Science.gov

Sample records for ar gas filled

  1. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  2. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  3. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  4. Gas-Filled Capillary Model

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  5. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  6. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  7. Cryostat Filling Limitations for Proposed Ar Dewar Pressure Increase

    SciTech Connect

    Dixon, K.; Wu, J.; /Fermilab

    1991-07-23

    In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K.

  8. Alpha gas state in 36Ar

    NASA Astrophysics Data System (ADS)

    Akimune, Hidetoshi; Gibelin, Julien; Harakeh, Muhsin; Itoh, Masatoshi; Kawabata, Takahiro; Tamii, Atsushi; Fujiwara, Mamoru; Miki, Kenjiro; Iwamoto, Chiro; Otsu, Hideaki; Oha, Shinsuke; Tanihata, Isao; Muramoto, Tomoyuki; Kadono, Chika; Kalantar, Nasser; Ando, Shun; Leblond, Sylvian; Ayyad, Yassid; Furuno, Tatsuya; Tsynyra, Miho; Baba, Tasuo; Adachi, Satoshi; Freer, Martin

    2014-09-01

    The α cluster structures in light nuclei with N = Z are expected to appear abov the threshold energy of breakup into α particles. After the proposal of an α cluster wave function with α particle condensate type, such condensate states are both theoretically and experimentally discussed extensively. Theoretically, the existence of dilute α cluster state in nuclei with mass region of A > 16, experimentally, is not confirmed for N- α cluster states in nuclei heavier than A = 16. Recently, we measured α inelastic scattering of 36Ar followed by α decay in an inverse kinematics setup. A 50 MeV/u 36Ar beam from RCNP ring cyclotron was used to bombard a 4He gas target. α particles were detected in the magnetic spectrometer LAS which was set at 0 degrees. The α cluster structures in light nuclei with N = Z are expected to appear abov the threshold energy of breakup into α particles. After the proposal of an α cluster wave function with α particle condensate type, such condensate states are both theoretically and experimentally discussed extensively. Theoretically, the existence of dilute α cluster state in nuclei with mass region of A > 16, experimentally, is not confirmed for N- α cluster states in nuclei heavier than A = 16. Recently, we measured α inelastic scattering of 36Ar followed by α decay in an inverse kinematics setup. A 50 MeV/u 36Ar beam from RCNP ring cyclotron was used to bombard a 4He gas target. α particles were detected in the magnetic spectrometer LAS which was set at 0 degrees. Taro Hirao Grant-in-Aid for Scientific Research.

  9. Generation of slanted gas-filled icicles

    NASA Astrophysics Data System (ADS)

    Wäscher, Thomas

    1991-04-01

    A procedure for the generation of slanted gas-filled icicles by freezing, using a domestic refrigerator, is described. The freezing vessel was a plastic ice-cube tray, which was filled both with tap and deionized water and was frozen successively from the outer to the inner compartments of the tray. Icicles having slanted elevations grew out of the surface of the deionized water of the innermost compartments. The erection angle of the icicles to the horizontal lay between 30° and 60°, for the three longest and thinnest specimens it was almost exactly 30°. All icicles have gas inclusions. Their shape varies between an irregular distribution of circular bubbles and a nearly uninterrupted axial gas channel together with dendrite-like, radially distorted bubbles. If a cold (-18°C) specimen comes into contact with warm and humid room-air, then hoarfrost is observed at the bottom and the top of the icicle, while the area in between remains transparent.

  10. Study of High Etch Rate Bottom Antireflective Coating and Gap Fill Materials Using Dextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi

    2007-11-01

    In the present paper, we describe a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin with a-glycoside bonds in a polysaccharide. ArF resist underlayer materials containing a dextrin ester polymer for lithography were studied. Dextrin is a high molecular weight compound with several hydroxyl groups and a low solubility in resist and BARC solvents. Therefore, it is difficult to use dextrin polymers in resist underlayer materials such as BARC and gap fill materials. The main polymer needs to be soluble in propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate as common solvents to avoid the issue of defects in the coater cup due to incompatability. The dextrin ester polymer in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility of these organic solvents. The etch rate of the new BARC and gap fill materials of the dextrin ester polymers was more than twofold faster than the etch rate of the ArF resists evaluated under a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(4-hydroxystyrene) and poly(2-hydroxypropyl methacrylate) as references. In addition to the superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes. On the basis of our findings, this technology of using the novel dextrin derivatives as sacrificial materials under a resist can be applied in devices of 45 nm node and higher.

  11. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Handbook for Gas Filled RF Cavity Aficionados'

    SciTech Connect

    Tollestrup, A.V.; Chung, Moses; Yonehara, Katsuya; /Fermilab

    2009-05-01

    The use of hydrogen gas filled RF cavities in muon cooling channels has been proposed by Rolland Johnson. Impressive results have been obtained toward attaining high voltage gradients and rapid training in preliminary tests done at the FNAL MTA facility. However, so far it has not been possible to test them under conditions where they were subject to the transversal of a high intensity particle beam. This note is an attempt to bring together a description of some of the pertinent physical processes that take place in the dilute plasma that is generated in the hydrogen gas by the beam. Two effects dominate. The first is that the free electrons generated can load down the cavity and transfer its energy to heating the gas. The second is a question of what happens to the plasma in the longer term. There is an enormous literature on the subject of the subject of dilute hydrogen plasmas and we can tap into this information in order to understand and predict the behavior of the cavity.

  14. The Performance of Gas Filled Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Mills, G. L.; Zeller, C. M.

    2008-03-01

    The NASA Exploration Program is currently planning to use liquid oxygen, methane and hydrogen for propulsion in future spacecraft for the human exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogens. Multilayer insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. However, the size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. One approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. In this paper, we report on experimental tests and modeling that we have done on MLI used to insulate a cryogenic tank. These include measurements of the heat transfer of gas filled insulation, evacuated insulation and during the transition in between.

  15. Improved Gas Filling and Sealing of an HC-PCF

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Meras, Patrick; Chang, Daniel; Spiers, Gary

    2008-01-01

    An improved packaging approach has been devised for filling a hollow-core photonic-crystal fiber (HC-PCF) with a gas, sealing the HC-PCF to retain the gas, and providing for optical connections and, optionally, a plumbing fitting for changing or augmenting the gas filling. Gas-filled HC-PCFs can be many meters long and have been found to be attractive as relatively compact, lightweight, rugged alternatives to conventional gas-filled glass cells for use as molecular-resonance frequency references for stabilization of lasers in some optical-metrology, lidar, optical-communication, and other advanced applications. Prior approaches to gas filling and sealing of HC-PCFs have involved, variously, omission of any attempt to connectorize the PCF, connectorization inside a vacuum chamber (an awkward and expensive process), or temporary exposure of one end of an HC-PCF to the atmosphere, potentially resulting in contamination of the gas filling. Prior approaches have also involved, variously, fusion splicing of HC-PCFs with other optical fibers or other termination techniques that give rise to Fresnel reflections of about 4 percent, which results in output intensity noise.

  16. Gas Filled Coaxial Accelerator with Compression Coil

    NASA Technical Reports Server (NTRS)

    Espy, Patrick N. (Inventor)

    1976-01-01

    A self-energized plasma compressor which compresses plasma discharged from a coaxial plasma generator. The device includes a helical shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that generates a force which acts radially upon the plasma. A seal is carried on the end of the coaxial plasma generator for containing gas therein. As the plasma is accelerated out the outer end of the generator, it forces the gas outwardly also compressing such. Beads are carried adjacent the small end of the helical shaped coil for being accelerated to hypervelocities by the plasma and gas. As a result of utilizing gas in the coaxial plasma generator, such minimizes ablation of the beads as well as accelerates such to higher velocities.

  17. Evolution of gas-filled nanocracks in crystalline solids.

    PubMed

    Hartmann, M; Trinkaus, H

    2002-02-01

    In this work, the evolution of gas-filled cracks under gas implantation and subsequent annealing is studied on the basis of an elastic continuum approach. The observed growth limitation of He-filled nanocracks in SiC is attributed to their stabilization by the formation of circular dislocation dipoles. The formation and Ostwald ripening of bubble-loop complexes at elevated temperatures is modeled in terms of gas atom exchange between such complexes coupled with local matrix atom exchange between bubbles and loops of the same complex. The scaling laws derived for the time dependence of bubble and loop sizes are found to be in good agreement with experimental data.

  18. Attosecond pulses generated by the lighthouse effect in Ar gas

    NASA Astrophysics Data System (ADS)

    Tosa, Valer; Lee, Ji Su; Kim, Hyung Taek; Nam, Chang Hee

    2015-05-01

    We numerically investigate harmonic generation in Ar gas under high ionization conditions and demonstrate that a lighthouse effect is present. We examine the structure of the driving field during propagation in temporal, spectral, and spatial domains, and conclude that the complete depletion of neutral Ar on axis gives rise to additional wavelets at off-axis regions. We show that these wavelets propagate with increasing divergence as the radial distances from the axis increase, generating the rotation of the wave front, thus fulfilling a necessary condition for the lighthouse effect. We obtain attosecond bursts of light emitted with different divergences in successive optical half-cycles so that in the far field these bursts arrive at different distances from the beam axis.

  19. Gas-filled hohlraum experiments at the national ignition facility.

    SciTech Connect

    Fernández, J. C.; Gautier, D. C.; Goldman, S. R.; Grimm, B. M.; Hegelich, B. M.; Kline, J. L.; Montgomery, D. S.; Lanier, N. E.; Rose, H. A.; Schmidt, D. M.; Swift, D. C.; Workman, J. B.; Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J. H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O. L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  20. The Thermo Scientific HELIX-SFT noble gas mass spectrometer: (preliminary) performance for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Barfod, D. N.; Mark, D. F.; Morgan, L. E.; Tomkinson, T.; Stuart, F.; Imlach, J.; Hamilton, D.

    2011-12-01

    The Thermo Scientific HELIX-platform Split Flight Tube (HELIX-SFT) noble gas mass spectrometer is specifically designed for simultaneous collection of helium isotopes. The high mass spur houses a switchable 1011 - 1012 Ω resistor Faraday cup and the low mass spur a digital pulse-counting secondary electron multiplier (SEM). We have acquired the HELIX-SFT with the specific intention to measure argon isotopes for 40Ar/39Ar geochronology. This contribution will discuss preliminary performance (resolution, reproducibility, precision etc.) with respect to measuring argon isotope ratios for 40Ar/39Ar dating of geological materials. We anticipate the greatest impact for 40Ar/39Ar dating will be increased accuracy and precision, especially as we approach the techniques younger limit. Working with Thermo Scientific we have subtly modified the source, alpha and collector slits of the HELIX-SFT mass spectrometer to improve its resolution for resolving isobaric interferences at masses 36 to 40. The enhanced performance will allow for accurate and precise measurement of argon isotopes. Preliminary investigations show that we can obtain a valley resolution of >700 and >1300 (compared to standard HELIX-SFT specifications of >400 and >700) for the high and low mass spurs, respectively. The improvement allows for full resolution of hydrocarbons (C3+) at masses 37 - 40 and almost full resolution at mass 36. The HELIX-SFT will collect data in dual collection mode with 40Ar+ ion beams measured using the switchable 1011 - 1012 Ω resistor Faraday cup and 39Ar through 36Ar measured using the SEM. The HELIX-SFT requires Faraday-SEM inter-calibration but negates the necessity to inter-calibrate multiple electron multipliers. We will further present preliminary data from the dating of mineral standards: Alder Creek sanidine, Fish Canyon sanidine and Mount Dromedary biotite (GA1550).

  1. A Gas-Filled Calorimeter for High Intensity Beam Environments

    NASA Astrophysics Data System (ADS)

    Abrams, Robert; Ankenbrandt, Harles; Flanagan, Gene; Hauptman, John; Kahn, Steven; Lee, Sehwook; Notani, Masahiro

    We describe a novel gas-Cherenkov calorimeter, which detects Cherenkov light showers emitted in an array of thin metal tubes or channels filled with gas. The materials are not vulnerable to radiation damage, and the detector is inherently fast and able to operate in high rate environments. Future accelerators such as the ILC and a muon collider will need fast, radiation-tolerant detectors for monitoring beams and beam halos, and detectors are needed that can operate in the presence of high particle rates. Such detectors will also be useful for high rate environments at upgraded facilities such as RHIC, CEBAF II, and at Fermilab's Project X.

  2. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  3. Systems and methods for regulating pressure of a filled-in gas

    DOEpatents

    Stautner, Ernst Wolfgang; Michael, Joseph Darryl

    2016-05-03

    A system for regulating a pressure of a filled-in gas is presented. The system includes a reservoir that stores a reservoir gas adsorbed in a sorbent material at a storage temperature, a gas-filled tube containing the filled-in gas, a controller configured to determine a pressure change required in the filled-in gas based upon signals representative of a pressure of the filled-in gas inside the gas-filled tube and a required pressure threshold, determine an updated temperature of the sorbent material based upon the pressure change required in the filled-in gas, and regulate the pressure of the filled-in gas by controlling the reservoir to change the storage temperature of the sorbent material to reach the updated temperature of the sorbent material.

  4. Monte Carlo simulations of microgap gas-filled proportional counters

    NASA Astrophysics Data System (ADS)

    Kundu, Ashoke; Morton, Edward J.; Key, Martyn J.; Luggar, Russell D.

    1999-09-01

    Monte Carlo calculations have been widely employed to model the interactions of electrons and photons as they travel through and collide with matter. This approach has been applied with some success to the problem of simulating the response of gas-filled proportional counters, mapping out electron transport through the electric field on an interaction-by-interaction basis. These studies focus on the multiplication of electrons as they drift into the high electric field region of the detector and subsequently avalanche. We are using this technique in our new simulation code to depict avalanching in microgap gas-filled proportional counters, in order to investigate the variation of two principle detector properties with the anode pitch used in the detector. Spatial resolution information can be obtained by measuring the lateral diffusion distance of an electron from the point where it is liberated to the point in the detector where it initiates an avalanche. By also modeling the motion of the positive ions that are left behind from the initial avalanche, we are able to gauge the effect of space charge distortion on subsequent avalanches. This effect is particularly important at the high X-ray count rates that we are interested in for our ultimate aim, which is to use the detectors as part of a high-speed tomography system for imaging multiphase oil/water/gas flows.

  5. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  6. Polystyrene Foam Products Equation of State as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Swift, D. C.

    2009-12-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O2-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO2 decomposes at high temperatures.

  7. Polystyrene foam products equation of state as a function of porosity and fill gas

    SciTech Connect

    Mulford, Roberta N; Swift, Damian C

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{sub 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.

  8. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  9. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. PMID:26939033

  10. The Yale Gas-Filled Split Pole Magnetic Separator

    NASA Astrophysics Data System (ADS)

    Cata-Danil, G.; Beausang, C. W.; Casten, R. F.; Chen, A.; Chubrich, N.; Cooper, J. R.; Krücken, R.; Liu, B.; Novak, J. R.; Visser, D.; Zamfir, N. V.

    1998-10-01

    Design and construction of a gas-filled recoil separator is underway at the Wright Nuclear Structure Laboratory at Yale University. By filling the magnetic field region of the existing Enge Split-Pole magnet with N2 or He2 gases in the 1 to 15 mbar pressure range a gradual focussing of discrete charge states has been measured. The incident ions were ^16O and ^35,37Cl with 49 MeV and 95 MeV energies, respectively. The process is understood as a result of coalescing of trajectories of different charge states around a trajectory defined by the mean charge state (q¯) of the ion in gas. Because q¯ depends on the atomic number Z and is roughly proportional with the ion velocity, the average magnetic rigidity (B¯ρ=Av/q¯) is almost independent of the velocity distribution of the incident ions. The ion trajectories will be therefore be mainly determined by the mass number A and the atomic number Z of the ion. Monte Carlo simulations with the code RAYTRACE closely reproduce the experimental behavior. We plan to use the Yale Mass Separator (YaMS) for nuclear structure studies in conjunction with high efficency gamma detectors (clover detectors) for enhancing weak reaction channels and fission background reduction. Work supported by the US-DOE under contract numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  11. Digital system for vacuum and gas-filled devices testing

    NASA Astrophysics Data System (ADS)

    Pejovic, Milic M.

    2005-01-01

    This article describes an improved electrical system aimed at measuring and data acquisition of the breakdown voltage of vacuum and gas-filled devices at low pressures using a discretized dynamic method. The previous system [M. M. Pejovic, C. S. Milosavljevic, and M. M. Pejovic, Rev. Sci. Instrum. 74, 3127 (2002)] included a complex analog circuit for breakdown detection, which did not provide the required reliability. The smallest voltage step which this system could provide was 250 mV. In order to increase the reliability of the breakdown detection, the Keithley model 248 high power supply was added to the system. The breakdown is detected from a monitor output at model 248 rear panel. The disadvantage of this system was the fact that the minimal value of the voltage step in this case is 1 V. An additional Keithley model 2400 Source Meter was introduced as a serial connection with the Keithley model 248 with the aim of decreasing the minimal value of the voltage step, which is in this case 1 mV. PC controls both Keithley models using standard IEEE 488 interface bus. This system provides a minimal voltage step value of 1 mV which results in a high precision in breakdown voltage determination. The proposed system controls a large number of parameters, which makes significantly influences the breakdown voltage value. The system was tested with a neon-filled tube at 6.6 mbar, where two parameters were varied, the relaxation time and the voltage step. The experimental results are in accordance with the literature regarding the influence of these two parameters on the breakdown voltage of gas-filled tubes.

  12. Theoretical rovibrational analysis of the covalent noble gas compound ArNH+

    NASA Astrophysics Data System (ADS)

    Novak, Carlie M.; Fortenberry, Ryan C.

    2016-04-01

    Noble gasses can make covalent bonds. This has been clearly shown for ArH+ as is evidenced by the observation of this molecule ubiquitously in the interstellar medium. In order to augment the list of potential noble gas molecules, highly-accurate quartic field methods are employed here to analyze the ArNH+ radical cation for the first time. This study is in line with previous examinations of ArOH+, ArH2+, and ArH3+. It is shown here that the Arsbnd N bond strength falls below the Arsbnd O bond energy in ArOH+ but in line with that from ArH2+ indicating that ArNH+ could certainly be synthesized in the lab or, potentially, in nature. In order to aid in the search for this noble gas molecular cation, spectroscopic constants, fundamental vibrational frequencies, absorption intensities, and the center-of-mass dipole moment are provided at high-level in order to augment our understanding of noble gas chemistry.

  13. A compact gas-filled avalanche counter for DANCE

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-12-01

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ˜2.4×108/s are described.

  14. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  15. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  16. Impact damage on shielded gas-filled vessels

    NASA Astrophysics Data System (ADS)

    Schäfer, F.; Schneider, E.; Lambert, M.

    2001-10-01

    This paper gives a summary of the findings from impacts on shielded gas-filled cylindrical aluminium alloy (A12219 T851) and titanium alloy (Ti6A14V) pressure vessels that were performed at the Ernst-Mach-Institute in the frame of an ESA contract. The effect of impacts on shielded vessels with projectiles that have a kinetic energy close to the ballistic limit of the combined system of shield and vessel's front wall was investigated. The shields were single Al-bumper plates, unreinforced MLI and MLI reinforced with 2 layers of Betacloth. The threshold diameters that cause leakage from the vessel's front wall were determined experimentally as a function of shield material and shield spacing. For Al-shielded Al- and Ti-vessels, a safety design factor to avoid leakage is presented based on existing Whipple shield equations.

  17. Method and apparatus for processing filling gas from a coke oven battery

    SciTech Connect

    Polenz, J.; Wagner, H.

    1981-08-11

    An improved coke oven battery and an improved method for production of coke and byproducts are provided. The filling gas escaping during the filling of the oven chambers with coal is initially rendered inert by admixing flue gas. Then the resulting gas mixture of filling gas and flue gas is withdrawn via a conduit fed with flushing liquor from the coke oven gas off-take main and is added to the raw coke oven gas after the coke oven gas off-take main. The tar and coal containing flushing liquor coming from the filling gas conduit is fed back to the coke oven gas off-take main after removal of the tar.

  18. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  19. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  20. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  1. Experimental study of high-Z gas buffers in gas-filled ICF engines

    NASA Astrophysics Data System (ADS)

    Rhodes, M. A.; Kane, J.; Loosmore, G.; DeMuth, J.; Latkowski, J.

    2011-03-01

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  2. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    SciTech Connect

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  3. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Quanyou; Jin, Zhijun; Meng, Qingqiang; Wu, Xiaoqi; Jia, Huichong

    2015-08-01

    The genetic types, source precursors and filling pattern of natural gas in the Upper Carboniferous Taiyuan Formation, Lower Permian Shanxi Formation and Lower Shihezi Formation gas reservoirs of Daniudi gas field were investigated using chemical composition as well as carbon and hydrogen isotopic compositions. Geochemical analysis of natural gases in 25 representative wells shows that natural gas in the Daniudi gas field is composed predominantly of hydrocarbons with a dryness coefficient of 0.884-0.978. The carbon isotopic values of ethane and propane are higher than -28‰ and -25‰, respectively, and the hydrogen isotopic values of methane are lower than -180‰, indicating that natural gas in the Daniudi field is a typical coal-type gas, derived mainly from humic organic matter in the transitional facies of the Carboniferous-Permian age. Hydrogen isotopic values of CH4 and H2 display a good positive correlation, suggesting that both were controlled by thermal maturity. When the mixing of ethane generated from mudstone and coal with the same kerogen type and similar thermal maturity occurred, the carbon isotopic values of ethane barely reflect the thermal maturity. Although the fractionation of hydrogen isotopes of ethane is significantly higher than that of carbon, hydrogen isotopic values of ethane in natural gas reservoirs evidently are not related to thermal maturity. The Daniudi natural gas reservoirs represent both self-sourced and near-source accumulations. The natural gas accumulations in the Late Triassic-Early Jurassic periods are mainly of the self-sourced type, while accumulations in the Late Jurassic-Early Cretaceous period comprise both self-sourced and near-source patterns, and the natural gas reservoirs formed after the Late Cretaceous period are mainly of the near-source type.

  4. A New Shallow Underground Gas-Proportional Counting Lab - First Results and Ar-37 Sensitivity

    SciTech Connect

    Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.; Hoppe, Eric W.; Keillor, Martin E.; LaFerriere, Brian D.; Mace, Emily K.; Merriman, Jason H.; Myers, Allan W.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen; Warren, Glen A.; Williams, Richard M.

    2013-11-01

    Abstract A new ultra-low-background proportional counter was recently developed with an internal volume of 100 ml and has been characterized at pressures from 1-10 atmospheres with P-10 (90% Ar, 10% methane) gas. This design, along with a counting system providing event digitization and passive and active shielding, has been developed to complement a new shallow underground laboratory (30 meters water-equivalent). Backgrounds and low-level reference materials have been measured, and system sensitivity for Ar-37 has been calculated.

  5. A 47 ka 40Ar/39Ar age for the Rotoiti Eruption, New Zealand, Measured by Multi-collection Noble gas Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, M.

    2006-12-01

    The recent availability of commercial multi-collector noble gas mass spectrometers provides new opportunities for improved precision in 40Ar/39Ar dating, particularly for young Quaternary aged samples, where precise measurement of the 40Ar/36Ar ratio is critical. A Nu Instruments Noblesse multi-collector noble gas mass spectrometer was used to investigate the age of the Rotoiti eruption, the last major caldera-forming event at the Haroharo caldera, Okataina volcanic centre, New Zealand. Ash derived from the Rotoiti eruption is an important regional stratigraphic marker, but has proved difficult to date by a variety of methods, with estimates ranging from 45-65ka, at or beyond the useful range of 14C. The Rotoiti eruption is notable for the occurrence of cognate K-feldspar-biotite-glass-bearing granitoid lithics. K- feldspars were separated from a previously studied sample of a Rotoiti granitoid (103/2-1 and along with neutron fluence monitor Alder Creek sanidine (ACs = 1.194 +/- 0.007 Ma) were irradiated for 10 minutes in the Cd-lined facility at the OSU TRIGA reactor. Unknowns and monitor minerals were measured in multi-collection mode using the same detector configuration. Mass fractionation and detector discrimination for 40Ar/36Ar was monitored by repeated measurement of 1.2 x 10-13 mole air aliquots. Single crystal laser fusion ages, for K- feldspar that contain more than 10 percent *40Ar, range from 45-100 ka. On an isotope correlation diagram, the data for the younger population defines an isochron of 47 +/- 2 ka (eruption age), with an initial 40Ar/36Ar = 299.32 +/- 0.91 (MSWD of 1.1). K-feldspars with higher apparent ages, which are excluded from the isochron calculation, are interpreted to be partly reset crystals from earlier crystallization event/s within the Haroharo Caldera.

  6. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    wall acts as the primary heat exchanger. During removal, gas is pumped through the laser ports by turbo molecular-drag pumps (TM-DP). For the purpose of reducing organic based lubricants and seals, a magnetically levitated TM-DP is being investigated with pump manufacturers. Currently, magnetically levitated turbo molecular pumps are commercially available. The pumps will be exposed to thermal loads and ionizing radiation (tritium, Ar-41, post detonation neutrons). Although the TM-DP's will be subjected to these various radiations, current designs for similar pumping devices have been hardened and have the ability of locating control electronics in remote radiation shielded enclosures4. The radiation hardened TM-DP's will be 5 required to operate with minimal maintenance for periods of up to 18 continuous months. As part of this initial investigation for developing a conceptual engineering strategy for a gas fill solution, commercial suppliers of low pressure gas pumping systems have been contacted and engaged in this evaluation. Current technology in the area of mechanical pumping systems indicates that the development of a robust pumping system to meet the requirements of the FTF gas fill concept is within the limits of COTS equipment3,4.

  7. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    SciTech Connect

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L.; and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  8. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Kilkenny, J. D.; Pino, J. E.; Smalyuk, V. A.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L.; Edgell, D. H.; Edwards, M. J.; Eckart, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hoover, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Kervin, M.; Khan, S.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O. L.; Pape, S. Le; Ma, T.; Mackinnon, A. J.; MacPhee, A. G.; Marinak, M. M.; Mcnaney, J. M.; Meezan, N. B.; Merrill, F. E.; Mintz, M.; Moore, A.; Munro, D. H.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Volegov, P.; Widmann, K.; Wilson, D. C.; Zylstra, A. B.

    2014-11-01

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D3He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4-2, while D3He capsule yields are matched, as well as other metrics for both capsule types.

  9. Studies of gas hydro-coupling effects on capsule compression symmetry in gas-filled hohlraums for indirect drive ICF

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Pollaine, Stephen; Landen, Otto; Turner, Robert; Wallace, Russell; Amendt, Peter; Campbell, Kelly; Glenzer, Siegfried

    2004-11-01

    Present ignition hohlraum designs use low-Z gas fill to slow down the inward motion of high-Z ablated plasma from the hohlraum walls preventing capsule drive asymmetries. On the other hand, the gas-filled hohlraum hydrodynamics due to direct laser heating can generate an axial shock wave that may couple to the capsule pole and compromise ignition. In order to optimize the ignition design, the effects of hohlraum gas fill to surrogate fusion capsules are presently being assessed in experiments at the Omega laser facility at various relevant fill densities (0.5-2.7 mg/cc) and hohlraum sizes. The asymmetries are detected by x-ray backlit foam ball images and the gas hydrodynamics and gas-wall interface motion are studied by imaging of hard x-ray emission of a low concentration (0.4%) Xe gas-fill dopant. Results from NIF-scale experiments accessing both supersonic and subsonic heat propagation will be presented and compared to LASNEX simulations as function of fill density.

  10. Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics

    SciTech Connect

    Fouad, O.A.; Rumaiz, A.; Shah, S.

    2009-03-01

    Reactive sputtering of titanium target in the presence of Ar/CH{sub 4} gas mixture has been investigated. With the addition of methane gas to above 1.5% of the process gas a transition from the metallic sputtering mode to the poison mode was observed as indicated by the change in cathode current. As the methane gas flow concentration increased up to 10%, the target was gradually poisoned. The hysteresis in the cathode current could be plotted by first increasing and then subsequently decreasing the methane concentration. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of carbide phases and the transition of the process from the metallic to compound sputtering mode as the methane concentration in the sputtering gas is increased. The paper discusses a sputtering model that gives a rational explanation of the target poisoning phenomenon and shows an agreement between the experimental observations and calculated results.

  11. Method and apparatus for producing gas-filled hollow spheres. [target pellets for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1982-01-01

    A system for forming hollow spheres containing pressured gas is described which includes a cylinder device containing a molten solid material with a nozzle at its end. A second gas nozzle, lying slightly upstream from the tip of the first nozzle, is connected to a source that applies pressured filler gas that is to fill the hollow spheres. High pressure is applied to the molten metal, as by moving a piston within the cylinder device, to force the molten material out of the first nozzle. At the same time, pressured gas fills the center of the extruded hollow liquid pipe that breaks into hollow spheres. The environment outside the nozzles contains gas at a high pressure such as 100 atmospheres. Gas is supplied to the gas nozzle at a slightly higher pressure such as 101 atmospheres. The pressure applied to the molten material is at a still higher pressure such as 110 atmospheres.

  12. Concept for a Low Pressure Gas Fill in a Direct Drive IFE Target Chamber

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2009-11-01

    A concept using a low pressure nobel gas has been advanced for attenuating the interaction of (post detonation) He ions on first wall components. In this configuration approximately 1 torr of Ar gas is introduced into the target chamber for the purpose of interacting with energetic He ions before they impinge on first wall surfaces. As a result, effluent processing systems must be designed to take into account a high Ar gas load. Therefore, a two-stage cryopumping system will be configured in line with an array of turbomolecular drag pumps to remove Ar from the effluent gas stream. After exiting the reaction chamber, effluent will pass through the first cryopump stage, at liquid nitrogen temperature (77 K), which will remove argon as well as any trace contaminants from the gas stream. The remaining effluent, consisting of H and He, will pass through the second cryopumping stage, at liquid He temperature (4.2 K), to remove H isotopes from the gas stream. This poster will discuss specific concepts for efficient plasma exhaust processing.

  13. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Krause, O.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T.

    2013-12-01

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of 36ArH+ at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed 36ArH+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  14. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed. PMID:24337290

  15. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOEpatents

    Wilson, Robert D.

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  16. Noble gas composition and 40Ar/39Ar age in eclogites from the main hole of the Chinese Continental Scientific Drilling project

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Schwarz, Winfried H.; Trieloff, Mario; Meyer, Hans-Peter; Hanel, Michael; Altherr, Rainer

    2016-10-01

    We present the first comprehensive noble gas study on eclogites. The four eclogite samples were recovered during the Chinese Continental Scientific Drilling and are from two distinct profile depth sections differing in their degree of interaction with meteoric water, based on their δ 18O-values (surface related and of mantle-type). Hence, noble gas analyses offer the potential to further discriminate between shallow (meteoric) and deep (mantle) fluid sources. Noble gas compositions reveal typical crustal fluid compositions, characterized by a variable mixture of atmospheric gases with significant contributions of nucleogenic neon, radiogenic 4He*, radiogenic 40Ar*, fissiogenic 131-136Xe, and presumably bariogenic 131Xe, but no significant addition of mantle gases. This signature can be also considered to represent one endmember component of eclogitic diamonds. Concentrations of non-radiogenic noble gases are rather low, with depletion of light relative to the heavier noble gases. Eclogites from lower depth which experienced a higher degree of interaction with meteoric water also showed higher contributions of atmospheric gas compared with eclogites recovered from greater depth. This is interpreted to result from interaction with high-salinity fluids during ultrahigh pressure (UH P). It demonstrates that the atmospheric noble gas abundance is a proxy for interaction with surface related fluids. 40Ar/39Ar (inverse) isochron ages of two phengite separates (241.2 ± 0.4 Ma and 275.0 ± 1.8 Ma, 1 σ-errors) predate the main phase of UH P metamorphism (ca. 220 Ma). Biotite yields an integrated age of about 1100 Ma. These age values are interpreted to reflect the likely addition of excess 40Ar without any chronological meaning.

  17. Direct Observation of a Gas Molecule (H2, Ar) Swallowed by C60

    SciTech Connect

    Sawa, H.; Kakiuchi, T.; Wakabayashi, Y.; Murata, Y.; Murata, M.; Komatsu, K.; Yakigaya, K.; Takagi, H.; Dragoe, N.

    2007-01-19

    Various types of endohedral fullerene complexes are known to date. The well known metallofullerenes are generally produced by arc-discharge method, but the use of such extremely drastic conditions is apparently not suitable for encapsulation of unstable molecules or gases. We recently succeeded in incorporation of a H2 molecule or an Ar atom in 100% into a C60. In order to observe the endohedral gas molecule directly, the X-ray diffraction analysis using synchrotron radiation were carried out. We observed a gas molecule encapsulated in each fullerene cage using structure analysis and the maximum entropy method. These gas molecules are floating inside of the hollow cavities and are completely isolated from the outside.

  18. High-photon-yield scintillation detector with Ar/CF4 and glass gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeshi; Mitsuya, Yuki; Yanagida, Takayuki; Saito, Takumi; Toyokawa, Hiroyuki; Takahashi, Hiroyuki

    2016-10-01

    The glass made gas electron multiplier (GEM) and Ar/CF4-gas-based gaseous detector is developed as a scintillation detector and ultra high photon yield is demonstrated. The light yield of a glass GEM (G-GEM)-based gaseous detector is estimated to be 85,000 photons/keV, which is three orders of magnitude brighter than inorganic scintillators. The radioluminescence spectrum peak appeared at around 620 nm, which matches the spectral response of commonly used photosensors such as photomultiplier tubes, photodiodes, CMOSs, CCDs, and other photo-sensors. In X-ray spectroscopy, the light yield showed excellent proportionality and the device was successfully operated as a gas proportional scintillation counter. With this design, we obtained a high photon yield of the G-GEM, which has the further advantage of being much more sensitive to low-energy radiation than solid-scintillator-based detectors.

  19. Gas gain limitation in low pressure proportional counters filled with TEG mixtures

    NASA Astrophysics Data System (ADS)

    Kowalski, T. Z.

    2014-12-01

    Proportional counters filled with tissue equivalent gas mixtures (TEPC) can be used to simulate interactions and energy transferred to small tissue volumes. One criteria which allows to use TEPC as the dose meter is that the particle ranges are larger compared to the gas volume. TEPC achieve this by operating at low gas pressures. Single ionization events dominate the distribution of low-LET radiation at low gas pressure and therefore their detection is of primary importance, a high gas gain is necessary. Therefore gas gain factor has been measured for Methane- and Propane-based tissue equivalent gas mixtures. The highest stable gas gains, second ionization Townsend coefficient and electron avalanche dimensions have been determined.

  20. Site-Specific Fragmentation of Polystyrene Molecule Using Size-Selected Ar Gas Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-04-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (Eatom); the Eatom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between Eatom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting Eatom of size-selected GCIB may realize site-specific bond breaking within a molecule.

  1. Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Neufeld, D. A.; Müller, H. S. P.; Comito, C.; Bergin, E. A.; Lis, D. C.; Gerin, M.; Black, J. H.; Wolfire, M.; Indriolo, N.; Pearson, J. C.; Menten, K. M.; Winkel, B.; Sánchez-Monge, Á.; Möller, T.; Godard, B.; Falgarone, E.

    2014-06-01

    Aims: We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H2 fraction. The confidence of the assignment to ArH+ is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods: We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH+ were compared to those of other species, tracing interstellar medium (ISM) components with different H2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. Results: Thanks to the detection of two isotopologues, 36ArH+ and 38ArH+, we are confident about the carrier assignment to ArH+. NeH+ is not detected with a limit of [NeH+]/[ArH+] ≤ 0.1. The derived column densities agree well with the predictions of chemical models. ArH+ is a unique tracer of gas with a fractional H2 abundance of 10-4 - 10-3 and shows little correlation to H2O+, which traces gas with a fractional H2 abundance of ≈0.1. Conclusions: A careful analysis of variations in the ArH+, OH+, H2O+, and HF column densities promises to be a faithful tracer of the distribution of the H2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD)simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH+ molecule is a better tracer of almost purely atomic hydrogen gas than Hi itself, since Hi can also be present in gas with a significant

  2. A closer look at 40Ar/39Ar systematics of illite, recoil, retention ages, total gas ages, and a new correction method

    NASA Astrophysics Data System (ADS)

    Fitz-Diaz, E.; Hall, C. M.; van der Pluijm, B.

    2013-12-01

    One of the fundamentals of 40Ar-39Ar systematics of illite considers the effects of 39Ar recoil (ejection of 39Ar from tiny illite crystallites during the nuclear reaction 39K(n,p)39Ar), for which sample vacuum encapsulation prior to irradiation has been used since the 1990's. This technique separately measures the fraction of recoiled 39Ar and the Ar (39Ar and 40Ar) retained within illite crystals as they degas during step heating in vacuum. Total-gas ages (TGA) are calculated by using both recoiled and retained argon, while retention ages (RA) only involve retained Ar. Observations in numerous natural examples have shown that TGA fit stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10nm, and that RA better matches these constrains for larger ICTs. Illite crystals with ICT >50nm show total gas and retention ages within a few My and they are identical, within analytical error, when ICT exceeds 150nm. We propose a new age correction that takes into account the average ICT and corresponding recoil for a sample , with such corrected ages (XCA) lying between the TGA and RA end-member ages. We apply this correction to samples containing one generation of illite and it particularly affects illite populations formed in the anchizone, with typical ICT values between 10-40nm. We analyzed bentonitic samples (S1, S2 and S3) from sites in Cretaceous carbonates in the front of the Monterrey salient in northern Mexico. Four size fractions (<0.05, 0.05-0.2, 0.2-1 & 1-2 μm) were separated, analyzed with XRD and dated by Ar-Ar. XRD analysis provides mineralogic characterization, illite polytype quantification, and illite crystallite thickness (ICT) determination using half-height peak width (illite crystallinity) and the Scherrer equation. All samples contain illite as the main mineral phase, ICT values between 8-27nm, from fine to coarser grain size fractions. Ages show a range in TGA among the different size

  3. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  4. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  5. Effects of plasma physics on capsule implosions in gas-filled hohlraums

    SciTech Connect

    Lindman, E.L.; Delamater, N.D.; Magelssen, G.R.; Hauer, A.

    1994-10-01

    Initial experiments on capsule implosions in gas-filled hohlraums have been carried out on the NOVA Laser at Lawrence Livermore National Laboratory. Observed capsule shapes from preliminary experiments are more oblate than predicted. Improvements in modeling required to calculate these experiments and additional experiments are being pursued.

  6. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  7. Gas-Filled Panels: An update on applications in the building thermal envelope

    SciTech Connect

    Griffith, B.T.; Arasteh, D.; Tuerler, D.

