation activities in saturated porous sediments are located at the fringes of contaminant plumes and are driven by dispersive mixing. These hot-spots of contaminant biotransformation are characterized by steep physical-chemical gradients in the millimeter to centimeter range. Sediment heterogeneity, i.e. high-conductivity zones, was shown to significantly enhance transverse mixing and subsequently biodegradation. On the contrary, transient hydraulic conditions may generate intermediate disturbances to biodegrader populations and thus may interfere with optimized contaminant conversion. However, a bacterial strain aerobically degrading toluene, i.e. Pseudomonas putida F1, was shown to adapt to vertically moving contaminant plumes, in the way that it regained full biodegradation potential two-times faster in areas with a mid-term (days to weeks) contamination history than in areas not

  10. Basement Aquifers : How Useful Are Gravity Data ?

    NASA Astrophysics Data System (ADS)

    Genthon, P.; Mouhouyouddine, A. H.; Hinderer, J.; Hector, B.; Yameogo, S.

    2014-12-01

    Gravity data with a few microgal precision were proved to be able to constrain the specific yield of various kinds of aquifer in West Africa from annual fluctuations of both the gravimetric and piezometric signals (Pfeffer et al., Geophys. J. Int., 2011; Hector et al., Geophys. J. Int., 2013). However some recent papers reported a disappointing potential of gravity measurements during a pumping experiment in a sandy aquifer (Blainey et al., WRR, 2007; Herckenrath et al., WRR, 2012) and their poor ability in constraining the transmissity and specific yield of the aquifer, which are the parameters to which pumping tests give access. Fresh basement rocks present generally a null porosity and the structure of basement aquifers is given by the weathering profile. In tropical climate, this profile consists of a few tens meter thick saprolite layer, with noticeable porosity but low permeability overlying the weathering front. This weathering front includes in many instances a fractured medium and presents a high permeability with variable porosity. It is hardly sampled in coring experiments. We present some numerical simulation results on the ability of gravity to constrain the transmissivity of this medium. Due to poroelasticity of clay minerals in the saprolite, soil subsidence is expected to occur during pumping with a significant gravity effect. Gravity measurements have therefore to be completed with leveling data at a millimetric precision. We present first the results of numerical modeling of the gravity and subsidence for a theoretical horizontally stratified basement aquifer, and show that gravity and leveling are able to provide independently the poroelasticity coefficient and a single transmissivity coefficient for the bottom of the aquifer, if the properties of the upper saprolites are known. We will discuss then the general case, where the aquifer presents a vertical fracture where the weathering profile thickens.

  11. Estimation of aquifer scale proportion using equal area grids: assessment of regional scale groundwater quality

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Landon, Matthew K.; Fram, Miranda S.; Johnson, Tyler D.

    2010-01-01

    The proportion of an aquifer with constituent concentrations above a specified threshold (high concentrations) is taken as a nondimensional measure of regional scale water quality. If computed on the basis of area, it can be referred to as the aquifer scale proportion. A spatially unbiased estimate of aquifer scale proportion and a confidence interval for that estimate are obtained through the use of equal area grids and the binomial distribution. Traditionally, the confidence interval for a binomial proportion is computed using either the standard interval or the exact interval. Research from the statistics literature has shown that the standard interval should not be used and that the exact interval is overly conservative. On the basis of coverage probability and interval width, the Jeffreys interval is preferred. If more than one sample per cell is available, cell declustering is used to estimate the aquifer scale proportion, and Kish's design effect may be useful for estimating an effective number of samples. The binomial distribution is also used to quantify the adequacy of a grid with a given number of cells for identifying a small target, defined as a constituent that is present at high concentrations in a small proportion of the aquifer. Case studies illustrate a consistency between approaches that use one well per grid cell and many wells per cell. The methods presented in this paper provide a quantitative basis for designing a sampling program and for utilizing existing data.

  12. Groundwater Storage Dynamics in High Elevation Meadows Affected By Complex Aquifer Geometry

    NASA Astrophysics Data System (ADS)

    Ciruzzi, D.; Lowry, C.

    2014-12-01

    The Sierra Nevada represents a cascading hydrologic cycle where snowpack, meadow aquifers, and streams are all hydrologically connected. Monitoring the water balance within high elevation meadows is vital in order to effectively quantify watershed scale storage dynamics, which support meadow ecological communities as well as downstream users. In this case, much of the San Francisco, CA water supply originates from the seasonally released snowmelt from high elevation meadows to downstream reservoirs. In previous studies of high elevation meadows, the water mass balance was closed under the assumption that the meadow sediment was spatially uniform in thickness. Here, complex aquifer geometry was identified in Tuolumne Meadows, CA from a high-resolution ground-penetrating radar survey. This new geometry was compared to the previous geologic model of high elevation meadow aquifers using numerical models simulating both current and future snowmelt scenarios. In addition, the impact of variability in meadow sediment and slope were evaluated to quantify storage properties of representative Sierra Nevada meadow types. Results demonstrate that the previous aquifer geometry model significantly overestimates both the spatial and temporal volumetric storage and release of groundwater to streams. These implications are noteworthy for ecosystem restoration and water supply strategies that aim to rectify water supply to and from these meadows especially when considering drought scenarios. In order to move forward and effectively and efficiently monitor the seasonal volume of water stored within the Sierra Nevada, complex aquifer geometry within high elevation meadows must be considered.

  13. Slug test in an unconfined aquifer: A Richards` equation perspective

    SciTech Connect

    Weeber, P.; Narasimhan, T.N.

    1997-10-01

    Slug tests have been used for over 30 years as a means of evaluating hydraulic parameters of aquifers. The interpretation of transient water level data from these tests has almost exclusively been based on fitting the data to analytical solutions or on using semi-analytical methods. Because these methods are constrained by simplifying assumptions, it is useful to investigate the conditions under which these assumptions are reasonable so that the interpretation of field data can be carried out with increased confidence. To this end, the authors investigate the transient flow of water in an unconfined aquifer during a slug test, using a numerical model that solves the generalized Richards` equation. The model accounts for saturated-unsaturated flow, time-dependent seepage face in the well, various combinations of blank casings and well screens, and injection or withdrawal tests. Parametric studies were conducted using a fully penetrating well in a 10 meter thick, homogeneous, isotropic aquifer with an initial hydrostatic condition in order to provide insights into such issues as (1) the difference in response between injection and bail-out tests, (2) the significance of flow through the transient seepage face, and (3) the role of the unsaturated zone. An examination of the flow anatomy suggests that flow in the unsaturated zone is significant and important, although the response of the water level in the well may not be very sensitive to the unsaturated zone processes. A second part of the present study investigated the reasonableness of widely used techniques of interpretation.

  14. Neurology Case Studies: Cerebrovascular Disease.

    PubMed

    Farooq, Muhammad U; Gorelick, Philip B

    2016-08-01

    This article discusses interesting vascular neurology cases including the management of intracranial stenosis, migraine headache and stroke risk, retinal artery occlusions associated with impaired hearing, intracranial occlusive disease, a heritable cause of stroke and vascular cognitive impairment, and an interesting clinico-neuroradiologic disorder associated with eclampsia. PMID:27445238

  15. Constitutional Change: A Case Study.

    ERIC Educational Resources Information Center

    Christofferson, Walter D.; Pergande, Donald J.