    1995-10-01

    This paper discusses the application of Gas-Filled Panels to the building thermal envelope. Gas-Filled Panels, or GFPs, are thermal insulating devices that retain a high concentration of a low- conductivity gas, at atmospheric pressure, within a multilayer infrared reflective baffle. The thermal performance of the panel depends on the type of gas fill and the baffle configuration. Heat- flow meter apparatus measurements have shown effective apparent thermal conductivities of 0.194 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with air as the gas fill, 0.138 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with argon, and 0.081 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with krypton. Calorimetric measurements have also shown total resistance levels of about R-12.6 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 1.0-inch thick krypton panel, R-25.7 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 2.0-inch krypton panel, and R-18.4 f{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 10-inch xenon panel. GFPs are flexible, self-supporting and can be made in a variety of shapes and sizes to thoroughly fill most types of cavities in building walls and roofs, although the modular nature of the panels can lead to complications in installing them, especially for irregularly shaped cavities. We present computer simulation results showing the improvement in thermal resistance resulting from using an argon-GFP in place of glass fiber batt insulation in wood-frame construction. This report also presents estimates of the quantity and cost of material components needed to manufacture GFPs using current prototype designs.

  8. Utilizing Gas Filled Cavities for the Generation of an Intense Muon Source

    SciTech Connect

    Stratakis, Diktys; Neuffer, David V.

    2015-05-01

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  9. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  10. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    PubMed Central

    Nakao, Shintaro; Arita, Ryoichi; Sato, Yuki; Enaida, Hiroshi; Ueno, Akifumi; Matsui, Takaaki; Salehi-Had, Hani; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Background and objective Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF) images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos) in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH) closure after surgery. Methods This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7). Results On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%), 9/18 (50.0%), and 17/18 eyes (94.4%), respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0%) of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH.

  11. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    PubMed Central

    Nakao, Shintaro; Arita, Ryoichi; Sato, Yuki; Enaida, Hiroshi; Ueno, Akifumi; Matsui, Takaaki; Salehi-Had, Hani; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Background and objective Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF) images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos) in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH) closure after surgery. Methods This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7). Results On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%), 9/18 (50.0%), and 17/18 eyes (94.4%), respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0%) of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH. PMID:27601877

  12. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.

    DOE PAGES

    Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; Ampleford, David J.; Lamppa, Derek C.; Coverdale, Christine A.; Cuneo, Michael E.; Hansen, Stephanie B.; Jones, Michael C.; Moore, Nathan W.; et al

    2016-10-20

    Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

  13. Transient Beam Loading Effects in Gas-filled RF Cavities for a Muon Collider

    SciTech Connect

    Chung, M.; Tollestrup, A.; Yonehara, K.; Freemire, B.

    2013-06-01

    A gas-filled RF cavity can be an effective solution for the development of a compact muon ionization cooling channel. One possible problem expected in this type of cavity is the dissipation of significant RF power through the beam-induced plasmas accumulated inside the cavity (plasma loading). In addition, for the higher muon beam intensity, the effects of the beam itself on the cavity accelerating mode are non-negligible (beam loading). These beam- cavity interactions induce a transient phase which may be very harmful to the beam quality [1]. In this study, we estimate the transient voltage in a gas-filled RF cavity with both the plasma and conventional beam loading and discuss their compensation methods.

  14. Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers.

    PubMed

    Finger, M A; Joly, N Y; Weiss, T; Russell, P St J

    2014-02-15

    Precise knowledge of the group velocity dispersion in gas-filled hollow-core photonic crystal fiber is essential for accurate modeling of ultrafast nonlinear dynamics. Here we study the validity of the capillary approximation commonly used to calculate the modal refractive index in kagomé-style photonic crystal fibers. For area-preserving core radius a(AP) and core wall thickness t, measurements and finite element simulations show that the approximation has an error greater than 15% for wavelengths longer than 0.56√(a(AP)t), independently of the gas-filling pressure. By introducing an empirical wavelength-dependent core radius, the range of validity of the capillary approximation is extended out to a wavelength of at least 0.98√(a(AP)t).

  15. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  16. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    SciTech Connect

    Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  17. Ultraviolet Light Generation in Gas-Filled Kagome Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2015-03-01

    Kagome hollow-core photonic crystal fibers were found to be ideal for the occurrence of ultrafast non-linear optics. This article reports the optimal conditions for the generation of ultraviolet light using a gas filled kagome hollow-core-photonic crystal fiber. It is shown that by changing the pressure of the gas and the input pulse characteristics, the efficiency of conversion and quality of ultraviolet light can be improved, as well as tuning its central frequency. Results suggest that a highly coherent and tunable ultraviolet light source can be constructed, which can find numerous applications.

  18. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system

    PubMed Central

    Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard

    2015-01-01

    ABSTRACT At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. PMID:26621831

  19. Correction of aspect ratio dependency in deep silicon etch using SF6/C4F8/Ar gas mixture

    NASA Astrophysics Data System (ADS)

    Bates, Robert Lee

    The etch rate of deep features in silicon, such as trenches and vias, can vary significantly with the changing Aspect Ratio (AR) of the feature. Developing a better understanding of the complex volumetric and surface chemistry as well as the etching mechanisms controlling the Aspect Ratio Dependent Etch-rate (ARDE) continues to present research opportunities. Recall that ARDE is generally characterized by small AR features etching at faster rates than large AR features. The main causes of ARDE include Knudsen transport of neutrals into and out of the features as well as ion and neutral loss to the walls due to angular spread in the velocity distribution function and differential charging of insulating microstructures. This work focuses on using a continuous plasma process utilizing a gas mixture of SF6/C4F8/Ar to produce trenches of varying widths and depths. The experimental results were obtained using a Plasma-Therm Versaline processing system. Experiments were performed to show that the etch rate of low AR features can be reduced through the deposition of a passivation layer and thereby allow larger AR features to catch up. It is also possible to invert the ARDE in certain circumstances. We will present the insights we have gained into the ARDE process and the solutions we have tested.

  20. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

    PubMed

    Gillis, K A; Moldover, M R; Mehl, J B

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.).

  1. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  2. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

    PubMed

    Gillis, K A; Moldover, M R; Mehl, J B

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.). PMID:27250456

  3. Fluid hammer with gas desorption in a liquid-filling tube: experiments with three different liquids

    NASA Astrophysics Data System (ADS)

    Lema, Marcos; Peña, Fernando López; Rambaud, Patrick; Buchlin, Jean-Marie; Steelant, Johan

    2015-09-01

    The opening of a fast valve followed by a fluid line with a closed end generates a fluid hammer that may involve several multiphase phenomena. This is the case of the propulsion systems in satellites during the priming operation, where the lines are initially kept under vacuum conditions. The filling with liquid propellant is done by opening a pyrotechnic valve, and the fluid hammer taking place involves cavitation and gas desorption. For this purpose, an experimental study is carried out with inert fluids modeling a liquid propulsion system, where the saturation level of the test liquid is controlled, allowing to run experiments under deaerated and saturated conditions. The results show that the fluid hammer phenomenon is affected by the gas saturation conditions if the liquid is susceptible to high desorption rate. In this case, the desorbed pressurant gas in the lines cushions the liquid front impact at the closed ends, leading to a lower pressure rise during fluid hammer occurrence.

  4. Giant gas-filled cyst of sigmoid colon. Report of a case and review of the literature

    PubMed Central

    Sibson, D. E.; Edwards, A. J.

    1972-01-01

    The largest recorded gas-filled cyst of the sigmoid colon, in a man of 67, is presented. The literature of the other recorded cases is reviewed. The gas in the cyst was analysed and a suggestion put forward that bacteria play some part in the aetiology of the gas in the cyst. ImagesFig. 1Fig. 2Fig. 3 PMID:5024155

  5. Extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell

    NASA Astrophysics Data System (ADS)

    Eliseev, S. A.; Block, M.; Chaudhuri, A.; Di, Z.; Habs, D.; Herfurth, F.; Kluge, H.-J.; Neumayr, J. B.; Plaß, W. R.; Rauth, C.; Thirolf, P. G.; Vorobjev, G.; Wang, Z.

    2007-05-01

    The extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell were measured and chemical processes occurring during extraction of the stopped ions were investigated. The measurements were performed using 219Rn recoil ions from the α-decay of a calibrated point-like 223Ra ion source. The extraction time was measured to be shorter than 10 ms at a helium gas pressure in the gas cell of 40 mbar. Thus, nuclides with half-lives on the order of a few milliseconds are accessible for the various precision experiments planned at SHIPTRAP. Extraction efficiencies of up to 30% were obtained at a helium pressure of 50 mbar. The estimated total efficiency of the gas cell, derived from the product of calculated stopping and measured extraction efficiency, amounts to about 10%. Factors limiting the efficiency are quantitatively understood. Under standard operating conditions, ion-molecule reactions in the gas cell do not seem to limit the efficiency of the gas cell significantly.

  6. Effect of He-Ar ratio of side assisting gas on plasma 3D formation during CO2 laser welding

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Cai, Yan; Wang, Yonggui; Wu, Yue; Wu, Yixiong

    2014-05-01

    Side assisting gas plays a very important role in the laser-induced plasma suppression and the gas mixture ratio directly influences the formation and behavior of the laser-induced plasma during the laser welding process. In this paper, a photography system was set up with three synchronous CCD cameras to record the plasma plume during CO2 laser welding under different He-Ar ratios for helium-argon mixed side assisting gas. Three-dimensional reconstruction of the laser-induced plasma based on the computed tomography (CT) technology was achieved from the images shot by the cameras. Four characteristics, including the volume, uniformity, parameter PA associated with plasma absorption and parameter PR associated with laser refraction, were extracted from the 3D plasma and analyzed to investigate the effect on the plasma plume morphology as well as the laser energy attenuation. The results indicated that the He-Ar ratio of the side assisting gas has a considerable influence on some characteristics while some other characteristics are not sensitive to the mixture ratio. In addition, the effect of He-Ar ratio on the laser-induced plasma varies a lot with the flow rate of the side assisting gas.

  7. Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer.

    PubMed

    Manning, Cara C; Stanley, Rachel H R; Lott, Dempsey E

    2016-03-15

    Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters. We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher electron energy for the other gases to improve sensitivity. The precision is 0.7% or better and 1.0% or better for all mole ratios when the instrument is installed in a temperature-controlled environment and a variable-temperature environment, respectively. In the lab, the accuracy is 0.9% or better for all gas ratios using air as the only calibration standard. In the field (and/or at greater levels of disequilbrium), the accuracy is 0.7% or better for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5% or better for Ne/Xe, Ar/Xe, and Kr/Xe using air as the only calibration standard. The field accuracy improves to 0.6% or better for Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instrument enables the collection of a large number of continuous, high-precision and accuracy noble gas measurements at substantially reduced cost and labor compared to traditional methods. PMID:26854788

  8. Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer.

    PubMed

    Manning, Cara C; Stanley, Rachel H R; Lott, Dempsey E

    2016-03-15

    Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters. We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher electron energy for the other gases to improve sensitivity. The precision is 0.7% or better and 1.0% or better for all mole ratios when the instrument is installed in a temperature-controlled environment and a variable-temperature environment, respectively. In the lab, the accuracy is 0.9% or better for all gas ratios using air as the only calibration standard. In the field (and/or at greater levels of disequilbrium), the accuracy is 0.7% or better for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5% or better for Ne/Xe, Ar/Xe, and Kr/Xe using air as the only calibration standard. The field accuracy improves to 0.6% or better for Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instrument enables the collection of a large number of continuous, high-precision and accuracy noble gas measurements at substantially reduced cost and labor compared to traditional methods.

  9. Inactivation of Escherichia coli Using the Atmospheric Pressure Plasma Jet of Ar gas

    NASA Astrophysics Data System (ADS)

    Homma, Takeshi; Furuta, Masakazu; Takemura, Yuichiro

    2013-03-01

    Germicidal treatments of Escherichia coli on Langmuir-Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 °C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200-300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli.

  10. A giant gas-filled abdominal mass in an elderly female: a case report.

    PubMed

    Chong, Hoi Man Deon; Lee, Fung Yee Janet; Lo, Anthony; Li, Chak Man Jimmy

    2011-08-21

    We report an extremely rare case of gas-filled abdominal mass caused by an ovarian teratoma fistulating to the sigmoid colon. The patient was an 85-year-old female, who presented with severe abdominal distension. Urgent computed tomography scan showed a huge abdominal mass with air fluid level and fecal matter inside. Communication between the mass and the sigmoid colon was suspected. She underwent emergency laparotomy. The mass was resected with the involved segment of colon. Pathology confirmed squamous cell carcinoma arising from mature cystic teratoma of the ovary.

  11. Development of a Gas Filled Magnet spectrometer within the FIPPS project

    NASA Astrophysics Data System (ADS)

    Chebboubi, A.; Kessedjian, G.; Faust, H.; Blanc, A.; Jentschel, M.; Köster, U.; Materna, T.; Méplan, O.; Sage, C.; Serot, O.

    2016-06-01

    The Fission Product Prompt γ -ray Spectrometer, FIPPS, is under development to enable prompt γ -ray spectroscopy correlated with fission fragment identification. This will open new possibilities in the study of fission and of nuclear structure of neutron rich nuclei. FIPPS will consist of an array of γ and neutron detectors coupled with a fission fragment filter. The chosen solution for the filter is a Gas Filled Magnet (GFM). Both experimental and modeling work was performed in order to extract the key parameters of such a device and design the future GFM of the FIPPS project. Experiments performed with a GFM behind the LOHENGRIN spectrometer demonstrated the capability of additional beam purification.

  12. Application of ultrasonic gas-filled liposomes in enhancing transfer for breast cancer-related antisense oligonucleotides: an experimental study.

    PubMed

    Luo, Yu-Kun; Zhao, Ying-Zheng; Lu, Cui-Tao; Tang, Jie; Li, Xiao-Kun

    2008-01-01

    The aim of this study was to investigate the application of ultrasonic gas-filled liposomes in enhancing transfer for breast cancer-related antisense oligonucleotides in vitro. An antisense oligodeoxynucleotide (AS-ODN) sequence, HA2741, modified with luciferase reporter plasmid, was used in evaluating the enhancing effect of gas-filled liposomes for gene transfer in breast cancer cells. Some important factors on HA 2741 transfection efficiency, such as wave intensity, ultrasound duration, gas-filled liposome concentration, and HA2741 concentration, were tested, respectively. Transfection efficiency was detected by fluorescence microscopy. Cell viability was verified by propidium iodide assay. Reverse-transcriptase polymerase chain reaction and immunocytochemistry were used to detect the inhibitory effect of HA2741 on HER-2 expression. All the four factors (wave intensity, ultrasound duration, gas-filled liposome concentration, and HA2741 concentration) showed a positive effect on AS-ODN transfection efficiency. However, these factors had a negative effect on cell viability. Considering all the factors investigated, the maximum transfection efficiency with minimum cell viability achieved under 2% gas-filled liposome mixed with 80 nmol/L HA2741 for 30-second ultrasound exposure at -3.0 dB wave intensity, which gave an overall transfection efficiency exceeding 90% and a cell viability near 90%. Under controlled conditions, ultrasound-mediated AS-ODN transfer, enhanced by gas-filled liposomes, may represent an effective, safe avenue for cancer-related gene delivery.

  13. Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging

    SciTech Connect

    Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-04-08

    Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

  14. New Hadron Monitor By Using A Gas-Filled RF Resonator

    SciTech Connect

    Yonehara, Katsuya; Fasce, Giorgio; Flanagan, Gene; Johnson, Rolland; Tollestrup, Alvin; Zwaska, Robert

    2015-05-01

    It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.

  15. Characteristics of a high pressure gas proportional counter filled with xenon

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Ramsey, B. D.

    1991-01-01

    The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.

  16. High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application

    SciTech Connect

    Cuderman, J.F.; Chu, T.Y.; Jung, J.; Jacobson, R.D.

    1986-07-01

    High Energy Gas Fracturing is a tailored pulse fracturing technique which uses propellants to obtain controlled fracture initiation and extension. Borehole pressurization rates can be tailored, by suitable choice of propellants, to produce four or eight fractures radiating from the wellbore. High Energy Gas Fracture (HEGF) research is conducted at DOE's Nevada Test Site (NTS) in a tunnel complex where experiments can be done under realistic in situ stress conditions (1400 psi (9.7 MPa) overburden stress). Pressure measurements are made in the test borehole during all fracturing experiments. Experiments are mined back to provide direct observation of fracturing obtained. The initial objective of HEGF research was to develop multiple fracturing technology for application in gas well stimulation. HEGF research at NTS and in Devonian shale demonstration tests has resulted in a completed technology for multiple fracturing in uncased, liquid-free wellbores. Current resarch is directed toward extending the technique to liquid-filled boreholes for application in geothermal in addition to gas and oil wells. For liquid-free boreholes, multiple fracturing is specified in terms of pressure risetime required for a given borehole diameter. Propellants are mixed to achieve the desired risetime using a semiempirical mixing equation. The same techniques were successfully applied to fracturing in liquid-filled wellbores. However, the addition of liquid in the borehole results in a significantly more complicated fracturing behavior. Hydrodynamic effects are significant. Multiple fractures are initiated but only some propagated. Multiple- and hydraulic-type fracturing and wellbore crushing have been observed in the same experiment. The potential of using HEGB for geothermal well stimulation has been demonstrated through the present experiments. 18 refs., 40 figs., 4 tabs.

  17. The effect of mix on capsule yields as a function of shell thickness and gas fill

    SciTech Connect

    Bradley, P. A.

    2014-06-15

    An investigation of direct drive capsules with different shell thicknesses and gas fills was conducted to examine the amount of shock induced (Richtmyer-Meshkov) mix versus Rayleigh-Taylor mix from deceleration of the implosion. The RAGE (Eulerian) code with a turbulent mix model was used to model these capsules for neutron yields along with time-dependent mix amounts. The amount of Richtmyer-Meshkov induced mix from the shock breaking out of the shell is about 0.1 μg (0.15 μm of shell material), while the Rayleigh-Taylor mix is of order 1 μg and determines the mixed simulation yield. The simulations were able to calculate a yield over mix (YOM) ratio (experiment/mix simulation) between 0.5 and 1.0 for capsules with shell thicknesses ranging from 7.5 to 20 μm and with gas fills between 3.8 and 20 atm of D{sub 2} or DT. The simulated burn averaged T{sub ion} values typically lie with 0.5 keV of the data, which is within the measurement error. For capsules with shell thicknesses >25 μm, the YOM values drop to 0.10 ± 0.05, suggesting that some unmodeled effect needs to be accounted for in the thickest capsules.

  18. REVIEW ARTICLE: Optical frequency comb generation in gas-filled hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Couny, F.; Benabid, F.

    2009-10-01

    The efficiency of gas-based nonlinear processes is often limited by the diffraction of the pump laser as it propagates through the nonlinear medium. As a consequence, phenomena with strong nonlinear response requirements, such as high harmonic generation or Raman sideband generation, lack the required laser-matter interaction to fulfil their potential. Indeed, the conversion efficiency of these techniques is usually low and the experimental set-up cumbersome. The advent of hollow core photonic crystal fibre technology drafts new territories for nonlinear optics, and in particular offers new alternatives for sub-femtosecond pulse generation. The air-guiding fibre combines unprecedented laser confinement over long interaction lengths and, when filled with an adequate nonlinear gas, offers improved conversion efficiency and up to a million-fold reduction of the pump power threshold. This paper presents a review of the types of hollow core PCF available for nonlinear applications and the results obtained for efficient Raman conversion in H2-filled hollow core PCF that led to the observation of a multi-octave frequency comb spanning from ~325 to ~2300 nm using a single pump laser with relatively low power. The generated ultra-broad spectrum creates a simple route towards a compact source of attosecond pulses.

  19. Experimental Study of Plasma Cooling and Laser Beam Interaction in Gas Filled ICF Engines

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Loosmore, Gwendolen; Demuth, James; Latkowski, Jeffery

    2010-11-01

    ICF power plants, such as the LIFE scheme under development at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. This gas-fill is heated and ionized by this energy release. It must cool and recombine before the next shot (at nominally 70-ms intervals) to a temperature where the next target and laser pulse can propagate to chamber center with minimal degradation. While we expect rapid cooling to 2eV by radiation, our modeling of cooling below 2 eV has a high degree of uncertainty. We have developed a plasma source to study the cooling rates and laser propagation in high-Z gaseous plasmas. The source is a theta discharge configuration driven by a low-inductance, 5-kJ, 100-ns pulsed power system. This configuration delivers high peak power levels, has an electrode-less discharge, and has unobstructed axial access for diagnostics and beam propagation studies. Our diagnostics include Thompson scattering, time resolved spectroscopy, and plasma probes. We will report on the system design, operation, and initial results.

  20. GAS AND DUST ABSORPTION IN THE DoAr 24E SYSTEM

    SciTech Connect

    Kruger, Andrew J.; Richter, Matthew J.; Seifahrt, Andreas; Carr, John S.; Najita, Joan R.; Moerchen, Margaret M.; Doppmann, Greg W.

    2012-11-20

    We present findings for DoAr 24E, a binary system that includes a classical infrared companion. We observed the DoAr 24E system with the Spitzer Infrared Spectrograph (IRS), with high-resolution, near-infrared spectroscopy of CO vibrational transitions, and with mid-infrared imaging. The source of high extinction toward infrared companions has been an item of continuing interest. Here we investigate the disk structure of DoAr 24E using the column densities, temperature, and velocity profiles of two CO absorption features seen toward DoAr 24Eb. We model the spectral energy distributions found using T-ReCS imaging and investigate the likely sources of extinction toward DoAr 24Eb. We find the lack of silicate absorption and small CO column density toward DoAr 24Eb suggest that the mid-infrared continuum is not as extinguished as the near-infrared, possibly due to the mid-infrared originating from an extended region. This, along with the velocity profile of the CO absorption, suggests that the source of high extinction is likely due to a disk or disk wind associated with DoAr 24Eb.

  1. Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems

    SciTech Connect

    Griffith, B.; Arasteh, D.; Tuerler, D.

    1995-01-01

    Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

  2. Influence of CO2-Ar Mixtures as Shielding Gas on Laser Welding of Al-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Boukha, Zouhair; Sánchez-Amaya, José María; González-Rovira, Leandro; Rio, Eloy Del; Blanco, Ginesa; Botana, Javier

    2013-12-01

    In this study, AA5083 samples were butt welded under a conduction regime with high-power diode laser (HPDL). Various mixtures composed of Ar and CO2 were used as a shielding gas. The influence of the shielding gas composition on the microstructure and on the properties of laser welds was analyzed. The weld beads were deeply characterized by metallographic/microstructural studies, X-ray diffraction (XRD), X-ray energy dispersive spectrometry (X-EDS) chemical analyses, X-ray photoelectron spectra (XPS), microhardness, and tensile strength. The corrosion resistance of laser-remelted surfaces with different CO2/Ar ratios was also estimated by means of electrochemical tests. The addition of CO2 to the shielding gas results in a better weld penetration and oxidizes the weld pool surface. This addition also promotes the migration of Mg toward the surface of weld beads and induces the formation of magnesium aluminates spinel on the welds. The best corrosion resistance result is achieved with 20 pct CO2. The overall results indicate that the addition of small percentage of CO2 to Ar leads to improvements of the mechanical and corrosion properties of the aluminum welds.

  3. Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Asai, N.; Kataura, H.; Achiba, Y.

    2007-07-01

    The formation of single-wall carbon nanotubes (SWNTs) by using laser vaporization technique in different ambient gas atmosphere was investigated. SWNTs were prepared with Rh/Pd (1.2/1.2 atom%)-carbon composite rod in Ar and nitrogen gas atmosphere, respectively. Raman spectra of raw carbon materials including SWNTs and photoluminescence mapping of dispersed SWNTs in a surfactant solution demonstrate that the diameter distribution of SWNTs prepared in Ar atmosphere is narrower than those obtained by using CVD technique (e.g. HiPco nanotube), even when the ambient temperature is as high as 1150 ?C. It was also found that nitrogen atmosphere gives wider diameter distribution of SWNTs than that obtained with Ar atmosphere. Furthermore, the relative yield of fullerenes (obtained as byproducts) is investigated by using HPLC (high-performance liquid chromatography) technique. It was found that the relative yield of higher fullerenes becomes lower, when nitrogen is used as an ambient gas atmosphere. Based on these experimental findings, a plausible formation mechanism of SWNTs is discussed.

  4. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  5. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  6. High pressure gas filled RF cavity beam test at the Fermilab Mucool test area

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    With a new generation of lepton colliders being conceived, muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a smaller energy range than a comparable electron collider. This allows a circular collider to be built. As part of the accelerator, it would also be possible to allow the muons to decay to study neutrinos. Because the muon is an unstable particle, a muon beam must be cooled and accelerated within a short amount of time. Muons are generated with a huge phase space, so radio frequency cavities placed in strong magnetic fields are required to bunch, focus, and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary. To successfully operate RF cavities in strong magnetic fields, the cavity can be filled with a high pressure gas in order to mitigate breakdown. The gas has the added benefit of providing cooling for the beam. The electron-ion plasma created in the cavity by the beam absorbs energy and degrades the accelerating electric field of the cavity. As electrons account for the majority of the energy loss in the cavity, their removal in a short time is highly desirable. The addition of an electronegative dopant gas can greatly decrease the lifetime of an electron in the cavity. Measurements in pure hydrogen of the energy consumption of electrons in the cavity range in 10-18 and 10-16 joules per RF cycle per electron. When hydrogen doped with dry air is used, measurements of the power consumption indicate an energy loss range of 10-20 to 10-18 joules per RF cycle per ion, two orders of magnitude improvement over non-doped measurements. The lifetime of electrons in a mixture of hydrogen gas and dry air has been measured from < 1 ns, up to 200 ns. The results extrapolated to the parameters of a Neutrino Factory and Muon Collider indicate that a high pressure gas filled RF

  7. Comparison of the performance of forward fill/flush and reverse fill/flush flow modulation in comprehensive two-dimensional gas chromatography.

    PubMed

    Krupčík, Jan; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Giardina, Matthew

    2016-09-30

    The performances of forward flow fill and flush (FFF) and of reverse flow fill and flush (RFF) in flow modulated comprehensive two-dimensional gas chromatography (GC×GC) using the same volume of the sampling channel have been studied and compared. Sample models include a reference mixture of hydrocarbons at low concentration, a petroleum reformate product and the essential oil of Rosa damascena Miller. The latter samples contain solutes in different concentrations but some up to 30% allowing to study overloading phenomena in detail. For solutes injected at low quantity, the performance of FFF and RFF is similar. For solutes present in a sample at high quantity, RFF guarantees less broadening and spreading resulting in better quantitation. PMID:27614731

  8. Comparison of the performance of forward fill/flush and reverse fill/flush flow modulation in comprehensive two-dimensional gas chromatography.

    PubMed

    Krupčík, Jan; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Giardina, Matthew

    2016-09-30

    The performances of forward flow fill and flush (FFF) and of reverse flow fill and flush (RFF) in flow modulated comprehensive two-dimensional gas chromatography (GC×GC) using the same volume of the sampling channel have been studied and compared. Sample models include a reference mixture of hydrocarbons at low concentration, a petroleum reformate product and the essential oil of Rosa damascena Miller. The latter samples contain solutes in different concentrations but some up to 30% allowing to study overloading phenomena in detail. For solutes injected at low quantity, the performance of FFF and RFF is similar. For solutes present in a sample at high quantity, RFF guarantees less broadening and spreading resulting in better quantitation.

  9. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  10. Applying the Different Statistical Tests in Analysis of Electrical Breakdown Mechanisms in Nitrogen Filled Gas Diode

    NASA Astrophysics Data System (ADS)

    Čedomir, A. Maluckov; Saša, A. Rančev; Miodrag, K. Radović

    2016-10-01

    This paper presents the results of our investigations of breakdown mechanisms, as well as a description of their influence on the distributions of time delay distributions, for a gas tube filled with nitrogen at 4 mbar. The values of the time delay are measured for different voltages, and the values of the relaxation times and their distributions and probability plots are analyzed. The obtained density distributions have Gaussian distributions and exponential distributions for different values of relaxation times (Gaussian for small values and exponential for large values of relaxation time). It is shown that for middle values of relaxation time the delay distributions have a shape between Gaussian and exponential distributions, which is a result of the different influences of electrical breakdown.

  11. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  12. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  13. Simulation for Large-Area, Inductively-Coupled Plasma Systems Using an Ar/Cl2 Gas Mixture.

    PubMed

    Oh, Seon-Geun; Lee, Young-Jun; Jeon, Jae-Hong; Kim, Young-Jin; Seo, Jong-Hyun; Choe, Hee-Hwan

    2015-11-01

    As research and development of high-performance devices are becoming increasingly important in the flat panel display industry, new structures and processes are essential to improve the performance of the TFT backplane. Also, high-density plasma systems are needed for new device fabrications. Chlorine-based, inductively-coupled plasma systems are widely used for highly-selective, anisotropic etching of polysilicon layers. In this paper, a plasma simulation for a large-area ICP system (8th glass size and 9 planar antenna set) was conducted using Ar/Cl2 gas. Transport models and Maxwell Equations were applied to calculate the plasma parameters such as electron density, electron temperature and electric potential. In addition, the spatial distribution of ions such as Ar+, Cl2+, Cl-, Cl+ were investigated respectively. PMID:26726552

  14. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.

    PubMed

    Aymé-Bellegarda, E J

    1990-08-01

    This work is concerned with the influence of the finite-amplitude distortion of a driving diagnostic ultrasonic field on the collapse and rebound of a gas-filled spherical microbubble, present in the exposed compressible liquid. Such an analysis is especially important since one of the mechanisms for cavitation damage comes from the very large gas pressures generated at bubble collapse and in the subsequent pressure wave formed by bubble rebound. Gilmore's model [F.R. Gilmore, "The growth or collapse of a spherical bubble in a viscous compressible liquid," Hydrodynamics Lab. Rep. No. 26-4, California Institute of Technology, Pasadena, CA (1952)] for bubble dynamics is used to obtain the motion of the bubble interface when subjected to a pulsed diagnostic ultrasonic field of large amplitude. Knowledge of the bubble motion allows one to derive the pressure distribution around the bubble. Numerical results over a range of initial bubble sizes, acoustic pressures, and frequencies relevant to medical use show that the strength of the pressure spikes radiated by the rebounding bubble depends upon (i) the acoustic frequency (f), (ii) the initial bubble size (R0), and (iii) the magnitude of the pressure amplitude of the fundamental (PF) in a Fourier series description of the distorted pulse. As the pressure spikes propagate outward from the bubble wall, their strength is attenuated as the reciprocal of the distance from the center of collapse.

  15. Preparation and characterization of gas-filled liposomes: can they improve oil recovery?

    PubMed

    Vangala, Anil; Morris, Robert; Bencsik, Martin; Perrie, Yvonne

    2007-01-01

    Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar

  16. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGES

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  17. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  18. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  19. Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF.

    PubMed

    Azhar, M; Wong, G K L; Chang, W; Joly, N Y; Russell, P St J

    2013-02-25

    The effective Kerr nonlinearity of hollow-core kagomé-style photonic crystal fiber (PCF) filled with argon gas increases to ~15% of that of bulk silica glass when the pressure is increased from 1 to 150 bar, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering-absent in noble gases-and having an extremely high optical damage threshold. As a result, detailed and well-controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton-created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realization of reconfigurable supercontinuum sources, wavelength convertors and short-pulse laser systems.

  20. The Evolution of the Gold Bubble in NIF Ignition Gas-Filled Hohlraums

    NASA Astrophysics Data System (ADS)

    Schneider, Marilyn; MacLaren, Steve; Widmann, Klaus; Meezan, Nathan; Hammer, James; Bell, Perry; Benedetti, Robin; Bradley, David; Callahan, Deborah; Dewald, Eduard; Doeppner, Tilo; Hinkel, Denise; Jones, Oggie; Landen, O. L.; Michel, Pierre; Milovich, Jose; Moody, John; Moore, Alastair

    2015-11-01

    At the National Ignition Facility (NIF), the energy from 192 laser beams is converted to an x-ray drive in a gas-filled gold hohlraum. The x-ray drive heats and implodes a fuel capsule. The ViewFactor platform uses a truncated hohlraum to measure the x-ray drive from the capsule point-of-view. This platform also affords excellent diagnostic views of the hohlraum interior, in particular, of the region in which the outer beams deposit their energy (the ``gold bubble'') Time-resolved and time-integrated images in the hard x-ray range (>3 keV) reveal an 8-fold symmetry in the gold bubble. The Au plasma in the bubble from the eight 50 degree quads expands faster than that from the interleaved 44.5 degree quads. The variation in this structure with laser intensity, with pulse shape and cross beam energy transfer, and comparison to models, will be discussed. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Plasma Studies in a High Pressure Gas Filled Radio Frequency Cavity

    NASA Astrophysics Data System (ADS)

    Freemire, Ben; Chung, Moses; Tollestrup, Alvin; Yonehara, Katsuya

    2014-10-01

    A Muon Collider offers a great deal of physics potential to the high energy physics community. In order to build such a machine with the desired luminosity, significant cooling of the muon beam is required. One proposed method for doing so is the Helical Cooling Channel, which consists of high pressure gas filled radio frequency (HPRF) cavities arranged in a helix within a strong external magnetic field. To validate this technology, an HPRF cavity was subjected to a 400 MeV proton beam at Fermilab's MuCool Test Area. Parent gases of hydrogen, deuterium, helium and nitrogen, at room temperature and densities up to 2.5E21 cm-3 were used, and doped with sulfur hexafluoride or dry air. The plasma density created by the beam approached 1E16 cm-3. Measurements of the RF energy dissipated per charged particle pair, the electron-ion recombination rate, the ion-ion recombination rate, and electron attachment time were made.

  2. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    SciTech Connect

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of {approximately}17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, {approximately}200 g/cm{sup 3} and {approximately}20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases {approximately}350 MJ of energy in optimized power plant scenarios.

  3. Simulations of the 3-Shock HDC gas-filled hohlraum experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Ross, J. S.; Ho, D.; Weber, C.; Sepke, S.; Khan, S.; Cerjan, C.; Meezan, N.; MacKinnon, A.

    2015-11-01

    We describe simulation efforts to design and field a series of high-density-carbon (HDC) capsule tuning experiments in 1.6 mg/cc gas-filled hohlraums at the National Ignition Facility (NIF), culminating in two DT-layered shots. The radiation-hydrodynamics code HYDRA coupled to an off-line power transfer model was employed to ascertain the optimal laser pulse that minimizes radiation asymmetries and implosion adiabat for a given stability margin. We found that these HDC targets have similar sensitivity as their CH ``high-foot'' counterparts when laser cone-fraction and power as well as ablator thickness are varied, leading to comparable implosions. A point of divergence, however, is the measured neutron down-scatter-ratio (DSR) that typically gauges the degree of compression obtained in a DT implosion, with HDC targets having approximately half the CH value. Concerted efforts are underway to understand and ascertain the causes of this discrepancy. Simulations and comparisons with data will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Silicon etch using SF{sub 6}/C{sub 4}F{sub 8}/Ar gas mixtures

    SciTech Connect

    Bates, Robert L.; Stephan Thamban, P. L.; Goeckner, Matthew J.; Overzet, Lawrence J.

    2014-07-01

    While plasmas using mixtures of SF{sub 6}, C{sub 4}F{sub 8}, and Ar are widely used in deep silicon etching, very few studies have linked the discharge parameters to etching results. The authors form such linkages in this report. The authors measured the optical emission intensities of lines from Ar, F, S, SF{sub x}, CF{sub 2}, C{sub 2}, C{sub 3}, and CS as a function of the percentage C{sub 4}F{sub 8} in the gas flow, the total gas flow rate, and the bias power. In addition, the ion current density and electron temperature were measured using a floating Langmuir probe. For comparison, trenches were etched of various widths and the trench profiles (etch depth, undercut) were measured. The addition of C{sub 4}F{sub 8} to an SF{sub 6}/Ar plasma acts to reduce the availability of F as well as increase the deposition of passivation film. Sulfur combines with carbon in the plasma efficiently to create a large optical emission of CS and suppress optical emissions from C{sub 2} and C{sub 3}. At low fractional flows of C{sub 4}F{sub 8}, the etch process appears to be controlled by the ion flux more so than by the F density. At large C{sub 4}F{sub 8} fractional flows, the etch process appears to be controlled more by the F density than by the ion flux or deposition rate of passivation film. CF{sub 2} and C{sub 2} do not appear to cause deposition from the plasma, but CS and other carbon containing molecules as well as ions do.

  5. Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates.

    PubMed

    Boi, Filippo S; Guo, Jian; Wang, Shanling; He, Yi; Xiang, Gang; Zhang, Xi; Baxendale, Mark

    2016-03-18

    A key challenge in the fabrication of ferromagnetically filled carbon-nanotube buckypapers in the presence of Cl-radicals is the achievement of a preferential horizontal nanotube-alignment. We show that a horizontal-alignment can be achieved by tuning two main CVD parameters for a fixed dichlorobenzene concentration: the precursor-evaporation temperature and the flow rate. PMID:26905009

  6. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  7. [Optimizing the operating variables that affect the transfection experiment of antisense oligodeoxyribonucleotide by gas-filled microbubbles].

    PubMed

    Zhao, Ying-zheng; Luo, Yu-kun; Lu, Cui-tao; Xu, Jing-feng; Mei, Xing-guo; Wang, Hu-jun; Zhang, Mei

    2007-12-01

    To optimize the operating variables that affect the transfection of antisense oligodeoxyribonucleotide (AS-ODNs) by insonated gas-filled lipid microbubbles, SF6-filled microbubbles were prepared by sonication-lyophilization method. An AS-ODNs sequence and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of SF6-filled microbubbles. Three levels of mixing speed, different durations of mixing and various delay time before ultrasound were examined, separately. Transfection efficiency was detected by fluorescence microscopy. Transfection results with and without incubation of AS-ODNs and microbubbles before mixing cells were compared. From the results, there is no significant difference between the transinfection efficiency with or without incubation of AS-ODNs and microbubbles before mixing cells. AS-ODNs transfection efficiency showed an increasing trend with mixing speed and mixing duration, but there is a negative relationship with delay time before ultrasound. The optimum parameters for AS-ODNs transfection by SF6-filled microbubbles were found at a mixing speed of 40-50 r x min(-1) for 30-60 s with less than 60 s delay before ultrasound. For a successful transfection, long time of incubation with gene is essential for normal nonviral vectors such as liposomes or cationic lipid-polymer hybrids, because these vectors depend on endocytosis and membrane fusion to realize transfection. Unlike liposomes and cationic lipid-polymer hybrids, gas-filled lipid microbubbles depend on sonorporation effect to realize transfection. Therefore, the incubation of gene and microbubbles before mixing cells may not be necessary. Ultrasound-mediated AS-ODNs transfection enhanced by gas-filled lipid microbubbles represents an effective avenue for gene transfer.

  8. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  9. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    SciTech Connect

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  10. 78 FR 58604 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... cylinders containing Carbon dioxide, for restaurants and other establishments. FOR FURTHER INFORMATION... safety requirements for continued use. US DOT Cylinders filled with carbon dioxide must be...

  11. Shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition: Morphological, structural and charge trapping properties

    NASA Astrophysics Data System (ADS)

    Martín-Sánchez, J.; Capan, I.; Chahboun, A.; Pinto, S. R. C.; Vieira, E. M. F.; Rolo, A. G.; Gomes, M. J. M.

    2013-09-01

    In this work, a novel customized shadowed off-axis deposition set-up is used to perform an original study of Ge nanoparticles (NPs) formation in an inert Ar gas atmosphere by pulsed laser deposition at room temperature varying systematically the background Ar gas pressure (Pbase(Ar)), target-substrate distance (d) and laser repetition rate (f). The influence of these parameters on the final NPs size distributions is investigated and a fairly uniform droplets-free and non-agglomerated NPs distribution with average height = 2.8 ± 0.6 nm is obtained for optimized experimental conditions (Pbase(Ar) = 1 mbar; d = 3 cm; f = 10 Hz) with a fine control in the NPs density (from 3.2 × 109 cm-2 to 1.1 × 1011 cm-2). The crystalline quality of as-deposited NPs investigations demonstrate a strong dependence with the Ar gas pressure and a crystalline to amorphous phase volume fraction χc > 50% is found for Pbase(Ar) = 2 mbar. The NPs functionality for charge trapping applications has been successfully demonstrated by capacitance-voltage (C-V) electrical measurements.

  12. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  13. The Gas-Filled-Magnet at PRIME Lab: Increased Sensitivity of Cosmogenic Nuclide Measurements

    NASA Astrophysics Data System (ADS)

    Caffee, M. W.; Granger, D. E.; Woodruff, T. E.

    2015-12-01

    Abstract: Using accelerator mass spectrometry (AMS), radionuclides produced either by cosmic-ray interactions or by nucleogenic means can be measured. Typical isotopic abundance ratios range from 1 x 10-10 to 1 x 10-15. The routinely measured radionuclides are 10Be, 14C, 26Al, 36Cl, and 129I. Be-10, 26Al, and 36Cl have isobaric interferences that cannot be eliminated mass through mass analysis, but dE/dx techniques suppresses these isobars enough to allow successful measurements. There are compromises, the isobar for 26Al, 26Mg, precludes successful measurement of 26Al if AlO- is injected into the accelerator. Mg- doesn't form a stable negative ion so a 26Al measurement requires injection of 26Al-. But the Al- ion is formed inefficiently; secondary ion currents using Al- are ~ 10 times less than an AlO- secondary ion beam. Precision scales with count rate so precise measurement of the 26Al/Al for all but higher ratio samples is difficult. It has long been recognized that a gas-filled-magnet (GFM) could potentially improve the measurement of those radionuclides with intractable isobar interferences. A GFM works on the principle that each element of an isobar pair, e.g. 26Mg and 26Al, has a different average charge state as it traverses a gas (3-4 Torr of N2) contained within the vacuum jacket of a magnet. The magnet steers each species with its own momentum-to-charge ratio on its own distinct radius of curvature. The magnet can be tuned to allow the isotope of interest into a dE/dx detector; most of the isobar doesn't make it into the detector. Using the PRIME Lab GFM we are now able to routinely run 26Al with a precision that is comparable to that obtained with 10Be. We are also using the GFM for routine measurements of 10Be and 36Cl. Although the improvement for these nuclides is not as pronounced as it is for 26Al, the GFM has improved the detection sensitivity for both. Our 10Be background is now ~ 5 x 10-16 and for 36Cl we can now run the source more

  14. Chronology and shock history of the Bencubbin meteorite: A nitrogen, noble gas, and Ar-Ar investigation of silicates, metal and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Kelley, Simon; Turner, Grenville

    2010-11-01

    We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ⩾3 × 10 5 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N 2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity ( fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ˜40 Ma with two different methods. Noble gases present isotopic signatures similar to those of "phase Q" (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/ 36Ar ratios indicate mixing between a 15N-rich component (δ 15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N. Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated

  15. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  16. An experimental challenge: Unraveling the dependencies of ultrasonic and electrical properties of sandy sediments with pore-filling gas hydrates

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Seyberth, Karl; Priegnitz, Mike; Schicks, Judith M.

    2016-04-01

    The accuracy of gas hydrate quantification using seismic or electric measurements fundamentally depends on the knowledge of any factor describing the dependencies of physical properties on gas hydrate saturation. Commonly, these correlations are the result of laboratory measurements on artificially produced gas hydrates of exact saturation. Thus, the production of gas hydrates and accurate determination of gas hydrate concentrations or those of a substitute are a major concern. Here we present data of both, seismic and electric measurements on accurately quantified pore-filling ice as a substitute for natural gas hydrates. The method was validated using selected gas hydrate saturations in the same experimental set-up as well as literature data from glass bead samples [Spangenberg and Kulenkampff, 2006]. The environmental parameters were chosen to fit those of a possible gas hydrate reservoir in the Danube Delta, which is in the focus of models for joint inversions of seismic and electromagnetic data in the SUGAR III project. The small effective pressures present at this site proved to be yet another challenge for the experiments. Using a more powerful pulse generator and a 4 electrode electric measurement, respectively, models for a wide range of gas hydrate saturations between 20 - 90 % vol. could be established. Spangenberg, E. and Kulenkampff, J., Influence of methane hydrate content on electrical sediment properties. Geophysical Research Letters 2006, 33, (24).

  17. 78 FR 42817 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... DOT 3A 1800 cylinder filled and provided by North American Coil and Beverage Group with carbon dioxide... carbon dioxide service must be successfully requalified through a visual inspection and a pressure...

  18. Adding Some Gas Can Completely Change How an Object in a Liquid-Filled Housing Responds to Vibration

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.

    2015-11-01

    Adding a little gas can completely change the motion of an object in a liquid-filled housing during vibration. A common system exhibiting this behavior is a spring-supported piston in a liquid-filled cylinder, where the gaps between them are narrow and depend on the piston position. When gas is absent, the piston's vibrational response is highly overdamped due to forcing viscous liquid through narrow gaps. When a small amount of gas is added, Bjerknes forces cause some of the gas to migrate below the piston. The resulting two gas regions form a pneumatic spring that enables the liquid to move with the piston, with the result that very little liquid is forced through the narrow gaps. This ``Couette mode'' has low damping and thus has a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston response is large, and the nonlinearity from the gap geometry produces a net force on the piston. This ``rectified'' force can be many times the piston's weight and can cause the piston to compress its supporting spring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Characteristics and interpretation of fracture-filled gas hydrate: an example from the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, a total of thirteen sites were selected and drilled in the East Sea of Korea in 2010. A suite of logging-while-drilling (LWD) logs was acquired at each site. LWD logs from the UBGH2-3A well indicate significant gas hydrate in clay-bearing sediments including several zones with massive gas hydrate with a bulk density less than 1.0 g/m3 for depths between 5 and 103 m below the sea floor. The UBGH2-3A well was drilled on a seismically identified chimney structure with a mound feature at the sea floor. Average gas hydrate saturations estimated from the isotropic analysis of ring resistivity and P-wave velocity logs are 80 ± 13% and 47 ± 16%, respectively, whereas they are 46 ± 17% and 45 ± 16%, respectively from the anisotropic analysis. Modeling indicates that the upper part of chimney (between 5 and 45 m below sea floor [mbsf]) is characterized by gas hydrate filling near horizontal fractures (7° dip) and the lower part of chimney (between 45 and 103 mbsf) is characterized by gas hydrate filling high angle fractures on the basis of ring resistivity and P-wave velocity. The anisotropic analysis using P40H resistivity (phase shift resistivity at 32 mHz with 40 inch spacing) and the P-wave velocity yields a gas hydrate saturation of 46 ± 15% and 46 ± 15% respectively, similar to those estimated using ring resistivity and P-wave velocity, but with quite different fracture dip angles. Differences in vertical resolution, depth of investigation, and a finite fracture dimension relative to the tool separation appear to contribute to this discrepancy. Forward modeling of anisotropic resistivity and velocity are essential to identify gas hydrate in fractures and to estimate accurate gas hydrate amounts.

  20. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression.

    PubMed

    Emaury, Florian; Saraceno, Clara J; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gèrôme, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-12-15

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100  W of average power and >100  MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100  MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance.

  1. Ar-40/Ar-39 ages of Meishan Bed 25 sanidine and igneous intrusions from the Siberian platform compared: implications for the timing of gas emissions and the End-Permian extinction

    NASA Astrophysics Data System (ADS)

    Storey, M.; Reichow, M. K.; Saunders, A. D.

    2013-12-01

    The end-Permian mass extinction wiped out nearly all life on our planet. The cause for this cataclysmic event and whether this appeared as a double extinction is a matter of current debate. The most favoured candidate is volatile release from either magmatic degassing directly or induced by interaction between magmas and volatile bearing deposits. Release of volatiles during thermal metamorphism and assimilation of coal and evaporite deposits which are widespread on the Siberian platform following igneous intrusion has been proposed as a major cause of the environmental and extinction event at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009). To meaningfully examine this proposed causality requires precise dating of the Siberian intrusions at the ';Earthtime' goal of × 0.1 % or better. Here we present preliminary results from Ar-40/Ar-39 step heating experiments on plagioclase and biotite from Siberian basin intrusions and compare the data with published and new Ar-40/Ar-39 sanidine ages for Bed 25 from the global section and Permian-Triassic boundary stratotype at Meishan, China. REFERENCES H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 200

  2. Effect of Cl{sub 2}/Ar gas mixing ratio on (Pb,Sr)TiO{sub 3} thin film etching behavior in inductively coupled plasma

    SciTech Connect

    Kim, Gwan-Ha; Kim, Chang-Il

    2006-07-15

    The development of anisotropic etching process for (Pb,Sr)TiO{sub 3} (PST) thin films is an important task to provide a small feature size and an accurate pattern transfer. Etching characteristics of PST thin films were investigated using inductively coupled plasma etching system as functions of Cl{sub 2}/Ar gas mixing ratio. The PST etch rate increased with the increase of chlorine radical and ion energy intensity. It was found that the increasing of Ar content in gas mixture lead to sufficient increasing of etch rate. The maximum etch rate of PST film is 56.2 nm/min at Cl{sub 2}/(Cl{sub 2}+Ar) of 0.2. It was proposed that the sputter etching is a dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  3. Resonant third harmonic generation of KrF laser in Ar gas

    SciTech Connect

    Rakowski, R.; Barna, A.; Suta, T.; Földes, I. B.; Bohus, J.; Szatmári, S.; Mikołajczyk, J.; Bartnik, A.; Fiedorowicz, H.; Verona, C.; Verona Rinati, G.; Margarone, D.; Nowak, T.; and others

    2014-12-15

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  4. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  5. Numerical study of sidewall filling for gas-fed pulse detonation engines

    NASA Astrophysics Data System (ADS)

    Rongrat, Wunnarat

    Pulse detonation engines for aerospace propulsion are required to operate at 50-100 Hz meaning that each pulse is 10-20 ms long. Filling of the engine and the related purging process become dominant due to their long duration compared to ignition and detonation wave propagation. This study uses ANSYS FLUENT to investigate the filling of a 1 m long tube with an internal diameter of 100 mm. Six different configurations were investigated with an endwall port and various sidewall arrangements, including stagger and inclination. A stoichiometric mixture of gaseous octane and air at STP was used to fill the tube at injection rates of 40, 150 and 250 m/s. Phase injection was also investigated and it showed performance improvements such as reduced lling time and reduced propellant escape from the exit.

  6. The Lampedusa supersite of ChArMex: observing aerosol-radiation interactions and gas phase chemistry in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Formenti, Paola; di Sarra, Alcide Giorgio

    2014-05-01

    Within the frame of the ADRIMED (Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region) project of the Chemistry-Aerosol Mediterranean experiment (ChArMex), the ENEA Laboratory for Climate Study "Roberto Sarao" (WMO/GAW/NDACC) on the Island of Lampedusa (35°31'N, 12°37°E) has been augmented to one of the supersites of the first phase of the Special Observing Period 1 by the measurements of the in situ properties of aerosols and trace gases by the of the PortablE Gas and Aerosol Sampling Units (PEGASUS) mobile station. The ground-based measurements have been completed by several coordinated overpasses of the ATR-42 and the F20 of SAFIRE. In this paper we present the first highlights of operations, which took place between June 6 and July 8 2013. Insights on the data provide with an unprecedented characterisation of the physico-chemical and properties aerosols and gas phase chemistry on air masses of various origins (pollution, marine, mineral dust, …..). The effect of aerosols on radiation fields is ascertained by coupling ground-based and aircraft measurements during dedicated overpasses providing with measurements of upwelling and downwelling shortwave and longwave radiation fluxes together with the properties of the aerosol load resolved on the column. Coordination with CALIPSO overpasses will also be explored.

  7. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  8. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  9. Second harmonic generation of spectrally broadened femtosecond ytterbium laser radiation in a gas-filled capillary

    SciTech Connect

    Didenko, N V; Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2011-09-30

    A 300-fs radiation pulse of an ytterbium laser with a wavelength of 1030 nm and energy of 150 {mu}J were converted to a 15-fs pulse with a wavelength of 515 nm by broadening the emission spectrum in a capillary filled with xenon and by generating the second harmonic in a KDP crystal. The energy efficiency of the conversion was 30 %.

  10. Spectroscopic and modeling investigations of the gas phase chemistry and composition in microwave plasma activated B2H6/CH4/Ar/H2 mixtures.

    PubMed

    Ma, Jie; Richley, James C; Davies, David R W; Ashfold, Michael N R

    2010-09-23

    A comprehensive study of microwave (MW) activated B2H6/CH4/Ar/H2 plasmas used for the chemical vapor deposition of B-doped diamond is reported. Absolute column densities of ground state B atoms, electronically excited H(n = 2) atoms, and BH, CH, and C2 radicals have been determined by cavity ring down spectroscopy, as functions of height (z) above a molybdenum substrate and of the plasma process conditions (B2H6, CH4, and Ar partial pressures; total pressure, p; and supplied MW power, P). Optical emission spectroscopy has also been used to explore variations in the relative densities of electronically excited H atoms, H2 molecules, and BH, CH, and C2 radicals, as functions of the same process conditions. These experimental data are complemented by extensive 2D(r, z) modeling of the plasma chemistry, which result in substantial refinements to the existing B/C/H/O thermochemistry and chemical kinetics. Comparison with the results of analogous experimental/modeling studies of B2H6/Ar/H2 and CH4/Ar/H2 plasmas in the same MW reactor show that: (i) trace B2H6 additions have negligible effect on a pre-established CH4/Ar/H2 plasma; (ii) the spatial extent of the B and BH concentration profiles in a B2H6/CH4/Ar/H2 plasma is smaller than in a hydrocarbon-free B2H6/Ar/H2 plasma operating at the same p, P, etc.; (iii) B/C coupling reactions (probably supplemented by reactions involving trace O2 present as air impurity in the process gas mixture) play an important role in determining the local BHx (x = 0-3) radical densities; and (iv) gas phase B atoms are the most likely source of the boron that incorporates into the growing B-doped diamond film. PMID:20735120

  11. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  12. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-07-31

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 {mu}J was compressed to a 27-fs pulse with an energy of 75 {mu}J. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  13. Theoretical prediction of new noble-gas molecules FNgBNR (Ng = Ar, Kr, and Xe; R = H, CH3, CCH, CHCH2, F, and OH).

    PubMed

    Chen, Jien-Lian; Yang, Chang-Yu; Lin, Hsiao-Jing; Hu, Wei-Ping

    2013-06-28

    We have computationally predicted a new class of stable noble-gas molecules FNgBNR (Ng = Ar, Kr, Xe; R = H, CH3, CCH, CHCH2, F, and OH). The FNgBNR were found to have compact structures with F-Ng bond lengths of 1.9-2.2 Å and Ng-B bond lengths of ~1.8 Å. The endoergic three-body dissociation energies of FNgBNH to F + Ng + BNH were calculated to be 12.8, 31.7, and 63.9 kcal mol(-1), for Ng = Ar, Kr, and Xe, respectively at the CCSD(T)/CBS level. The energy barriers of the exoergic two-body dissociation to Ng + FBNH were calculated to be 16.1, 24.0, and 33.2 kcal mol(-1) for Ng = Ar, Kr, and Xe, respectively. Our results showed that the dissociation energetics is relatively insensitive to the identities of the terminal R groups. The current study suggested that a wide variety of noble-gas containing molecules with different types of R groups can be thermally stable at low temperature, and the number of potentially stable noble-gas containing molecules would thus increase very significantly. It is expected some of the FNgBNR molecules could be identified in future experiments under cryogenic conditions in noble-gas matrices or in the gas phase.

  14. Amplitude blanking related to the pore-filling of gas hydrate in sediments

    USGS Publications Warehouse

    Lee, M.W.; Dillon, William P.

    2001-01-01

    Seismic indicators of gas-hydrate-bearing sediments include elevated interval velocities and amplitude reduction of seismic reflections owing to the presence of gas hydrate in the sediment's pore spaces. However, large amplitude blanking with relatively low interval velocities observed at the Blake Ridge has been enigmatic because realistic seismic models were absent to explain the observation. This study proposes models in which the gas hydrate concentrations vary in proportion to the porosity. Where gas hydrate concentrations are greater in more porous media, a significant amplitude blanking can be achieved with relatively low interval velocity. Depending on the amount of gas hydrate concentration in the pore space, reflection amplitudes from hydrate-bearing sediments can be much less, less or greater than those from corresponding non-hydrate-bearing sediments.

  15. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  16. Noble Gas Inserted Protonated Silicon Monoxide Cations: HNgOSi(+) (Ng = He, Ne, Ar, Kr, and Xe).

    PubMed

    Sekhar, Pooja; Ghosh, Ayan; Ghanty, Tapan K

    2015-11-25

    The existence of noble gas containing protonated silicon monoxide complexes have been predicted theoretically through ab initio quantum chemical methods. The predicted HNgOSi(+) ions are obtained by insertion of a noble gas atom (Ng = He, Ne, Ar, Kr, and Xe) between the H and O atoms in SiOH(+) ion. The structural parameters, energetics, harmonic vibrational frequencies, and charge distributions have been analyzed by optimizing the minima and the transition state structures using second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and coupled-cluster theory (CCSD(T)) based techniques. The predicted HNgOSi(+) ions are found to be stable with respect to all possible 2-body and 3-body dissociation channels, except the dissociation path leading to the respective global minimum products. However, these ions are found to be kinetically stable with respect to the global minimum dissociation process as revealed from the finite barrier heights, which in turn can prevent the transformation of these metastable species to the global minimum products. Furthermore, the computed bond lengths, vibrational frequencies, and force constant values suggest that a strong covalent bond exists between the H and Ng atoms in HNgOSi(+) ions while the Ng and O atoms share a strong van der Waals kind of interaction. Charge distributions and bonding analysis indicate that HNgOSi(+) ions can be best represented as strong complexes between the [HNg](+) ions and OSi molecule. All the computational results suggest that the predicted species, HNgOSi(+), may be prepared and characterized by suitable experimental technique at cryogenic temperature. PMID:26501440

  17. Noble-Gas-Inserted Fluoro(sulphido)boron (FNgBS, Ng = Ar, Kr, and Xe): A Theoretical Prediction.

    PubMed

    Ghosh, Ayan; Dey, Sourav; Manna, Debashree; Ghanty, Tapan K

    2015-06-01

    The possibility of the existence of a new series of neutral noble gas compound, FNgBS (where Ng = Ar, Kr, Xe), is explored theoretically through the insertion of a Ng atom into the fluoroborosulfide molecule (FBS). Second-order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory based methods have been employed to predict the structure, stability, harmonic vibrational frequencies, and charge distribution of FNgBS molecules. Through energetics study, it has been found that the molecules could dissociate into global minima products (Ng + FBS) on the respective singlet potential energy surface via a unimolecular dissociation channel; however, the sufficiently large activation energy barriers provide enough kinetic stability to the predicted molecules, which, in turn, prevent them from dissociating into the global minima products. Moreover, the FNgBS species are thermodynamically stable, owing to very high positive energies with respect to other two two-body dissociation channels, leading to FNg + BS and F(-) + NgBS(+), and two three-body dissociation channels, corresponding to the dissociation into F + Ng + BS and F(-) + Ng + BS(+). Furthermore, the Mulliken and NBO charge analysis together with the AIM results reveal that the Ng-B bond is more of covalent in nature, whereas the F-Ng bond is predominantly ionic in character. Thus, these compounds can be better represented as F(-)[NgBS](+). This fact is also supported by the detail analysis of bond length, bond dissociation energy, and stretching force constant values. All of the calculated results reported in this work clearly indicate that it might be possible to prepare and characterize the FNgBS molecules in cryogenic environment through matrix isolation technique by using a mixture of OCS/BF3 in the presence of large quantity of noble gas under suitable experimental conditions. PMID:25928588

  18. Development of an AMS method to study oceanic circulation characteristics using cosmogenic 39Ar

    USGS Publications Warehouse

    Collon, P.H.; Bichler, M.; Caggiano, J.; Cecil, L.D.; El, Masri Y.; Golser, R.; Jiang, C.L.; Heinz, A.; Henderson, D.; Kutschera, W.; Lehmann, B.E.; Leleux, P.; Loosli, H.H.; Pardo, R.C.; Paul, M.; Rehm, K.E.; Schlosser, P.; Scott, R.H.; Smethie, W.M.; Vondrasek, R.

    2004-01-01

    Initial experiments at the ATLAS facility [Nucl. Instr. and Meth. B 92 (1994) 241] resulted in a clear detection of cosmogenic 39Ar signal at the natural level. The present paper summarizes the recent developments of 39Ar AMS measurements at ATLAS: the use of an electron cyclotron resonance (ECR) positive ion source equipped with a special quartz liner to reduce 39K background, the development of a gas handling system for small volume argon samples, the acceleration of 39Ar8+ ions to 232 MeV, and the final separation of 39Ar from 39K in a gas-filled spectrograph. The first successful AMS measurements of 39Ar in ocean water samples from the Southern Atlantic ventilation experiment (SAVE) are reported. Published by Elsevier B.V.

  19. Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Leng, Yuxin

    2013-10-01

    We numerically study the propagation dynamics and compression of ultrashort laser pulses in a hollow-core fiber (HCF) filled with noble gases at different carrier wavelengths from 1.8 μm to 3.9 μm. In the optimal parameter range, single-cycle or even sub-cycle pulses with clean spatial and temporal profiles can be obtained due to chirp compensation beyond 3rd order by bulk material. It is found that the intensity-dependent group velocity sets the upper limits on both the gas pressures and input pulse energies if a clean and well-compressed pulse is required only through compression with bulk materials. In order to use higher gas pressures and larger input energies, two ways are demonstrated to deal with the limitations imposed by the intensity-dependent group velocity.

  20. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF.

    PubMed

    Mak, Ka Fai; Travers, John C; Hölzer, Philipp; Joly, Nicolas Y; Russell, Philip St J

    2013-05-01

    An efficient and tunable 176-550 nm source based on the emission of resonant dispersive radiation from ultrafast solitons at 800 nm is demonstrated in a gas-filled hollow-core photonic crystal fiber (PCF). By careful optimization and appropriate choice of gas, informed by detailed numerical simulations, we show that bright, high quality, localized bands of UV light (relative widths of a few percent) can be generated at all wavelengths across this range. Pulse energies of more than 75 nJ in the deep-UV, with relative bandwidths of ~3%, are generated from pump pulses of a few μJ. Excellent agreement is obtained between numerical and experimental results. The effects of positive and negative axial pressure gradients are also experimentally studied, and the coherence of the deep-UV dispersive wave radiation numerically investigated.

  1. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  2. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    SciTech Connect

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; O'Hern, Timothy J.; Benavides, Gilbert L.

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellows with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.

  3. Identification of new astatine isotopes using the gas-filled magnetic separator, SASSY

    SciTech Connect

    Yashita, S.

    1984-02-01

    A He-filled on-line mass separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two- neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +- 0.02 MeV and 180 +- 80 msec for /sup 194/At, and 7.12 +- 0.02 MeV and 200 +- 100 msec for /sup 195/At. 66 references.

  4. Identification of new astatine isotopes using the gas-filled magnetic separator, Sassy

    SciTech Connect

    Yashita, S.

    1983-01-01

    A He-filled on-line separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two-neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +/- 0.02 MeV and 180 +/- 80 msec for /sup 194/At, and 7.12 +/- 0.02 MeV and 200 +/- 100 msec for /sup 195/At.

  5. Reactor simulations of the GEC reference cell reactor with an ICP source for Ar/Cl2 and BCl3/Cl2 gas mixtures.

    NASA Astrophysics Data System (ADS)

    Veerasingam, Ramana; Choi, Seung J.; Riley, Merle; Hoekstra, Robert; Kushner, Mark

    1996-10-01

    The ICP (inductively coupled plasma) device is a widely researched plasma etching technology to meet the stringent requirements of dielectric and metal etch for the next generation semiconductor wafers. At Sandia, the GEC reference cell has been modified to include a planar coil geometry to couple the RF power to the plasma inductively. Measurements of densities of electrons, CL-, Ar+, and recently of ion current flux have been made. In this paper, we will present results of simulations modeling the GEC cell for Ar/CL2 and BCL3/Cl2 gas mixtures using the HPEM and GEMINI code packages. Results will be parametrized with power, pressure, and gas mixture. In addition, simulations of the ion current flux using a sheath model developed at Sandia and the HPEM will be performed and compared to data.

  6. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Quart, N. D.; DasGupta, A.; Jones, Brent M.; Jennings, Christopher Ashley

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  7. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    SciTech Connect

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J. |

    1995-03-06

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of {approximately}3 keV electron temperature and an electron density of {approximately}1.0 E + 21 cm{sup {minus}3}. A gas cell target design was chosen to confine as gas of {approximately}0.01 cm{sup 3} in volume at {approximately} 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL.

  8. The influence of variations in biophysical conditions on hemolysis near ultrasonically activated gas-filled micropores

    SciTech Connect

    Miller, D.L.; Thomas, R.M. )

    1990-05-01

    Hemolysis induced by 1.9-MHz ultrasound in 0.5% suspensions of canine erythrocytes with 3.7-{mu}m-diam micropore-trapped gas bodies was investigated for a variety of biophysical conditions. For isotonic media, hemolysis increased with exposure duration but did not greatly change with exposure temperature, or prior heat treatment. The temperature results were especially interesting because increased temperatures might have been expected to increase the sensitivity of the cells to the ultrasonically activated gas bodies. Variations in osmolarity had little influence on the results. Increasing the viscosity of the medium decreased the effect, and this did not seem to depend on the molecular weight of the dextran additive. A medium with elevated mass density seemed to increase the effectiveness of the exposures. This condition eliminated the density difference between the cells and the medium, and might have been expected to reduce the effectiveness of the exposures, because the radiation force, which theoretically gathers cells to the gas bodies, is minimized for such conditions. This information should aid in developing refinements to the theoretical understanding of low-intensity ultrasonic bioeffects.

  9. Fabrication and testing of gas-filled targets for large-scale plasma experiments on nova

    SciTech Connect

    Stone, G.F.; Rivers, C.J.; Spragge, M.R.; Wallace, R.J.

    1996-06-01

    The proposed next-generation ICF facility, the National Ignition Facility (NIF) is designed to produce energy gain from x-ray heated {open_quotes}indirect-drive{close_quotes} fuel capsules. For indirect-drive targets, laser light heats the inside of the Au hohlraum wall and produces x rays which in turn heat and implode the capsule to produce fusion conditions in the fuel. Unlike Nova targets, in NIF-scale targets laser light will propagate through several millimeters of gas, producing a plasma, before impinging upon the Au hohlraum wall. The purpose of the gas-produced plasma is to provide sufficient pressure to keep the radiating Au surface from expanding excessively into the hohlraum cavity. Excessive expansion of the Au wall interacts with the laser pulse and degrades the drive symmetry of the capsule implosion. The authors have begun an experimental campaign on the Nova laser to study the effect of hohlraum gas on both laser-plasma interaction and implosion symmetry. In their current NIF target design, the calculated plasma electron temperature is T{sub e} {approx} 3 keV and the electron density is N{sub e} {approx} 10{sup 21}cm{sup {minus}3}.

  10. High-performance, non-CFC-based thermal insulation: Gas filled panels

    SciTech Connect

    Griffith, B.T.; Arasteh, D.; Selkowitz, S.

    1992-04-01

    Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

  11. Possible health effects of liquefied petroleum gas on workers at filling and distribution stations of Gaza governorates.

    PubMed

    Sirdah, M M; Al Laham, N A; El Madhoun, R A

    2013-03-01

    Liquefied petroleum gas (LPG) is widely used in the Gaza Strip for domestic purposes, in agriculture and industry and, illegally, in cars. This study aimed to identify possible health effects on workers exposed to LPG in Gaza governorates. Data were collected by a questionnaire interview, and haematological and biochemical analyses of venous blood samples were made from 30 workers at filling and distribution stations and 30 apparently healthy controls. Statistically significant differences were found in all self-reported health-related complaints among LPG workers versus controls. LPG workers had significantly higher values of red blood cell counts, haemoglobin, haematocrit mean corpuscular haemoglobin and platelet counts. They also had significantly higher values of kidney function tests (urea, creatinine and uric acid) and liver function enzyme activities (aspartate aminotransferase and alanine aminotransferase). LPG workers at Gaza Strip petroleum stations are at higher risk for health-related symptoms and clinical abnormalities.

  12. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    NASA Astrophysics Data System (ADS)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  13. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

  14. FIssion Product Prompt γ-ray spectrometer: Development of an instrumented gas-filled magnetic spectrometer at the ILL

    NASA Astrophysics Data System (ADS)

    Blanc, A.; Chebboubi, A.; Faust, H.; Jentschel, M.; Kessedjian, G.; Köster, U.; Materna, T.; Panebianco, S.; Sage, C.; Urban, W.

    2013-12-01

    Accurate thermal neutron-induced fission data are important for applications in reactor physics as well as for fundamental nuclear physics. FIPPS is the new FIssion Product Prompt γ-ray Spectrometer being developed at the Institut Laue Langevin for neutron-induced fission studies. FIPPS is based on the combination of a large Germanium detector array surrounding a fission target, a Time-Of-Flight detector and a Gas-Filled Magnet (GFM) to identify mass, nuclear charge and kinetic energy of one of the fission fragments. The GFM will be instrumented with a Time-Projection Chamber (TPC) for individual 3D tracking of the fragments. A conceptual design study of the new spectrometer is presented.

  15. Using gas geochemistry to delineate structural compartments and assess petroleum reservoir-filling directions: A Venezuelan case study

    NASA Astrophysics Data System (ADS)

    Márquez, G.; Escobar, M.; Lorenzo, E.; Gallego, J. R.; Tocco, R.

    2013-04-01

    Here we examined the light hydrocarbon and nitrogen content and isotopic signatures of eleven gaseous samples in order to evaluate lateral intra-reservoir continuity in a Venezuelan reservoir in the central area of Lake Maracaibo Basin. At least three single compartments, located in the northern-central and southern parts of the reservoir, are revealed by nitrogen concentrations showing clear step-like compositional breaks. The occurrence of step-breaks was also supported by the isotopic signature of individual hydrocarbon compounds in the range of C1-C4 alkanes. Samples presented only slight differences in N2 and hydrocarbon gas compositions within the central and northern parts of the reservoir, and therefore it was not possible to infer structural barriers in coherence with the geological section. Some oil bulk parameters corroborate gradual changes that provide additional information on the reservoir-filling history, thus suggesting that the lateral physical-chemical equilibrium of fluids was not reached in this reservoir.

  16. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    NASA Astrophysics Data System (ADS)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  17. Possible health effects of liquefied petroleum gas on workers at filling and distribution stations of Gaza governorates.

    PubMed

    Sirdah, M M; Al Laham, N A; El Madhoun, R A

    2013-03-01

    Liquefied petroleum gas (LPG) is widely used in the Gaza Strip for domestic purposes, in agriculture and industry and, illegally, in cars. This study aimed to identify possible health effects on workers exposed to LPG in Gaza governorates. Data were collected by a questionnaire interview, and haematological and biochemical analyses of venous blood samples were made from 30 workers at filling and distribution stations and 30 apparently healthy controls. Statistically significant differences were found in all self-reported health-related complaints among LPG workers versus controls. LPG workers had significantly higher values of red blood cell counts, haemoglobin, haematocrit mean corpuscular haemoglobin and platelet counts. They also had significantly higher values of kidney function tests (urea, creatinine and uric acid) and liver function enzyme activities (aspartate aminotransferase and alanine aminotransferase). LPG workers at Gaza Strip petroleum stations are at higher risk for health-related symptoms and clinical abnormalities. PMID:23879082

  18. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    NASA Technical Reports Server (NTRS)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  19. Filling in the Roadmap for Self-Consistent Electron Cloud and Gas Modeling

    SciTech Connect

    Vay, J; Furman, M A; Seidl, P A; Cohen, R H; Friedman, A; Grote, D P; Covo, M K; Molvik, A W; Stoltz, P H; Veitzer, S; Verboncoeur, J

    2005-10-11

    Electron clouds and gas pressure rise limit the performance of many major accelerators. A multi-laboratory effort to understand the underlying physics via the combined application of experiment, theory, and simulation is underway. We present here the status of the simulation capability development, based on a merge of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP and the electron cloud code POSINST, with additional functionalities. The development of the new capability follows a ''roadmap'' describing the different functional modules, and their inter-relationships, that are ultimately needed to reach self-consistency. Newly developed functionalities include a novel particle mover bridging the time scales between electron and ion motion, a module to generate neutrals desorbed by beam ion impacts at the wall, and a module to track impact ionization of the gas by beam ions or electrons. Example applications of the new capability to the modeling of electron effects in the High Current Experiment (HCX) are given.

  20. Smoothing single-crystalline SiC surfaces by reactive ion etching using pure NF{sub 3} and NF{sub 3}/Ar mixture gas plasmas

    SciTech Connect

    Tasaka, Akimasa; Kotaka, Yuki; Oda, Atsushi; Saito, Morihiro; Tojo, Tetsuro; Inaba, Minoru

    2014-09-01

    In pure NF{sub 3} plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF{sub 3} pressure of 2 Pa were the highest and it decreased with an increase in NF{sub 3} pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF{sub 3}/Ar gas pressure of 2 Pa and addition of Ar to NF{sub 3} plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the number of pillars decreased with an increase in the Ar-concentration in the NF{sub 3}/Ar mixture gas. The roughness factor (R{sub a}) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF{sub 3} gas. Both the R{sub a} values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF{sub 3}/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.

  1. Comparison of conventional K-Ar and 40Ar/39Ar dating of young mafic volcanic rocks

    USGS Publications Warehouse

    Lanphere, M.A.

    2000-01-01

    K-Ar and 40Ar/39Ar ages have been measured on nine mafic volcanic rocks younger than 1 myr from the Snake River Plain (Idaho), Mount Adams (Washington), and Crater Lake (Oregon). The K-Ar ages were calculated from Ar measurements made by isotope dilution and K2O measurements by flame photometry. The 40Ar/39Ar ages are incremental-heating experiments using a low-blank resistance-heated furnace. The results indicate that high-quality ages can be measured on young, mafic volcanic rocks using either the K-Ar or the 40Ar/39Ar technique. The precision of an 40Ar/39Ar plateau age generally is better than the precision of a K-Ar age because the plateau age is calculated by pooling the ages of several gas increments. The precision of a plateau age generally is better than the precision of an isotope correlation (isochron) age for the same sample. For one sample the intercept of the isochron yielded an 40Ar/36Ar value significantly different from the atmospheric value of 295.5. Recalculation of increment ages using the isochron intercept for the composition of nonradiogenic Ar in the sample resulted in much better agreement of ages for this sample. The results of this study also indicate that, given suitable material and modern equipment, precise K-Ar and 40Ar/39Ar ages can be measured on volcanic rocks as young as the latest Pleistocene, and perhaps even the Holocene.

  2. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    DOE PAGES

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; O'Hern, Timothy J.; Benavides, Gilbert L.

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less

  3. Effects of total CH 4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Wang, X.; Zheng, W. T.; Tian, H. W.; Liu, C.; Lu, Y. L.; Peng, Y. S.; Cheng, G.

    2009-12-01

    The effects of total CH 4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm 2.

  4. Integrated processing of contrast pulse sequencing ultrasound imaging for enhanced active contrast of hollow gas filled silica nanoshells and microshells.

    PubMed

    Ta, Casey N; Liberman, Alexander; Paul Martinez, H; Barback, Christopher V; Mattrey, Robert F; Blair, Sarah L; Trogler, William C; Kummel, Andrew C; Wu, Zhe

    2012-03-01

    In recent years, there have been increasing developments in the field of contrast-enhanced ultrasound both in the creation of new contrast agents and in imaging modalities. These contrast agents have been employed to study tumor vasculature in order to improve cancer detection and diagnosis. An in vivo study is presented of ultrasound imaging of gas filled hollow silica microshells and nanoshells which have been delivered intraperitoneally to an IGROV-1 tumor bearing mouse. In contrast to microbubbles, this formulation of microshells provided strong ultrasound imaging signals by shell disruption and release of gas. Imaging of the microshells in an animal model was facilitated by novel image processing. Although the particle signal could be identified by eye under live imaging, high background obfuscated the particle signal in still images and near the borders of the tumor with live images. Image processing techniques were developed that employed the transient nature of the particle signal to selectively filter out the background signal. By applying image registration, high-pass, median, threshold, and motion filtering, a short video clip of the particle signal was compressed into a single image, thereby resolving the silica shells within the tumor. © 2012 American Vacuum Society.

  5. Finite element analysis of flow in a gas filled rotating annulus

    SciTech Connect

    Berger, M.H.

    1985-09-01

    Linearized multi-dimensional flow in a gas centrifuge can be described away from the ends by Onsager's pancake equation. However, a rotating annulus results in a slightly different set of boundary conditions than the usual symmetry conditions at the axis of rotation. In this process the problem on an annulus becomes ill-posed and requires some special attention. We treat linear inner and outer rotor temperature distributions and velocity slip. An existence condition for a class of nontrivial, one-dimensional solutions is given. New exact solutions in the infinite bowl approximation have been derived containing terms that are important at finite gap width and nonvanishing velocity slip. The usual one-dimensional axially symmetric solution is obtained as a limit. Our previously reported finite element algorithm has been extended to treat this new class of problems. Effects of gap width, temperature, and slip conditions are illustrated. We report on the compressible, finite length, circular Couette flow for the first time. 21 refs.