    1987-01-01

    Presents a lesson for secondary students which teaches that the U.S. Constitution has changed in a variety of ways and that it has a direct effect upon the lives of citizens. Provides a worksheet and a lecture outline covering three methods of constitutional change and Supreme Court cases such as Dred Scott and Brown vs. Board of Education. (GEA)

  16. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.

    PubMed

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  17. Assessing the groundwater fortunes of aquifers in the White Volta Basin, Ghana: An application of numerical groundwater flow modeling and isotopic studies

    NASA Astrophysics Data System (ADS)

    Oteng, F. M.; Yidana, S. M.; Alo, C. A.

    2012-12-01

    Effective development and informed management of groundwater resources represent a critical opportunity for improved rural water supply in Ghana and enhanced livelihoods particularly in the northern part of the White Volta Basin, a region already prone to a myriad of water-related infirmities. If adequately developed, the resource will form a sufficient buffer against the effects of climate change/variability and foster food security and sustainable livelihoods among the largely peasant communities in the region. This research presents the results of a preliminary assessment of the hydrogeological conditions and recharge regimes of the aquifers in the Northern parts of the White Volta Basin, Ghana. Results of estimates of groundwater recharge through the conventional isotopic and mass balance techniques are presented. Details of the groundwater flow pattern and preliminary delineation of local and regional groundwater recharge areas are presented from initial simulations of the hydrogeological system with a robust groundwater flow simulation code, MODFLOW, in the Groundwater Modeling System, GMS, version 7.1. The stream flow and evapotranspiration components of the program were activated to incorporate surface flow processes, so that the resulting model represents the conditions of the entire hydrological system. The results of this study form a platform for detailed numerical assessment of the conditions of the aquifers in the area under transient conditions of fluctuating rainfall patterns in the face of climate change/variability.

  18. Connector well experiment to recharge the Floridan Aquifer, East Orange County, Florida

    USGS Publications Warehouse

    Bush, P.W.

    1979-01-01

    An experimental connector well, screened in the shallow sand aquifer, finished with open hole in the Floridan aquifer, and cased through the confining layer between the two aquifers, was drilled in east Orange County, Florida, to obtain information on the nature and function of the shallow aquifer as related to connector well operation. The potentiometric surface of the shallow aquifer is about 45 feet higher than the potentiometric surface of the Floridan aquifer; hence water flows by gravity from the shallow aquifer to the Floridan aquifer through the well ' connecting ' the two aquifers. Continuous flow measurement over 10 months shows the well discharge varies seasonally and averages slightly more than 50 gallons per minute. Observation wells show that, except for seasonal variation water levels within the area of influence have reached steady state within measurable limits. Vertical anisotrophy in the shallow aquifer is apparently caused by the shape and (or) arrangement of the sand grains that comprise the shallow aquifer , rather than distinct confining layers of different lithology. Transmissivity of the shallow aquifer at the site is about 600 square feet per day. Extensive dewatering of wetlands in east Orange County by connector wells alone is probably not feasible. Nevertheless, large amounts of water could be channeled to the Floridan aquifer by connector wells. The results of the connector well experiment imply that water is being captured from evapotranspiration and runoff in the vicinity of the connector well. (Woodard-USGS)

  19. Self-organized permeability in carbonate aquifers.

    PubMed

    Worthington, S R H; Ford, D C

    2009-01-01

    Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self-organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point-located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large-magnitude springs, and frequent microbial contamination of wells all support the model of self-organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.

  20. Geochemical and microbiological assessment of groundwater status: a case study

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Del Bon, A.; Amalfitano, S.; Fazi, S.; Zoppini, A.; Parrone, D.; Ghergo, S.

    2012-04-01

    The qualitative status of the groundwater resources is drawing increasingly attention in relation to the requirements of the European legislative framework. The monitoring strategies are developed by considering the chemical processes affecting groundwater quality. However, despite the use of biological indicators is a common practice for the qualitative assessment of surface waters, a similar approach is hardly being taken into account by policy makers for ground waters. Aquifers are key environments due to the ecosystem capability to ameliorate water quality, e.g. through the natural biodegradation of chemical contaminants. The objective of this research was to characterize a porous water table aquifer from a geochemical and microbiological point of view, aiming to link the hydrogeochemical properties to distribution patterns of the free-living microbial communities. The broader perspective is to integrate the role of microorganisms in the groundwater evolution processes, with new insights in the knowledge of the different microbial communities inhabiting different aquifer typologies. Moreover, microbiological parameters that could be used as a valuable indicator of groundwater quality are sought. A field-scale analysis was performed along the southern Sabatini Mounts aquifer (Central Italy, 50 sampling sites), in an area of about 340 square km, where Pleistocene volcanic products overlay Pleistocene gravel and silt-clay layers, the latter being much more widespread in the downgradient part of the study area. The selected aquifer is contaminated by natural origin elements such as arsenic and fluoride, as well as by human activities, both diffuse (agriculture) and localized, especially in the downgradient part of the aquifer (e.g. landfills, quarries, oil deposits). The main physicochemical parameters of ground waters were determined in situ (redox status, pH, conductivity, T, DO, alkalinity) and in laboratory by ionic chromatography and mass spectrometry (major

  1. Case Studies for Management Development in Bangladesh.

    ERIC Educational Resources Information Center

    McLean, Gary N.

    Eight case studies appropriate for use in a course in management development were prepared and are provided in this document. The typical case describes a real business situation in which a real manager had to reach a decision. The case gives quantitative and qualitative information that is, or may be, relevant to that decision. Questions for…

  2. Associative visual agnosia: a case study.

    PubMed

    Charnallet, A; Carbonnel, S; David, D; Moreaud, O

    2008-01-01

    We report a case of massive associative visual agnosia. In the light of current theories of identification and semantic knowledge organization, a deficit involving both levels of structural description system and visual semantics must be assumed to explain the case. We suggest, in line with a previous case study, an alternative account in the framework of (non abstractive) episodic models of memory.

  3. Study on Case Teaching of Financial Management

    ERIC Educational Resources Information Center

    Che, Zhenghong; Che, Zhengmei

    2011-01-01

    Case teaching is an efficient teaching method of management. It plays an important role to enhance the students' ability to practice the theory. However, case teaching of financial management has not achieved the expected results. The paper aims to study the importance, characteristics and corresponding methods of case teaching method of financial…

  4. Case study: Group load curtailment

    SciTech Connect

    Linn, D.

    1995-12-31

    This article is a slide show discussion of demand-side management efforts by San Diego Gas and Electric as applied to a particular industry in their service area. The evolution of SDG&E`s rate structure is noted, from interruptible services rates to the present structure of variable time-of-use. For the case noted, this has resulted in a reduction of outages at the manufacturing facility and a 30% reduction in the cost per kwh to the user.

  5. Permeability changes during remediation of an aquifer affected by sea-water intrusion: A laboratory column study

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zheng, Xilai; Flury, Markus; Lin, Guoqing

    2009-10-01

    SummaryDuring flushing of a seawater-affected aquifer with freshwater, fine particles can be mobilized and can subsequently clog up pores, thereby causing a reduction of permeability. Here, we used packed columns (25 cm length) to experimentally investigate the changes in permeability during such a remediation scenario. We hypothesized that a gradual and abrupt change in salinity, as well as the pressure boundary conditions along the column, will affect the particle release and permeability changes. We collected sediments from a coastal aquifer in China, in which seawater had intruded. The sediments were packed into laboratory columns. The columns were oriented horizontally and instrumented with a series of piezometers to measure hydraulic heads along the column. Several sequences of displacements of seawater (electrical conductivity (EC) 48.5 mS/cm) with freshwater (EC 0.78 mS/cm) were passed through the columns. Permeability was determined from measured flow rates and hydraulic heads. Experiments were conducted both with constant head as well as with constant flux conditions. Column outflow was analyzed for suspended particles and electrical conductivity. The results indicate that the permeability was reduced by up to 70% when seawater was displaced with freshwater. Under constant head conditions, permeability reductions were more pronounced than under constant flux. The critical salinity (i.e., electrical conductivity associated with the critical salt concentration) for particle release in the sediments was 7 mS/cm. When salinity was changed abruptly, fine particles were eluted from the column; however, when the salinity change was gradual, no fines were eluted. In agreement with previous literature data, we observed a more pronounced reduction of permeability under an abrupt than under a gradual salinity change. Permeability reduction was not uniform along the column, with generally decreasing permeability with increasing distance from the column inlet.

  6. Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study

    USGS Publications Warehouse

    Bartholomay, Roy C.

    1998-01-01

    Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

  7. Spatial analysis of climatic cycles of a detrital aquifer by mean of Indicator Kriging

    NASA Astrophysics Data System (ADS)

    Luque-Espinar, Juan Antonio; Pardo-Igúzquiza, Eulogio; Pulido-Velazquez, David; Fernández-Chacón, Francisca; Jiménez-Sánchez, Jorge; Chica-Olmo, Mario

    2016-04-01

    In a previous work, spectral analysis was carried out to investigate the climate cycles in a detrital aquifer located in southern Spain. The Vega de Granada aquifer is located in an alluvial plain surrounded by mountains. The aquifer has a superposition of Quaternary sedimentary materials showing a broad range of permeabilities. This aquifer is the receptor of a drainage basin of 2900 km2 and has a surface of around 200 km2. Its alluvial sediments attain a thickness of 250 m in the middle. The sediment sizes are mainly gravel, sands, silts and clay, with frequent spatial changes. The transmissivity of the range from 40000 m2/day to 100 m2/day and the effective porosity ranging between 1% and 10%. The main inputs into the aquifer come from the infiltration of surface runoff and the infiltration of rainfall water. More than 50 piezometric data series were studied with monthly temporal unit. The studied period has a span of more than 30 years. The main climatic cycles are annual, NAO, ENSO and semiannual. For this study, confidence levels of <90%, 90%, 95%, and 99% were established. The spatial distribution in the aquifer of climate cycles and their confidence levels were studied by mean Indicator Kriging. This methodology is based on geostatistical non-parametric methods. For this purpose, the confidence levels were codified in indicator variables. Overall, eleven experimental variograms were calculated and it fitted to a spherical model. In this sense, the spatial behavior of the climate cycles is quite similar in all cases. The estimation results are presented as binary maps that show areas where every cycle appears with a maximum spatial probability. Basically, the interpretation of these maps indicates a close connection to main recharge areas of the aquifer. On the other hand, the changes in permeability in the aquifer are considerable, which may explain in some cases the spatial variations in the spectra calculated. Acknowledgments: This research has been

  8. Using Case Studies to Teach Science

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2005-01-01

    Case study teaching has gained a strong foothold in science education. The author discusses: (1) variations on methodology, from whole class discussion to the jigsaw approach; (2) an increase in educational resources on the topic; (3) over a thousand studies that show improved learning when case studies are used; and (4) a survey that illustrates…

  9. Optimizing remediation of an unconfined aquifer using a hybrid algorithm.

    PubMed

    Hsiao, Chin-Tsai; Chang, Liang-Cheng

    2005-01-01

    We present a novel hybrid algorithm, integrating a genetic algorithm (GA) and constrained differential dynamic programming (CDDP), to achieve remediation planning for an unconfined aquifer. The objective function includes both fixed and dynamic operation costs. GA determines the primary structure of the proposed algorithm, and a chromosome therein implemented by a series of binary digits represents a potential network design. The time-varying optimal operation cost associated with the network design is computed by the CDDP, in which is embedded a numerical transport model. Several computational approaches, including a chromosome bookkeeping procedure, are implemented to alleviate computational loading. Additionally, case studies that involve fixed and time-varying operating costs for confined and unconfined aquifers, respectively, are discussed to elucidate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs markedly affect the optimal design, including the number and locations of the wells. Furthermore, the solution obtained using the confined approximation for an unconfined aquifer may be infeasible, as determined by an unconfined simulation.

  10. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 1

    USGS Publications Warehouse

    Bossong, C.R.; Harris, W.F.

    1987-01-01

    This report delineates and describes the geohydrology and susceptibility of the major aquifers to contamination in Area 1 - Colbert, Franklin, Lauderdale, Lawrence, Limeston, Madison, and Morgan Counties. Most of the area is underlain by a Mississippian carbonate sequence that includes two major aquifers, the Tuscumbia-Fort Payne aquifer and the Bangor aquifer. A third major aquifer, the Tuscaloosa aquifer of Cretaceous age, occurs in the southwest part of the area. The Mississippi carbonate aquifers are the Tuscumbia-Fort Payne aquifer which includes most Tuscumbia Limestone and the Fort Payne Chert, and a small area of the Monteagle Limestone, and the Bangor aquifer which includes the Bangor Limestone and Hartselle Sandstone. Both of these aquifers possess highly-variable secondary porosity and permeability related to fractures that have been enlarged, sometimes to cavernous proportions, due to solution processes. The Tuscaloosa aquifer consists of the Tuscaloosa Group, an unconsolidated clastic deposit that has relatively uniform primary porosity and permeability. Significant quantities of groundwater are available from each of the aquifers. Water levels at nearly 2 ,000 wells indicate that, for each aquifer, general groundwater movement is from topographically high to low areas. Each of the aquifers is recharged throughout its outcrop in the study area and is susceptible to contamination within the outcrop. Generalized topographic settings such as closed-contour depressions are identified as areas that are highly susceptible to contamination. Specific features such as sinkholes also are identified as extremely susceptible to contamination. (USGS)

  11. How To Set Up Your Own Small Business. Service Company Case Study. Manufacturing Firm Case Study. Retail Store Case Study.

    ERIC Educational Resources Information Center

    Fallek, Max

    This collection of case studies is intended for use in a course in setting up a small business. The first, a case study of the process of setting up a service company, covers analyzing the pros and cons of starting one's own business, assessing the competition and local market, and selecting a site for and financing the business. The principal…

  12. RECOVERY OF FRESHWATER STORED IN SALINE AQUIFERS IN PENINSULAR FLORIDA.

    USGS Publications Warehouse

    Merritt, Michael L.

    1986-01-01

    Subsurface freshwater storage has been operationally tested at seven sites in central and south Florida. Injection was into a high chloride water aquifer at six sites, and into a high sulfate water aquifer at the seventh. Recovery efficiency has ranged from 0 to 75 percent in high chloride water aquifers, and has exceeded 100 percent in the high sulfate water aquifer. Computer modeling techniques were used to examine the geohydrologic, design, and management factors governing the recovery efficiency of subsurface freshwater storage. The modeling approach permitted many combinations of geohydrologic and operational conditions to be studied at relatively low cost.