  6. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3

  7. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    SciTech Connect

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  8. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  9. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  10. Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid

    NASA Astrophysics Data System (ADS)

    Betney, M. R.; Tully, B.; Hawker, N. A.; Ventikos, Y.

    2015-03-01

    This study presents a computational investigation of the interactions of a single shock wave with multiple gas-filled bubbles in a liquid medium. This work illustrates how multiple bubbles may be used in shock-bubble interactions to intensify the process on a local level. A high resolution front-tracking approach is used, which enables explicit tracking of the gas-liquid interface. The collapse of two identical bubbles, one placed behind the other is investigated in detail, demonstrating that peak pressures in a two bubble arrangement can exceed those seen in single bubble collapse. Additionally, a parametric investigation into the effect of bubble separation is presented. It is found that the separation distance has a significant effect on both the shape and velocity of the main transverse jet of the second bubble. Extending this analysis to effects of relative bubble size, we show that if the first bubble is sufficiently small relative to the second, it may become entirely entrained in the second bubble main transverse jet. In contrast, if the first bubble is substantially larger than the second, it may offer it significant protection from the incident shock. This protection is utilised in the study of a triangular array of three bubbles, with the central bubble being significantly smaller than the outer bubbles. It is demonstrated that, through shielding of bubbles until later in the collapse process, pressures over five times higher than the maximum pressure observed in the single bubble case may be achieved. This corresponds to a peak pressure that is approximately 40 times more intense than the incident shock wave. This work has applications in a number of different fields, including cavitation erosion, explosives, targeted drug delivery/intensification, and shock wave lithotripsy.

  11. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I + CF4 + Ar ternary gas mixtures

    NASA Astrophysics Data System (ADS)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-01

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF3I + CF4 + Ar in the E/N range of 100-700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF3I component is increased while the CF4 component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF3I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in the mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF3I component.

  12. Sedimentology and permeability architecture of Atokan Valley-Fill natural gas reservoirs, Boonsville Field, North-Central Texas

    SciTech Connect

    Burn, M.J.; Carr, D.L.; Stuede, J.

    1994-12-31

    The Boonsville {open_quotes}Bend Conglomerate{close_quotes} gas field in Jack and Wise Counties comprises numerous thin (10-20 ft) conglomeratic sandstone reservoirs within an approximately 1,000-ft-thick section of Atokan strata. Reservoir sandstone bodies commonly overlie sequence-boundary unconformities and exhibit overall upward-fining grain-size trends. Many represent incised valley-fill deposits that accumulated during postunconformity base-level rise. This stratal architectures is repeated at several levels throughout the Bend Conglomerate, suggesting that sediment accumulation occurred in a moderate- to low-accommodation setting and that base level fluctuated frequently. The reservoir units were deposited by low-sinuosity fluvial processes, causing a hierarchy of bed forms and grain-avalanche bar-front processes to produce complex grain-size variations. Permeability distribution is primarily controlled by depositional factors but may also be affected by secondary porosity created by the selective dissolution of chert clasts. High-permeability zones ({approximately}2.8 darcys) are characterized by macroscopic vugs composed of clast-shaped moldic voids ({approximately}5 mm in diameter). Tight (low-permeability) zones are heavily cemented by silica, calcite, dolomite, and ankerite and siderate cements. Minipermeameter, x-radiography, and petrographic studies and facies analysis conducted on cores from two Bend Conglomerate reservoirs (Threshold Development Company, I.G. Yates 33, and OXY U.S.A. Sealy {open_quotes}C{close_quotes} 2) illustrate the hierarchy of sedimentological and diagenetic controls on permeability architecture.

  13. Understanding fast neutrons utilizing a water Cherenkov detector and a gas-filled detector at the soudan underground laboratory

    NASA Astrophysics Data System (ADS)

    Ghimire, Chiranjibi

    Many experiments are currently searching for Weakly Interactive Massive Particles (WIMPs), a well-motivated class of hypothetical dark matter candidates. These direct dark matter detection experiments are located in deep underground to shield from cosmic-ray muons and the fast neutrons they produce. Fast neutrons are particularly dangerous to WIMP detectors because they can penetrate a WIMP-search experiment's neutron shielding. Once inside, these fast neutrons can interact with high-Z material near the WIMP detector, producing slower neutrons capable of mimicking the expected WIMP signal. My research uses two detectors located in Soudan Underground Laboratory to understand fast neutron production by muons in an underground environment: a water-Cherenkov detector sensitive to fast neutrons; and a gas-filled detector sensitive to charged particles like muons. The different kinds of selection criterion and their efficiencies are reported in this thesis. This thesis estimate the number of high energy neutron-like candidates associated with a nearby muon by using data from both detector systems.

  14. Experimental tests of Rayleigh-Taylor stabilization mechanisms with long pulse gas-filled halfraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Huser, G.; Vandenboomgaerde, M.; Liberatore, S.; Masse, L.; Galmiche, D.

    2008-11-01

    Mitigation of Rayleigh-Taylor instabilities growth is a key issue on the road toward ignition. The graded doped ablator is a common concept for NIF [1] and LMJ [2] point designs. A complementary stabilization mechanism based on anisotropic thermal diffusion was theoretically underlined [3] for the ablative Rayleigh-Taylor instability. We will present the first ever experimental tests of these mechanisms. Indirect drive experiments were performed on the OMEGA laser facility with a long-pulse platform. We used in fact gas-filled halfraums and stack 15 drive beams along 2 cones to create a 7 ns long radiation drive. Halfraum energetics with E-IDI-300 phase plates was validated by dedicated shots along P5/P8 and is fairly reproduced by the simulations. These drive measurements allowed also to determine the graded doped planar emulator whose layers thicknesses and composition should be carefully optimized . Side-on and face-on data acquired with germanium-doped plastic samples (modulations wavelength 35 and 50 microns) will be presented and compared with FCI2 hydrocodes simulations. [1] S.W. Haan et al., Phys. Plasmas 12, 056316 (2005). [2] C C-Cl'erouin et al 2008 J. Phys.: Conf. Ser. 112 022023 [3] L. Masse., Phys. Rev. Lett. 98, 245001 (2007).

  15. Development of the Focal Plane Detection System for the Future Gas-Filled Separator at the Cyclotron Institute

    NASA Astrophysics Data System (ADS)

    Bertelsen, Erin; Mayorov, Dmitriy; Folden, Charles ``Cody'', III

    2015-10-01

    A focal plane detection system is being developed for use with the gas-filled separator previously known as SASSYER (Small Angle Separator System at Yale for Evaporation Residues) that will be installed at the Cyclotron Institute at Texas A&M University. This system will be used to study heavy (Z >= 90) elements and features two 60×40 strip double-sided silicon detectors (DSSDs) and accompanying multiplexing read-out electronics. The DSSDs cover an area of 120×40 mm2 and are read-out by fourteen 16-channel multiplexers (Mesytec MUX-16) that perform the function of a preamplifier, shaper, and leading-edge discriminator in one unit. The multiplexers are controlled by four ``MUX drivers,'' each of which serves as a signal bus for multiple MUX-16 boards. The system allows a single 16-channel ADC to read the combined 200 strips of both DSSDs. A four peak source composed of 148Gd, 239Pu, 241Am, and 244Cm was used to characterize the performance of the system, with a preliminary energy resolution of ~ 60 keV measured for the 241Am alphas. This contribution will discuss the work performed in assembly of the test setup, optimization and performance check of the multiplexers, and the preliminary energy and position data collected with the α-source. Present address: Los Alamos National Laboratory, Los Alamos, NM 87545.

  16. Vibration-Induced Rectified Motion of a Piston in a Liquid-Filled Cylinder with Bellows to Mimic Gas Regions

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Romero, L. A.; Clausen, J. R.; O'Hern, T. J.

    2014-11-01

    The motion of a piston within a cylinder is investigated. A spring suspends the piston against gravity. The cylinder is filled with a viscous liquid and has compressible bellows at the top and bottom to mimic gas regions. A fixed post with protrusions extends into a hole through the piston with opposing protrusions. The length of the gap formed by the protrusions depends on the piston's vertical position. The outer gap between the piston and the cylinder is extremely small. Hence, as the piston moves, the displaced liquid passes through the variable-length gap, and the liquid force on the piston depends on its position. When this system is subjected to vertical vibrations, this dependence can produce a nonzero net force. With bellows, this net force can become large enough for the piston to compress the spring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Investigation of beam non-uniformity after cross-beam energy transfer in a gas filled hohlraum

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; Hinkel, D. E.; Rosen, M. D.; Callahan, D. A.; Michel, P. A.; Moore, A. S.; Moody, J. D.

    2015-11-01

    Control of hotspot symmetry in an ignition capsule imploded by the x-ray drive in a high gas-filled cylindrical hohlraum at the NIF currently requires cross-beam energy transfer (CBET) from the outer beams to the inner beams. CBET occurs in the central region of the laser entrance hole (LEH) where the laser beams overlap. Linear gain models applied to individual rays indicate that CBET is not uniform across the beam profile, producing a non-uniform spatial distribution on the beams that varies in time. This changing spatial distribution could introduce asymmetries in the x-ray drive applied to the ignition capsule and should be quantified. We are investigating the effects of CBET using the Quartraum experimental platform. This platform uses an LEH-only target designed to isolate the effect of CBET on the spatial-intensity distribution of the inner beams by minimizing the effect of absorption and backscatter. A time resolved image of two inner beams is captured on a high Z witness plate. Experimental results showing how the beam's x-ray foot print on the witness plate changes as a function of Δλ will be shown and compared to models.

  18. A velocity map imaging study of gold-rare gas complexes: Au-Ar, Au-Kr, and Au-Xe

    NASA Astrophysics Data System (ADS)

    Hopkins, W. Scott; Woodham, Alex P.; Plowright, Richard J.; Wright, Timothy G.; Mackenzie, Stuart R.

    2010-06-01

    The ultraviolet photodissociation dynamics of the gold-rare gas atom van der Waals complexes (Au-RG, RG=Ar, Kr, and Xe) have been studied by velocity map imaging. Photofragmentation of Au-Ar and Au-Kr at several wavelengths permits extrapolation to zero of the total kinetic energy release (TKER) spectra as monitored in the Au(P23/2∘[5d106p]) fragment channel, facilitating the determination of ground state dissociation energies of D0″(Au-Ar)=149±13 cm-1 and D0″(Au-Kr)=240±19 cm-1, respectively. In the same spectral region, transitions to vibrational levels of an Ω'=1/2 state of the Au-Xe complex result in predissociation to the lower Au(P21/2∘[5d106p])+Xe(S10[5p6]) fragment channel for which TKER extrapolation yields a value of D0″(Au-Xe)=636±27 cm-1. Asymmetric line shapes for transitions to the v'=14 level of this state indicate coupling to the Au(P23/2∘[5d106p])+Xe(S10[5p6]) continuum, which allows us to refine this value to D0″(Au-Xe)=607±5 cm-1. The dissociation dynamics of this vibrational level have been studied at the level of individual isotopologues by fitting the observed excitation spectra to Fano profiles. These fits reveal a remarkable variation in the predissociation dynamics for different Au-Xe isotopologues. For Au-Ar and Au-Xe, the determined ground state dissociation energies are in good agreement with recent theoretical calculations; the agreement of the Au-Kr value with theory is less satisfactory.

  19. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    SciTech Connect

    Bromberger, H. Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  20. Density of atoms in Ar*(3p{sup 5}4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    SciTech Connect

    Huebner, S.; Carbone, E. A. D.; Mullen, J. J. A. M. van der; Sadeghi, N.

    2013-04-14

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, T{sub g}, obtained in a surfatron plasma in the pressure range 0.65gas pressures of p<10 mbar, changes to a Voigt shape at p>10 mbar, for which the pressure broadening can no more be neglected. T{sub g} is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of T{sub g} at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 10{sup 16}-10{sup 18} m{sup -3}, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10Ar(4 s) atom densities increase slightly with rising pressure. For the studied pressure range and all axial positions, the density ratio: 1s{sub 5}/1s{sub 4}/1s{sub 3} is very close to a Boltzmann equilibrium by electron impact mixing at the local T{sub e}, which was previously measured by Thomson scattering. The Ar(4 s) densities are successfully compared to a detailed Collisional Radiative Model.

  1. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    NASA Astrophysics Data System (ADS)

    Machavarapu, Ramudu; Jakob, Gerhard

    2015-03-01

    We report the effect of substrate temperature (TS) and Ar gas pressure (PD) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing TS. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 ∘C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of PD variation, with increase in PD, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing PD. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in PD, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  2. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    SciTech Connect

    Machavarapu, Ramudu Jakob, Gerhard

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  3. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    SciTech Connect

    Zhirkov, Igor Rosen, Johanna; Oks, Efim

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.

  4. Water-window microscopy using compact, laser-plasma source based on Ar/He double stream gas-puff target

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw W.; Skorupka, Marcin; Bartnik, Andrzej; Kostecki, Jerzy; Jarocki, Roman; Szczurek, Mirosław; Wegrzynski, Lukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2013-05-01

    Photon-based (bosonic-type) imaging at short wavelength vs. electron, or recently neutron, imaging has additional advantages due to different interaction of photons with matter and thus high resolution photon-based imaging is still of high interest to the scientific community. In this work we try to combine the advantages of employing compact, laboratory type laser-plasma short wavelength source, based on Ar/He gas puff target, emitting incoherent radiation, with the "water-window" spectral range. This unique combination is highly suitable for biological imaging, and allows developing a small size microscopy setup, which might be used in various fields of science and technology. Thus, in this paper we report on recent advances in "water-window" desk-top microscopy setup employing a laser-plasma SXR source based on a double stream gas puff target and Wolter type-I objective. The system allows capturing magnified images of the objects with ~1 μm spatial resolution up to ~40 μm thickness and single SXR pulse exposure time as low as 3 ns. For the SXR microscope Ar plasma was produced by focusing of the pumping laser pulses, from Nd:YAG laser (Eksma), by a lens onto a gas puff target. EUV radiation from the plasma was collected and focused by an ellipsoidal, axi-symmetrical nickel coated condenser mirror, developed by Rigaku, Inc. The condenser is a broad-band optic, capable of efficiently reflecting radiation from the EUV range down to SXR region with energy cut-off of ~800 eV. To spectrally narrow the emission from argon plasma a free-standing titanium filter (Lebow) was used. Spectrally filtered radiation illuminates the sample. Then the sample was imaged onto a SXR sensitive back-illuminated, CCD camera (Andor) by a Wolter type-I reflective objective. A characterization and optimization of both the source and the microscope setups are presented and discussed.

  5. Ordering and growth of rare gas films (Xe, Kr, Ar, and Ne) on the pseudo-ten-fold quasicrystalline approximant Al₁₃Co₄(100) surface.

    PubMed

    Petucci, J; Karimi, M; Huang, Y-T; Curtarolo, S; Diehl, R D

    2014-03-01

    Adsorption of the rare gases Kr, Ar, and Ne on the complex alloy surface Al₁₃Co₄(100) was studied using grand canonical Monte Carlo (GCMC) computer simulations. This surface is an approximant to the ten-fold decagonal Al-Ni-Co quasicrystalline surface, on which rare gas adsorption was studied previously. Comparison of adsorption results on the periodic Al₁₃Co₄(100) surface with those of the quasiperiodic Al-Ni-Co surface indicates some similarities, such as layer-by-layer growth, and some dissimilarities, such as the formation of Archimedes tiling phases (Mikhael et al 2008 Nature 454 501, Shechtman et al 1984 Phys. Rev. Lett. 53 1951, Macia 2006 Rep. Prog. Phys. 69 397, Schmiedeberg et al 2010 Eur. Phys. J. E 32 25-34, Kromer et al 2012 Phys. Rev. Lett. 108 218301, Schmiedeberg and Stark 2008 Phys. Rev. Lett. 101 218302). The conditions under which Archimedes tiling phases (ATP) emerge on Al₁₃Co₄(100) are examined and their presence is related to the gas-gas and gas-surface interaction parameters. PMID:24521558

  6. Ordering and growth of rare gas films (Xe, Kr, Ar, and Ne) on the pseudo-ten-fold quasicrystalline approximant Al₁₃Co₄(100) surface.

    PubMed

    Petucci, J; Karimi, M; Huang, Y-T; Curtarolo, S; Diehl, R D

    2014-03-01

    Adsorption of the rare gases Kr, Ar, and Ne on the complex alloy surface Al₁₃Co₄(100) was studied using grand canonical Monte Carlo (GCMC) computer simulations. This surface is an approximant to the ten-fold decagonal Al-Ni-Co quasicrystalline surface, on which rare gas adsorption was studied previously. Comparison of adsorption results on the periodic Al₁₃Co₄(100) surface with those of the quasiperiodic Al-Ni-Co surface indicates some similarities, such as layer-by-layer growth, and some dissimilarities, such as the formation of Archimedes tiling phases (Mikhael et al 2008 Nature 454 501, Shechtman et al 1984 Phys. Rev. Lett. 53 1951, Macia 2006 Rep. Prog. Phys. 69 397, Schmiedeberg et al 2010 Eur. Phys. J. E 32 25-34, Kromer et al 2012 Phys. Rev. Lett. 108 218301, Schmiedeberg and Stark 2008 Phys. Rev. Lett. 101 218302). The conditions under which Archimedes tiling phases (ATP) emerge on Al₁₃Co₄(100) are examined and their presence is related to the gas-gas and gas-surface interaction parameters.

  7. A metrological approach to measuring 40Ar* concentrations in K-Ar and 40Ar/39Ar mineral standards

    NASA Astrophysics Data System (ADS)

    Morgan, Leah E.; Postma, Onno; Kuiper, Klaudia F.; Mark, Darren F.; van der Plas, Wim; Davidson, Stuart; Perkin, Michael; Villa, Igor M.; Wijbrans, Jan R.

    2011-10-01

    In geochronology, isotopic ages are determined from the ratio of parent and daughter nuclide concentrations in minerals. For dating of geological material using the K-Ar system, the simultaneous determination of 40Ar and 40K concentrations on the same aliquot is not possible. Therefore, a widely used variant, the 40Ar/39Ar technique, involves the production of 39Ar from 39K by neutron bombardment and the reliance on indirect natural calibrators of the neutron flux, referred to as "mineral standards." Many mineral standards still in use rely on decades-old determinations of 40Ar concentrations; resulting uncertainties, both systematic and analytical, impede the determination of higher accuracy ages using the K-Ar decay system. We discuss the theoretical approach and technical design of a gas delivery system which emits metrologically traceable amounts of 40Ar and will allow for the sensitivity calibration of noble gas mass spectrometers. The design of this system is based on a rigorous assessment of the uncertainty budget and detailed tests of a prototype system. A number of obstacles and proposed resolutions are discussed along with the selection of components and their integration into a pipette system.

  8. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2012-01-01

    High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of MexicoGasHydrateJointIndustryProjectLegII in the spring of 2009. Well logs obtained in one of the wells, the GreenCanyon Block 955Hwell (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gashydrate within sand with average gashydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gashydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gashydrate saturations of about 20% from the resistivity log (locally 50-60%) and negligible amounts of gashydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gashydrate occurrences. In the case of the shallow clay-rich interval, gashydrate fills vertical (or high angle) fractures in rather than fillingpore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gashydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-Hwell.

  9. Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering.

    PubMed

    Sioris, C E; Evans, W F

    1999-04-20

    A line-by-line radiative-transfer model to quantify the Ring effect as caused by rotational Raman scattering has been developed for the 310-550-nm spectral interval. The solar zenith angle and the resolution are key input parameters, as is the sky spectrum (excluding inelastic atmospheric scattering), which was modeled with MODTRAN 3.5. The filling in is modeled for ground-based viewing geometry and includes surface reflection and single inelastic scattering. It is shown that O2 contributes half of the filling in of N2. A strong inverse relationship with wavelength is noted in the filling in. A comparison with observations shows moderate agreement. The largest filling in occurs in the Ca II K and H lines.

  10. Modeling of the Process of Filling a Dome Separator with the Decomposition of a Gas Hydrate Formed During the Mounting of the Installation

    NASA Astrophysics Data System (ADS)

    Chiglintsev, I. A.; Nasyrov, A. A.

    2016-07-01

    Consideration is given to the theoretical foundations of operation of a dome separator designed to collect and subsequently ship gas and oil emissions in the case of fracturing of the well near deep-water reservoirs where thermobaric conditions are favorable for the formation of a gas hydrate. A mathematical model has been constructed that describes the process of filling the indicated dome with hydrocarbons and pumping them out it under hydrate-formation conditions. The dynamics of change in the phase temperature in the dome has been described.

  11. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    SciTech Connect

    Schneider, M. B. MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Hinkel, D. E.; Hsing, W. W.; Kervin, M. L.; Landen, O. L.; Lindl, J. D.; May, M. J.; and others

    2015-12-15

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a “hohlraum.” The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3–5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum (“ViewFactor hohlraum”) is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%–20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  12. New Empirical Potential Energy Functions for the Heavier Homonuclear Rare Gas Pairs: {Ne}_2, {Ar}_2, {Kr}_2, and {Xe}_2

    NASA Astrophysics Data System (ADS)

    Myatt, Philip Thomas; Baker, Matthew T.; Kang, Ju-Hee; Escobar Moya, Andres; McCourt, Frederick R. W.; Le Roy, Robert J.

    2016-06-01

    The many decades of work on determining accurate analytic pair potentials for rare gas dimers from experimental data focussed largely on the use of bulk non-ideal gas and collisional properties, with the use of spectroscopic data being somewhat of an afterthought, for testing the resulting functions. This was a natural result of experimental challenges, as the very weak binding of ground-state rare gas pairs made high resolution spectroscopy a relatively late arrival as a practical tool in this area. However, we believe that it is now time for a comprehensive reassessment. Following up on a preliminary report at this meeting five years ago, this paper describes work to determine a new generation of empirical potential energy functions for the four heavier (i.e., not involving He) homonuclear rare gas pairs from direct fits to all available spectroscopic, pressure virial, and acoustic virial coefficient data, with the resulting functions being `tuned' by comparisons with available thermal transport property data: viscosity, mass diffusion and thermal diffusion, and thermal conductivity data, and tested against the best available ab initio potentials. The resulting functions are everywhere smooth and differentiable to all orders, incorporate the correct (damped) theoretical inverse-power long-range behaviour, and have sensible short-range extrapolation behaviour. R.J. Le Roy, C.J.W. Mackie, P. Chandrasekhar and K.M. Sentjens, ``Accurate New Potential Energy Functions From Spectroscopic and Virial Coefficient Data for the Ten Rare Gas Pairs formed from Ne, Ar, Kr and Xe, paper MF03 at the 66th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 13-17 (2011).

  13. Purification and Detection of 39Ar in Groundwater Samples via Low-Level Counting

    NASA Astrophysics Data System (ADS)

    Mace, E. K.; Aalseth, C.; Brandenberger, J. M.; Humble, P.; Panisko, M.; Seifert, A.; Williams, R. M.

    2015-12-01

    Argon-39 can be used as a radiotracer to age-date groundwater aquifers to study recharge rates and to better understand the mean residence time, or age distributions, of groundwater. Argon-39 (with a half-life of 269 years) is created in the atmosphere by cosmic rays interacting with argon in the air (primarily 40Ar). The use of 39Ar as a radiotracer fills a gap in the age dating range which is currently covered by 3H/3He or 85Kr (< 50 years) and 14C (>1000 years); 39Ar fills the intermediate time scale range from 50-1000 years where the previously established radiotracers are not adequate. We will introduce the process for purifying and detecting 39Ar in ground water using ultra-low-background proportional counters (ULBPCs) at the shallow underground laboratory at Pacific Northwest National Laboratory. Argon-39 is detected through direct beta counting using ULBPCs loaded with a mixture of geologic argon (extracted from a carbon dioxide well with no measureable 39Ar activity) and methane, which enhances the sensitivity for 39Ar measurements. The ULBPCs have been shown to have a background count rate of 148 counts per day (cpd) in the energy range 3-400 keV when filled with 10 atm of P-10 counting gas (90% geologic Ar, 10% CH4). Initial demonstration samples were collected from groundwater aquifers in Fresno, California supported by the United States Geological Survey (USGS). A discussion of the sampling technique to degas the water from these wells and to then purify it for counting will be presented. In order to quantify the 39Ar contribution in the groundwater samples, the ULBPCs were characterized to determine two components: 1) the detector efficiency to modern levels of 39Ar, and 2) the remaining detector background (using geologic sourced argon which is free from 39Ar - no measureable 39Ar activity). These characterization results will be presented along with a discussion of the quantification of the 39Ar age of the demonstration measurements.

  14. Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas: comparison of Ar, H2 and CF4

    NASA Astrophysics Data System (ADS)

    Bruneau, B.; Lafleur, T.; Gans, T.; O'Connell, D.; Greb, A.; Korolov, I.; Derzsi, A.; Donkó, Z.; Brandt, S.; Schüngel, E.; Schulze, J.; Diomede, P.; Economou, D. J.; Longo, S.; Johnson, E.; Booth, J.-P.

    2016-02-01

    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the ‘amplitude’ asymmetry of the waveform. In this work, the effect of a ‘slope’ asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H2, and CF4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegative gas such as CF4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry.

  15. In–Ga–Zn–O thin film transistor with HfO{sub 2} gate insulator prepared using various O{sub 2}/(Ar + O{sub 2}) gas ratios

    SciTech Connect

    Jo, Young Je; Lee, In-Hwan; Kwak, Joon Seop

    2012-10-15

    We have investigated the effect of the deposition of an HfO{sub 2} thin film as a gate insulator with different O{sub 2}/(Ar + O{sub 2}) gas ratios using RF magnetron sputtering. The HfO{sub 2} thin film affected the device performance of amorphous indium–gallium–zinc oxide transistors. The performance of the fabricated transistors improved monotonously with increasing O{sub 2}/(Ar + O{sub 2}) gas ratio: at a ratio of 0.35, the field effect mobility of the amorphous InGaZnO thin film transistors was improved to 7.54 cm{sup 2}/(V s). Compared to those prepared with an O{sub 2}/(Ar + O{sub 2}) gas ratio of 0.05, the field effect mobility of the amorphous InGaZnO thin film transistors was increased to 1.64 cm{sup 2}/(V s) at a ratio of 0.35. This enhancement in the field effect mobility was attributed to the reduction of the root mean square roughness of the gate insulator layer, which might result from the trap states and surface scattering of the gate insulator layer at the lower O{sub 2}/(Ar + O{sub 2}) gas ratio.

  16. ³⁹Ar/Ar measurements using ultra-low background proportional counters.

    PubMed

    Hall, Jeter; Aalseth, Craig E; Bonicalzi, Ricco M; Brandenberger, Jill M; Day, Anthony R; Humble, Paul H; Mace, Emily K; Panisko, Mark E; Seifert, Allen

    2016-01-01

    Age-dating groundwater and seawater using the (39)Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to (39)Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the (39)Ar/Ar ratio is sufficient to date water masses as old as 1000 years. PMID:26516993

  17. ³⁹Ar/Ar measurements using ultra-low background proportional counters.

    PubMed

    Hall, Jeter; Aalseth, Craig E; Bonicalzi, Ricco M; Brandenberger, Jill M; Day, Anthony R; Humble, Paul H; Mace, Emily K; Panisko, Mark E; Seifert, Allen

    2016-01-01

    Age-dating groundwater and seawater using the (39)Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to (39)Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the (39)Ar/Ar ratio is sufficient to date water masses as old as 1000 years.

  18. Improvement of the 36Cl-AMS system at MALT using a Monte Carlo ion-trajectory simulation in a gas-filled magnet

    NASA Astrophysics Data System (ADS)

    Aze, Takahiro; Matsuzaki, Hiroyuki; Matsumura, Hiroshi; Nagai, Hisao; Fujimura, Masatsugu; Noguchi, Mayumi; Hongo, Yayoi; Yokoyama, Yusuke

    2007-06-01

    We developed and experimentally confirmed a Monte Carlo simulation code to describe the trajectories of 36Cl and 36S ions in a gas-filled magnet (GFM) at the MALT, the University of Tokyo. The simulation revealed that the central trajectories of the ions in the GFM are almost spiral and most of the 36S ions collided with the interior wall of the GFM. Based on this property of the trajectories, we have found a more advantageous condition for suppressing 36S. As a result, the background level of the 36Cl/Cl ratio was lowered to 10-15.

  19. Pulsed discharge production Ar* metastables

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  20. Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Novoa, D.; Cassataro, M.; Travers, J. C.; Russell, P. St. J.

    2015-07-01

    We propose a scheme for the emission of few-cycle dispersive waves in the midinfrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, subcycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the midinfrared. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and midinfrared wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle midinfrared radiation.

  1. 40Ar/39Ar age spectra of some undisturbed terrestrial samples

    USGS Publications Warehouse

    Brent, Dalrymple G.; Lanphere, M.A.

    1974-01-01

    40Ar/39Ar age spectra and 40Ar/36Ar vs 39Ar/36Ar isochrons were determined by incremental heating for 11 terrestrial rocks and minerals whose geology indicates that they represent essentially undisturbed systems. The samples include muscovite, biotite, hornblende, sanidine, plagioclase, dacite, diabase and basalt and range in age from 40 to 1700 m.y. For each sample, the 40Ar/39Ar ratios, corrected for atmospheric and neutron-generated argon isotopes, are the same for most of the gas fractions released and the age spectra, which show pronounced plateaus, thus are consistent with models previously proposed for undisturbed samples. Plateau ages and isochron ages calculated using plateau age fractions are concordant and appear to be meaningful estimates of the crystallization and cooling ages of these samples. Seemingly anomalous age spectrum points can be attributed entirely to small amounts of previously unrecognized argon loss and to gas fractions that contain too small (less than 2 per cent) a proportion of the 39Ar released to be geologically significant. The use of a quantitative abscissa for age spectrum diagrams is recommended so that the size of each gas fraction is readily apparent. Increments containing less than about 4-5 per cent of the total 39Ar released should be interpreted cautiously. Both the age spectrum and isochron methods of data reduction for incremental heating experiments are worthwhile, as each gives slightly different but complementary information about the sample from the same basic data. Use of a least-squares fit that allows for correlated errors is recommended for 40Ar/36Ar vs 39Ar/36Ar isochrons. The results indicate that the 40Ar/39Ar incremental heating technique can be used to distinguish disturbed from undisturbed rock and mineral systems and will be a valuable geochronological tool in geologically complex terranes. ?? 1994.

  2. Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber.

    PubMed

    Abdolvand, A; Walser, A M; Ziemienczuk, M; Nguyen, T; Russell, P St J

    2012-11-01

    In a relatively simple setup consisting of a microchip laser as pump source and two hydrogen-filled hollow-core photonic crystal fibers, a broad, phase-locked, purely rotational frequency comb is generated. This is achieved by producing a clean first Stokes seed pulse in a narrowband guiding photonic bandgap fiber via stimulated Raman scattering and then driving the same Raman transition resonantly with a pump and Stokes fields in a second broadband guiding kagomé-style fiber. Using a spectral interferometric technique based on sum frequency generation, we show that the comb components are phase locked.

  3. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  4. Modeling disequilibrium in gas ensembles: How quantum state populations evolve under multicollision conditions; CO*+Ar, CO, O2, and N2

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.; Marsh, Richard J.

    2010-02-01

    The method of Marsh and McCaffery [J. Chem. Phys. 117, 503 (2002)] is used to quantify how rovibrational populations and mode temperatures change as an ensemble of CO molecules, initially excited to (v;j)=(8;12), evolves to thermal equilibrium in a bath gas. The bath gases considered are Ar, N2, O2, and CO all at 300 K with the diatomics in their (0;8) rovibrational states. Ensembles generally contain 1000 molecules, 10% of which are excited CO (CO∗) molecules. State (v;j) populations and mode temperatures of CO∗ and bath molecules are calculated for successive collisions to 1000 or more. We find that relaxation to local thermodynamic equilibrium occurs in distinct phases that vary widely in rate of cooling. There is especially fast vibration-vibration (VV) exchange in CO∗-CO mixtures that is largely decoupled from rotation and translation. Several aspects of ensemble behavior may be rationalized using concepts established in quantum state resolved single collision studies. We demonstrate the existence of a simultaneous energy quasiresonant, angular momentum conserving, low Δj VV process that can cause either ultrafast relaxation or up pumping of the kind seen in a number of experiments.

  5. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  6. Understanding the amorphous-to-microcrystalline silicon transition in SiF{sub 4}/H{sub 2}/Ar gas mixtures

    SciTech Connect

    Dornstetter, Jean-Christophe; Bruneau, Bastien; Bulkin, Pavel; Johnson, Erik V.; Roca i Cabarrocas, Pere

    2014-06-21

    We report on the growth of microcrystalline silicon films from the dissociation of SiF{sub 4}/H{sub 2}/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF{sub 4} dissociation, and this removal is promoted by the addition of H{sub 2} which strongly reacts with F to form HF molecules. At low H{sub 2} flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding to the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF{sub 4}/H{sub 2} plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H{sub 2} flow rate.

  7. Rydberg gas theory of a glow discharge plasma: II. Electrode kinetics (probe theory) and the thermal rate constant for Symmetrical charge transfer involving Rydberg atoms of Ar.

    PubMed

    Mason, Rod S

    2010-04-21

    A steady state chemical kinetic model is developed to describe the conduction of electrical current between two probes, of relatively large surface area, immersed in a fast flowing plasma by the mechanism of charge transfer through a gas of Rydberg atoms. It correctly predicts the shape of current-voltage profiles which are similar to those of Langmuir, or floating double probe measurements. The difference is that the plateau current at the probe reflects the transport limited ion current at the cathodic electrode, even when the probe is being scanned in the anodic region. The sharp gradient leading up to the plateau of the I-V curve is associated with the field dependence of the efficiency of Rydberg atom ionisation, not the electron temperature. This approach gives a good qualitative explanation of experimental behaviour over a wide range of probe bias voltages and includes the occurrence of electron impact ionisation at the anode. It also gives a value for the thermal rate coefficient of symmetrical charge transfer between Rydberg atoms of Ar (8.2 x 10(-7) molecule(-1) cm(3) s(-1), at 313 K; plasma density approximately = 10(10) atoms cm(-3), total pressure = 2.7 mbar).

  8. Water vapor diffusion effects on gas dynamics in a sonoluminescing bubble.

    PubMed

    Xu, Ning; Apfel, Robert E; Khong, Anthony; Hu, Xiwei; Wang, Long

    2003-07-01

    Calculations based on a consideration of gas diffusion of gas dynamics in a sonoluminescing bubble filled with a noble gas and water vapor are carried out. Xenon-, argon-, and helium-filled bubbles are studied. In the absence of shock waves, bubble temperatures are found to be decreased, a decrease attributable to the large heat capacity of water vapor. Peak bubble temperature reductions are seen in bubbles containing Xe or Ar but not in those containing He. Further extrapolations provide evidence for the occurrence of shock waves in bubbles with Xe and water vapor. No shock waves are observed in bubbles with Ar or He.

  9. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  10. A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: Application to (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters

    SciTech Connect

    Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand

    2014-01-21

    We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 1–8, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ⩽ 20, in line with previous experimental and FF data.

  11. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  12. Metrologically-Calibrated 40Ar Concentrations and Ages of Mineral Standards Used in 40Ar/39Ar Geochronology

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Davidheiser-Kroll, B.; Kuiper, K.; Wijbrans, J. R.; Mark, D. F.

    2015-12-01

    In geochronology, isotopic ages are determined from the ratio of parent and daughter nuclide concentrations in minerals. For dating of geological material using the K-Ar system, the simultaneous determination of 40Ar and 40K concentrations on the same aliquot is not possible. Therefore, a widely used variant, the 40Ar/39Ar technique, involves the production of 39Ar from 39K by neutron bombardment and the reliance on indirect natural calibrators of the neutron flux, referred to as "mineral standards." Many mineral standards still in use rely on decades-old determinations of 40Ar concentrations; resulting uncertainties, both systematic and analytical, impede the determination of higher accuracy ages using the K-Ar decay system. We present results for the 40Ar concentrations and ages of mineral standards determined based on a modern gas delivery system (Morgan et al. 2011), which delivers metrologically-traceable amounts of 40Ar and thus allows for the sensitivity calibration of noble gas mass spectrometers.

  13. A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution.

    PubMed

    Tian, Jilai; Yang, Fang; Cui, Huating; Zhou, Ying; Ruan, Xiaobo; Gu, Ning

    2015-12-01

    Nanobubbles with a size less than 1 μm could make a promising application in ultrasound molecular imaging and drug delivery. However, the fabrication of stable gas encapsulation nanobubbles is still challenging. In this study, a novel method for preparation of lipid- encapsulated nanobubbles was reported. The dispersed phospholipid molecules in the prefabricated free nanobubbles solution can be assembled to form controllable stable lipid encapsulation gas-filled ultrasound-sensitive liposome (GU-Liposome). The optimized preparation parameters and formation mechanism of GU-Liposome were investigated in detail. Results showed that this type of GU-Liposome had mean diameter of 194.4 ± 6.6 nm and zeta potential of -25.2 ± 1.9 mV with layer by layer self-assembled lipid structure. The acoustic imaging analysis in vitro indicated that ultrasound imaging enhancement could be acquired by both perfusion imaging and accumulation imaging. The imaging enhancement level and duration time was related with the ratios of lipid to gas in the GU-Liposome structure. All in all, by this novel and controllable nanobubble construction technique, it will broaden the future theranostic applications of nanobubbles.

  14. Performance of a gas flow ionization detector filled with He-iso-C4H10 mixtures for STIM-T

    NASA Astrophysics Data System (ADS)

    Marques, A. C.; Fraga, M. M. F. R.; Fonte, P.; Beasley, D. G.; Cruz, C.; Alves, L. C.; da Silva, R. C.

    2015-04-01

    A cylindrical gas flow ionization chamber has been developed for measuring particle energy in Scanning Transmission Ion Microscopy Tomography (STIM-T) experiments due to its ability to withstand the direct beam. The response of a He-iso-C4H10 filled ionization detector to 2 MeV H+ and He+ beams was studied. Different operating parameters, such as concentration of isobutane (in the range of 55-100%), anode voltage, amplifier shaping time, the geometry of the detector entrance canal and the solid angle of the detector, were investigated. The stable operating plateau and the anode voltage at which the best energy resolution is attained were also determined for every gas mixture. The best energy resolution achieved so far for 2 MeV H+ and He+ static beams was ∼1.3%, which is comparable to that of Si PIN diode detectors (in the range of 15-30 keV). Computed tomography (CT) was applied to a set of STIM projections acquired with the gas ionization chamber at the IST/CTN microprobe beam line in order to visualize the 3D-mass distribution in a test structure.

  15. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  16. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  17. Residual gas analysis (RGA) and shear strength characteristics of a silver-filled epoxy and polyimide under long-term, high-temperature storage conditions. Final report

    SciTech Connect

    Adams, B.E.