  13. Case Studies in Neurocritical Care.

    PubMed

    Sakusic, Amra; Rabinstein, Alejandro A

    2016-08-01

    The practice of neurocritical care encompasses multiple acute neurologic and neurosurgical diseases and requires detailed knowledge of neurology and critical care. This article presents 5 cases that illustrate just some of the conditions encountered in the daily practice of neurocritical care and exemplify some of the common diagnostic, therapeutic, and prognostic challenges facing the neurointensivist. Life-threatening medical complications after severe acute ischemic stroke, seizures and extreme agitation from autoimmune encephalitis, refractory seizures after subdural hemorrhage, neurologic and systemic complications related to aneurysmal subarachnoid hemorrhage, and status epilepticus after cardiac arrest are discussed in this article. PMID:27445248

  14. Dolomitization of the Lower Ordovician Prairie du Chien Group in southern Wisconsin and southeastern Minnesota: A case for confined and unconfined aquifer systems

    SciTech Connect

    Smith, G.L. )

    1990-05-01

    The Lower Ordovician Prairie du Chien Group overlies the Cambrian-Ordovician Jordan Formation and underlies the Middle Ordovician St Peter Formation. The Prairie du Chien Group contains the Oneota Formation and the New Richmond and Willow River Members of the Shakopee Formation. The Prairie du Chien Group and associated formations form a repetitive sequence of alternating dolomites and sandstones: Jordan (sand), Oneota (dolomite), New Richmond (sand/dolomite), Willow River (dolomite), St. Peter (sand), and Platteville/Galena (dolomite/limestone). Prairie du Chien and Platteville/Galena carbonates thin over the Wisconsin arch and thicken eastward and westward. Petrography, cathodoluminescence, and electron microprobe analysis were used to identify and differentiate dolomite zones. The Oneota contains dolomite zones 1 to 3; the Shakopee contains zones 2 and 3; the Platteville/Galena only contains zone 3. Electron microprobe analysis of zone 3 reveals systematic decreases in dolomite stoichiometry and increases in iron and manganese trace-element composition along a transect from the Wisconsin arch to southeastern Minnesota. Zone 3 probably precipitated within a confined aquifer with recharge on the Wisconsin arch and flow toward southeastern Minnesota. In analogous modern systems, pore waters become progressively more reducing downflow, favoring trace-element enrichment. Zone 2 dolomites have low, uniform iron and manganese contents and uniform stoichiometries. Zone 2 compositions are consistent with precipitation in an unconfined and/or well-mixed aquifer associated with a continent-wide pre-St. Peter sea level drawdown and paleokarsting. Trace-element distributions within zone 1 dolomites are intermediate, suggesting precipitation within a semiconfined aquifer during pre-New Richmond exposure.

  15. Redox buffering in shallow aquifers contaminated by leachate

    SciTech Connect

    Heron, G.; Bjerg, P.L.; Christensen, T.H.

    1995-12-31

    The redox conditions in two Danish landfill leachate-polluted aquifers (the Vejen and Grindsted) are discussed in terms of redox buffering. Dominant leachate contributors to reduction capacity (RDC) are dissolved organic matter and ammonium. Aquifer oxidation capacity is dominated by Fe(III) oxides, and the Vejen Landfill case shows that redox buffering by reduction of Fe(III) oxides may be important for plume development. Inorganic precipitates such as pyrite and other Fe(II) minerals may dramatically increase the oxygen demand of the aquifer. In mineral-poor aquifers such as the lower aquifer at Grindsted Landfill, redox buffering by solid electron acceptors is far less important, and smaller quantities of reduced species are formed.

  16. Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia)

    NASA Astrophysics Data System (ADS)

    Zghibi, Adel; Merzougui, Amira; Zouhri, Lahcen; Tarhouni, Jamila

    2014-01-01

    The Korba aquifer of Cap-Bon peninsula (North-east of Tunisia), which extends over 40 km and occupies an area of 438 km2, is of great economic importance. Its location in an often narrow plain with intense human activity (agriculture, industry, tourism, etc.) makes it particularly vulnerable from both a qualitative and quantitative alteration. The high salinization in some parts of the study area has been attributed to seawater intrusion process, because of the high and increasing contents of chloride ions and electric conductivity value distribution. However, recent studies of this aquifer have shown that the chemical characteristics of groundwaters are the result of different components: intruding seawater, direct cation exchange linked to seawater intrusion, dissolution processes associated with cations exchange and solute recycling through irrigation return flow. In this paper, we describe the hydrological processes in the Korba coastal plain using hydrochemical data, correlation matrices and factor analysis to provide evidence of salinization processes. Based on historical hydraulic heads data (1996-2005), salinization of fresh groundwater is highly associated with groundwater withdrawal. Thus, the piezometric survey confirmed the inversion of the groundwater flow in Diarr El Hojjaj and Tafelloun villages where a piezometric depression of 12 m was observed at 3000 m from the shoreline which accelerate seawater intrusion by reversing the hydraulic gradients. Based on the hydrochemistry, the groundwater was classified into three types: Ca-Cl, Na-Cl and SO4-mixed types. The groundwaters showed paths of hydrochemical evolution, from Ca-SO4 type to Na-Cl type; or from Ca- SO4 type directly to Na-Cl type. Geochemical data reveal frequent participation of seawater in the coastal and central areas water samples, showing a very high salinity waters which are not suitable for most domestic and irrigation purposes. Also, we conclude that salinization has its origin in

  17. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  18. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  19. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  20. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  1. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  2. Factors Affecting Specific-Capacity Tests and their Application--A Study of Six Low-Yielding Wells in Fractured-Bedrock Aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.

    2010-01-01

    This report by the U.S. Geological Survey, prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Mining and Reclamation, evaluates factors affecting the application of specific-capacity tests in six low-yielding water wells in areas of coal mining or quarrying in Pennsylvania. Factors such as pumping rate, duration of pumping, aquifer properties, wellbore storage, and turbulent flow were assessed by theoretical analysis and by completing multiple well tests, selected to be representative of low-yielding household-supply wells in areas of active coal mining or quarrying. All six wells were completed in fractured-bedrock aquifers--five in coal-bearing shale, siltstone, sandstone, limestone, and coal of Pennsylvanian and Permian age and one in limestone of Cambrian age. The wells were pumped 24 times during 2007-09 at rates from 0.57 to 14 gallons per minute during tests lasting from 22 to 240 minutes. Geophysical logging and video surveys also were completed to determine the depth, casing length, and location of water-yielding zones in each of the test wells, and seasonal water-level changes were measured during 2007-09 by continuous monitoring at each well. The tests indicated that specific-capacity values were reproducible within about ? 20 percent if the tests were completed at the same pumping rate and duration. A change in pumping duration, pumping rate, or saturated aquifer thickness can have a substantial effect on the comparability of repeated tests. The largest effect was caused by a change in aquifer thickness in well YO 1222 causing specific capacity from repeated tests to vary by a factor of about 50. An increase in the duration of pumping from 60 to 180 minutes caused as much as a 62 percent decrease in specific capacity. The effect of differing pumping rates on specific capacity depends on whether or not the larger rate causes the water level in the well to fall below a major water-yielding zone; when this

  3. Ethical issues in case study publication: "making our case(s)" ethically.

    PubMed

    McCurdy, David B; Fitchett, George

    2011-01-01

    As chaplains develop richly detailed case studies for publication, ethical questions about case study construction and publication are emerging. Concerns about seeking patients' permission to publish material about them suggest additional questions and raise broad confidentiality and privacy issues. Confidentiality-related practices in health care and psychotherapy provide the most extensive guidance for chaplains, but healthcare chaplaincy has roots in religious and professional traditions with distinct notions of confidentiality that deserve consideration. Single case studies do not appear to be "research" requiring informed consent, yet their publication exposes patients to some risk of harm. Obtaining the patient's/"case study subject's" permission to publish, disguising non-essential information, and allowing the patient to review the case study can mitigate the risks. Striking a balance between protecting patients and providing sufficient detail to make case studies useful is a central ethical challenge of case study publication.

  4. Giant adrenal cyst: case study

    PubMed Central

    Carsote, M; Chirita, P; Terzea, D; Paun, S; Beuran, M

    2010-01-01

    One of the rarest situations regarding an adrenal incidentaloma is an adrenal cyst. We present the case of a 61Z–year old male patient diagnosed with peritonitis. During surgery, a right adrenal tumor of 2 cm is discovered. The patient was referred to endocrinology. 6 months later the diameter of the tumor is 7 times bigger than the initial stage. It has no secretory phenotype, except for the small increase of serum aldosterone and the 24–h 17–ketosteroids. Open right adrenalectomy is performed and a cyst of 15 cm is removed. The evolution after surgery is good. The pathological exam reveals an adrenal cyst with calcifications and osteoid metaplasia. The immunohistochemistry showed a positive reaction for CD34 and ACT in the vessels and VIM in the stroma. The adrenal cysts are not frequent and represent a challenge regarding the preoperative diagnostic and surgical procedure of resection. The pathological exam highlights the major aspects. PMID:20945822

  5. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for

  6. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  7. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE PAGESBeta

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  8. Case studies in conservation science

    NASA Astrophysics Data System (ADS)

    Bisulca, Christina

    The research presented in this dissertation covers three separate topics of conservation as defined by the National Science Foundation: 1) Materials Stabilization, Strengthening, Monitoring, and Repair; 2. Understanding Material Degradation and Aging; and 3) Materials and Structural Characterization of Cultural Heritage Objects (the 'technical study'). The first topic is addressed through a study to assess the consolidant tetraethoxysilane for the stabilization of alum treated wood. Falling under materials degradation studies is a study published in American Museum Novitates to understand how environmental conditions affect the aging of fossil resins from five different deposits. Two separate studies are included in technical study of cultural heritage objects which comprises the third research area of materials characterization. The first is a survey of red dyes used in Chinese paintings from the Ming Dynasty to the Early Republic (1364-1911). The second is a study of the pigments, dyes and binders used in Hawaiian barkcloth (kapa) from the 19th century.

  9. Cold water aquifer storage

    NASA Astrophysics Data System (ADS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-03-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  10. Impact of sea-level rise on sea water intrusion in coastal aquifers.

    PubMed

    Werner, Adrian D; Simmons, Craig T

    2009-01-01

    Despite its purported importance, previous studies of the influence of sea-level rise on coastal aquifers have focused on specific sites, and a generalized systematic analysis of the general case of the sea water intrusion response to sea-level rise has not been reported. In this study, a simple conceptual framework is used to provide a first-order assessment of sea water intrusion changes in coastal unconfined aquifers in response to sea-level rise. Two conceptual models are tested: (1) flux-controlled systems, in which ground water discharge to the sea is persistent despite changes in sea level, and (2) head-controlled systems, whereby ground water abstractions or surface features maintain the head condition in the aquifer despite sea-level changes. The conceptualization assumes steady-state conditions, a sharp interface sea water-fresh water transition zone, homogeneous and isotropic aquifer properties, and constant recharge. In the case of constant flux conditions, the upper limit for sea water intrusion due to sea-level rise (up to 1.5 m is tested) is no greater than 50 m for typical values of recharge, hydraulic conductivity, and aquifer depth. This is in striking contrast to the constant head cases, in which the magnitude of salt water toe migration is on the order of hundreds of meters to several kilometers for the same sea-level rise. This study has highlighted the importance of inland boundary conditions on the sea-level rise impact. It identifies combinations of hydrogeologic parameters that control whether large or small salt water toe migration will occur for any given change in a hydrogeologic variable.

  11. Impact of sea-level rise on sea water intrusion in coastal aquifers.

    PubMed

    Werner, Adrian D; Simmons, Craig T

    2009-01-01

    Despite its purported importance, previous studies of the influence of sea-level rise on coastal aquifers have focused on specific sites, and a generalized systematic analysis of the general case of the sea water intrusion response to sea-level rise has not been reported. In this study, a simple conceptual framework is used to provide a first-order assessment of sea water intrusion changes in coastal unconfined aquifers in response to sea-level rise. Two conceptual models are tested: (1) flux-controlled systems, in which ground water discharge to the sea is persistent despite changes in sea level, and (2) head-controlled systems, whereby ground water abstractions or surface features maintain the head condition in the aquifer despite sea-level changes. The conceptualization assumes steady-state conditions, a sharp interface sea water-fresh water transition zone, homogeneous and isotropic aquifer properties, and constant recharge. In the case of constant flux conditions, the upper limit for sea water intrusion due to sea-level rise (up to 1.5 m is tested) is no greater than 50 m for typical values of recharge, hydraulic conductivity, and aquifer depth. This is in striking contrast to the constant head cases, in which the magnitude of salt water toe migration is on the order of hundreds of meters to several kilometers for the same sea-level rise. This study has highlighted the importance of inland boundary conditions on the sea-level rise impact. It identifies combinations of hydrogeologic parameters that control whether large or small salt water toe migration will occur for any given change in a hydrogeologic variable. PMID:19191886

  12. Working Together: Case Studies in Cooperative Preservation.

    ERIC Educational Resources Information Center

    Stevenson, Condict Gaye

    This report examines regional and/or state cooperative preservation programs and related activities. The major part of the report is given over to case studies that present a synopsis of the key structural and program elements of cooperative preservation initiatives. These case studies include the: Office of Library and Archival Materials…

  13. Chemical Case Studies: Science-Society "Bonding."

    ERIC Educational Resources Information Center

    Hofstein, Avi; Nae, Nehemia

    1981-01-01

    Describes a unit designed to illustrate the "science-society-technology connection," in which three case studies of the chemical industry in Israel are presented to high school chemistry students. Chosen for the unit are case studies on copper production in Timna, on plastics, and on life from the Dead Sea. (CS)

  14. Case-Control Study of Writer's Cramp

    ERIC Educational Resources Information Center

    Roze, E.; Soumare, A.; Pironneau, I.; Sangla, S.; de Cock, V. Cochen; Teixeira, A.; Astorquiza, A.; Bonnet, C.; Bleton, J. P.; Vidailhet, M.; Elbaz, A.

    2009-01-01

    Task-specific focal dystonias are thought to be due to a combination of individual vulnerability and environmental factors. There are no case-control studies of risk factors for writer's cramp. We undertook a case-control study of 104 consecutive patients and matched controls to identify risk factors for the condition. We collected detailed data…

  15. Teaching Case Studies: A Collaborative Approach.

    ERIC Educational Resources Information Center

    Buffington, James R.; Harper, Jeffrey S.