    1994-04-01

    Introduction of organic materials into hermetically sealed electronic packages increases the risk of failure due to contamination. The contaminants of concern are moisture and ionics. This combination can lead to unwanted electrical pathways and/or corrosion. To minimize sealed-in moisture, packages are vacuum-baked for 16 hours at 200 C and Au/Sn solder-sealed i a glove box purged with dry nitrogen. Even following this procedure, the package plating and organic adhesive can still outgas moisture during high-temperature storage. Long-term aging characteristics for a silver-filled epoxy and a silver-filled polyimide were investigated. Leadless chip carriers (LCCs) containing die attached with epoxy or polyimide were aged at 25 C, 100 C, 150 C, and 200 C for up to six months. Residual gas analysis (RGA) and die shear testing were performed on each package. Results indicate that the epoxy can withstand storage at 150 C with no increase in internal moisture. The polyimide could only be stored at 100 C. No loss in shear strength for epoxy or polyimide was noted at any storage condition.

  18. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  19. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  20. The generation and evolution of anisotropic gas-permeability during viscous deformation in conduit-filling ignimbrites

    NASA Astrophysics Data System (ADS)

    Kolzenburg, Stephan; Russell, Kelly

    2015-04-01

    Gas-permeability plays a governing role in the pre-explosive pressurization of volcanic edifices. Pressurization may only occur once the total volume flux of gases emitted by an underlying magmatic or hydrothermal source exceeds the flow capacity of the permeable pathways present in the edifice. We have measured the physical properties (strain, porosity, permeability and ultrasonic wave velocities) of breadcrust bombs recovered from the deposits of the 2350 B.P. eruption of Mt Meager, BC, Canada. These rocks represent a conduit-infilling pyroclastic breccia that underwent various degrees of welding and deformation and present a remarkable opportunity to constrain the nature and timescale of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. Here we present data from permeability measurements along the directions of maximum and minimum shortening which help quantifying the effect of vesicle microstructure on permeability. Permeability is measured by applying a range of confining pressures (between 3.4 and 17.2 MPa) to each sample and imposing a constant head (of 0.2 to 3.5 MPa) across the sample. The permeability is then determined using a modified version of Darcy's law applicable to compressible fluids. These rocks display a profound directionality in the measured physical properties resulting from the deformation-induced fabric. For all samples the permeability across the elongation fabric is highly correlated to the sample porosity whereas along the elongation fabric there is little effect of porosity on permeability. At porosity values of about 20% the permeability seems to reach a minimum at 10-16 m2 and does not change significantly with further reduction of porosity. Further, the effect of confining pressure on the permeability of these samples appears to be more pronounced across the elongation fabric than along the elongation fabric. The deformation fabric has a significant effect on the gas

  1. 40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.

    1991-01-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.

  2. Re-Evaluation of Ar-39 - Ar-40 Ages for Apollo Lunar Rocks 15415 and 60015

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.

    2010-01-01

    We re-analyzed 39Ar-40Ar ages of Apollo lunar highland samples 15415 and 60015, two ferroan anorthosites analyzed previously in the 1970 s, with a more detailed approach and with revised decay constants. From these samples we carefully prepared 100-200 mesh mineral separates for analysis at the Noble Gas Laboratory at NASA-Johnson Space Center. The Ar-39-Ar-40 age spectra for 15415 yielded an age of 3851 +/- 38 Ma with 33-99% of Ar39 release, roughly in agreement with previously reported Ar-Ar ages. For 60015, we obtained an age of 3584 +/- 152 Ma in 23-98% of Ar39 release, also in agreement with previously reported Ar-Ar ages of approximately 3.5 Ga. Highland anorthosites like these are believed by many to be the original crust of the moon, formed by plagioclase floatation atop a magma ocean, however the Ar-Ar ages of 15415 and 60015 are considerably younger than lunar crust formation. By contrast, recently recovered lunar anorthosites such as Dhofar 489, Dhofar 908, and Yamato 86032 yield older Ar-Ar ages, up to 4.35 Ga, much closer to time of formation of the lunar crust. It follows that the Ar-Ar ages of the Apollo samples must have been reset by secondary heating, and that this heating affected highland anorthosites at both the Apollo 15 and Apollo 16 landing sites but did not affect lunar highland meteorites. One obvious consideration is that while the Apollo samples were collected from the near side of the moon, these lunar meteorites are thought to have originated from the lunar far side

  3. First-principles calibration of 40Ar/39Ar mineral standards and complete extraction of 40Ar* from sanidine

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Kuiper, K.; Mark, D.; Postma, O.; Villa, I. M.; Wijbrans, J. R.

    2010-12-01

    40Ar/39Ar geochronology relies on comparing argon isotopic data for unknowns to those for knowns. Mineral standards used as neutron fluence monitors must be dated by the K-Ar method (or at least referenced to a mineral of known K-Ar age). The commonly used age of 28.02 ± 0.28 Ma for the Fish Canyon sanidine (FCs) (Renne et al., 1998) is based upon measurements of radiogenic 40Ar in GA1550 biotite (McDougall and Roksandic, 1974), but underlying full data were not published (these measurements were never intended for use as an international standard), so uncertainties are difficult to assess. Recent developments by Kuiper et al. (2008) and Renne et al. (2010) are limited by their reliance on the accuracy of other systems. Modern technology should allow for more precise and accurate calibration of primary K-Ar and 40Ar/39Ar standards. From the ideal gas law, the number of moles of 40Ar in a system can be calculated from measurements of pressure, volume, and temperature. Thus we have designed and are proceeding to build a pipette system to introduce well-determined amounts of 40Ar into noble gas extraction lines and mass spectrometers. This system relies on components with calibrations traceable to SI unit prototypes, including a diaphragm pressure gauge (MKS Instruments), thermocouples, and a “slug” of an accurately determined volume to be inserted into the reservoir for volume determinations of the reservoir and pipette. The system will be renewable, with a lifetime of ca. 1 month for gas in the reservoir, and portable, to permit interlaboratory calibrations. The quantitative extraction of 40Ar* from the mineral standard is of highest importance; for sanidine standards this is complicated by high melt viscosity during heating. Experiments adding basaltic “zero age glass” (ZAG) to decrease melt viscosity are underway. This has previously been explored by McDowell (1983) with a resistance furnace, but has not been quantitatively addressed with laser heating

  4. Performance of an Ar-DME imaging photoelectric polarimeter

    NASA Astrophysics Data System (ADS)

    Fabiani, S.; Bellazzini, R.; Berrilli, F.; Brez, A.; Costa, E.; Minuti, M.; Muleri, F.; Pinchera, M.; Rubini, A.; Soffitta, P.; Spandre, G.

    2012-09-01

    The possibility to perform polarimetry in the soft X-ray energy band (2-10 keV) with the Gas Pixel Detector, filled with low Z mixtures, has been widely explored so far. The possibility to extend the technique to higher energies, in combination with multilayer optics, has been also hypothesized in the past, on the basis of simulations. Here we present a recent development to perform imaging polarimetry between 6 and 35 keV, employing a new design for the GPD, filled with a Ar-DME gas mixture at high pressure. In order to improve the efficiency by increasing the absorption gap, while preserving a good parallel electric field, we developed a new configuration characterized by a wider gas cell and a wider GEM. The uniform electric field allows to maintain high polarimetric capabilities without any decrease of spectroscopic and imaging properties. We present the first measurements of this prototype showing that it is now possible to perform imaging and spectro-polarimetry of hard X-ray sources.

  5. Sedimentology and permeability architecture of Atokan Valley-fill natural gas reservoirs, Boonsville Field, north-central Texas

    SciTech Connect

    Burn, M.J.; Carr, D.L.; Stuede, J.

    1994-09-01

    The Boonsville {open_quotes}Bend Conglomerate{close_quotes} gas field in Jack and Wise counties comprises numerous thin (10-20 ft) conglomerate sandstone reservoirs within an approximately 1000-ft-thick section of Atokan strata. Reservoir sandstone bodies commonly overlie sequence-boundary unconformities and exhibit overall upward-fining grain-size trends. Many represent incised valleyfill deposits that accumulated during postunconformity baselevel rise. This stratal architecture is repeated at several levels throughout the Bend Conglomerate, suggesting that sediment accumulation occurred in a moderate-to low-accommodation setting and that base level fluctuated frequently. The reservoir units were deposited by low-sinuosity fluvial processes, causing a hierarchy of bed forms and grain-avalanche bar-front processes to produce complex grain-size variations. Permeability distribution is primarily controlled by depositional factors but may also be affected by secondary porosity created by the selective dissolution of chert clasts. High-permeability zones (up to 2.8 darcys) are characterized by macroscopic vugs comprised of clast-shaped moldic voids (up to 5 mm in diameter). Tight (low-permeability) zones are heavily cemented by silica, calcite, dolomite, and ankerite and siderite cements. Minipermeameter, x-radiograph, and petrographic studies and facies analysis conducted on cores from two Bend Conglomerate reservoirs illustrate the hierarchy of sedimentological and diagenetic controls on permeability architecture.

  6. Part II. Evaluation of 40Ar- 39Ar quartz ages: Implications for fluid inclusion retentivity and determination of initial 40Ar/ 36Ar values in Proterozoic samples

    NASA Astrophysics Data System (ADS)

    Kendrick, M. A.; Miller, J. McL.; Phillips, D.

    2006-05-01

    , intra-sample 40Ar/ 36Ar variation cannot be reliably documented. The results demonstrate that noble gas analysis is readily applicable to Proterozoic, or older, samples but that if K-mineral impurities are present within quartz the abundance of K must be determined before calculation of mean 40Ar/ 36Ar values that are representative of the samples' initial composition.

  7. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  8. Revised error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter

    2015-12-01

    The main advantage of the 40Ar/39Ar method over conventional K-Ar dating is that it does not depend on any absolute abundance or concentration measurements, but only uses the relative ratios between five isotopes of the same element -argon- which can be measured with great precision on a noble gas mass spectrometer. The relative abundances of the argon isotopes are subject to a constant sum constraint, which imposes a covariant structure on the data: the relative amount of any of the five isotopes can always be obtained from that of the other four. Thus, the 40Ar/39Ar method is a classic example of a 'compositional data problem'. In addition to the constant sum constraint, covariances are introduced by a host of other processes, including data acquisition, blank correction, detector calibration, mass fractionation, decay correction, interference correction, atmospheric argon correction, interpolation of the irradiation parameter, and age calculation. The myriad of correlated errors arising during the data reduction are best handled by casting the 40Ar/39Ar data reduction protocol in a matrix form. The completely revised workflow presented in this paper is implemented in a new software platform, Ar-Ar_Redux, which takes raw mass spectrometer data as input and generates accurate 40Ar/39Ar ages and their (co-)variances as output. Ar-Ar_Redux accounts for all sources of analytical uncertainty, including those associated with decay constants and the air ratio. Knowing the covariance matrix of the ages removes the need to consider 'internal' and 'external' uncertainties separately when calculating (weighted) mean ages. Ar-Ar_Redux is built on the same principles as its sibling program in the U-Pb community (U-Pb_Redux), thus improving the intercomparability of the two methods with tangible benefits to the accuracy of the geologic time scale. The program can be downloaded free of charge from

  9. Filling agents.

    PubMed

    Glavas, Ioannis P

    2005-06-01

    Injectable fillers have become an important component of minimally invasive facial rejuvenation modalities. Their ease of use, effectiveness, low morbidity, and fast results with minimal downtime are factors that have made them popular among patients. Soft tissue augmentation has evolved to a unique combination of medicine and art. A wide selection of available agents and new products, each one with unique properties, may be used alone or in combination. The physician acquires the tools to rebalance facial characteristics not only by filling wrinkles but also by having the ability to shape the face and restore bony contours and lines. Careful selection of candidates, realistic expectations, and an understanding of the limitations of fillers are crucial for a successful result.

  10. Mechanisms of tracheal filling in insects.

    PubMed

    Förster, Thomas D; Woods, H Arthur

    2013-02-01

    Insects exchange respiratory gases primarily using tracheal systems that are filled with gas. However, in different developmental and environmental circumstances, liquid can occupy the tracheal system, which can significantly impair its respiratory function. Insects therefore use a suite of mechanisms for tracheal filling, which is the process of replacing tracheal liquids with gas. We review these mechanisms for liquid removal and gas filling. By integrating recent molecular work with older physiological literature, we show that liquid removal likely involves active ion transport in the whole tracheal system. Gas filling reveals fascinating interactions between geometry, surface chemistry of the tracheal walls, the tracheal liquid, and dissolved gases. The temporal proximity to moulting allows for potentially complex interdependencies between gas filling, moult-associated hormone signaling, and cuticle sclerotization. We propose a mechanistic model for tracheal filling. However, because the composition of the liquid is unknown, it remains hypothetical. PMID:22616845

  11. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  12. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences

    NASA Astrophysics Data System (ADS)

    Clauer, Norbert; Zwingmann, Horst; Liewig, Nicole; Wendling, Raymond

    2012-10-01

    The 40K/40Ar (K-Ar) and 40Ar/39Ar dating methods are applied here to the same, very small, micrometric illite-type particles that crystallized under low-temperature (< 175 °C) hydrothermal conditions in deeply buried Rotliegend (Permian) gas-bearing sandstones of NW Germany. Four samples with a total of fifteen size fractions from < 2 to 20-40 μm yield K-Ar ages that range from 166.0 ± 3.4 to 214.0 ± 5.9 Ma. The same size fractions dated by the 40Ar/39Ar method give total-gas ages ranging from 173.3 ± 2.0 to 228.8 ± 1.6 Ma. Nearly all 40Ar/39Ar total-gas ages are slightly older, which cannot be explained by the recoil effect only, the impact of which being amplified by the inhomogeneous shape of the clay minerals and their crystallographic characteristics, with varied crystallinity indices, and a particle width about 10 times large than thickness. The 40Ar/39Ar data outline some advantages, such as the plateaus obtained by incremental step heating of the various size fractions, even if not translatable straight as ages of the illite populations; they allow identification of two generations of authigenic illite that formed at about 200 and 175 Ma, and one detrital generation. However, 40Ar/39Ar dating of clay minerals remains challenging as technical factors, such as the non-standardized encapsulation, may have potential unexpected effects. Both dating methods have their limitations: (1) K-Ar dating requires relatively large samples (ca. 10-20 mg) incurring potential sample homogeneity problems, with two aliquots required for K and Ar analysis for an age determination, also inducing a higher analytical uncertainty; (2) an identified drawback of 40Ar/39Ar dating is Ar recoil and therefore potential loss that occurs during neutronic creation of 39Ar from 39K, mostly in the finer mineral particles. If all the recoiled 39Ar is redistributed into adjacent grains/minerals, the final 40Ar/39Ar age of the analyzed size fraction remains theoretically identical, but it

  13. Long-term persistence of immunity induced by OVA-coupled gas-filled microbubble vaccination partially protects mice against infection by OVA-expressing Listeria.

    PubMed

    Bioley, Gilles; Lassus, Anne; Terrettaz, Jacques; Tranquart, François; Corthésy, Blaise

    2015-07-01

    Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.

  14. LASER MICROPROBE **4**0Ar/**3**9Ar DATING OF MINERAL GRAINS IN SITU.

    USGS Publications Warehouse

    Sutter, J.F.; Hartung, J.B.

    1984-01-01

    A laser-microprobe attached to a mass spectrometer for **4**0Ar/**3**9Ar age determination of single mineral grains in geological materials has been made operational at the US Geological Survey, Reston, VA. This microanalytical technique involves focusing a pulsed laser beam onto a sample contained in an ultra-high vacuum chamber attached to a rare-gas mass spectrometer. Argon in the neutron-irradiated sample is released by heating with the laser pulse and its isotopic composition is measured to yield an **4**0Ar/**3**9Ar age. Laser probe **4**0Ar/**3**9Ar ages of single mineral grains measured in situ can aid greatly in understanding the chronology of many geological situations where datable minerals are present but are not physically separable in quantities needed for conventional age dating.

  15. Improvements Needed in the 40Ar/39Ar Study of Geomagnetic Excursion Chronology

    NASA Astrophysics Data System (ADS)

    Champion, D. E.; Turrin, B. D.

    2015-12-01

    Our knowledge of the existence and frequency of brief geomagnetic polarity. excursions only increases with time. Precise and accurate 40Ar/39Ar ages will be required to document this, because 25 or more excursions may have occurred within the Brunhes Epoch (780ky) separated in time by as little as 10ky. Excursions are and will dominantly be discovered in mafic, low K2O rocks. Improvements in the analytical protocol to 40Ar/39Ar date low K2O, "young", and thus low 40Arrad rocks are required. While conventional K/Ar dating "worked", the assumption of perfect atmospheric equilibration is flawed. In particular, using a measured isochron intercept (±2s) to embrace an atmospheric intercept assumption turns a 40Ar/39Ar diffusive extraction into a series of "K/Ar-lite" experiments. The near ubiquitous excess 40Ar exhibited in final steps of "matrix" or "groundmass" fractions from whole-rock experiments (no glass, crystals) suggests equilibration with the atmosphere is not achieved. Removing magnetic sample splits (glass?) thought subject to poor argon retention, and crystals subject to 40Ar inheritance are routinely done without documenting different isochrons. Short 15 to 20 minute irradiation times effectively eliminate recoil and dramatically minimize isotopic corrections, and the assumption of equivalence in Ar isotope recoil behavior. Assuming no pressure dependency and constancy of mass discrimination value ignores knowledge from other gas mass spectroscopy (O, H, He, Ne). Dynamic mass spectroscopy in stable isotopic analysis allows routine per mil and 0.1 per mil ratios to be measured. Maintaining more than daily bracketing air pipette measurements at differing pressures, and controlling the range of pressures from each diffusive step will approximate this dynamic precision. Experiments will be discussed that exhibit aspects of 40Ar/39Ar dating protocols with which precision and accuracy can be improved.

  16. Comparison of L x-ray spectra from multi-stripped ions in P/sup +/ + Ar and S/sup +/ + Ar gas collisions at 100 keV

    SciTech Connect

    Peterson, R.S.; Furst, M.; Hayden, H.C.; Smith, W.W.

    1981-04-01

    Structure in the soft x-ray spectra from projectiles excited in ion-atom collisions at 100 keV has been observed. Previous spectral measurements on these collision systems using a curved crystal Bragg spectrometer were unable to experimentally resolve the multiplet structure. The present results are obtained with a grazing incidence monochrometer and clearly show the resolved structure from L x-rays of neon-like and flourine-like ions. The L x-ray spectra from phosphorus and sulfur ions after single collisions in argon gas targets are compared to establish x-ray line identifications. The individual spectra yield information on the collision mechanism involving the inner-shell promotion of L-shell electrons and the simultaneous outer-shell electron excitation. The model for L-shell vacancy production in asymmetric ion-atom collisions assumes that two 2p electrons of the lower-Z projectile are promoted via the 4fsigma molecular-orbital. Because this orbital is coupled to many empty molecular orbitals, the probability that one or two 2p electrons are promoted to higher orbitals is unity for ion-atom collisions where the L shells interpenetrate. The promotion leaves one or two 2p vacancies in the lower-Z atom after the collision. This model agrees well with experimental observations of energy loss and total vacancy production cross sections. However, the small L x-ray yields, which result after vacancy production, increase dramatically with the collision energy, indicating the possibility of strong outer-shell excitation mechanisms accompanying the inner-shell electron promotion.

  17. Study on the Principle Mechanisms of Heat Transfer for Cryogenic Insulations: Especially Accounting for the Temperature-Dependent Deposition-Evacuation of the Filling Gas (Self-Evacuating Systems)

    NASA Astrophysics Data System (ADS)

    Geisler, Matthias; Vidi, Stephan; Ebert, Hans-Peter

    2016-11-01

    This study concentrates on the principles of heat transfer within cryogenic insulation systems, especially accounting for self-evacuating systems (deposition-evacuation of the filling gas). These principles allow the extrapolation to other temperatures, gases and other materials with the input of only a few experimentally derived or carefully estimated material properties. The type of gas (e.g. air or CO2) within the porous insulation material dominates the behaviour of the effective thermal conductivity during the cooldown of the cryogenic application. This is due to the specific temperature-dependent saturation gas pressure which determines the contribution of the gas conductivity. The selected material classes include powders, fibrous insulations, foams, aerogels and multilayer insulations in the temperature range of 20 K to 300 K. Novel within this study is an analytical function for the total and the mean thermal conductivity with respect to the temperature, type of gas, external pressure and material class of the insulation. Furthermore, the integral mean value of the thermal conductivity, the so-called mean thermal conductivity, is calculated for a mechanically evacuated insulation material and an insulation material evacuated by deposition-evacuation of the filling gas, respectively. This enables a comparison of the total thermal conductivity of cryogenic insulation materials and their applicability for a self-evacuating cryogenic insulation system.

  18. Spatial evaluation of Ar-systematics in rocks from the British Channel Islands: a UV laserprobe Ar/Ar study of excess 40Ar

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Sherlock, S.; Kelley, S. P.

    2010-12-01

    includes sericitization of the feldspars and chloritization of biotite. Ar-Ar investigations were carried out using high spatial resolution UV laser ablation gas release in combination with a NU instruments Noblesse gas mass spectrometer. This sensitive instrumentation allows for a spatial resolution of 80 to 140 µm spot size. Detailed Ar-Ar analysis shows large variability of ages and also correlation with K and Ca content of the spot (measureable as 37Ar, and 39Ar after irradiation). In quartz in some of the samples there is large amounts of excess 40Ar accompanied by high 38Ar/39Ar and low to non-measurable 37Ar concentrations. This indicates the presence of chlorine and excess 40Ar; and thus fluid inclusions in those quartz crystals may be the host for excess 40Ar. Our preliminary results give insights into the behaviour of the Ar system during and after emplacement of igneous rocks from the Cadomian Belt, and the interaction of different reservoirs within the rocks.

  19. Molecule-doped rare gas clusters: structure and stability of ArnNO(X2 Π potential energy surfaces of ArNO

    NASA Astrophysics Data System (ADS)

    Naumkin, F. Y.; Wales, D. J.

    High level ab initio calculations carried out for the 2A' and 2A'' states of ArNO(X2Π) predict a crossing near the T-shape configuration, with the 2A' minimum being slightly deeper. SΠn-orbit coupling is included through a model treatment and results in two potential energy surfaces with similar topologies, nearly parallel to each other and close to the averaged non-relativistic surface. These results are used to construct a DIM-like model for ArnNO clusters. The lowest energy cluster structures are found to resemble those for Arn+1 with NO lying in the surface. The set of major magic numbers (structures of pronounced stability) is also the same as for the Arn+1 clusters, and is emphasized further by the detachment of NO, which requires a larger energy than for detachment of a single Ar atom. The relations of the difference between the two dissociation energies and of the ArnNO(1/2 to 3/2) excitation energy to the magic numbers are discussed.

  20. Mutual neutralization of atomic rare-gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with atomic halide anions (Cl{sup −}, Br{sup −}, I{sup −})

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with halide anions (Cl{sup −}, Br{sup −}, I{sup −}), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl{sup −} to I{sup −}. The largest rate coefficient is 6.5 × 10{sup −8} cm{sup 3} s{sup −1} for Ne{sup +} with I{sup −}. Rate coefficients for Ar{sup +}, Kr{sup +}, and Xe{sup +} reacting with Br{sub 2}{sup −} are also reported.

  1. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  2. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures

    SciTech Connect

    Mankelevich, Yuri A.; Ashfold, Michael N. R.; Ma Jie

    2008-12-01

    Microwave (MW) plasma-enhanced chemical vapor deposition (PECVD) reactors are widely used for growing diamond films with grain sizes spanning the range from nanometers through microns to millimeters. This paper presents a detailed description of a two-dimensional model of the plasma-chemical activation, transport, and deposition processes occurring in MW activated H/C/Ar mixtures, focusing particularly on the following base conditions: 4.4%CH{sub 4}/7%Ar/balance H{sub 2}, pressure p=150 Torr, and input power P=1.5 kW. The model results are verified and compared with a range of complementary experimental data in the companion papers. These comparators include measured (by cavity ring down spectroscopy) C{sub 2}(a), CH(X), and H(n=2) column densities and C{sub 2}(a) rotational temperatures, and infrared (quantum cascade laser) measurements of C{sub 2}H{sub 2} and CH{sub 4} column densities under a wide range of process conditions. The model allows identification of spatially distinct regions within the reactor that support net CH{sub 4}{yields}C{sub 2}H{sub 2} and C{sub 2}H{sub 2}{yields}CH{sub 4} conversions, and provide a detailed mechanistic picture of the plasma-chemical transformations occurring both in the hot plasma and in the outer regions. Semianalytical expressions for estimating relative concentrations of the various C{sub 1}H{sub x} species under typical MW PECVD conditions are presented, which support the consensus view regarding the dominant role of CH{sub 3} radicals in diamond growth under such conditions.

  3. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  4. Cross sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl, and 40Ar(d,p)41Ar nuclear reactions below 8.4 MeV.

    PubMed

    Engle, J W; Severin, G W; Barnhart, T E; Knutson, L D; Nickles, R J

    2012-02-01

    We have measured the cross section for production of the medically interesting isotope (34m)Cl, along with (38)Cl and (41)Ar, using deuteron bombardments of (36)Ar and (40)Ar below 8.4 MeV. ALICE/ASH analytical codes were employed to determine the shape of nuclear excitation functions, and experiments were performed using the University of Wisconsin tandem electrostatic accelerator to irradiate thin targets of argon gas.

  5. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas

    NASA Astrophysics Data System (ADS)

    Asano, Hirohito; Muraki, Susumu; Endo, Hiroki; Bandow, Shunji; Iijima, Sumio

    2010-08-01

    Nanometer-scale carbon particles driven by the pulsed-laser vaporization of pelletized pure carbon powder at 1000 °C in a hydrogen-containing environment show anomalous magnetism like a superparamagnet, while the sample prepared in 100% of Ar does not show such magnetism. The observed magnetism was unchanged over months in the ambient. The structure of this nanomaterial resembles the foam of a laundry detergent and transmission electron microscopy indicates a clear corrugated line contrast. On the other hand, a sample without strong magnetism does not give such an image contrast. The x-ray diffraction pattern coincides with that of graphite and no other peak is detected. Thermogravimetry indicates that all samples completely burn out up to approx. 820 °C and no material remains after combustion, indicating that the sample does not contain impurity metals. Magnetization is easily saturated by ~ 10 000 G at 280 K with no hysteresis, but the hysteresis appears at 4.2 K. This phenomenon is explained by introducing a crystalline anisotropy which restricts the motion of the magnetic moment and stabilizes the remnant magnetization at zero magnetic field. Magnitudes of the saturation magnetization are in the range of 1-5 emu G g - 1 at 4.2 K, which correspond to 0.002-0.01 Bohr magneton per carbon atom. This concentration may be increased by ten times or more, because only about 4-10% of particles have a magnetic domain in the present samples.

  6. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas.

    PubMed

    Asano, Hirohito; Muraki, Susumu; Endo, Hiroki; Bandow, Shunji; Iijima, Sumio

    2010-08-25

    Nanometer-scale carbon particles driven by the pulsed-laser vaporization of pelletized pure carbon powder at 1000 °C in a hydrogen-containing environment show anomalous magnetism like a superparamagnet, while the sample prepared in 100% of Ar does not show such magnetism. The observed magnetism was unchanged over months in the ambient. The structure of this nanomaterial resembles the foam of a laundry detergent and transmission electron microscopy indicates a clear corrugated line contrast. On the other hand, a sample without strong magnetism does not give such an image contrast. The x-ray diffraction pattern coincides with that of graphite and no other peak is detected. Thermogravimetry indicates that all samples completely burn out up to approx. 820 °C and no material remains after combustion, indicating that the sample does not contain impurity metals. Magnetization is easily saturated by ∼10,000 G at 280 K with no hysteresis, but the hysteresis appears at 4.2 K. This phenomenon is explained by introducing a crystalline anisotropy which restricts the motion of the magnetic moment and stabilizes the remnant magnetization at zero magnetic field. Magnitudes of the saturation magnetization are in the range of 1-5 emu G g(-1) at 4.2 K, which correspond to 0.002-0.01 Bohr magneton per carbon atom. This concentration may be increased by ten times or more, because only about 4-10% of particles have a magnetic domain in the present samples.

  7. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    NASA Astrophysics Data System (ADS)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia

    2014-03-01

    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  8. Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Bénédic, F.; Mohasseb, F.; Hassouni, K.; Gicquel, A.

    2004-08-01

    The spectroscopic characterization of Ar/H2/CH4 discharges suitable for the synthesis of nanocrystalline diamond using the microwave plasma assisted chemical vapour deposition process is reported. The experiments are realized in a moderate-pressure bell jar reactor, where discharges are ignited using a microwave cavity coupling system. The concentration of CH4 is maintained at 1% and the coupled set of hydrogen concentration/microwave power (MWP) ranges from 2%/500 W to 7%/800 W at a pressure of 200 mbar. Emission spectroscopy and broadband absorption spectroscopy studies are carried out on the \\C_{2}(D\\,^{1\\!}\\Sigma_u^{+}\\mbox{--}X\\,^{1\\!}\\Sigma_g^{+}) Mulliken system and the C2(d 3Pgrg-a 3Pgru) Swan system in order to determine the gas temperature and the C2 absolute density within the plasma. For this purpose, and since the Swan system is quite well-known, much importance is devoted to the achievement of a detailed simulation of the Mulliken system, which allows the determination of both the rotational temperature and the density of the \\smash{X\\,^{1\\!}\\Sigma_g^{+}} ground state, as well as the rotational temperature of the \\smash{D\\,^{1\\!}\\Sigma_u^{+}} state, from experimental data. All the experimental values are compared to those predicted by a thermochemical model developed to describe Ar/H2/CH4 microwave discharges under quasi-homogeneous plasma assumption. This comparison shows a reasonable agreement between the values measured from the C2 Mulliken system, those measured from the C2 Swan system and that calculated from plasma modelling, especially at low hydrogen concentration/MWP. These consistent results show that the use of the Mulliken system leads to fairly good estimates of the gas temperature and of the C2 absolute density. The relatively high gas temperatures found for the conditions investigated, typically between 3000 K and 4000 K, are attributed to the low thermal conductivity of argon that may limit thermal losses to the

  9. Measuring 36Ar without H35Cl interference

    NASA Astrophysics Data System (ADS)

    Saxton, John

    2015-04-01

    Noble gas measurements are usually made in static mode, when the mass spectrometer sensitivity is inversely proportional to volume: this makes the building of very large instruments to obtain high mass resolution impracticable. A particularly challenging interference has hitherto been H35Cl, which differs in mass from 36Ar by 1 part in 3937. We have developed a method which makes improved use of the available MRP to remove interferences, and used it to obtain HCl-free 36Ar measurements on a multicollector instrument with MRP of only ~6000 (MRP= mass resolving power = m/dm 5-95% on side of peak). By arranging that the target mass position on a minor isotope (e.g. 36Ar), from which the interference must be removed, coincides with the ~50% point on the side of a major isotope (e.g. 40Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of 40Ar is measured in a separate mass step. Two small corrections are necessary. One compensates for the residual HCl tail at the 36Ar position. The other arises because the peak is not totally flat in the region of interest: 40Ar and 36Ar+HCl are measured on the peak top, whilst 36Ar is measured at the extreme edge, with slightly lower efficiency. The required correction parameters can be obtained from a series of air calibrations with different target/interference ratios. With samples containing 4x10-15to 3x10-14moles of 40Ar, 36Ar/40Ar was measured, without HCl interference, to a 1σ precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40Ar/39Ar dating, where 36Ar is used to correct for trapped air, and may be particularly significant for smaller or younger samples.

  10. Tracking fluid action in Little Sark Pluton (Channel Islands, UK): a UV laserprobe Ar/Ar study of excess 40Ar

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Schwanethal, J.; Tindle, A. G.; Kelley, S. P.; Sherlock, S. C.

    2011-12-01

    Little Sark pluton (Channel Islands, UK) is a weakly to moderately deformed pluton of quartz diorite composition. Zircon from Little Sark has been dated as 611.4(+2.1/-1.3) Ma [Miller et al. 1991, Tectonophysics, 312], whereas titanite has an age of 606.2±0.6 Ma. Hornblende yields an Ar-Ar age of 606.4±3.4 Ma [Dallmeyer et al., 1991, J. Geol. Soc. London 148]. The rocks show evidence for post-magmatic hydrous alteration including chloritisation of biotite, and sericite formation in feldspar. We investigated the alteration in order to understand its influence on the Ar-Ar system. Detailed petrographic investigations of two samples indicate different deformation levels - S1, (less deformed), and S2 (more deformed). The feldspar is andesine to oligoclase in composition, but contains K-rich areas with patchy and sometimes cleavage guided sericitization. Mafic minerals include hornblende and biotite (the latter partially chloritized). Ar-Ar investigations were carried out using high spatial resolution UV laser ablation gas release in combination with a Nu instruments Noblesse gas mass spectrometer using spots of 80 to 140 μm diameter. Mafic minerals in S1 have highly variable 38Ar/39Ar and 37Ar/39Ar ratios and unusually high atmospheric contents for such old samples, possibly reflecting the presence of fluid inclusions associated with the sericite, particularly in the feldspar. The apparent ages in their entirety range from 429 to 668 Ma. Hornblende yields homogeneous apparent ages, whereas the younger and older ages are measured in both micas and feldspars, whose apparent ages range from 245-670 Ma. The modal age for feldspar is around 400-450 Ma, but this may not have geological meaning. Sample S2 shows many of the same features as S1. Mafic minerals span a slightly smaller age range and feldspars display apparent ages of ~245-645 Ma with a mode around 480 Ma. The alteration of both samples appears to have been accompanied by the introduction of 40Ar-rich fluids

  11. Primary production and carbon export rates across the subpolar N. Atlantic Ocean basin based on triple oxygen isotope and dissolved O2 and Ar gas measurements

    NASA Astrophysics Data System (ADS)

    Quay, P.; Stutsman, J.; Steinhoff, T.

    2012-06-01

    Gross photosynthetic O2 production (GOP) rates in the subpolar North Atlantic Ocean were estimated using the measured isotopic composition of dissolved oxygen in the surface layer on samples collected on nine transits of a container ship between Great Britain and Canada during March 2007 to June 2008. The mean basin-wide GOP rate of 226 ± 48 mmol O2 m-2 d-1 during summer was double the winter rate of 107 ± 41 mmol O2 m-2 d-1. Converting these GOP rates to equivalent 14C-based PP (14C-PPeqv) yielded rates of 1005 ± 216 and 476 ± 183 mg C m-2 d-1 in summer and winter, respectively, that generally agreed well with previous 14C-based PP estimates in the region. The 14C-PPeqv estimates were 1-1.6× concurrent satellite-based PP estimates along the cruise track. A net community production rate (NCP) of 87 ± 12 mmol O2 m-2 d-1 (62 ± 9 mmol C m-2 d-1) and NCP/GOP of 0.35 ± 0.06 in the mixed layer was estimated from O2/Ar and 17Δ measurements (61°N 26°W) during spring bloom conditions in May 2008. Contrastingly, a much lower long-term annual mean NCP or organic carbon export rate of 2.8 ± 2.7 mol C m-2 yr-1 (8 ± 7 mmol C m-2 d-1) and NCP/GOP of 0.07 ± 0.06 at the winter mixed layer depth was estimated from 15 years of surface O2 data in the subpolar N. Atlantic collected during the CARINA program.

  12. The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

    SciTech Connect

    Jones, B. Harvey-Thompson, A. J.; Ampleford, D. J.; Jennings, C. A.; Hansen, S. B.; Moore, N. W.; Lamppa, D. C.; Johnson, D.; Jones, M. C.; Waisman, E. M.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ouart, N. D.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.; and others

    2015-02-15

    Argon gas puffs have produced 330 kJ ± 9% of x-ray radiation above 3 keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

  13. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure.

    PubMed

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing

    2015-11-11

    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ. PMID:26488848

  14. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure.

    PubMed

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing

    2015-11-11

    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ.

  15. Mobility of Ar+ in CF4

    NASA Astrophysics Data System (ADS)

    Nikitovic, Zeljka; Stojanovic, Vladimir; Raspopovic, Zoran; Jovanovic, Jasmina; Petrovic, Zoran Lj.

    2015-09-01

    In this work we present a complete cross section set for Ar+ in CF4 where existing experimentally obtained data are selected and extrapolated. Monte Carlo simulation method is applied to accurately calculate transport parameters in hydrodynamic regime. We discuss new data for Ar+ ions in CF4 where flux and bulk values of reduced mobility are given as a function of E/N (E-electric field, N-gas density). We find that internally resonant exothermic dissociative charge transfer cross section for CF3+production significantly increases zero field ion mobility with respect to the polarization limit.

  16. Study of Ar and Ar-CO2 microwave surfaguide discharges by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, Tiago; Britun, Nikolay; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony

    2016-05-01

    A surfaguide microwave discharge operating at 2.45 GHz in Ar and Ar-CO2 mixtures is studied using diagnostics methods based on optical emission spectroscopy. The population densities of Ar metastable and resonant states of the lowest group of excited levels ( 1 s x ) are investigated for several experimental conditions using the self-absorption technique. It is found that the densities of these levels, ranging from 1017 to 1016 m-3 for the pure Ar case, are dependent on the discharge pressure and applied power. The electron temperature and electron density are calculated via the balances of creation/loss mechanisms of radiative and metastable levels. In the range of the studied experimental conditions (50-300 W of applied power and 0.5-6 Torr of gas pressure), the results have shown that lower values of electron temperature correspond to higher values of power and pressure in the discharge. Adding CO2 to the argon plasma results in a considerable decrease (about 3 orders of magnitude) of the Ar metastable atom density. The feasibility of using the ratio of two Ar emission line intensities to measure the electron temperature in CO2 discharges with small Ar admixtures is studied.

  17. Tunable coherent soft X-ray source based on the generation of high-order harmonic of femtosecond laser radiation in gas-filled capillaries

    SciTech Connect

    Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E

    2014-05-30

    We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 – 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)

  18. The emission spectra of Ar, Kr and Xe + TEA

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayo; Strock, Pierre; Sauli, Fabio; Charpak, Georges

    1987-03-01

    The emission spectra of Ar, Kr and Xe + 6% TEA gas mixtures are measured by using a single wire proportional counter as the emission source. Asymmetric emission bands are observed in the range of 270 to 350 nm, which can be attributed to the radiative deexcitation of excited TEA molecules. For the practical application of optical readout of avalanche chambers, the Ar + 2.0% TEA + 20% isobutane gas mixture is also examined, and nearly the same emission band is observed.