    Many of the Association to Advance Collegiate Schools of Business (AACSB) accredited schools require undergraduate Management Information Systems (MIS) majors to take a course in the management of information technology. Over half of these schools utilize case studies in the teaching of this course. The authors emphasize that case studies are an…

  16. Using Case Studies: An International Approach

    ERIC Educational Resources Information Center

    McClam, Tricia; Woodside, Marianne

    2005-01-01

    Case studies as an instructional strategy have been used in many disciplines, including law, teacher education, science, medicine, and business. Among the benefits of this method of instruction are involving students in learning, developing their critical thinking skills, promoting communication, and engaging in critical analysis. Case studies are…

  17. Case Study Considerations for Teaching Educational Psychology.

    ERIC Educational Resources Information Center

    Sudzina, Mary R.

    This paper examines the decisions, benefits, and difficulties in teaching educational psychology through a constructivist case study approach. Recent interest in and inquiry into constructivism, pedagogical content knowledge, and case study methodology are influencing the content and goals of educational psychology in teacher preparation. The…

  18. Case Studies in Assessment for Transition Planning

    ERIC Educational Resources Information Center

    Trainor, Audrey A.; Patton, James R.; Clark, Gary M.

    2005-01-01

    This book presents a group of case studies to show how to assess students to develop a clear statement of transition service needs and then use that information for goals and objectives in their IEP or ITP (individual transition plan). The case studies format will help you see in a concrete way how assessment procedures relate to young people with…

  19. A Case Study of "Empathetic Teaching Artistry"

    ERIC Educational Resources Information Center

    Risner, Doug

    2014-01-01

    This case study is one of twenty cases derived from Anderson and Risner's international study of teaching artists in dance, and theatre, which investigated participants' (n=172) artistic and academic preparation in dance, and theatre, initial entry into the teaching artist field, rewards, challenges, and obstacles in participants'…

  20. Education R and D Information. Case Studies.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    The Council of Europe's Documentation Center for Education in Europe sponsored case studies of research and development information systems for education in Finland, France, Switzerland, and the United Kingdom. The resulting case studies are each divided into the following six sections: (1) the problem of information and documentation in…

  1. Twenty Techniques for Teaching with Case Studies

    ERIC Educational Resources Information Center

    Sudzina, Mary R.

    2005-01-01

    Problem-based learning and teaching with case studies are instructional approaches that are increasingly being applied in a variety of disciplines, such as business, law, medicine, and education. Instructors who have experienced traditional, teacher-centered instruction are often looking for ways to successfully integrate case studies, a…

  2. The trustworthiness of case study methodology.

    PubMed

    McGloin, Sarah

    2008-01-01

    With the validity of qualitative research currently under scrutiny, this paper by Sarah McGloin considers the contribution of the case study to the evidence base in health care. The author argues that case study methodology offers a creative and credible approach to help underpin contemporary practice.

  3. Iowa College Student Aid Commission Case Study

    ERIC Educational Resources Information Center

    Leigh, Rachel A.

    2007-01-01

    The purpose of this descriptive case study was to trace the policy production process of a state agency, the Iowa College Student Aid Commission (Commission), to its function today. This case study relied on a review of federal and state statutes, a news article search, biennium reports of the Commission, and information obtained from the…

  4. Collaboration in Distance Education. International Case Studies.

    ERIC Educational Resources Information Center

    Moran, Louise, Ed.; Mugridge, Ian, Ed.

    This book contains nine case studies of collaboration in distance education. The case studies focus on such aspects of collaboration in distance education as the following: roles of individual institutional partners; importance of personal relationships; benefits of collaboration to individual partners; conflicts between collaboration and…

  5. Types of permeability development in limestone aquifers in Britain

    NASA Astrophysics Data System (ADS)

    Worthington, S. R. H.

    2009-04-01

    Advances over the last forty years have resulted in a clear understanding of how dissolution processes in limestone rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through limestone aquifers. The pathways become enlarged and integrated over time, forming self-organized networks of channels (or solutionally-enlarged fractures or fissures) that typically have apertures in the millimetre to centimetre range. The networks discharge at point-located springs. Numerical models that simulate dissolutional enlargement of fractures in limestone aquifers have given many insights into the conditions that favour different styles of permeability enhancement. Two end-member channel network types may be distinguished, one with many channels of similar size and one where a small number of large channels conduct most of the flow. In the latter case the larger channels may be metres in diameter (i.e. caves). Numerical modelling has shown that the former type are favoured where there is densely fractured rock, high hydraulic gradients, and recharge water close to chemical saturation (c/ceq close to 1). The latter type are favoured where there is sparsely fractured rock, low hydraulic gradients, and low values of c/ceq. These two contrasting types of aquifer have no distinguishing names in the literature. It seems reasonable to define a karst aquifer as an aquifer with self-organized, high-permeability channel networks formed by positive feedback between dissolution and flow. In this case both these aquifer types are karst aquifers. Perhaps it would be appropriate to call the former "microkarstic" aquifers and the latter "macrokarstic" aquifers. The range

  6. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep saline arenaceous aquifers

    SciTech Connect

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2002-04-01

    A reactive fluid flow and geochemical transport numerical model for evaluating long-term CO{sub 2} disposal in deep aquifers has been developed. Using this model, we performed a number of sensitivity simulations under CO{sub 2} injection conditions for a commonly encountered Gulf Coast sediment to analyze the impact of CO{sub 2} immobilization through carbonate precipitation. Geochemical models are needed because alteration of the predominant host rock aluminosilicate minerals is very slow and is not amenable to laboratory experiment under ambient deep-aquifer conditions. Under conditions considered in our simulations, CO{sub 2} trapping by secondary carbonate minerals such as calcite (CaCO{sub 3}), dolomite (CaMg(CO{sub 3}){sub 2}), siderite (FeCO{sub 3}), and dawsonite (NaAlCO{sub 3}(OH){sub 2}) could occur in the presence of high pressure CO{sub 2}. Variations in precipitation of secondary carbonate minerals strongly depend on rock mineral composition and their kinetic reaction rates. Using the data presented in this paper, CO{sub 2} mineral-trapping capability after 10,000 years is comparable to CO{sub 2} dissolution in pore waters (2-5 kg CO{sub 2} per cubic meter of formation). Under favorable conditions such as increase of the Mg-bearing mineral clinochlore (Mg{sub 5}Al{sub 2}Si{sub 3}O{sub 10}(OH){sub 8}) abundance, the capacity can be larger (10 kg CO{sub 2} per cubic meter of formation) due to increase of dolomite precipitation. Carbon dioxide-induced rock mineral alteration and the addition of CO{sub 2} mass as secondary carbonates to the solid matrix results in decreases in porosity. A maximum 3% porosity decrease is obtained in our simulations. A small decrease in porosity may result in a significant decrease in permeability. The numerical simulations described here provide useful insight into sequestration mechanisms, and their controlling conditions and parameters.

  7. Stochastic analysis of virus transport in aquifers

    USGS Publications Warehouse

    Campbell, Rehmann L.L.; Welty, C.; Harvey, R.W.