  19. ``Smoking From The Same Pipe": Developement of an 40Ar/39Ar Datting Intercalibration PIpette System (Invited)

    NASA Astrophysics Data System (ADS)

    Turrin, B. D.; Swisher, C. C.; Deino, A.; Hemming, S. R.; Hodges, K.; Renne, P. R.

    2010-12-01

    The precision and accuracy of Ar isotope ratio measurements is one of the main limiting factors in the uncertainties of an 40Ar/39Ar age. Currently, it is relatively common to measure Ar isotopic ratios to a precision of 1-2‰ or better on an intralaboratory basis. This level of analytical precision equates to a comparable level of precision (1-3‰) in the calculated age, depending on the extent of atmospheric Ar contamination, importance of nucleogenic interference corrections, and other factors. However, it has become clear that improving the precision of mass spectrometry is not the only bottleneck towards improving the accuracy and precision of 40Ar/39Ar dating in general. Rather, the most urgent issue is interlaboratory reproducibility. This became obvious in a recent EARTHTIME initiative undertaken to intercalibrate two commonly used 40Ar/39Ar standards [the Fish Canyon sanidine (FCs) and the Alder Creek sanidine (ACs)]. This effort revealed variations amongst laboratories (at the 1-2% level), an order of magnitude greater than the internal analytical precisions. To address these issues, we have proposed (to NSF) to construct two identical pipette systems loaded to identical starting pressures and with identical isotopic compositions. One pipette system will travel between participating 40Ar/39Ar labs and the second system will not travel and serve as the “Master” system to test for any fractionation or undocumented depletion of the traveling pipette system. In order to ensure delivery of uniform amounts of homogenous gas, the pipette system will be computer-controlled with preprogrammed routines and lockouts to prevent compromising the reservoirs. The pipette systems will deliver three gas samples with different isotopic ratios at two different pressures/concentrations. One pipette bulb will be of atmospheric isotopic composition, and the other two pipette bulbs will have 40Ar*/39ArK ratios corresponding to co-irradiated ACs and FCs fixed by their

  20. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  1. Ar-Ar ages and thermal histories of enstatite meteorites

    NASA Astrophysics Data System (ADS)

    Bogard, Donald D.; Dixon, Eleanor T.; Garrison, Daniel H.

    2010-05-01

    Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar-40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous-textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar-Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar-Ar ages for enstatite meteorites are available in the literature. When all available Ar-Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50-4.54Ga, whereas five other meteorites show only lower age limits over 4.35-4.46Ga. Ar-Ar ages of several enstatite chondrites are as old or older as the oldest Ar-Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar-Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.

  2. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Finger, Martin A.; Iskhakov, Timur Sh.; Joly, Nicolas Y.; Chekhova, Maria V.; Russell, Philip St. J.

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ˜2500 photons per mode. The ultra-broadband (˜50 THz ) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  3. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum.

    PubMed

    Finger, Martin A; Iskhakov, Timur Sh; Joly, Nicolas Y; Chekhova, Maria V; Russell, Philip St J

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50  THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  4. Ar/Ar Dating Independent of Monitor Standard Ages

    NASA Astrophysics Data System (ADS)

    Boswell, S.; Hemming, S. R.

    2015-12-01

    Because the reported age of an analyzed sample is dependent on the age of the co-irradiated monitor standard(s), Ar/Ar dating is a relative dating technique. There is disagreement at the 1% scale in the age of commonly used monitor standards, and there is a great need to improve the inter-laboratory calibrations. Additionally, new approaches and insights are needed to meet the challenge of bringing the Ar/Ar chronometer to the highest possible precision and accuracy. In this spirit, we present a conceptual framework for Ar/Ar dating that does not depend on the age of monitor standards, but only on the K content of a solid standard. The concept is demonstrated by introducing a re-expressed irradiation parameter (JK) that depends on the ratio of 39ArK to 40Ar* rather than the 40Ar*/39ArK ratio. JK is equivalent to the traditional irradiation parameter J and is defined as JK = (39Ar/40K) • (λ/λe). The ultimate precision and accuracy of the method will depend on how precisely and accurately the 39Ar and 40K can be estimated, and will require isotope dilution measurements of both from the same aliquot. We are testing the workability of our technique at the 1% level by measuring weighed and irradiated hornblende and biotite monitor standards using GLO-1 glauconite to define a calibration curve for argon signals versus abundance.

  5. Intermolecular polarizabilities in H{sub 2}-rare-gas mixtures (H{sub 2}–He, Ne, Ar, Kr, Xe): Insight from collisional isotropic spectral properties

    SciTech Connect

    Głaz, Waldemar Bancewicz, Tadeusz; Godet, Jean-Luc; Gustafsson, Magnus; Maroulis, George; Haskopoulos, Anastasios

    2014-08-21

    The report presents results of theoretical and numerical analysis of the electrical properties related to the isotropic part of the polarizability induced by interactions within compounds built up of a hydrogen H{sub 2} molecule and a set of noble gas atoms, Rg, ranging from the least massive helium up to the heaviest xenon perturber. The Cartesian components of the collisional polarizabilities of the H{sub 2}–Rg systems are found by means of the quantum chemistry methods and their dependence on the intermolecular distance is determined. On the basis of these data, the spherical, symmetry adapted components of the trace polarizability are derived in order to provide data sets that are convenient for evaluating collisional spectral profiles of the isotropic polarized part of light scattered by the H{sub 2}–Rg mixtures. Three independent methods of numerical computing of the spectral intensities are applied at room temperature (295 K). The properties of the roto-translational profiles obtained are discussed in order to determine the role played by contributions corresponding to each of the symmetry adapted parts of the trace polarizability. By spreading the analysis over the collection of the H{sub 2}–Rg systems, evolution of the spectral properties with the growing masses of the supermolecular compounds can be observed.

  6. Benzyl anion transfer in the fragmentation of N-(phenylsulfonyl)-benzeneacetamides: a gas-phase intramolecular S(N)Ar reaction.

    PubMed

    Shen, Shanshan; Chai, Yunfeng; Liu, Yaqin; Li, Chang; Pan, Yuanjiang

    2015-10-28

    In this study, we report a gas-phase benzyl anion transfer via intramolecular aromatic nucleophilic substitution (SNAr) during the course of tandem mass spectrometry of deprotonated N-(phenylsulfonyl)-benzeneacetamide. Upon collisional activation, the formation of the initial ion/neutral complex ([C6H5CH2(-)/C6H5SO2NCO]), which was generated by heterolytic cleavage of the CH2-CO bond, is proposed as the key step. Subsequently, the anionic counterpart, benzyl anion, is transferred to conduct the intra-complex SNAr reaction. After losing neutral HNCO, the intermediate gives rise to product ion B at m/z 231, whose structure is confirmed by comparing the multistage spectra with those of deprotonated 2-benzylbenzenesulfinic acid and (benzylsulfonyl)benzene. In addition, intra-complex proton transfer is also observed within the complex [C6H5CH2(-)/C6H5SO2NCO] to generate product ion C at m/z 182. The INC-mediated mechanism was corroborated by theoretical calculations, isotope experiments, breakdown curve, substituent experiments, etc. This work may provide further understanding of the physicochemical properties of the gaseous benzyl anion. PMID:26309220

  7. 40Ar/39Ar Dating of Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Renne, P. R.; Watkins, J. M.

    2007-12-01

    Application of the 40Ar/39Ar method to volcanic glasses has been somewhat stigmatized following several studies demonstrating secondary mobility of K and Ar. Much of the stigma is unwarranted, however, since most studies only impugned the reliability of the K-Ar and 40Ar/39Ar techniques when applied to glass shards rather than obsidian clasts with low surface area to volume ratios. We provide further evidence for problematic K loss and/or 39Ar recoil ejection from glass shards in 40Ar/39Ar step heating results for comagmatic feldspars and shards. In an extreme case, the plateau age of the feldspars (0.17 ± 0.03 Ma at 2σ) is significantly younger than the plateau age of the glass (0.85 ± 0.05 Ma at 2σ). If the feldspar age is reasonably interpreted as the eruption age of the ash, it is likely that the glass shards experienced K and/or 39Ar loss. Electron microprobe analyses of the glass shards have low totals (~93%) and no systematic lateral variability (i.e., diffusion gradients) in K, suggesting that the lengthscale of the glass shards is smaller than the lengthscale of K diffusion. Obsidian clasts should not be as susceptible to K loss since any hydrated (K-depleted) volume represents a small fraction of the total material and can often be physically removed prior to analysis. Samples described here are detrital obsidian clasts from the Afar region of Ethiopia. Evidence from Fourier Transform Infrared Spectroscopy (FTIR), and previous work by Anovitz (1999), confirm that the scale of water and potassium mobility are often small in comparison to the size of obsidian clasts but large enough to effect the bulk composition of glass shards. This expectation is confirmed in another tuff wherein comagmatic obsidian clasts and sanidine phenocrysts yield indistinguishable 40Ar/39Ar ages of 4.4 Ma High abundances of non-radiogenic 40Ar, and kinetic fractionation of Ar isotopes during quenching and/or laboratory degassing resulting in incomplete equilibration between

  8. 40Ar/36Ar analyses of historic lava flows

    USGS Publications Warehouse

    Dalrymple, G.B.

    1969-01-01

    The ratio 40Ar/36Ar was measured for 26 subaerial historic lava flows. Approximately one-third of the samples had 40Ar/36Ar ratios either higher or lower than the atmospheric value of 295.5 at the 95% confidence level. Excess radiogenic 40Ar in five flows ranged from about 1 ?? 10-13 to 1.5 ?? 10-12 mol/g. Possible excess 36Ar in three flows was on the order of 10-16 to 10-15 mol/g. Upper 95% confidence limits for excess 40Ar in samples with normal 40Ar/36Ar ratios are generally less than 3 ?? 10-13 mol/g. The origin of the excess 36Ar is unknown but it may be due either to the incorporation of primitive argon that has been stored in the mantle in very low potassium environments or to enrichment in 36Ar as atmospheric argon diffuses into the rocks after they cool. ?? 1969.

  9. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ermolov, A.; Mak, K. F.; Frosz, M. H.; Travers, J. C.; Russell, P. St. J.

    2015-09-01

    We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near infrared, spanning at least 113-1000 nm (i.e., 11 -1.2 eV ), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is an interaction between dispersive-wave emission and plasma-induced blue-shifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, the modeling of which proves to be coherent and possesses a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 asec duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1 % and VUV pulse energies in excess of 50 nJ.

  10. A fast gas ionization calorimeter filled with C 3F 8 for operation at high counting rates and hard radiation environment

    NASA Astrophysics Data System (ADS)

    Denisov, S.; Dushkin, A.; Fedyakin, N.; Gilitsky, Yu.; Ljudmirsky, M.; Spiridonov, A.; Sytnik, V.

    1998-12-01

    The performance of a gas ionization EM calorimeter with planar electrodes and steel absorbers has been studied with a 26.6 GeV/ c electron beam at the 70 GeV IHEP accelerator. The design of the calorimeter is optimized for the operation at high counting rates by minimizing the coupling inductance and by choosing rather fast and heavy perfluoroalkane C 3F 8 ( vdr=0.07 mm/ns at a reduced field E/ N=1.0×10 -16 V cm 2). This gas has been used for the first time in calorimetry applications. The total calorimeter thickness is ≈21 X0. The signal readout has been done by remote 25 Ω low-noise preamplifiers coupled to towers via 25 Ω cable of 3 m length. The choice of a 25 Ω input impedance provides a complete matching between preamplifier, cable and tower. The studies of the calorimeter consisted in measuring the signal and noise spectra at different values of HV, ADC gate width and gas pressure. The electron attachment rate in C 3F 8 with a stated purity of 99.99% is quite low (at a given E/ N the mean free path of electrons is λ=2.2 cm at 1 atm). The intrinsic energy resolution of the calorimeter after noise subtraction is found to be independent of the gas pressure and equal to ≈7% at E=26.6 GeV/ c.

  11. Ar40-Ar39 systematics in rocks and separated minerals from Apollo 14.

    NASA Technical Reports Server (NTRS)

    Turner, G.; Huneke, J. C.; Podosek, F. A.; Wasserburg, G. J.

    1972-01-01

    The Ar40-Ar39 dating technique has been applied to separated minerals (plagioclase, pyroxene, quintessence and an 'ilmenite' concentrate), and whole rock samples of Apollo 14 rocks 14310 and 14073. Plagioclase shows the best gas retention characteristics, with no evidence of anomalous behavior and only a small amount of gas loss in the initial release. Ages determined from the plagioclase of 14310 and 14073 are (3.87 plus or minus 0.05) and (3.88 plus or minus 0.05) AE respectively. Low apparent ages at low release temperatures, which are frequently observed in whole rock Ar40-Ar39 experiments on lunar basalts, are shown to be principally due to gas loss in the high-K interstitial glass (quintessence) phase, confirming earlier suggestions. The decrease in apparent ages in the high-temperature release previously observed in several total rock samples of Apollo 14 basalts has been identified with the pyroxene. Plagioclase is also found to be the most suitable mineral for the determination of cosmic ray exposure ages, and exposure ages of 280 and 113 m.y. are found for 14310 and 14073, respectively, indicating that these rocks, which are very similar in many respects, have different exposure histories.

  12. Effect of surface derived hydrocarbon impurities on Ar plasma properties

    SciTech Connect

    Fox-Lyon, Nick; Oehrlein, Gottlieb S.; Godyak, Valery

    2014-05-15

    The authors report on Langmuir probe measurements that show that hydrocarbon surfaces in contact with Ar plasma cause changes of electron energy distribution functions due to the flux of hydrogen and carbon atoms released by the surfaces. The authors compare the impact on plasma properties of hydrocarbon species gasified from an etching hydrocarbon surface with injection of gaseous hydrocarbons into Ar plasma. They find that both kinds of hydrocarbon injections decrease electron density and slightly increase electron temperatures of low pressure Ar plasma. For low percentages of impurities (∼1% impurity in Ar plasma explored here), surface-derived hydrocarbon species and gas phase injected hydrocarbon molecules cause similar changes of plasma properties for the same number of hydrocarbon molecules injected into Ar with a decrease in electron density of ∼4%.

  13. Ion-kinetic simulations of D-3He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number

    DOE PAGES

    Larroche, O.; Rinderknecht, H. G.; Rosenberg, M. J.; Hoffman, N. M.; Atzeni, S.; Petrasso, R. D.; Amendt, P. A.; Seguin, F. H.

    2016-01-06

    Experiments designed to investigate the transition to non-collisional behavior in D3He-gas inertial confinement fusion target implosions display increasingly large discrepancies with respect to simulations by standard hydrodynamics codes as the expected ion mean-free-paths λc increase with respect to the target radius R (i.e., when the Knudsen number NK = λc/R grows). To take properly into account large NK's, multi-ion-species Vlasov-Fokker-Planck computations of the inner gas in the capsules have been performed, for two different values of NK, one moderate and one large. The results, including nuclear yield, reactivity-weighted ion temperatures, nuclear emissivities, and surface brightness, have been compared with themore » experimental data and with the results of hydrodynamical simulations, some of which include an ad hocmodeling of kinetic effects. The experimental results are quite accurately rendered by the kinetic calculations in the smaller-NK case, much better than by the hydrodynamical calculations. The kinetic effects at play in this case are thus correctly understood. However, in the higher-NK case, the agreement is much worse. Furthermore, the remaining discrepancies are shown to arise from kinetic phenomena (e.g., inter-species diffusion) occurring at the gas-pusher interface, which should be investigated in the future work.« less

  14. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    SciTech Connect

    1996-07-25

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristic natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.

  15. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  16. Production of 37Ar in The University of Texas TRIGA reactor facility

    SciTech Connect

    Egnatuk, Christine M.; Lowrey, Justin; Biegalski, S.; Bowyer, Ted W.; Haas, Derek A.; Orrell, John L.; Woods, Vincent T.; Keillor, Martin E.

    2011-06-19

    The detection of {sup 37}Ar is important for on-site inspections for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by {sup 40}Ca(n,{alpha}){sup 37}Ar reaction in surrounding soil and rock. With a half-life of 35 days, {sup 37}Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect {sup 37}Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of {sup 37}Ar for the calibration of the detector. The {sup 41}Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the {sup 41}Ar/{sup 37}Ar production ratio and the {sup 41}Ar activity, the amount of {sup 37}Ar created is calculated. The {sup 41}Ar decays quickly (half-life of 109.34 minutes) leaving a radioactive sample of high purity {sup 37}Ar and only trace levels of {sup 39}Ar.

  17. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    SciTech Connect

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  18. The new 39Ar/40Ar dating facility of the LSCE, background and performances.

    NASA Astrophysics Data System (ADS)

    Scaillet, S.; Nomade, S.; Guillou, H.; Scaillet-Vita, G.

    2007-12-01

    Precise and accurate timescales are increasingly needed in most disciplines of the Earth sciences. To contribute to this challenging task, a new 39Ar/40Ar laboratory, specifically devoted to the dating of very recent (down to 1 ka) volcanic products, has been developed at the LSCE (CEA-IPSL-UVSQ, France). In this contribution, we present the first data obtained from this new facility. The laboratory comprises a VG 5400 mass spectrometer coupled with a high sensitivity and high dynamic range ion counting system. Gas extraction is achieved with a 25 watts C02 laser or a double vacuum furnace depending of the analyzed samples. The full metal vacuum and purification line feature a GP50 and a compact Ti flash getters which permit extremely low blank for all Argon isotopes (e.g. ~ 3.0 10e-19 Moles for 36Ar). Both analytical protocols and hardware were specifically developed and optimized to date extremely young samples. Analytical performances including protocols, flux monitoring as well mass spectrometer discrimination correction method will be presented in the light of data obtained over the last 10 months. All samples were irradiated, under cadmium, in the Β-1 position (~1.0 10e+13 fast n cm-2 s-1) of the 70MWh-1 OSIRIS reactor (Pierre Süe laboratory, CEA-Saclay, France). Irradiation package is composed of home-design Aluminium disks constituting a 4 cm stack (10 to 30 unknowns/irradiation). Analyzed neutrons flux standards indicate less than 1% variation along the 4cm stack and validate the use of this reactor for high-precision 39Ar/40Ar dating. The precision and accuracy of the facility has been checked from cross-comparison of international single grain standards including FCs (28.02Ma), ACR-2 (1.194Ma) and TCR (28.32Ma) using the most recent recommended values for these monitors. A total of 80 grains in two irradiations (10 and 120 minutes) will be presented in details. Results from single-grain analyses agree within errors with those proposed by Renne et al

  19. Ar-39-Ar-40 ages of four ureilites

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Garrison, D. H.

    1994-01-01

    Ureilites Novo Urei, Havero, and Kenna show strong evidence of one or more Ar-40 degassing events in the time period of 3.3-4.1 Ga ago. These ages may be compared to current interpretations of ureilite chronology. These include the suggestion of metasomatic activity on the parent body 3.7 Ga ago that reset some Sm-Nd ages and the suggestion that ureilites have experienced terrestrial contamination of several trace elements (including Pb and LREE), which makes suspect ages younger than approximately 4.5 Ga. Because the K-Ar chronometer can be sensitive to metamorphic events, we made Ar-39-Ar-40 determinations on bulk samples (0.12-0.14 g each) of four ureilites. The Ar-39-Ar-40 age spectra and K/Ca ratios as a function of cumulative Ar release from stepwise temperature extractions for the four ureilites analyzed are shown. Because Ar-39-Ar-40 ages shown by low and high temperature extractions may be suspect, we examined the intermediate temperature extractions. Although interpretation of these spectra is obviously uncertain, we believe that the most recent times of Ar degassing can be roughly inferred. These times are approximately 3.3 Ga for Havero, 3.3-3.7 Ga for Novo Urei, and approximately 4.1 Ga for Kenna, for which Ar degassing may not have been complete. The indication of Ar-39-Ar-40 degassing ages of 3.3-4.1 Ga for three ureilites that also contain an enhanced LREE component and (excepting Havero) produce a 3.74 Ga Sm-Nd age, suggests that both chronometers may have responded to the same parent body event. On the other hand, it is also possible that the Ar data reflect one or more separate events that did not strongly affect the Sm-Nd system, a situation that commonly occurs in eucrites. Thus the existence of reset Ar ages does not require similarly reset Sm-Nd ages.

  20. 40Ar/39Ar Interlaboratory Calibration into the Holocene.

    NASA Astrophysics Data System (ADS)

    Heizler, M. T.; Jicha, B.; Koppers, A. A. P.; Miggins, D. P.

    2015-12-01

    Advances in 40Ar/39Ar analytical precision for very young rocks requires collaborative efforts amongst argon geochronology labs to demonstrate age reproducibility commensurate with high precision. NM Tech (NMT), the University of Wisconsin (UW) and Oregon State University (OSU) have each dated Quaternary flux monitor standard AC-2 sanidine (~1.185 Ma), a blind sanidine described as being 50-100 ka (BS) and sanidine from the Qixiangshan (QIX) flow (~10 ka), Changbaishan volcano, China. The samples were irradiated in a single package with FC-2 sanidine (28.201 Ma) as the flux monitor and the irradiated material was distributed amongst the labs. Heizler was present during analysis at both OSU and UW and Jicha attended OSU during analysis. Physical presence was key towards gaining understanding of individual protocols and prompted valuable discussions. Analyses were carried out on single crystals using total fusion and/or step heating approaches. Age agreement was achieved within 2s uncertainty that ranged between (0.03-0.3%, 0.13-0.37% and 1.8-2.6%) for AC-2, BS and QIX, respectively. Each lab found AC-2 to vary somewhat beyond a normal distribution and to yield an age relative to FC-2 of ~1.185 Ma that is ~1.3% (~5-10 sigma) lower than some published estimates. A key cause of the variation between this study and previous results may be variable gas pressure equilibration times between extraction line and mass spectrometer coupled with variable choices to estimate time zero by other laboratories. The majority of our efforts concentrated on the QIX sanidine where prior data obtained by our labs revealed a factor of two spread in age (~11 and 23 ka) based on experiments carried out by total fusion and bulk incremental heating. By conducting single crystal age spectrum analysis we were able to mitigate effects of melt inclusion hosted excess argon and xenocrystic contamination towards obtaining analytical agreement with apparent ages near 10 ka. However, philosophical

  1. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    SciTech Connect

    Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  2. AR-39-AR-40 "Age" of Basaltic Shergottite NWA-3171

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2007-01-01

    North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.

  3. In-situ Ar isotope, 40Ar/39Ar analysis and mineral chemistry of nosean in the phonolite from Olbrück volcano, East Eifel volcanic field, Germany: Implication for the source of excess 40Ar

    NASA Astrophysics Data System (ADS)

    Sudo, Masafumi; Altenberger, Uwe; Günter, Christina

    2014-05-01

    Since the report by Lippolt et al. (1990), hauyne and nosean phenocrysts in certain phonolites from the northwest in the Quaternary East Eifel volcanic field in Germany were known to contain significant amounts of excess 40Ar, thus, show apparent older ages than the other minerals. However, its petrographic meaning have not been well known. Meanwhile, Sumino et al. (2008) has identified the source of the excess 40Ar in the plagioclase phenocrysts from the historic Unzen dacite lava as the melt inclusions in the zones parallely developed to the plagioclase rim by in-situ laser Ar isotope analysis. In order to obtain eruption ages of very young volcanoes as like Quaternary Eifel volcanic field by the K-Ar system, it is quite essential to know about the location of excess 40Ar in volcanic rocks. We have collected phonolites from the Olbrück volcano in East Eifel and investigated its petrography and mineral chemistry and also performed in-situ Ar isotope analyses of unirradiated rock section sample and also in-situ 40Ar/39Ar analysis of neutron irradiated section sample with the UV pulse laser (wavelength 266 nm) and 40Ar/39Ar analytical system of the University of Potsdam. Petrographically, nosean contained fine melt and/or gas inclusions of less than 5 micrometer, which mostly distribute linearly and are relatively enriched in chlorine than the areas without inclusions. Solid inclusions of similar sizes contain CaO and fluorine. In nosean, typically around 5 wt% of sulfur is contained. The 40Ar/39Ar dating was also performed to leucite, sanidine and groundmass in the same section for comparison of those ages with that of nosean. In each analysis, 200 micrometer of beam size was used for making a pit with depth of up to 300 micrometer by laser ablation. As our 40Ar/39Ar analyses were conducted one and half year after the neutron irradiation, thus, short lived 37Ar derived from Ca had decayed very much, we measured Ca and K contents in nosean by SEM-EDS then applied

  4. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  5. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path.

    PubMed

    Timm, Matthew J; Matta, Chérif F

    2014-12-01

    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)].

  6. Getting a prescription filled

    MedlinePlus

    ... to get prescription filled; Pharmacy - mail order; Pharmacy - internet; Types of pharmacies ... stored at certain temperatures at a local pharmacy. INTERNET (ONLINE) PHARMACIES Internet pharmacies can be used for ...

  7. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  8. Geochemical characteristics and K-Ar ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana

    USGS Publications Warehouse

    Chalokwu, C.I.; Ghazi, M.A.; Foord, E.E.

    1997-01-01

    The pegmatite-aplite rocks at Mankwadzi (Ejisimanku Hills) in southeastern Ghana are part of the pegmatite district that extends from Cape Coast to Winneba along the Atlantic coastline. The pegmatites are associated with the Cape Coast granite complex and were intruded during the waning phase of the Eburnian Orogeny (???2.0 Ga). Three muscovite separates from pegmatite give K-Ar retention ages of 1909 ?? 13 Ma, 1965 ?? 13 Ma and 2019 ?? 14 Ma. A biotite separate from granite yields a K-Ar age of 1907 ?? 13 Ma. These ages are similar to K-Ar dates previously reported for the Cape Coast granites, indicating that the granites and pegmatites are coeval and probably genetically linked. The pegmatites are enriched in Li, Be, Nb and Sn and considerably impoverished in Rb, Th, Y and REEs. Microscopic examination of quartz from the pegmatites shows a large number of low salinity fluid inclusions that can be divided into two types: (1) one-phase liquid or gas-filled inclusions; and (2) two-phase liquid-vapour inclusions, with the vapour occupying 2-5% of the volume. The homogenisation temperature of the fluid inclusions clusters between 129 and 144??C. These homogenisation temperatures lead to an inferred entrapment temperature of ???300??C at a pressure of ???2.5 kbar, which is estimated for the metamorphism of host hornblende schists. The pegmatite fluid inclusions are interpreted as being secondary to the quartz hosts. ?? 1997 Elsevier Science Limited.

  9. Pulsed electron beam propagation in argon and nitrogen gas mixture

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-01

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  10. Near- and sub-barrier fusion of {sup 6}He+{sup 40}Ar

    SciTech Connect

    Hinnefeld, J.D.; Kolata, J.J.; Belbot, M.; Lamkin, K.; Zahar, M.; Santi, P.; Kugi, J.

    1993-10-01

    A measurement of the fusion cross section for {sup 6}He + {sup 40}Ar near and below the Coulomb barrier has been performed using a {sup 6}He beam from the UND/Um radioactive beam facility. The {sup 6}He nucleus is thought to have a neutron skin surrounding a {sup 6}He core. If this is the case, then Coulomb polarization of the core relative to the halo might result in neutron flow along a neck, and therefore to a large enhancement of the sub-barrier fusion cross section. {sup 6}He nuclei, of incident energy 10.05 {+-} 0.44 MeV, were directed into a segmented ionization counter (MUSIC) filled with P10 at 40 torr. The {sup 40}Ar in the detector gas served also as the target nuclei. {sup 6}He energies in the 50-cm active length of the detector varied from 7.75 MeV down to 3.05 MeV. Calculations indicate that fusion events should be distinguishable from most non-fusion events on the basis of energy deposition patterns in the ten MUSIC detector segments. For some large-angle scattering events a more elaborate analysis involving detailed Monte Carlo simulation of the various reactions is necessary.

  11. Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography.

    PubMed

    Duhamel, Chloé; Cardinael, Pascal; Peulon-Agasse, Valérie; Firor, Roger; Pascaud, Laurent; Semard-Jousset, Gaëlle; Giusti, Pierre; Livadaris, Vincent

    2015-03-27

    The development of new efficient conversion processes to transform heavy petroleum fractions into valuable products, such as diesel, requires improved chemical knowledge of the latter. High-temperature comprehensive gas chromatography (HT-GC × GC) has proven to be a powerful technique for characterizing such complex samples. This paper reports on an evaluation of the performances of four different differential flow modulators, including two original ones that have not been previously described in the literature, in terms of dispersion, peak intensity, peak capacity and overloading. These modulators, all of which are based on Agilent capillary flow technology (CFT), are forward fill/flush (FFF) differential flow modulators with an integrated collection channel or an adjustable channel (new) and reverse fill/flush (RFF) differential flow modulators with an integrated collection channel (new) or an adjustable channel. First, the optimization of the collection channel dimensions is described. Second, an RFF and an FFF differential flow modulator possessing the same collection channel were compared. The reverse differential flow modulation significantly reduced band broadening compared to forward differential flow modulation, and the peak intensity doubled for every modulated peak when an RFF differential flow modulator was used. Then, an RFF differential flow modulator and CO2 dual-jet modulator were compared. Whereas the percentages of separation space used were similar (61% with the HT-GC × GC method using a cryogenic modulator and 59% with the method using an RFF differential flow modulator), the peak capacities were at least three times more important with differential flow modulation due to the greater length of the column used in the second dimension. The results demonstrate that the RFF differential flow modulator is an excellent tool for studying heavy petroleum cuts. It demonstrates the best performances and it is the most versatile modulator. In its two

  12. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  13. Noble Gases in the Monahans Chondrite and Halite: Ar-39 - Ar-40 Age, Space Exposure Age, Trapped Solar Gases, and Neutron Fluence

    NASA Technical Reports Server (NTRS)

    Garrison, Daniel H.; Bogard, Donald D.

    2000-01-01

    For the Monahans chondrite and halite, we determined Ar-39 - Ar-40 ages of silicate = 4.53 Ga, halite > 4.3 Ga; a space exposure age of approx. 5 Ma; a regolith pre-irradiation; solar gas concentrations in the dark phase; and a regolith thermal neutron fluence.

  14. 40Ar/39Ar and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    USGS Publications Warehouse

    Bogard, D.D.; Unruh, D.M.; Tatsumoto, M.

    1983-01-01

    Determinations of 40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give 40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4-4.5 Gy these data do not resolve any possible age differences among the three clasts. 206Pb measured in these clasts is only ???1.5-2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the 207Pb/206Pb model ages. The Pb data indicate that the initial 207Pb/206Pb was no more than 0.08??0.07% higher than this ratio in Can??on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The 40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating. ?? 1983.

  15. Loose-fill insulations

    SciTech Connect

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  16. Neutron-hole states in 45Ar from 1H(46Ar, d) 45Ar reactions

    NASA Astrophysics Data System (ADS)

    Lu, F.; Lee, Jenny; Tsang, M. B.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Lynch, W. G.; Rogers, A. M.; Sanetullaev, A.; Sun, Z. Y.; Youngs, M.; Charity, R. J.; Sobotka, L. G.; Famiano, M.; Hudan, S.; Horoi, M.; Ye, Y. L.

    2013-07-01

    To improve the effective interactions in the pf shell, it is important to measure the single-particle and single-hole states near the N = 28 shell gap. In this paper, the neutron spectroscopic factors of hole states from the unstable neutron-rich 45Ar (Z = 18,N = 27) nucleus have been studied using the 1H(46Ar,d) 45Ar transfer reaction in inverse kinematics. Comparison of our results with the particle states of 45Ar produced in 2H(44Ar, p) 45Ar reaction shows that the two reactions populate states with different angular momenta. Using the angular distributions, we are able to confirm the spin assignments of four low-lying states of 45Ar. These are the ground state (f7/2), the first-excited state (p3/2), and the s1/2 and d3/2 states. While large basis shell-model predictions describe spectroscopic properties of the ground and p3/2 states very well, they fail to describe the s1/2 and d3/2 hole states.

  17. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may be loaded in the tank to the weight of the water the tank will hold at 60 °F., shall not exceed...

  18. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may be loaded in the tank to the weight of the water the tank will hold at 60 °F., shall not exceed...

  19. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may be loaded in the tank to the weight of the water the tank will hold at 60 °F., shall not exceed...

  20. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may be loaded in the tank to the weight of the water the tank will hold at 60 °F., shall not exceed...

  1. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may be loaded in the tank to the weight of the water the tank will hold at 60 °F., shall not exceed...

  2. 40Ar/39Ar dating of tourmaline as a tool for high-temperature metamorphism thermochronology

    NASA Astrophysics Data System (ADS)

    Jourdan, Fred; Thern, Eric

    2014-05-01

    Tourmaline is an ubiquitous mineral, with properties making it ideal for studying metamorphic processes as well as a useful tool for a wide range of applications (e.g, magmatism, metasomatism, ore deposits [1]), mostly because it is not sensitive to chemical or mechanical alteration and is stable over a wide range of pressure-temperature conditions (up to 6 GPa and 850° C [2]). Typical metamorphic tourmaline types include dravite and shorl which, along with elbaite, belong to the alkali group [1]. The alkali group is notable because tourmalines from this group tend to incorporate trace amounts of K2O and therefore, can be dated using the 40Ar/39Ar technique. In order to understand the maximum temperature below which the K/Ar chronometer stays closed to argon loss by thermally activated diffusion, we carried out temperature controlled furnace diffusion experiments on well-behaved 40Ar/39Ar plateau-forming Archean tourmaline of 2935 ± 9 Ma [3]. Each experiment yielded an Arrhenius profile (Do vs. 1/temperature) that shows that the 39Ar data form two linear arrays with two distinct slopes. The first array only includes a few % of the total gas, has a shallow slope and shows very fast diffusivity at low temperature. We interpret these data as indicating very fast release of argon by cracks and defects. The second array of data points includes most of the gas of each experiment and forms a much steeper slope. These data yielded Ea (activation energy) values ranging from 120 to 157 Kcal/mol and D0 (pre-exponential diffusion factor) values ranging from 1.9x106 to 2.5x109 cm2/s for crystals with an average radius of 100 ± 25 μm. Three additional experiments using a laser (resulting in poor temperature control) suggest similar values although the latter experiments are considered semi-quantitative. The furnace experiments suggest that tourmaline has a weighted mean closure temperature of 804 ± 90 ° C (1σ) for a cooling rate of 10° C/Ma. Monte Carlo simulations using

  3. Inter-monitor standard calibration and tests for Ar-Ar biases

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Turrin, B. D.; Swisher, C. C.; Cox, S. E.; Mesko, G. T.; Chang, S.

    2010-12-01

    Observatory (AGES) and at Rutgers University, we have begun a concerted effort to test various factors that could lead to biases. AGES uses analogue multiplier peak hopping measurements on a Micromass VG 5400 noble gas mass spectrometer. Rutgers uses ion counting on a MAP 215-50 noble gas mass spectrometer, modified to collect Ar-36 by ion counting and Ar-40 by faraday simultaneously. We will present the results of our internal inter-comparison of monitor standards from each laboratory and will compare them to published results for these standards. We will also present our results from analyzing different sized samples of Fish Canyon sanidine, Alder Creek sanidine, and McClure Mountain hornblende monitor standards.

  4. Ar-39-Ar-40 Ages of Two Nakhlites, MIL03346 and Y000593: A Detailed Analysis

    NASA Technical Reports Server (NTRS)

    Park, Jisun; Garrison, Daniel; Bogard, Donald

    2007-01-01

    Radiometric dating of martian nakhlites by several techniques have given similar ages of approx.1.2-1.4 Ga [e.g. 1, 2]. Unlike the case with shergottites, where the presence of martian atmosphere and inherited radiogenic Ar-40 produce apparent Ar-39-Ar-40 ages older than other radiometric ages, Ar-Ar ages of nakhlites are similar to ages derived by other techniques. However, even in some nakhlites the presence of trapped martian Ar produces some uncertainty in the Ar-Ar age. We present here an analysis of such Ar-Ar ages from the MIL03346 and Y000593 nakhlites.

  5. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  6. Unmixing 40Ar/39Ar Muscovite Ages Using Powder X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    McAleer, R. J.; Kunk, M. J.; Valley, P. M.; Walsh, G. J.; Bish, D. L.; Wintsch, R. P.

    2014-12-01

    Whole rock powder X-ray diffraction (XRD) experiments from eight samples collected across a retrograde ductile shear zone in the Devonian Littleton Formation near Claremont, NH, exhibit broad and asymmetric to bimodal muscovite 00l reflections. These composite 00l reflections exhibit a systematic change in shape with increasing retrograde strain. Microtextural relationships, electron microprobe quantitative analyses, and element mapping indicate that the change in peak shape reflects progressive dissolution of metastable Na-rich muscovite and the precipitation of stable Na-poor muscovite. 40Ar/39Ar step heating experiments on muscovite concentrates from these samples show a decrease in total gas age from 274 to 258 Ma as the highest strain zone is approached, and steps within individual spectra range in age by ~20 m.y. The correlation between age and 00l peak shape suggests that the argon isotopic system also tracks the dissolution-precipitation process. Furthermore, the variation in age during step heating indicates that these populations exhibit different in-vacuo degassing behavior. Comparison of whole rock and muscovite concentrate XRD patterns from the same samples shows that the mineral separation process can fractionate these muscovite populations. With this knowledge, four muscovite concentrates were prepared from a single hand sample, analyzed by XRD, and dated. Combining modal estimates from XRD experiments with total gas ages, the four splits narrowly define a mixing line that resolves end-member ages of 250 and 300 Ma for the neocrystallized and earlier high grade populations of muscovite, respectively. These ages are consistent with age data from all other samples. The results show that, in some settings, powder XRD provides a powerful and time effective method to both identify the existence of and establish the proportions of multiple compositional populations of muscovite prior to 40Ar/39Ar analysis. This approach will be especially useful in

  7. An Astronomically Dated Standard in 40Ar/39Ar Geochronology?

    NASA Astrophysics Data System (ADS)

    Kuiper, K.; Hilgen, F.; Krijgsman, W.; Wijbrans, J.

    2003-12-01

    The standard geological time scale of Berggren et al. (1995) and Cande and Kent (1995) is calibrated with different absolute dating techniques, i.e. the Plio - Pleistocene relies on astronomical tuning, and older parts of the time scale are based on radio-isotopic (40Ar/39Ar and U/Pb) calibration methods. In the new edition of the standard geological timescale (Lourens et al., to be published in 2004) the entire Neogene will rely on astronomical dating. Therefore, it is of crucial importance that all dating methods produce equivalent absolute ages when the same geological event is dated. The Mediterranean Neogene provides an excellent opportunity to compare different dating methods by isotopic dating (40Ar/39Ar, U/Pb) of volcanic ash layers intercalated in astronomically dated sediments. Here we will show that in spite of potential errors in all methods, we succeeded to intercalibrate the 40Ar/39Ar and astronomical methods, arriving at astronomically calibrated age of 28.24 +/- 0.01 Ma for the in 40Ar/39Ar geochronology commonly used standard FCT sanidine. The advantage of an astronomically calibrated FCT above a K/Ar calibrated standard is a smaller error in the absolute age due to the lack of uncertainties related to 40K and radiogenic 40Ar contents in the primary standard and a decreasing influence of errors in the decay constant (branching ratio is not required). In addition to an astronomically calibrated FCT age we propose to introduce an astronomically dated standard. A direct astronomically dated standard can be regarded as a "primary" standard and does not require intercalibration with other standards, thus reducing analytical (and geological) uncertainties. Ash layers intercalated in sedimentary sequences in the Melilla Basin, Morocco appear to be the most suitable for this purpose. A reliable astronomical time control is available and intercalated ash layers contain sanidine phenocrysts up to 2 mm. Four ash layers are not or barely affected by

  8. Ar II Emission Processes and Emission Rate Coefficients in ASTRAL Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Kamar, O.; Kesterson, A.; Loch, S.; Munoz, J.; Ballance, C.

    2008-11-01

    Emission processes for Ar II line emission are described for low temperature plasmas (Te < 10 eV). It is found that Ar II emission results primarily from Ar ion ground state excitation rather than from any Ar neutral state. This suggests that Ar II emission results from stepping processes which includes ionization and then excitation of the neutral Ar atom filling the vacuum chamber. The Ar II emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m monochromator and a CCD camera. ASTRAL produces Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. In this experiment, Ar II transitions are monitored as a function of Te while ne is kept constant. Experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Theoretical predictions make use of the ADAS suite of codes as well as recent R-matrix electron-impact excitation calculations that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations.

  9. Computational phase diagrams of noble gas hydrates under pressure.

    PubMed

    Teeratchanan, Pattanasak; Hermann, Andreas

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-Ih, ice-Ic, ice-II, and C0 interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C0 water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C0 hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems. PMID:26493915

  10. Computational phase diagrams of noble gas hydrates under pressure

    SciTech Connect

    Teeratchanan, Pattanasak Hermann, Andreas

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  11. Ubiquitous Argonium, ArH+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, H. S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, N.; Bergin, E.; Lis, D. C.; Gerin, M.; Black, J. H.; Wolfire, M. G.; Pearson, J.; Menten, K.; Winkel, B.

    2014-06-01

    ArH+ is isoelectronic with HCl. The J = 1-0 and 2-1 transitions of 36ArH+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant.1 On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1-0 transition of 36ArH+ as a moderately strong absorption line initially associated with an unidentified carrier.2 In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-3. The 38ArH+ isotopologue was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH+ and H2O+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants.

  12. Comparison of temporal variation in emission intensity of OH(A) in after-glow period of Ar/H2O and He/H2O gas-mixture plasmas in water

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru

    2014-10-01

    Previously, we have reported quite long duration (approx. 500 ns) of optical emission intensity of OH(A) in an after glow period of Ar plasma in water. Numerical simulation has revealed that this phenomenon can be explained in terms of production of OH(A) through the reaction of H3O+ and low temperature electrons. We can perform similar plasma processing using He plasma in water with almost the same process performance in the case of decomposition of methylene blue molecules in aqueous solution. Thus, we have expected that the long duration of OH(A) optical emission can be observed also in He plasma in water. However, such long duration of OH(A) optical emission has not been observed in the case of He plasma in water. To understand this difference, we have performed numerical simulation of Ar/H2O and He/H2O plasmas, and discuss differences in major reaction pathways to produce OH(A) in Ar/H2O and He/H2O plasmas. This work has been partly supported by the Grant-in-Aid for Scientific Research on Priority Area ``Frontier science of interactions between plasmas and nano-interfaces'' from MEXT, Japan, and a Grant-in-Aid for Scientific Research (C) from JSPS.

  13. Uncertainty Quantification of Ar-37 Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Carrigan, C. R.; Chen, M.; Wagoner, J. L.

    2011-12-01

    Underground nuclear explosions produce radioactive noble gas isotopes, such as Ar-37 that may migrate through fractured rock and soil from the detonation site to the ground surface. For the on site inspection monitoring protocol of the Comprehensive Nuclear Test Ban Treaty, the detection of Ar-37 above its background level is therefore an indicator of a nuclear test. However, Ar-37 is also produced in the subsurface due to cosmic-neutron activation of calcium by the 40Ca(n,α)37Ar reaction. The cosmic-neutron induced production rate of Ar-37 in the subsurface depends on many uncertain parameters, including the calcium content, the depth below ground surface, the geological structure, and other rock/soil properties. It is therefore important to distinguish the cosmic-neutron induced and test relevant Ar-37 transport in fractured rock and soil. The physical model is conceptualized as a deep dual permeability bedrock layer consisting of overlapping fracture and porous matrix continua overlain by a shallow layer of interconnected clay and sand alluvium. In this study supporting a subsurface gas tracer migration experiment at the National Center for Nuclear Security, we use numerical simulation of non-isothermal multi-phase and multi-component transport to investigate gas-component production, release, and transport in this combined fractured rock and clay-sand alluvium system. In addition to the spatial and temporal domain, we extend the modeling to a high-dimensional space including parameters characterized by a range of uncertainties using the PSUADE code, developed at Lawrence Livermore National Laboratory. Using PSUADE, we consider the dependence of the detectability on these uncertain parameters with the goal of understanding how to optimize the detection of an underground nuclear test. (LLNL-ABS-491792). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. The Congested-like Tracheae Gene of Drosophila Melanogaster Encodes a Member of the Mitochondrial Carrier Family Required for Gas-Filling of the Tracheal System and Expansion of the Wings after Eclosion

    PubMed Central

    Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B. M.

    1997-01-01

    A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4-kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacW transposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenorhabditis elegans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings. PMID:9409834

  15. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  16. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  17. 39Ar-40Ar "ages" and origin of excess 40Ar in Martian shergottites

    NASA Astrophysics Data System (ADS)

    Bogard, Donald; Park, Jisun; Garrison, Daniel

    2009-06-01

    We report new 39Ar-40Ar measurements on 15 plagioclase, pyroxene, and/or whole rock samples of 8 Martian shergottites. All age spectra suggest ages older than the meteorite formation ages, as defined by Sm-Nd and Rb-Sr isochrons. Employing isochron plots, only Los Angeles plagioclase and possibly Northwest Africa (NWA) 3171 plagioclase give ages in agreement with their formation ages. Isochrons for all shergottite samples reveal the presence of trapped Martian 40Ar (40Arxs), which exists in variable amounts in different lattice locations. Some 40Arxs is uniformly distributed throughout the lattice, resulting in a positive isochron intercept, and other 40Arxs occurs in association with K-bearing minerals and increases the isochron slope. These samples demonstrate situations where linear Ar isochrons give false ages that are too old. After subtracting 40Ar*that would accumulate by 40K decay since meteorite formation and small amounts of terrestrial 40Ar, all young age samples give similar 40Arxs concentrations of ˜1-2 × 10-6cm3/g, but a variation in K content by a factor of ˜80. Previously reported NASA Johnson Space Center data for Zagami, Shergotty, Yamato (Y-) 000097, Y-793605, and Queen Alexandra Range (QUE) 94201 shergottites show similar concentrations of 40Arxs to the new meteorite data reported here. Similar 40Arxs in different minerals and meteorites cannot be explained as arising from Martian atmosphere carried in strongly shocked phases such as melt veins. We invoke the explanation given by Bogard and Park (2008) for Zagami, that this 40Arxs in shergottites was acquired from the magma. Similarity in 40Arxs among shergottites may reveal common magma sources and/or similar magma generation and emplacement processes.

  18. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  19. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  20. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  1. Production of ArN+ ions in the reactions Ar++N2 and N2++Ar

    NASA Astrophysics Data System (ADS)

    Tosi, Paolo; Correale, Raffaele; Lu, Wenyun; Bassi, Davide

    1999-03-01

    We have studied the production of ArN+ starting from the two symmetric charge-state reactants Ar++N2 and N2++Ar. For both reactions we measured the total cross sections as a function of the relative energy, in the energy range from 5 to 45 eV. Estimates of the reaction thresholds and symmetry considerations suggest that the reaction Ar++N2 produces ArN+ essentially in its first excited state A 3Π, while the reaction N2++Ar produces ground state ArN+ ions. This fact explains the discrepancies between different estimates of the dissociation energy of ArN+ obtained in previous studies.

  2. Spectroscopy Study of Ar + CO2 Plasmas in ASTRAL.

    NASA Astrophysics Data System (ADS)

    Munoz, Jorge; Boivin, Robert; Kamar, Ola; Loch, Stuart; Ballance, Connor

    2006-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source running Ar + CO2 gas mix is presented. ASTRAL produces Ar plasmas: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A spectrometer which features a 0.33 m Criss-Cross monochromator and a CCD camera is used for this study. Very different plasmas are produced following the relative importance of CO2 in the gas mixture. At low CO2 concentration, the plasmas are similar to those obtained with pure Ar with weak CO2, CO2^+, CO and CO^+ bands. The usual blue plasma core associated with intense Ar II transitions is observed with however a significant white glow coming from the outer plasma regions. At higher CO2 concentration, the plasma becomes essentially molecular and can be described as an intense white plasma column. Molecular dissociative processes associated with the production of strong C and O atomic lines are observed under specific plasma conditions. The atomic spectral lines are compared with ADAS modeling results. This study indicates the possible advantages of using a helicon source to control the CO2 plasma chemistry for industrial applications.

  3. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    NASA Astrophysics Data System (ADS)

    Jadrich, James; Bruxvoort, Crystal

    2010-09-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than helium balloons. An investigation into the details of this phenomenon provides students with an excellent opportunity to apply the kinetic theory of gases and the ideal gas law, and it can also be exploited for a dramatic in-class demonstration of diffusion and the second law of thermodynamics.

  4. Resolvable miscalibration of the 40Ar/39Ar geochronometer

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Renne, P. R.; Min, K. K.; Ludwig, K. R.

    2006-12-01

    U/Pb and 40Ar/39Ar isotopic dating techniques are the most widely applied geochronometers, both capable of 0.1% internal precision. A robust intercalibration between the two isotopic systems is fundamental for reconstructing short term processes and events in geologic time. However, whereas the U decay constants are known precisely (to ca 0.1%), the currently used 40K decay constant (5.543×10^{-10}/yr, (1)) is associated with an unstated uncertainty that is about an order of magnitude larger than the former, making high-resolution comparisons of ages from the two isotopic systems impossible. We present an indirect calibration by comparing radio-isotopic ages derived from both isotopic systems of rapidly cooled volcanic rocks in order to minimize effects from protracted cooling history. Eleven data pairs of 206Pb/238U and conventional 40Ar/39Ar ages exhibit a bias between the two isotopic systems ranging from >-1.5% for young rocks to ca -0.5% for rocks as old as 2 Ga (possibly even smaller for rocks >2 Ga), with the 40Ar/39Ar ages being consistently younger. All Mesozoic and Paleozoic samples display a bias of about -1%. Most of this bias is probably the result of miscalibration of the electron capture decay constant of 404→ 40Ar (λ40Kec) by ca -1%, in combination with a miscalibration of smaller magnitude and opposite sense of the β- decay constant (λ40Kβ-) of 40K→ 40Ca. Bias greater than 1% for younger Cenozoic samples probably reflects pre-eruptive zircon saturation (magma residence time) whose effects become proportionately negligible beyond ca. 200 Ma. Whereas the currently used decay constant for 40K (see above) is based on an arguably arbitrary selection from counting experiments associated with large and sometimes incomprehensible uncertainties (mostly from experiments conducted in the 1940s to 1960s) two recent recalibrations of λ40Ktotal using liquid scintillation counting techniques suggest precise and mutually consistent values of 5.553 ± 0

  5. Retrieving the ars moriendi tradition.

    PubMed

    Leget, Carlo

    2007-09-01

    North Atlantic culture lacks a commonly shared view on dying well that helps the dying, their social environment and caregivers to determine their place and role, interpret death and deal with the process of ethical deliberation. What is lacking nowadays, however, has been part of Western culture in medieval times and was known as the ars moriendi (art of dying well) tradition. In this paper an updated version of this tradition is presented that meets the demands of present day secularized and multiform society. Five themes are central to the new art of dying: autonomy and the self, pain control and medical intervention, attachment and relations, life balance and guilt, death and afterlife. The importance of retrieving the ancient ars moriendi outreaches the boundaries of palliative medicine, since it deals with issues that play a central role in every context of medical intervention and treatment.

  6. AR-39Ar-40 dating of basalts and rock breccias from Apollo 17 and the malvern achondrite

    NASA Technical Reports Server (NTRS)

    Kirsten, T.; Horn, P.

    1977-01-01

    The principles and the potential of the Ar-39/Ar-40 dating technique are illustrated by means of results obtained for 12 Apollo 17 rocks. Emphasis is given to methodical problems and the geological interpretation of lunar rock ages. Often it is ambigious to associate a given lunar breccia with a certain formation, or a formation with a basin. In addition, large-scale events on the Moon have not necessarily reset radiometric clocks completely. One rock fragment has a well-defined plateau age of 4.28 b.y., but the ages of two Apollo 17 breccias define an upper limit for the formation age of the Serenitatis basin at 4.05 b.y. Ages derived from five mare basalts indicate cessation of mare volcanism at Taurus-Littrow approximately 3.78 b.y. ago. Ca/Ar-37 exposure ages show that Camelot Crater was formed by an impact approximately 95 m.y. ago. After a short summary of the lunar timetable as it stands at the end of the Apollo program, we report about Ar-39/Ar-40 and rare gas studies on the Malvern meteorite. This achondrite resembles lunar highland breccias in texture as well as in rare-gas patterns. It was strongly annealed at some time between 3.4 and 3.8 b.y. ago. The results indicate that very similar processes have occurred on the Moon and on achondritic parent bodies at comparable times, leading to impact breccias with strikingly similar features, including the retention of rare-gas isotopes from various sources.

  7. Geochemical characteristics and KAr ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana

    NASA Astrophysics Data System (ADS)

    Chalokwu, Christopher I.; Ghazi, Mohamad A.; Foord, Eugene E.

    1997-02-01

    The pegmatite-aplite rocks at Mankwadzi (Ejisimanku Hills) in southeastern Ghana are part of the pegmatite district that extends from Cape Coast to Winneba along the Atlantic coastline. The pegmatites are associated with the Cape Coast granite complex and were intruded during the waning phase of the Eburnian Orogeny (˜2.0 Ga). Three muscovite separates from pegmatite give KAr retention ages of 1909 ± 13 Ma, 1965 ± 13 Ma and 2019 ± 14 Ma. A biotite separate from granite yields a KAr age of 1907 ± 13 Ma. These ages are similar to KAr dates previously reported for the Cape Coast granites, indicating that the granites and pegmatites are coeval and probably genetically linked. The pegmatites are enriched in Li, Be, Nb and Sn and considerably impoverished in Rb, Th, Y and REEs. Microscopic examination of quartz from the pegmatites shows a large number of low salinity fluid inclusions that can be divided into two types: (1) one-phase liquid or gas-filled inclusions; and (2) two-phase liquid-vapour inclusions, with the vapour occupying 2-5% of the volume. The homogenisation temperature of the fluid inclusions clusters between 129 and 144°C. These homogenisation temperatures lead to an inferred entrapment temperature of ˜300°C at a pressure of ˜2.5 kbar, which is estimated for the metamorphism of host hornblende schists. The pegmatite fluid inclusions are interpreted as being secondary to the quartz hosts.

  8. arXiv.org and Physics Education

    ERIC Educational Resources Information Center

    Ramlo, Susan

    2007-01-01

    The website arXiv.org (pronounced "archive") is a free online resource for full-text articles in the fields of physics, mathematics, computer science, nonlinear science, and quantitative biology that has existed for about 15 years. Available directly at http://www.arXiv.org, this e-print archive is searchable. As of Jan. 3, 2007, arXiv had open…

  9. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  10. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  11. Mineralogy and Ar-39 - Ar-40 of an old pristine basalt: Thermal history of the HED parent body

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Mori, Hiroshi; Bogard, Donald D.

    1994-01-01

    Previous investigations of mineral chemistry and Rb-Sr and Sm-Nd ages indicated that clast,84 from eucrite Yamato 75011 had preserved the pristine nature of its initial crystallization during an early stage of the HED parent body. Microscale mineralogy and Ar-39-Ar-40 ages of this clast, however, revealed local disturbance of microtextures and partially reset ages. This evidence suggests that, in addition to initial crystallization and rapid cooling, the Y75011,84 clast experienced shock deformation, reheating of short duration at higher temperature, and brecciation. These characteristics suggest two or more impact events. Fe-rich olivine filling fractures in pyroxene may have been introduced during the accompanying shock fracturing. The inferred Ar-39-Ar-40 degassing ages for Y75011 matrix and clast, 84 are 3.94 +/- 0.04 Ga and 3.98 +/- 0.03 Ga, respectively. The suggested degassing age for a clast from Y790020, believed to be paired with Y75011, is approximately 4.03 Ga, but could be younger. We consider it likely that all three samples experienced a common degassing event 3.95 +/- 0.05 Ga ago, but we cannot rule out two or more events spaced over a approximately 0.1 Ga interval. Higher temperature extractions of the two clast samples show significantly older apparent ages up to approximately 4.5 Ga and suggest that the time/temperature regime of this event was not sufficient to degas Ar totally. Most likely, the K-Ar ages were reset by thermal metamorphism associated with one or more impact events associated with shock fracturing, formation of Fe-rich olivine veins, and/or meteorite brecciation. The pyroxene annealing that commonly occurs in many eucrites is likely to be a much earlier process than the impact-produced textural changes and reset K-Ar ages observed in these meteorites. The existence of mineralogical and chronological evidence for metamorphism in an otherwise pristine eucrite suggests that the HED parent body experienced an extensive degree of

  12. Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s{sub 5}) production in a He-Ar plasma jet

    SciTech Connect

    Sands, Brian L.; Huang, Shih K.; Speltz, Jared W.; Niekamp, Matthew A.; Ganguly, Biswa N.

    2013-04-21

    Plasma jet devices that use a helium gas flow mixed with a small percentage of argon have been shown to operate with a larger discharge current and enhanced production of the Ar(1s{sub 5}) metastable state, particularly in the discharge afterglow. In this experiment, time-resolved quantitative measurements of He(2{sup 3}S{sub 1}) and Ar(1s{sub 5}) metastable species were combined with current and spectrally resolved emission measurements to elucidate the role of Penning ionization in a helium plasma jet with a variable argon admixture. The plasma jet was enclosed in a glass chamber through which a flowing nitrogen background was maintained at 600 Torr. At 3%-5% Ar admixture, we observed a {approx}50% increase in the peak circuit current and streamer velocity relative to a pure helium plasma jet for the same applied voltage. The streamer initiation delay also decreased by {approx}20%. Penning ionization of ground-state argon was found to be the dominant quenching pathway for He(2{sup 3}S{sub 1}) up to 2% Ar and was directly correlated with a sharp increase in both the circuit current and afterglow production of Ar(1s{sub 5}) for Ar admixtures up to 1%, but not necessarily with the streamer velocity, which increased more gradually with Ar concentration. Ar(1s{sub 5}) was produced in the afterglow through recombination of Ar{sup +} and dissociative recombination of Ar{sub 2}{sup +} as the local mean electron energy decreased in the plasma channel behind the streamer head. The discharge current and argon metastable enhancement are contingent on the rapid production of He(2{sup 3}S{sub 1}) near the streamer head, >5 Multiplication-Sign 10{sup 12} cm{sup -3} in 30 ns under the conditions of this experiment.

  13. Classical trajectory simulation of the cluster-atom association reaction I-Arn+I --> I2+nAr. I. Capture of iodine by the I(Ar)12 cluster

    NASA Astrophysics Data System (ADS)

    Hu, Xiche; Martens, Craig C.

    1993-06-01

    The atom-cluster association reaction I(Ar)n+I→I2+nAr (n=12) is studied theoretically as a prototypical model of the effect of microscopic solvation on reaction dynamics. Classical trajectory methods are employed to model the dynamics. This paper focuses on the initial capture of I by the I(Ar)12 cluster. Two distinct minimum energy configurations for I(Ar)12 are considered: Ar6(I)Ar6, an icosahedron with I located at the center of the cluster; and IAr12, an icosahedron with I replacing one of the vertex Ar atoms. Both the structure and the temperature dependence of the capture cross section are investigated. Capture rate constants at temperatures of 10 and 30 K are computed. Capture cross sections for Ar6(I)Ar6+I predicted by a Langevin model agree well with those computed by classical trajectory simulation, revealing that the capture process under investigation is determined by the long range interaction potential. In comparison with its gas phase counterpart I+I, Ar6(I)Ar6+I has a much larger capture cross section. One of the most important roles played by the microscopic solvation of chemical reactants in clusters is this enhancement of the cross section for the initial capture process.

  14. Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.

    2014-06-01

    ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.

  15. Age measurements of potassium-bearing sulfide minerals by the 40Ar/39Ar technique

    USGS Publications Warehouse

    Czamanske, G.K.; Lanphere, M.A.; Erd, Richard C.; Blake, M.C., Jr.

    1978-01-01

    K-Ar ages have been determined for sulfide minerals for the first time. The occurrence of adequate amounts of potassium-bearing sulfides with ideal compositions K3Fe10S14 (???10 wt.% K) and KFe2S3 (???16 wt.% K) in samples from a mafic alkalic diatreme at Coyote Peak, California, prompted an attempt to date these materials. K3Fe10S14, a massive mineral with conchoidal fracture, gives an age of 29.4 ?? 0.5 m.y. (40Ar/39Ar), indistinguishable from the 28.3 ?? 0.4 m.y. (40Ar/39Ar) and 30.2 ?? 1.0 m.y.8 (conventional K-Ar) ages obtained for associated phlogopite (8.7 wt.% K). KFe2S3, a bladed, fibrous sulfide, gives a younger age, 26.5 ?? 0.5 m.y. (40Ar/39Ar), presumably owing to Ar loss. ?? 1978.

  16. Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from antarctica

    USGS Publications Warehouse

    Fleck, R.J.; Sutter, J.F.; Elliot, D.H.

    1977-01-01

    Conventional K-Ar ages of tholeiitic basalts of the Ferrar Group in the central Transantarctic Mountains indicate significant loss of radiogenic 40Ar from this unit over much of its outcrop area. Argon loss varies inversely with amount of devitrified matrix in the basalts, which have not been thermally or tectonically disturbed since extrusion. 40Ar/19Ar age-spectra of these tholeiites are generally discordant and indicate significant inhomogeneity in the distribution of radiogenic 40Ar with respect to 39Ar, but are distinctly different from release patterns of thermally disturbed samples. Amounts of argon redistribution vary directly with amounts of devitrification and are reflected in progressive modification of the age spectra. A model of redistribution of radiogenic 40Ar by devitrification of originally glassy matrix is suggested that is consistent with disturbance of the conventional K-Ar systematics as well as the 40Ar/39Ar age-spectra. Samples with substantial redistribution but minor loss of radiogenic argon yield age spectra whose apparent ages decrease from low-temperature to high-temperature steps, similar to those reported for some lunar basalts, breccias, and soils. Modification of all the age spectra is attributed to redistribution of radiogenic 40Ar during progressive devitrification, although 39Ar-recoil effects suggested by Turner and Cadogan (1974) may be a factor in some cases. Where devitrification involves most potassium sites within the basalt, 40Ar/39Ar age-plateaux may be formed that have no geologic significance. ?? 1977.

  17. Ar-40-Ar-39 and Rb-Sr age determinations on Quaternary volcanic rocks

    NASA Technical Reports Server (NTRS)

    Radicati Di Brozolo, F.; Huneke, J. C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1981-01-01

    Ages of leucite and biotite separates from samples of the potassic volcanics of the Roman Comagmatic region are derived by the stepwise degassing variant of the Ar-39-Ar-40 dating method and compared with those derived from Rb-Sr dating in order to evaluate the abilities of the methods to date Quaternary geological events. Six of the leucite separates are found to contain Ar with very high bulk 40/36 ratios and to have well correlated Ar-40 and Ar-39 contents, yielding ages of approximately 338,000 years. Two leucites observed to contain Ar with lower bulk 40/36 ratios and Ar-40/Ar-36 ratios significantly lower than atmospheric are found to have ages in substantial agreement with those of the other leucites despite the uncertainty in the composition of the trapped component. Ages obtained for the biotites are not as precise as those of the leucites, due to difficulties in obtaining a good separation of in situ radiogenic Ar-40 from trapped Ar-40. Ages determined from Rb-Sr measurements for selected tuff samples are found to be in good agreement with the Ar-40-Ar-39 ages of the leucites. Results demonstrate the possibility of attaining precisions of better than 5% in the dating of rocks 350,000 years old by both the Ar-40-Ar-39 and the Rb-Sr methods.

  18. Mineralogy, 40Ar/ 39Ar dating and apatite fission track dating of rocks along the Castle Mountain fault, Alaska

    NASA Astrophysics Data System (ADS)

    Parry, W. T.; Bunds, M. P.; Bruhn, R. L.; Hall, C. M.; Murphy, J. M.

    2001-07-01

    The Castle Mountain fault is a 200-km-long, right-lateral fault that forms the northern boundary of the Cook Inlet basin and Matanuska Valley, Alaska. Fault gouge and fault rock at six localities contain the clay minerals illite, smectite, chlorite, and interstratified illite/smectite. At one locality, gouge contains deformed illite/smectite with very little wall rock chlorite contamination. Fine (<0.03 μm), medium (0.03-0.2 μm), and coarse (0.2-2.0 μm) illite/smectite from this site were dated using 40Ar/ 39Ar micro-encapsulation and laser microprobe methods. Total gas ages for the three size fractions are 28.21±0.12, 32.42±0.11 and 36.24±0.08 Ma for fine to coarse sizes respectively. Argon retention ages obtained from 40Ar and 39Ar retained in the three size fractions of illite at room temperature during neutron irradiation are 37.36±0.15, 42.11±0.14 and 47.20±0.10 respectively. Apatite fission track ages were measured in arkose at a locality on the fault 60 km west of the gouge locality. Three samples of arkose were dated: one within 10 m of the fault core, one 170 m from the fault, and one 335 m from the fault. The sample nearest to the fault yielded an age of 29.3±2.8 Ma, but it only had four track lengths at 10-13 μm. Two apatite grains from the intermediate sample yielded a pooled age of 34.3±6.1 Ma. The distant sample (25 grains counted, 101 track lengths) yielded an age of 32.0±2.9 Ma. This sample has a broad distribution of track lengths and a broad distribution of individual grain ages ranging from 14.8±5.1 to 67.8±8.8 Ma. Monte Carlo modeling of the apatite age and track length data is consistent with hydrothermal mineralization at 37-39 Ma followed by rapid uplift and cooling after 10 Ma. The 40Ar/ 39Ar total gas ages (K-Ar) are minimum ages, and the argon retention ages are maximum ages. The thermal model derived from the fission track data, and the argon retention age for the finest illite fraction of ˜37 Ma date a hydrothermal

  19. Ar-40/Ar-39 age determinations for the Rotoiti eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Flude, S.; Storey, M.

    2013-12-01

    The contemporaneous Rotoiti and Earthquake Flat ignimbrites, erupted from the Taupo Volcanic zone, New Zealand, form a distinctive tephrostratigraphic horizon in the Southern Pacific. Radioisotopic dating results for these eruptions remain controversial, with published ages ranging from 35.1 × 2.8 ka [1] to 71 × 6 ka [2], with 61.0 × 1.5 ka [3] often being cited as the most widely accepted age. These eruptions are difficult to date as their age is near the limit for various radiometric dating techniques, which are complicated by a large proportion of inherited material (xenocrysts) and a lack of phases suitable for dating. Glass-bearing plutonic blocks erupted with the Rotoiti and Earthquake Flat ignimbrites have previously been interpreted as deriving from a slowly cooled and incompletely solidified magma body that was sampled by the eruptions. They contain large vugs lined with euhedral quartz, sanidine and biotite crystals, indicating that these crystals grew in a gas or aqueous fluid rich environment and are interpreted to have formed shortly before or during eruption. Here we will present Ar-40/Ar-39 ages for sanidines and biotites extracted from vugs in lithic blocks erupted as part of the Earthquake Flat ignimbrite. We show that, even for vug-lining material, inherited ages remain a problem and are the likely source of the wide variation in published radiometric ages. Nevertheless, many of the Ar-40/Ar-39 ages are much younger than the 61 ka age [3] and are more consistent with the recent stratigraphic, C-14 and U-238/Th-230+(U-Th)/He ages that have been suggested (e.g. [4,5]). 1. Whitehead, N. & Ditchburn, R. New Zealand Journal of Geology and Geophysics 37, 381-383 (1994). 2. Ota, Y., Omura, A. & Iwata, H. New Zealand Journal of Geology and Geophysics 32, 327-331 (1989). 3. Wilson, C. J. N. et al. Quaternary Science Reviews 26, 1861-1870 (2007). 4. Molloy, C., Shane, P. & Augustinus, P. Geological Society of America Bulletin 121, 1666-1677 (2009). 5

  20. Evaluation of sintering effects on SiC incorporated UO2 kernels under Ar and Ar-4%H2 environments

    SciTech Connect

    Silva, Chinthaka M; Lindemer, Terrence; Hunt, Rodney Dale; Collins, Jack Lee; Terrani, Kurt A; Snead, Lance Lewis

    2013-01-01

    Silicon carbide (SiC) is suggested as an oxygen getter in UO2 kernels used for TRISO particle fuels to lower oxygen potential and prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that internal gelation process can be used to incorporate SiC in urania fuel kernels. Sintering in either Ar or Ar-4%H2 at 1500 C lowered the SiC content in the UO2 kernels to some extent. Formation of UC was observed as the major chemical phase in the process, while other minor phases such as U3Si2C2, USi2, U3Si2, and UC2 were also identified. UC formation was presumed to be occurred by two reactions. The first was the SiC reaction with its protective SiO2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO2 to form UC. The second process was direct UO2 reaction with SiC grains to form SiO, CO, and UC, especially in Ar-4%H2. A slightly higher density and UC content was observed in the sample sintered in Ar-4%H2, but the use of both atmospheres produced kernels with ~95% of theoretical density. It is suggested that incorporating CO in the sintering gas would prevent UC formation and preserve the initial SiC content.

  1. Pressure broadening and shift rates for Ar (s-p) transitions observed in an Ar-He discharge

    NASA Astrophysics Data System (ADS)

    Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2016-08-01

    The pressure broadening and shift rates have been measured for the 801.699 nm (s5 →p8), 800.836 nm (s4 →p6) and 795.036 nm (s3 →p4) transitions in argon perturbed by 10-200 Torr of helium and argon at a temperature of 440 ± 20 K using a radio-frequency, capacitively coupled discharge. For a 10% Ar in He plasma the pressure broadening and shift rates were measured as 14.18 ± 0.65 and 1.81 ± 0.30 MHz / Torr, 17.85 ± 0.78 and 0.72 ± 0.32 MHz / Torr, and 16.59 ± 1.22 and 2.94 ± 0.48 MHz / Torr for the 801.699 nm, 800.836 nm and 795.036 nm transitions, respectively. The influence of the slightly varying gas temperature on the broadening and shift rates is less than 1%. Stark broadening and shifting by electrons in the discharge are not measurable due to low electron densities and temperatures. Phase-changing collisional cross-sections in the literature decrease with temperature, in good agreement with the Lindholm-Foley T-0.2 trend based on the Lennard-Jones potential. Further investigation of the Ar*-Ar and Ar*-He interaction potentials is necessary to understand the behavior of the cross sections.

  2. Diffusion artifacts in dating by stepwise thermal release of rare gases. [Ar isotope lunar chronology

    NASA Technical Reports Server (NTRS)

    Huneke, J. C.

    1976-01-01

    It is demonstrated that the age of an isochron of apparent age plateau can be easily altered during a thermal release experiment, and that constant rare gas compositions can be observed which are artifacts of the experimental technique and are not chronologically meaningful. Examples are selected from 40Ar-39Ar dating of lunar samples in which anomalous variations in apparent ages can be ascribed to such experimental artifacts.

  3. Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O{sub 2}/Ar-O{sub 2} plasmas

    SciTech Connect

    Chung, T. H.; Kang, Hae Ra; Bae, Min Keun

    2012-11-15

    Physical properties of low-pressure inductively coupled argon, oxygen, and Ar-O{sub 2} mixture plasmas are investigated using optical emission spectroscopy (OES) combined with an rf-compensated Langmuir probe measurement. In each gas discharge, the electron density and the electron temperature were obtained by using the probe. The electron temperature was also obtained by OES models and compared with that measured by the probe. The electron temperature was observed to decrease with increasing power and pressure and also observed to decrease with increasing Ar content. Argon metastable densities were calculated based on an optical transition model. In Ar-O{sub 2} discharges, the dissociation fraction of O{sub 2} molecules was estimated using optical emission actinometry. The dissociation fraction was observed to increase with increasing power and Ar content.

  4. Spontaneous and induced emission of XeCl* excimer molecules under pumping of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by fast electrons and uranium fission fragments

    SciTech Connect

    Mis'kevich, A I; Guo, J; Dyuzhov, Yu A

    2013-11-30

    The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction {sup 235}U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm{sup -3}. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm{sup -1} and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 – 50 kW sr{sup -1} and a base ASE pulse duration of ∼200 ms. .

  5. Toward a high-resolution 40Ar/39Ar geochronology of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Song, S.; Chang, S.; Hemming, S. R.; Turrin, B. D.

    2010-12-01

    Creek sanidine monitor standard, with an assumed age of 1.193±.001Ma (Nomade et al., 2005, Chemical Geology). Multiple-grain step-heating analyses using 3 to 5 steps were executed on several aliquots of the samples using a VG5400 noble gas mass spectrometer equipped with a 30W CO2 laser. Ages were calculated using the isochron method on all the steps run for each sample in order to avoid the necessity of assuming an initial composition and so all of the data points from a single irradiation could be plotted together. The results have yielded ages far younger than previously reported in all of the TVG, with very unradiogenic Ar and with 40Ar/36Ar intercepts that are mostly higher than the atmospheric ratio of 298.56±0.31 (Lee et al., 2006, Geochimica et Cosmochimica Acta). The second eruptive stage (using eruptive stages mapped by Lai et al., 2010, TAO) yielded ages in different locations of .053±.012Ma and .052±.014Ma. A third sample that was previously mapped in this stage yielded an age of .17±.03Ma. We have not yet been successful at obtaining reliable results on the stratigraphically youngest sample.

  6. sup 40 Ar/ sup 39 Ar age calibration of the litho- and paleomagnetic stratigraphies of the Ngorora Formation, Kenya

    SciTech Connect

    Deino, A.; Drake, R. ); Tauxe, L. ); Monaghan, M. )

    1990-07-01

    Precise eruptive ages have been determined by the laser-fusion, single-crystal {sup 40}Ar/{sup 39}Ar method for juvenile volcanic feldspars from reworked and contaminated volcaniclastic rocks of the middle Miocene Ngorora Formation, Kenya Rift Valley. These ages range from 13.06 Ma at the base to 10.51 Ma toward the top of the type section near Kabarsero. Correlation of the local paleomagnetic stratigraphies with the geomagnetic reversal time scale yields magnetochronologic age estimates that are younger than the isotopic ages by an average of 0.18 Ma. Much of the discrepancy can be eliminated if an inferred change in sea-floor spreading rate occurred at 13 Ma or earlier, rather than at 10.42 Ma as previously suggested. Sedimentation rates at Kabarsero calculated from the {sup 40}Ar/{sup 39}Ar results decrease from initial values of {approximately}25 cm/1,000 yr to {approximately}5 cm/1,000 yr toward the top of the section. The initial rapid sedimentation rates characterize the first 0.1 to 0.3 m.y. following emplacement of the underlying, voluminous, basin-filling Tiim Phonolites, indicating that the Baringo Basin at this time may not have existed as a rift valley created by extensional tectonics, but instead may have been a subsidence feature formed in response to removal of large volumes of magma from the lithosphere. A premolar tentatively identified as Proconsul sp. indet. found in the Ngorora Formation near the village of Bartabwa has been dated at {approximately}12.42 Ma, representing perhaps the last known occurrence of this genus in the fossil record.

  7. Thermal plasma properties for Ar-Al, Ar-Fe and Ar-Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.

    2013-10-01

    This article is devoted to the calculation of the net emission coefficient (NEC) of Ar-Al, Ar-Fe and Ar-Cu mixtures at atmospheric pressure for arc welding processes. The results are given in data tables for temperatures between 3 kK and 30 kK, for five plasma thicknesses (0, 0.5, 1, 2, 5 mm) and ten concentrations of metallic vapours (pure gas, 0.01%, 0.1%, 1%, 5%, 10%, 25%, 50%, 75% and pure metal vapours in mass proportions). The results are in good agreement with most of the works published on the subject for such mixtures. They highlight the influence of three parameters on the radiation of the plasma: the NEC is directly related to temperature and inversely related to plasma radius and is highly sensitive to the presence of metal vapours. Finally, numerical data are supplied in tables in order to develop accurate computational modelling of welding arc and to estimate both qualitatively and quantitatively the influence of each metallic vapour on the size and on the shape of the weld pool.

  8. Androgen receptor (AR) in cardiovascular diseases.

    PubMed

    Huang, Chiung-Kuei; Lee, Soo Ok; Chang, Eugene; Pang, Haiyan; Chang, Chawnshang

    2016-04-01

    Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize the effects of androgen/AR on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as the metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension, and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors; however, generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis; however, targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy compared with age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome.

  9. Mars Atmospheric History Derived from Upper-Atmospheric Structure of 38Ar/36Ar Measured From MAVEN

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce; Slipski, Marek; Benna, Mehdi; Mahaffy, Paul; Elrod, Meredith K.; Yelle, Roger; Stone, Shane; Alsaeed, Noora

    2016-10-01

    Measurements of the structure of the Martian upper atmosphere made from MAVEN observations allow us to derive homopause and exobase altitudes in the Mars upper atmosphere and to determine the isotopic fractionation that occurs between them. Fractionation in the ratio of 38Ar/36Ar occurs between the homopause and exobase due to diffusive separation. This fractionation, combined with measurements of the bulk atmospheric ratio, is used to determine the total amount of argon lost to space by pick-up-ion sputtering. Our analysis is based on Rayleigh distillation, modified by replenishment of gas to the atmosphere by outgassing, impact, and crustal weathering. Approximately 80 % of the 36Ar that was ever in the atmosphere has been removed through time. This high value requires that a major fraction of Mars atmospheric gas has been lost to space. It points strongly to loss to space as having been the dominant mechanism driving the transition in Martian climate from an early, warm, wet environment to today's cold, dry, thin atmosphere.