    1999-01-01

    A large-scale model of virus transport in aquifers is derived using spectral perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and virus transport (attachment, detachment, and inactivation) parameters on large-scale virus transport are evaluated. A stochastic mean model of virus transport is developed by linking a simple system of local-scale free-virus transport and attached-virus conservation equations from the current literature with a random-field representation of aquifer and virus transport properties. The resultant mean equations for free and attached viruses are found to differ considerably from the local-scale equations on which they are based and include effects such as a free-virus effective velocity that is a function of aquifer heterogeneity as well as virus transport parameters. Stochastic mean free-virus breakthrough curves are compared with local model output in order to observe the effects of spatial variability on mean one-dimensional virus transport in three-dimensionally heterogeneous porous media. Significant findings from this theoretical analysis include the following: (1) Stochastic model breakthrough occurs earlier than local model breakthrough, and this effect is most pronounced for the least conductive aquifers studied. (2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is increased, the mean model shows less sensitivity to the variance of the natural-logarithm hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous colloid filtration term results in higher predicted concentrations than a simple first-order adsorption term for a given mean attachment rate. (5) Incorporation of aquifer heterogeneity leads to a greater range of virus diameters for which significant breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of viruses

  8. Five case studies of multifamily weatherization programs

    SciTech Connect

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  9. Regional case studies--Africa.

    PubMed

    Prentice, Andrew M

    2009-01-01

    Africa is the final continent to be affected by the nutrition transition and, as elsewhere, is characterized by the paradoxical coexistence of malnutrition and obesity. Several features of the obesity epidemic in Africa mirror those in other emerging nations: it penetrates the richer nations and urban areas first with a strong urban- rural gradient; initially it affects the wealthy, but later there is a demographic switch as obesity becomes a condition more associated with poverty, and it shares many of the same drivers related to the increasing affordability of highly refined oils and carbohydrates, and a move away from subsistence farm work and towards sedentary lifestyles. Africa also has some characteristics of the obesity epidemic that stand out from other regions such as: (1) excepting some areas of the Pacific, Africa is probably the only region in which obesity (especially among women) is viewed culturally as a positive and desirable trait, leading to major gender differences in obesity rates in many countries; (2) most of Africa has very low rates of obesity in children, and to date African obesity is mostly an adult syndrome; (3) Africans seem genetically prone to higher rates of diabetes and hypertension in association with obesity than Caucasians, but seem to be relatively protected from dislipidemias; (4) the case-specific deaths and disabilities from diabetes and hypertension in Africa are very high due to the paucity of health services and the strain that the 'double burden' of disease places on health systems.

  10. Theoretical pluralism in psychoanalytic case studies

    PubMed Central

    Willemsen, Jochem; Cornelis, Shana; Geerardyn, Filip M.; Desmet, Mattias; Meganck, Reitske; Inslegers, Ruth; Cauwe, Joachim M. B. D.

    2015-01-01

    The aim of this study is to provide an overview of the scientific activity of different psychoanalytic schools of thought in terms of the content and production of case studies published on ISI Web of Knowledge. Between March 2013 and November 2013, we contacted all case study authors included in the online archive of psychoanalytic and psychodynamic case studies (www.singlecasearchive.com) to inquire about their psychoanalytic orientation during their work with the patient. The response rate for this study was 45%. It appears that the two oldest psychoanalytic schools, Object-relations psychoanalysis and Ego psychology or “Classical psychoanalysis” dominate the literature of published case studies. However, most authors stated that they feel attached to two or more psychoanalytic schools of thought. This confirms that the theoretical pluralism in psychoanalysis stretches to the field of single case studies. The single case studies of each psychoanalytic school are described separately in terms of methodology, patient, therapist, or treatment features. We conclude that published case studies features are fairly similar across different psychoanalytic schools. The results of this study are not representative of all psychoanalytic schools, as some do not publish their work in ISI ranked journals. PMID:26483725

  11. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    USGS Publications Warehouse

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  12. Productivity of an unconfined aquifer as related to carbonate facies: the Coral Reef Aquifer of Collier County, Florida

    SciTech Connect

    Missimer, T.M.

    1985-01-01

    A 3-year investigation of the shallow, unconfined Coral Reef Aquifer of northern Collier County, Florida, has revealed the relationship of carbonate lithofacies to the transmissivity and specific yield of the aquifer. The geology of the aquifer was studied using cores, test wells, and both surface and borehole geophysics. Numerous aquifer performance tests were conducted to measure the hydraulic coefficients of the aquifer. The Coral Reef Aquifer consists of a surficial quartz sand mantel from 4 to 20 feet thick underlain by 24 to 70 feet of limestone. Four predominant lithofacies were found in the limestone: moldic arenaceous, molluscan packstone; corraline, moldic boundstone,; molluscan wackestone; and unconsolidated, agrillaceous wackestone. The base of the aquifer is formed by a low permeability, green dolosilt. Transmissivity values measured over a 12-square mile area ranged from 59,000 to 1,550,000 gpd/ft. The highest transmissivity values were associated with the occurrence of molluscan packstones. Estimated porosities in the molluscan packstone ranged up to 65% compared to 40% or less in the other lithofacies. The transmissivity of the aquifer was dependent primarily on the occurrence of the molluscan packstones and not greatly dependent on the overall aquifer thickness.

  13. Application of Surface Geophysical Methods, With Emphasis on Magnetic Resonance Soundings, to Characterize the Hydrostratigraphy of the Brazos River Alluvium Aquifer, College Station, Texas, July 2006 - A Pilot Study

    USGS Publications Warehouse

    Shah, Sachin D.; Kress, Wade H.; Legchenko, Anatoly

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, used surface geophysical methods at the Texas A&M University Brazos River Hydrologic Field Research Site near College Station, Texas, in a pilot study, to characterize the hydrostratigraphic properties of the Brazos River alluvium aquifer and determine the effectiveness of the methods to aid in generating an improved ground-water availability model. Three non-invasive surface geophysical methods were used to characterize the electrical stratigraphy and hydraulic properties and to interpret the hydrostratigraphy of the Brazos River alluvium aquifer. Two methods, time-domain electromagnetic (TDEM) soundings and two-dimensional direct-current (2D-DC) resistivity imaging, were used to define the lateral and vertical extent of the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the underlying Yegua Formation. Magnetic resonance sounding (MRS), a recently developed geophysical method, was used to derive estimates of the hydrologic properties including percentage water content and hydraulic conductivity. Results from the geophysics study demonstrated the usefulness of combined TDEM, 2D-DC resistivity, and MRS methods to reduce the need for additional boreholes in areas with data gaps and to provide more accurate information for ground-water availability models. Stratigraphically, the principal finding of this study is the relation between electrical resistivity and the depth and thickness of the subsurface hydrostratigraphic units at the site. TDEM data defined a three-layer electrical stratigraphy corresponding to a conductor-resistor-conductor that represents the hydrostratigraphic units - the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the Yegua Formation. Sharp electrical boundaries occur at about 4 to 6 and 20 to 22 meters below land surface based on the TDEM data and define the geometry of the more resistive Brazos River alluvium aquifer

  14. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    PubMed

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. PMID:26559901

  15. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    PubMed

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies.

  16. ECO2N - A New TOUGH2 Fluid Property Module for Studies of CO2Storage in Saline Aquifers

    SciTech Connect

    Pruess, Karsten; Spycher, Nicholas

    2006-04-17

    ECO2N is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O-NaCl-CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions of interest(10 C {le} T {le} 110 C; P {le} 600 bar; salinity up to full halite saturation). Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. ECO2N can model super- as well as sub-critical conditions, but it does not make a distinction between liquid and gaseous CO{sub 2}. This paper highlights significant features of ECO2N, and presents illustrative applications.

  17. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T. ); Roberts, K.H. . Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  18. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T.; Roberts, K.H.

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  19. Disseminated granuloma annulare: study on eight cases.

    PubMed

    Pătraşcu, V; Giurcă, Claudia; Ciurea, Raluca Niculina; Georgescu, Claudia Valentina

    2013-01-01

    Granuloma annulare (GA) is classified as localized, generalized/disseminated, subcutaneous, and perforating types. The studies show connection with diabetes mellitus, lipidic metabolic disorders, malignant diseases, thyroid disorders, infections (HBV, HCV, HIV). We performed a retrospective study between 2010-2011, regarding disseminated GA (GAD), and the relationship between GAD and other comorbidities. We clinically and histologically diagnosed eight cases of GAD. The patients were also investigated for the diagnosis of associated diseases. The treatment included topical corticosteroids, antihistamines, Calcipotriol/Betamethasone, Tacrolimus 0.03%, Pentoxifylline, Hydroxychloroquine. Therapeutic response was assessed one month and three months after hospitalization. Our patients were five women and three men, aged 46-68 years, mean age 57.25 years, with a disease history of one year and a half (between three months and four years). The lesions occurred in the upper extremities (eight cases), distal extremities (three cases), cervical area (two cases), and trunk (five cases). In seven cases, we found annular appearance and one patient had disseminated small papules eruption. Associated pathology was diabetes mellitus type II (five cases), overweight and obesity (five cases), dyslipidemia (three cases), hypothyroidism (one case), rheumatoid arthritis (one case), external ear canal basal carcinoma (one case). Although there is controversy regarding the relationship between GAD and associated diseases, it is accepted that it is significantly associated with diabetes mellitus, also found in our study in five out of eight cases. We noticed obvious improvements after local and general treatment. It is confirmed that GAD is prevalent in women, over 40-year-old. GAD is often associated with diabetes and dyslipidemia, therefore it is necessary to investigate patients in this direction. The histopathological exam is essential for an accurate confirmation of GA. PMID

  20. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

    2014-01-01

    related vugs, or irregular vugs. Flow zones with a mean hydraulic conductivity of 2,600 feet per day are present within the middle semiconfining unit, but none of the flow zones are continuous across the study area. The lower Biscayne aquifer flow unit comprises a group of flow zones in the lower part of the aquifer. These flow zones are present in the lower part of the Fort Thompson Formation and in some cases within the limestone or sandstone or both in the uppermost part of the Pinecrest Sand Member of the Tamiami Formation. The mean hydraulic conductivity of major flow zones within the lower Biscayne aquifer flow unit is 5,900 feet per day, and the mean value for minor flow zones is 2,900 feet per day. A semiconfining unit is present beneath the Biscayne aquifer. The boundary between the two hydrologic units is at the top or near the top of the Pinecrest Sand Member of the Tamiami Formation. The lower semiconfining unit has a hydraulic conductivity of less than 350 feet per day. The most productive zones of groundwater flow within the two Biscayne aquifer flow units have a characteristic pore system dominated by stratiform megaporosity related to selective dissolution of an Ophiomorpha-dominated ichnofabric. In the upper flow unit, decimeter-scale vertical solution pipes that are common in some areas of the SCWF study area contribute to high vertical permeability compared to that in areas without the pipes. Cross-hole flowmeter data collected from the SCWF test coreholes show that the distribution of vuggy porosity, matrix porosity, and permeability within the Biscayne aquifer of the SCWF is highly heterogeneous and anisotropic. Groundwater withdrawals from production well fields in southeastern Florida may be inducing recharge of the Biscayne aquifer from canals near the well fields that are used for water-management functions, such as flood control and well-field pumping. The SCWF was chosen as a location within Miami-Dade County to study the potential for such

  1. Inquiry and Aquifers.

    ERIC Educational Resources Information Center

    Leuenberger, Ted; Shepardson, Daniel; Harbor, Jon; Bell, Cheryl; Meyer, Jason; Klagges, Hope; Burgess, Willie

    2001-01-01

    Presents inquiry-oriented activities that acquaint students with groundwater sources, movement of water through aquifers, and contamination of groundwater by pollution. In one activity, students use well log data from web-based resources to explore groundwater systems. Provides sample well log data for those not having access to local information.…

  2. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells.

  3. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells. PMID:26657381

  4. Case Study on Quality Education

    ERIC Educational Resources Information Center

    Habib, Zahida

    2011-01-01

    Quality of Education, especially at Primary level, is an important issue to be discussed at the International Forum. This study highlights the quality of primary education through a comparison of the quality of Community Model Schools and Govt. Girls Primary Schools in Pakistan. Community Model Schools were established under Girls Primary…

  5. Modeling seawater intrusion in overexploited aquifers in the absence of sufficient data: application to the aquifer of Nea Moudania, northern Greece

    NASA Astrophysics Data System (ADS)

    Siarkos, Ilias; Latinopoulos, Pericles

    2016-08-01

    In many coastal areas, overexploitation of groundwater resources has led both to the quantitative degradation of local aquifers and the deterioration of groundwater quality due to seawater intrusion. To investigate the behavior of coastal aquifers under these conditions, numerical modeling is usually implemented; however, the proper implementation of numerical models requires a large amount of data, which are often not available due to the time-consuming and costly process of obtaining them. In the present study, the investigation of the behavior of coastal aquifers under the lack of adequate data is attempted by developing a methodological framework consisting of a series of numerical simulations: a steady-state, a false-transient and a transient simulation. The sequence and the connection between these simulations constitute the backbone of the whole procedure aimed at adjusting the various model parameters, as well as obtaining the initial conditions for the transient simulation. The validity of the proposed methodology is tested through evaluation of the model calibration procedure and the estimation of the simulation errors (mean error, mean absolute error, root mean square error, mean relative error) using the case of Nea Moudania basin, northern Greece. Furthermore, a sensitivity analysis is performed in order to minimize the error estimates and thus to maximize the reliability of the models. The results of the whole procedure affirm the proper implementation of the developed methodology under specific conditions and assumptions due to the lack of sufficient data, while they give a clear picture of the aquifer's quantitative and qualitative status.

  6. Arctic bioremediation -- A case study

    SciTech Connect

    Smallbeck, D.R.; Ramert, P.C. ); Liddell, B.V.

    1994-05-01

    This paper discusses the use of bioremediation as an effective method to clean up diesel-range hydrocarbon spills in northern latitudes. The results of a laboratory study of microbial degradation of hydrocarbons under simulated arctic conditions showed that bioremediation can be effective in cold climates and led to the implementation of a large-scale field program. The results of 3 years of field testing have led to a significant reduction in diesel-range hydrocarbon concentrations in the contaminated area.

  7. The Active Bacterial Community in a Pristine Confined Aquifer

    EPA Science Inventory

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells in east-central Illinois, we trapped the microbes that attached to aquifer sedimen...

  8. Aquifer Sampling Tube Results for Fiscal Year 2003

    SciTech Connect

    Hartman, Mary J.; Peterson, Robert E.

    2003-10-27

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  9. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    PubMed Central

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. PMID:24841501

  10. Factors affecting public-supply well vulnerability in two karst aquifers

    USGS Publications Warehouse

    Musgrove, MaryLynn; Katz, Brian G.; Fahlquist, Lynne S.; Crandall, Christy A.; Lindgren, Richard J.

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  11. Factors affecting public-supply well vulnerability in two karst aquifers.

    PubMed

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  12. Analytical Analyses of Spatial and Temporal Characteristics of Infiltrated Water for Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.

    2014-12-01

    Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water