  10. (40)Ar/(39)Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia.

    PubMed

    Deino, Alan L; Scott, Gary R; Saylor, Beverly; Alene, Mulugeta; Angelini, Joshua D; Haile-Selassie, Yohannes

    2010-02-01

    (40)Ar/(39)Ar dating of tuffs and mafic lavas, tephra geochemistry, and paleomagnetic reversal stratigraphy have been used to establish the chronostratigraphy of the Pliocene hominid-bearing fossiliferous succession at Woranso-Mille, a paleontological study area in the western part of the central Afar region of Ethiopia. The succession in the northwestern part of the study area ranges in (40)Ar/(39)Ar age from 3.82-3.570 Ma, encompassed by paleomagnetic subchron C2Ar (4.187-3.596 Ma). One of the major tuff units, locally named the Kilaytoli tuff, is correlative on the basis of age and geochemistry to the Lokochot Tuff of the Turkana Basin. A hominid partial skeleton (KSD-VP-1) was found in strata whose precise stratigraphic position and age is still under investigation, but is believed to correspond to the later part of this interval. Woranso-Mille fills a significant gap in the fossil record of northeastern Africa at the time of the lower to middle Pliocene transition, when many extant species lineages of African fauna were established.

  11. (40)Ar/(39)Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia.

    PubMed

    Deino, Alan L; Scott, Gary R; Saylor, Beverly; Alene, Mulugeta; Angelini, Joshua D; Haile-Selassie, Yohannes

    2010-02-01

    (40)Ar/(39)Ar dating of tuffs and mafic lavas, tephra geochemistry, and paleomagnetic reversal stratigraphy have been used to establish the chronostratigraphy of the Pliocene hominid-bearing fossiliferous succession at Woranso-Mille, a paleontological study area in the western part of the central Afar region of Ethiopia. The succession in the northwestern part of the study area ranges in (40)Ar/(39)Ar age from 3.82-3.570 Ma, encompassed by paleomagnetic subchron C2Ar (4.187-3.596 Ma). One of the major tuff units, locally named the Kilaytoli tuff, is correlative on the basis of age and geochemistry to the Lokochot Tuff of the Turkana Basin. A hominid partial skeleton (KSD-VP-1) was found in strata whose precise stratigraphic position and age is still under investigation, but is believed to correspond to the later part of this interval. Woranso-Mille fills a significant gap in the fossil record of northeastern Africa at the time of the lower to middle Pliocene transition, when many extant species lineages of African fauna were established. PMID:20034653

  12. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  13. Ar-Ar Ages of Brachinite and Brachinite-Like Achondrites

    NASA Astrophysics Data System (ADS)

    Beard, S. P.; Swindle, T. D.; Isachsen, C.

    2016-08-01

    There are few chronology studies on brachinite and brachinite-like achondrites. This work presents the first data of the study of Ar-Ar on a suite of achondrites, including NWA 595, NWA 1500, and NWA 6077.

  14. Diffusion of sup 40 Ar and sup 39 Ar in irradiated orthoclase

    SciTech Connect

    Foland, K.A.; Xu, Yuping )

    1990-11-01

    The important concerns of whether neutron irradiation affects Ar diffusion behavior in minerals and whether the diffusivities of natural radiogenic {sup 40}Ar and induced {sup 39}Ar are identical are considered. Both issues are addressed with isothermal and incremental-heating experiments on natural, homogeneous orthoclase from Benson Mines which was subjected to irradiation similar to typical {sup 40}Ar/{sup 39}Ar measurements. Previous study of this feldspar shows that laboratory {sup 40}Ar loss occurs by volume diffusion with physical grain sizes as the effective transport dimensions following a single Arrhenius relation. Isothermal-heating experiments on irradiated feldspar show the same loss and apparent {sup 40}Ar diffusion coefficients, within uncertainty, as unirradiated sample. For these heating times and temperatures, the experiments indicatet that the defects accompanying irradiation have only very minor, if any, effects on Ar behavior with regard to both diffusion kinetics and effective transport domains and that {sup 39}Ar and {sup 40}Ar diffusivities do not differ radically. Step-heating experiments yield essential flat spectra but with minor yet significant apparent discordance which is the same for different grain sizes. The spectra show high ages for small, initial low-temperature fractions and a slight increase in age with progressive Ar release. While these variations are potentially explicable by sample heterogeneities, the preferred explanation is that they result from {sup 39}Ar recoil loss and a slightly higher diffusivity of {sup 39}Ar relative to {sup 40}Ar. The results have important implications for diffusion processes in feldspar and the application of the {sup 40}Ar/{sup 39}Ar method.

  15. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    Due to their minute size, 40Ar/39Ar analysis of illite faces significant analytical challenges, including mineral characterization and, especially, effects of grain size and crystallography on 39Ar recoil. Quantifying the effects of 39Ar recoil requires the use of sample vacuum encapsulation during irradiation, which permits the measurement of the fraction of recoiled 39Ar as well as the 39Ar and 40Ar∗ retained within illite crystals that are released during step heating. Total-Gas Ages (TGA) are calculated by using both recoiled and retained argon, which is functionally equivalent to K-Ar ages, while Retention Ages (RA) only involve retained Ar in the crystal. Natural applications have shown that TGA fits stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10 nm, and that RA matches these constraints for ICTs larger than 50 nm. We propose a new age correction method that takes into account the average ICT and corresponding recoiled 39Ar for a sample, with X-ray Corrected Ages (XCA) lying between Total-Gas and Retention Ages depending on ICT. This correction is particularly useful in samples containing authigenic illite formed in the anchizone, with typical ICT values between 10 and 50 nm. In three samples containing authigenic illite from Cretaceous carbonates in the Monterrey Salient in northern Mexico, there is a range in TGAs among the different size-fractions of 46-49, 36-43 and 40-52 Ma, while RAs range from 54-64, 47-52 and 53-54 Ma, respectively. XCA calculations produce tighter age ranges for these samples of 52.5-56, 45.5-48.5 and 49-52.5 Ma, respectively. In an apparent age vs ICT or %2M 1illite plot, authigenic illite grains show a slope that is in general slightly positive for TGA, slightly negative for RA, but close to zero for XCA, with thinner crystallites showing more dispersion than thicker ones. In order to test if dispersion is due to a different formation history or the result

  16. Ar-Ar Age of NWA-1460 and Evidence For Young Formation Ages of the Shergottites

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2006-01-01

    Agreement of Ar-Ar, Sm-Nd, and Rb-Sr ages for NWA1460, and the inconsistency between a low shock-heating temperature for Zagami and the proposition that a 4.0 Gyr-old Zagami lost most of its Ar-40 are inconsistent with ancient formation ages for these shergottites, but are consistent with relatively young igneous formation ages.

  17. AR function in promoting metastatic prostate cancer

    PubMed Central

    Augello, Michael A.; Den, Robert B.

    2015-01-01

    Prostate cancer (PCa) remains a leading cause of cancer-related death in the USA. While localized lesions are effectively treated through radical prostatectomy and/or radiation therapy, treatment for metastatic disease leverages the addiction of these tumors on the androgen receptor (AR) signaling axis for growth and disease progression. Though initially effective, tumors resistant to AR-directed therapeutics ultimately arise (a stage of the disease known as castration-resistant prostate cancer) and are responsible for PCa-specific mortality. Importantly, an abundance of clinical and preclinical evidence strongly implicates AR signaling cascades in the development of metastatic disease in both early and late stages, and thus a concerted effort has been made to delineate the AR-specific programs that facilitate progression to metastatic PCa. A multitude of downstream AR targets as well as critical AR cofactors have been identified which impinge upon both the AR pathway as well as associated metastatic phenotypes. This review will highlight the functional significance of these pathways to disseminated disease and define the molecular underpinnings behind these unique, AR-driven, metastatic signatures. PMID:24425228

  18. USDA/ARS Organic Production Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For much of its history, USDA/ARS had little to do with research on organic agriculture, however research in organic systems has made considerable gains at the agency over the past decade. In the 1980's and 1990's, as the organic food industry was taking off, ARS researchers who wanted to serve orga...

  19. 244-AR Vault Interim Stabilization Project Plan

    SciTech Connect

    LANEY, T.

    2000-03-24

    The 244-AR Vault Facility, constructed between 1966 and 1968, was designed to provide lag storage and treatment for the Plutonium-Uranium Extraction Facility (PUREX) tank farm sludges. Tank farm personnel transferred the waste from the 244-AR Vault Facility to B Plant for recovery of cesium and strontium. B Plant personnel then transferred the treatment residuals back to the tank farms for storage of the sludge and liquids. The last process operations, which transferred waste supporting the cesium/strontium recovery mission, occurred in April 1978. After the final transfer in 1978, the 244-AR facility underwent a cleanout. However, 2,271 L (600 gal) of sludge were left in Tank 004AR from an earlier transfer from Tank 241-AX-104. When the cleanout was completed, the facility was placed in a standby status. The sludge had been transferred to Tank 004AR to support Pacific Northwest National Laboratory [PNNL] vitrification work. Documentation of waste transfers suggests that a portion of the sludge may have been moved from Tank 004AR to Tank 002AR in preparation for transfer back to the AX Tank Farm; however, quantities of the sludge that were moved to Tank 002AR from that transfer must be estimated.

  20. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, Dariush K.

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  1. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  2. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  3. 36Cl-36Ar Exposure Ages of Chondritic Metals

    NASA Astrophysics Data System (ADS)

    Graf, Th.; Caffee, M. W.; Finkel, R. C.; Marti, K.; Nishiizumi, K.; Ponganis, K. V.

    1995-09-01

    Metal separates were prepared to determine ^36Cl-^36Ar exposure ages for six H4 p.m. falls (with reported bulk exposure ages of 4 to 10Ma), for ten H5 a.m. falls (T(sub)e = 4-10 Ma) and for the Acapulco meteorite (T(^36Cl-^36Ar)= 5.7 Ma). This dating method uses production rate ratios P(^36Cl)/P(^36Ar) and is independent of the shielding-sensitive absolute production rates. It is also known that for protons the production rate ratio is rather insensitive to changes in the energy spectrum; the dependence of this ratio for secondary neutrons is at present less understood. First results were already reported [1]. The cosmic-ray-produced ^3He/^38Ar ratios show a bimodal distribution with two clusters at about 15 and about 9 (Fig. 1). About half of the ^3He is produced via ^3H which is known to diffuse in metal at relatively low temperatures. Therefore, Fig. 1 provides evidence for a quasi-continuous loss of ^3H from such metals. If this loss mechanism is due to solar heating, perihelia <1 AU are indicated for these meteorites. Losses are prominent for H5 a.m. falls, but not for H4 p.m. falls. The orbital implications are consistent with those already known from the time-of-fall parameter (p.m. falls / total falls) which was used in the selection of the H4,H5 sample sets [2]. The exposure age histograms of both H groups show the well known clusters at about 7 Ma. The width of the exposure age peaks differ, however, and the collisional break-up event can be further constrained. Except for Nassirah, all members of the H4 p.m. group fall into the range 7.0 +/- 0.3 Ma. Bulk rock ages (8.2-9.3 Ma) [3] as well as the ^36Cl-^36Ar age (8.3 Ma) of Nassirah are higher and may indicate that this meteorite does not belong to the collisional event. We observe a small but systematic difference in calculated exposure ages by the ^36Cl-^36Ar method, when compared with ages obtained by conventional noble gas production rates. This shift (about 10%) does not appear to be dependent on

  4. Membrane lipid composition of pancreatic AR42J cells: modification by exposure to different fatty acids.

    PubMed

    Audi, Nama'a; Mesa, María D; Martínez, María A; Martínez-Victoria, Emilio; Mañas, Mariano; Yago, María D

    2007-04-01

    Dietary fat type influences fatty acids in rat pancreatic membranes, in association with modulation of secretory activity and cell signalling in viable acini. We aimed to confirm whether AR42J cells are a valid model to study the interactions between lipids and pancreatic acinar cell function. For this purpose we have (i) compared the baseline fatty acid composition of AR42J cells with that of pancreatic membranes from rats fed a standard chow; (ii) investigated if fatty acids in AR42J membranes can be modified in culture; and (iii) studied if similar compositional variations that can be evoked in rats when dietary fat type is altered occur in AR42J cells. Weaning Wistar rats were fed for 8 weeks either a commercial chow (C) or semi-purified diets containing virgin olive oil (VOO) or sunflower oil (SO) as fat source. AR42J cells were incubated for 72 hrs in medium containing unmodified fetal calf serum (FCS, AR42J-C cells), FCS enriched with 18:1 n-9 (AR42J-O cells), or FCS enriched with 18:2 n-6 (AR42J-L cells). Fatty acids in crude membranes from rat pancreas and AR42J cells were determined by gas-liquid chromatography. Differences in membrane fatty acids between C rats and AR42J-C cells can be explained in part by variations in the amount of fatty acids in the extracellular environment. Supplementation of FCS with 18:1 n-9 or 18:2 n-6 changed the fatty acid spectrum of AR42J cells in a manner that resembles the pattern found, respectively, in VOO and SO rats, although AR42J-L cells were unable to accumulate 20:4 n-6. The AR42J cell line can be a useful tool to assess the effect of membrane compositional changes on acinar cell function. However, differences in baseline characteristics, and perhaps fatty acid metabolism, indicate that results obtained in AR42J cells should be confirmed with experiments in the whole animal.

  5. 40Ar/39Ar and K-Ar data bearing on the metamorphic and tectonic history of western New England.

    USGS Publications Warehouse

    Sutter, J.F.; Ratcliffe, N.M.; Mukasa, S.B.

    1985-01-01

    40Ar/39Ar ages of coexisting biotite and hornblende from Proterozoic Y gneisses of the Berkshire and Green Mt massifs, as well as 40Ar/39Ar and K/Ar mineral and whole-rock ages from Palaeozoic metamorphic rocks, suggest that the thermal peaks for the dominant metamorphic recrystallization in western New England occurred 465 + or - 5 m.y. (Taconian). 40Ar/39Ar age data from a poorly-defined terrain along the eastern strip of the area suggests that the area has been retrograded during a metamorphism that peaked at least 376 + or - 5 m.y. (Acadian). Available age and petrological data from western New England indicate the presence of at least three separate metamorphic-structure domains of Taconic age: 1) a small area of relict high-P and low-T metamorphism, 2) a broad area of normal Barrovian metamorphism from chlorite to garnet grade characterized by a gentle metamorphic gradient and, 3) a rather narrow belt of steep-gradient, Barrovian series metamorphic rocks. Areas of maximum metamorphic intensity within the last domain coincide with areas of maximum crustal thickening in the later stage of Taconic orogeny. -L.di H

  6. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  7. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  8. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  9. Mode transition in CF4 + Ar inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian

    2013-12-01

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF4 + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and △P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF4 increases, the E to H mode transition happens at higher applied power, and meanwhile, the △P also significantly increases. Besides, the effects of CF4 gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF4 at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF4 gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  10. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  11. 40Ar/39Ar Ages of Carbonaceous Xenoliths in 2 HED Meteorites

    NASA Technical Reports Server (NTRS)

    Turrin, B.; Lindsay, F. N.; Park, J.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C., III; Johnson, J.; Zolensky, M.

    2016-01-01

    The generally young K/Ar and 40Ar/39Ar ages of CM chondrites made us wonder whether carbonaceous xenoliths (CMX) entombed in Howardite–Eucrite–Diogenite (HED) meteorites might retain more radiogenic 40Ar than do ‘free-range’ CM-chondrites. To find out, we selected two HED breccias with carbonaceous inclusions in order to compare the 40Ar/39Ar release patterns and ages of the inclusions with those of nearby HED material. Carbonaceous inclusions (CMXs) in two HED meteorites lost a greater fraction of radiogenic 40Ar than did surrounding host material, but a smaller fraction of it than did free-range CM-chondrites such as Murchison or more heavily altered ones. Importantly, however, the siting of the CMXs in HED matrix did not prevent the 40Ar loss of about 40 percent of the radiogenic 40Ar, even from phases that degas at high laboratory temperatures. We infer that carbonaceous asteroids with perihelia of 1 astronomical unit probably experience losses of at least this size. The usefulness of 40Ar/39Ar dating for samples returned from C-type asteroids may hinge, therefore, on identifying and analyzing separately small quantities of the most retentive phases of carbonaceous chondrites.

  12. Ar-40/Ar-39 laser-probe dating of diamond inclusions from the Premier kimberlite

    NASA Technical Reports Server (NTRS)

    Phillips, D.; Onstott, T. C.; Harris, J. W.

    1989-01-01

    The results of Ar-40/Ar-39 laser-probe analyses of individual eclogitic clinopyroxene inclusions from Premier diamonds are reported which yield a mean age of 1198 + or - 14 Myr. This age agrees well with Sm-Nd and Ar-40/Ar-39 analyses on similar Premier inclusions and is indistinguishable from the inferred time of emplacement of the host kimberlite, which implies that diamond formation was essentially synchronous with kimberlite generation. The extrapolated nonradiogenic Ar-40/Ar-36 ratio of 334 + or - 102 is similar to the present-day atmospheric composition. This value is inconsistent with Sr and Nd isotopic signatures from Premier eclogite inclusions, which suggest a depleted mantle source. Preentrapment equilibration of the inclusions with an Ar-36-rich fluid is the most probable explanation for the low nonradiogenic composition.

  13. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  14. Demonstration of a diode-pumped metastable Ar laser.

    PubMed

    Han, Jiande; Glebov, Leonid; Venus, George; Heaven, Michael C

    2013-12-15

    Pulsed lasing from optically pumped rare gas metastable atoms (Ne, Ar, Kr, and Xe) has been demonstrated previously. The laser relies on a three-level scheme, which involves the (n+1)p[5/2](3) and (n+1)p[1/2](1) states from the np(5)(n+1)p electronic configuration and the metastable (n+1)s[3/2](2) level of the np(5)(n+1)s configuration (Racah notation). Population inversions were achieved using relaxation from ((n+1)p[5/2](3) to (n+1)p[1/2](1) induced by collisions with helium or argon at pressures near 1 atm. Pulsed lasing was easily achieved using the high instantaneous pump intensities provided by a pulsed optical parametric oscillator excitation laser. In the present study we examine the potential for the development of a continuous wave (CW) optically pumped Ar laser. We report lasing of the 4p[1/2](1)→4s[3/2](2) (912.547 nm) transition following CW diode laser excitation of the 4p[5/2](3)←4s[3/2](2) line (811.754 nm). A pulsed discharge was used to generate Ar 4s[3/2](2), and the time-resolved lasing kinetics provide insights concerning the radiative and collisional relaxation processes. PMID:24343016

  15. Photomask cleaning process improvement to minimize ArF haze

    NASA Astrophysics Data System (ADS)

    Graham, Michael; McDonald, Andrew

    2008-04-01

    Growth of "haze" defects on photomasks exposed in ArF lithography is recognized as a serious problem. Haze defects that have grown to detectable sizes can be analysed in situ by techniques such as EDX or Raman, but to analyze at the photomask manufacturing stage requires extraction of residues by solution in DI water. The effect of extraction conditions, including surface area and material, water volume, time, and temperature, has been studied. A standard method to compare residual ion levels is proposed. Various methods for reducing residual ion levels from the photomask cleaning process have been published. These include SPM reduction, oxygen plasma, SC1 dilution, Megasonic agitation, hot rinse, UV exposure, thermal bake, ozone water, ozone gas, and hydrogenated water. Critical parameters for the cleaning process, besides residual ion levels and contamination removal efficiency, include CD shift, AR/chrome damage, scatter bar damage, and on phase shift masks, the change in phase and transmission. An optimized process combining conventional and novel techniques is described. Data is presented to show the importance of controlling all resist strip and clean processes, not just the final clean. It has achieved sulphate levels of 0.2ng/cm2 (well below the critical level for haze growth), as well as improved results for the other critical parameters. This process has been demonstrated to allow ArF exposure of large numbers of wafers without the appearance of haze defects.

  16. ArF Excimer Emission from Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; El-Habachi, Ahmed; Schoenbach, Karl H.

    1999-10-01

    Microhollow cathode discharges (MHCD) in Ar and Xe have been shown to emit excimer radiation at 128 nm and 172 nm, respectively, with an efficiency (in case of Xe) of approximately 8range towards longer wavelengths we have studied MHCD in argon fluoride mixtures (1to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The discharge voltage was approximately 500 V, the discharge current in these experiments was 10 mA. Whereas the spectrum at 300 Torr was dominated by atomic lines, at 700 Torr only excimer radiation peaking at 193 nm is observed in the spectral range from 120 nm to 300 nm. Absolute measurements of ArF excimer emission provided a value of approximately 3efficiency, or a total optical power of the excimer radiation of 150 mW. The peak power at 193 nm is 17 mW/nm. This is higher by a factor of 2 to 3, compared to xenon excimer emitters, due to the small FWHM of the 193nm ArF line (4 nm) compared to that of the Xe excimer line (24 nm). [1] Karl H. Schenbach, Ahmed El-Habachi, Wenhui Shi, and Marco Ciocca, Plasma Source Science and Technology 6, 468 (1997). [2] Ahmed El-Habachi and Karl H. Schoenbach, Appl.Phys.Lett. 73, 885 (1998). This work was funded by the DOE, Advanced Energy Division, and by the National Science Foundation.

  17. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  18. The effect of glass transition in fullerite C60 on Ar impurity diffusion

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Esel'son, V. B.; Gavrilko, V. G.; Manzhelii, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.

    2013-04-01

    The kinetics of sorption and subsequent desorption of argon gas by powdered fullerite C60 has been investigated in the temperature interval 58-290 K. The temperature dependence of the Ar diffusion coefficients in fullerite has been obtained using measured characteristic times of sorption. The diffusion coefficients for Ar decrease monotonically with decreasing temperature in the entire temperature range, which corresponds to the thermally activated diffusion of Ar atoms in fullerite. The glass transition in fullerite induces an order-of magnitude decrease in the activation energy of Ar diffusion in fullerite. This appears to be due to new paths that appeared as a result of the glass transition, in which the barriers separating the interstitial voids in the C60 lattice are significantly lower.

  19. Monte Carlo calculations of drift velocities and diffusion coefficients of Ar + ions in helium

    NASA Astrophysics Data System (ADS)

    Barata, J. A. S.; Conde, C. A. N.

    2007-09-01

    Results are presented for the calculated drift velocities and diffusion coefficients for Ar + ions in helium at atmospheric pressure, temperature T=300 K and for reduced electric fields E/ N from about 1 Td up to about 150 Td, using Monte Carlo techniques. The drift velocities range from 5.94×10 3 to 559.0×10 3 cm s -1 for the Ar + ions in the ground state 2P 3/2 and from 5.85×10 3 to 545.0×10 3 cm s -1 for the Ar + ions in the metastable excited state 2P 1/2. These values are in good agreement (within about 5%) with the few experimental values available. The mobilities and diffusion coefficients for atomic Ar + ions in helium gas show no significant dependence on the spin state of the ion.

  20. GRS Measurements of Ar in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Janes, D. M.; Kelly, N. J.; Crombie, M. K.; Hunten, D. M.; Nelli, S. M.; Murphy, J. R.; Reedy, R. C.; Metzger, A. E.

    2005-08-01

    One and one half Mars years of atmospheric argon (Ar) measurements are described in the context of understanding how Ar, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. There is a repeated factor of 6 enhancement of Ar measured over south polar latitudes. The maximum in Ar abundance occurs near the onset of southern winter. There is no similar strong enhancement of Ar over north-polar regions during northern winter; only modest evidence for an enhancement peak is present. Part of this difference is explained by the global topographic dichotomy and the fact that the duration of northern autumn and winter is shorter than southern autumn and winter. Rapid seasonal fluctuations in Ar abundance may indicate evidence for wave activity at the perimeter of the southern seasonal polar cap. The apparent lack of coincidence of Ar enhancement with the relatively cold, cryptic terrain or relatively warm, bright albedo regions, indirectly supports the conclusion that the low temperatures measured over the south polar region by IRTM are probably caused by the combination of low CO2 abundance over south polar night and low emissivity regions on the surface associated with small grain size.

  1. arXiv.org and Physics Education

    NASA Astrophysics Data System (ADS)

    Ramlo, Susan

    2007-09-01

    The website arXiv.org (pronounced archive) is a free online resource for full-text articles in the fields of physics, mathematics, computer science, nonlinear science, and quantitative biology that has existed for about 15 years. Available directly at http://www.arXiv.org, this e-print archive is searchable. As of Jan. 3, 2007, arXiv had open access to 401,226 e-prints in the topic areas. Those who sign up for an ID and password can also sign up for daily submission abstract emails for specific subject classes of arXiv, including physics education, physics and society, and history of physics. Founded and developed by Paul Ginsparg when he was at Los Alamos National Laboratory, arXiv's original name was the LANL preprint archive or xxx.lanl.gov. The location and name changed after Ginsparg moved to the physics department at Cornell University. Today, arXiv is hosted and operated by Cornell University library. Mirror sites for arXiv exist worldwide.2

  2. Cosmic-ray production rates of He-, Ne- and Ar-isotopes in H-chondrites based on 36Cl-36Ar-ages

    NASA Astrophysics Data System (ADS)

    Leya, I.; Graf, Th.; Nishiizumi, K.; Wieler, R.

    2001-07-01

    We present the concentrations and isotopic compositions of He, Ne, and Ar for non-magnetic fractions and bulk samples of 17 H-chondrites which were recently investigated for their 36Cl-36Ar cosmic-ray exposure ages (Graf et al., 2001). All selected meteorites are observed falls with cosmic-ray exposure ages close to the 7 Ma peak. The rare gas data are consistent with 10Be and 36Cl production rates in the metal phase. Remarkably, only one out of the 17 H-chondrites, Bath, shows clear indications for a complex exposure history. Based on rare gas concentrations and 36Cl-36Ar exposure ages, 21Ne production rates as a function of 22Ne/21Ne and a mean 38Ar production rate are determined. The results confirm model calculations which predict that the relationship between 21Ne production rates and 22Ne/21Ne is ambiguous for high shielding. Besides the mean 38Ar production rate we also give production rate ratios P(38Ar from Ca) / P(38Ar from Fe). They vary between 10 and 77, showing no significant correlation with 38Ar-concentrations or 22Ne/21Ne. By investigating the metal-separates, Graf et al. (2001) found significant 3He deficits for six out of the 17 meteorites. For the non-magnetic fractions and bulk samples investigated here the data points in a 3He/21Ne versus 22Ne/21Ne diagram plot in the area defined by most of the H-chondrites. This means that 3He deficits in the metal phase are much more pronounced than in silicate minerals and we will argue that 3H diffusive losses in meteorites should be the rule rather than the exception. The 21Ne exposure ages, calculated on the basis of modeled 21Ne production rates, confirm the assumption by Graf et al. (2001) that the H5-chondrites with low 3He/38Ar in the metal formed in a separate event than those with normal 3He/38Ar ratios. The data can best be interpreted by assuming that the prominent 7 Ma exposure age peak of the H-chondrites is due to at least two events about 7.0 and 7.6 Ma ago.

  3. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    SciTech Connect

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco; Bowyer, Ted W.; Day, Anthony R.; Fuller, Erin S.; Haas, Derek A.; Hayes, James C.; Hoppe, Eric W.; Humble, Paul H.; Keillor, Martin E.; LaFerriere, Brian D.; Mace, Emily K.; McIntyre, Justin I.; Merriman, Jason H.; Miley, Harry S.; Myers, Allan W.; Orrell, John L.; Overman, Cory T.; Panisko, Mark E.; Williams, Richard M.

    2013-08-08

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.

  4. Calibration of an ultra-low-background proportional counter for measuring 37Ar

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Aalseth, C. E.; Bonicalzi, R. M.; Bowyer, T. W.; Day, A. R.; Fuller, E. S.; Haas, D. A.; Hayes, J. C.; Hoppe, E. W.; Humble, P. H.; Keillor, M. E.; LaFerriere, B. D.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Miley, H. S.; Myers, A. W.; Orrell, J. L.; Overman, C. T.; Panisko, M. E.; Williams, R. M.

    2013-08-01

    An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electro-chemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of proportional counter operating pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.

  5. Calibration of an ultra-low-background proportional counter for measuring {sup 37}Ar

    SciTech Connect

    Seifert, A.; Aalseth, C. E.; Bonicalzi, R. M.; Bowyer, T. W.; Day, A. R.; Fuller, E. S.; Haas, D. A.; Hayes, J. C.; Hoppe, E. W.; Humble, P. H.; Keillor, M. E.; LaFerriere, B. D.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Miley, H. S.; Myers, A. W.; Orrell, J. L.; Overman, C. T.; Panisko, M. E.; and others

    2013-08-08

    An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electro-chemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with {sup 14}C/{sup 3}H, age-dating of groundwater with {sup 39}Ar, and soil-gas assay for {sup 37}Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of {sup 37}Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of {sup 37}Ar samples over a broad range of proportional counter operating pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for {sup 37}Ar soil gas background studies.

  6. Ion chemistry in H{sub 2}-Ar low temperature plasmas

    SciTech Connect

    Sode, M.; Schwarz-Selinger, T.; Jacob, W.

    2013-08-14

    A rate equation model is devised to study the ion composition of inductively coupled H{sub 2}-Ar plasmas with different H{sub 2}-Ar mixing ratios. The model is applied to calculate the ion densities n{sub i}, the wall loss probability of atomic hydrogen β{sub H}, and the electron temperature T{sub e}. The calculated n{sub i}'s of Ar{sup +}, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and ArH{sup +} are compared with experimental results. Calculations were made for a total gas pressure of 1.0 Pa. The production and loss channels of all ions are presented and discussed in detail. With the production and loss rates, the density dependence of each ion on the plasma parameters is explained. It is shown that the primary ions H{sub 2}{sup +} and Ar{sup +} which are produced by ionization of the background gas by electron collisions are effectively converted into H{sub 3}{sup +} and ArH{sup +}. The high density of ArH{sup +} and Ar{sup +} is attributed to the low loss to the walls compared to hydrogen ions. It is shown that the H{sup +}/H{sub 2}{sup +} density ratio is strongly correlated to the H/H{sub 2} density ratio. The dissociation degree is around 1.7%. From matching the calculated to the measured atomic hydrogen density n{sub H}, the wall loss probability of atomic hydrogen on stainless steel β{sub H} was determined to be β{sub H}=0.24. The model results were compared with recently published experimental results. The calculated and experimentally obtained data are in fair agreement.

  7. How is the ocean filled?

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Huybers, Peter

    2011-03-01

    The ocean surface rapidly exchanges heat, freshwater, and gases with the atmosphere, but once water sinks into the ocean interior, the inherited properties of seawater are closely conserved. Previous water-mass decompositions have described the oceanic interior as being filled by just a few different property combinations, or water masses. Here we apply a new inversion technique to climatological tracer distributions to find the pathways by which the ocean is filled from over 10,000 surface regions, based on the discretization of the ocean surface at 2° by 2° resolution. The volume of water originating from each surface location is quantified in a global framework, and can be summarized by the estimate that 15% of the surface area fills 85% of the ocean interior volume. Ranked from largest to smallest, the volume contributions scaled by surface area follow a power-law distribution with an exponent of -1.09 ± 0.03 that appears indicative of the advective-diffusive filling characteristics of the ocean circulation, as demonstrated using a simple model. This work quantifies the connection between the surface and interior ocean, allowing insight into ocean composition, atmosphere-ocean interaction, and the transient response of the ocean to a changing climate.

  8. Can-Filled Crash Barrier

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1983-01-01

    Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).

  9. Brain Responses to Filled Gaps

    ERIC Educational Resources Information Center

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G.; Shafer, Valerie

    2007-01-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine…

  10. Ab initio calculations of stationary points on the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces: barriers to bound orbiting states

    NASA Astrophysics Data System (ADS)

    Moulds, Rebecca J.; Buntine, Mark A.; Lawrance, Warren D.

    2004-09-01

    The potential energy surfaces of the van der Waals complexes benzene-Ar and p-difluorobenzene-Ar have been investigated at the second-order Møller-Plesset (MP2) level of theory with the aug-cc-pVDZ basis set. Calculations were performed with unconstrained geometry optimization for all stationary points. This study has been performed to elucidate the nature of a conflict between experimental results from dispersed fluorescence and velocity map imaging (VMI). The inconsistency is that spectra for levels of p-difluorobenzene-Ar and -Kr below the dissociation thresholds determined by VMI show bands where free p-difluorobenzene emits, suggesting that dissociation is occurring. We proposed that the bands observed in the dispersed fluorescence spectra are due to emission from states in which the rare gas atom orbits the aromatic chromophore; these states are populated by intramolecular vibrational redistribution from the initially excited level [S. M. Bellm, R. J. Moulds, and W. D. Lawrance, J. Chem. Phys. 115, 10709 (2001)]. To test this proposition, stationary points have been located on both the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces (PESs) to determine the barriers to this orbiting motion. Comparison with previous single point CCSD(T) calculations of the benzene-Ar PES has been used to determine the amount by which the barriers are overestimated at the MP2 level. As there is little difference in the comparable regions of the benzene-Ar and p-difluorobenzene-Ar PESs, the overestimation is expected to be similar for p-difluorobenzene-Ar. Allowing for this overestimation gives the barrier to movement of the Ar atom around the pDFB ring via the valley between the H atoms as ⩽204 cm-1 in S0 (including zero point energy). From the estimated change upon electronic excitation, the corresponding barrier in S1 is estimated to be ⩽225 cm-1. This barrier is less than the 240 cm-1 energy of 302¯, the vibrational level for which the anomalous "free p

  11. The 40Ar/39Ar dating technique applied to planetary sciences

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2012-12-01

    The 40Ar/39Ar technique is a powerful geochronological method that can help to unravel the evolution of the solar system. The 40Ar/39Ar system can not only record the timing of volcanic and metamorphic processes on asteroids and planets, it finds domain of predilection in dating impact events throughout the solar system. However, the 40Ar/39Ar method is a robust analytical technique if, and only if, the events to be dated are well understood and data are not over interpreted. Yet, too many 'ages' reported in the literature are still based on over-interpretation of perturbed age spectra which tends to blur the big picture. This presentation is centred on the most recent applications of the 40Ar/39Ar technique applied to planetary material and through several examples, will attempt to demonstrate the benefit of focusing on statistically robust data. For example, 40Ar/39Ar dating of volcanic events on the Moon suggests that volcanism was mostly concentrated between ca. 3.8 and 3.1 Ga but statistical filtering of the data allow identifying a few well-defined eruptive events. The study of lunar volcanism would also benefit from dating of volcanic spherules. Rigorous filtering of the 40Ar/39Ar age database of lunar melt breccias yielded concordant and ages with high precision for two major basins (i.e. Imbrium & Serenitatis) of the Moon. 40Ar/39Ar dating of lunar impact spherules recovered from four different sites and with high- and low-K compositions shows an increase of ages younger than 400 Ma suggesting a recent increase in the impact flux. The impact history of the LL parent body (bodies?) has yet to be well constrained but may mimic the LHB observed on the Moon, which would indicate that the LL parent body was quite large. 40Ar/39Ar dating (in progress) of grains from the asteroid Itokawa recovered by the japanese Hayabusa mission have the potential to constrain the formation history and exposure age of Itokawa and will allow us to compare the results with the

  12. Advances in noble gas paleothermometry on speleothems

    NASA Astrophysics Data System (ADS)

    Marx, Thomas; Kluge, Tobias; Mangini, Augusto; Aeschbach-Hertig, Werner

    2010-05-01

    The application of the noble gas paleothermometer on speleothem fluid inclusions promises to provide absolute paleotemperatures from stalagmites. These noble gas temperatures (NGTs) are based on the temperature dependent solubility of gases in water and could help to interpret other speleothem proxies. In particular NGTs may help to better understand oxygen isotope records. In summer and autumn 2009 a measurement run with 26 (sub-)samples from 9 different caves was performed. The water and the noble gases were released using a stepwise extraction technique by online in vacuo crushing and thermal heating. Depending on the sample water amount about three extraction steps were performed for each sample, so that the total number of speleothem measurements exceeded 80 in this run. NGTs were determined from noble gas concentrations by inverse modeling. Only the equilibrium solubility component, which contains the temperature information, and an atmospheric air component from air-filled inclusions are included in the calculations. Plots of two noble gas concentrations against each other (Xe-Ne, Kr-Ar) show that the measured concentrations are in general agreement with this simple model. Unfortunately the combined mass spectrometric measurement of Ar, Kr and Xe turned out to be slightly problematic. A separated measurement should solve the corresponding problems. Furthermore, a lab water standard for noble gases will be prepared to further examine the measurements in the future. In this measurement run samples from not only Bunker Cave (Germany) showed suitable properties for NGT determination but also samples from Katerloch Cave (Austria) where the water concentration varies between 0.4 to 4 ?l per g calcite which is comparable to the Bunker Cave stalagmites. The air to water volume ratio is below 0.1 which in principle allows the determination of NGTs with errors in the range of 1 °C. The calculated NGTs are in the range of the modern cave air temperature.

  13. Ar-40/Ar-39 Studies of Martian Meteorite RBT 04262 and Terrestrial Standards

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Turrin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Nagao, K.; Nyquist, L. E.

    2014-01-01

    Park et al. recently presented an Ar-40/Ar-39 dating study of maskelynite separated from the Martian meteorite RBT 04262. Here we report an additional study of Ar-40/Ar-39 patterns for smaller samples, each consisting of only a few maskelynite grains. Considered as a material for Ar-40/Ar-39 dating, the shock-produced glass maskelynite has both an important strength (relatively high K concentration compared to other mineral phases) and some potentially problematic weaknesses. At Rutgers, we have been analyzing small grains consisting of a single phase to explore local effects that might be averaged and remain hidden in larger samples. Thus, to assess the homogeneity of the RBT maskelynite and for comparison with the results of, we analyzed six approx. 30 microgram samples of the same maskelynite separate they studied. Furthermore, because most Ar-40/Ar-39 are calculated relative to the age of a standard, we present new Ar-40/Ar-39 age data for six standards. Among the most widely used standards are sanidine from Fish Canyon (FCs) and various hornblendes (hb3gr, MMhb-1, NL- 25), which are taken as primary standards because their ages have been determined by independent, direct measurements of K and A-40.

  14. Instrumentation development for planetary in situ 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Davidheiser-Kroll, B.; Morgan, L. E.; Munk, M.; Warner, N. H.; Gupta, S.; Slaybaugh, R.; Harkness, P.; Mark, D. F.

    2015-12-01

    The chronology of the Solar System, particularly the timing of formation of extraterrestrial bodies and their features, is a major outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g. Rb-Sr, K-Ar), and even applied (K-Ar, Farley et al., 2014), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extraterrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. We will discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analyzing samples are discussed, along with an exploration of limitations such as mass, power, and cost. Two potential solutions for the in situ extraterrestrial deployment of the 40Ar/39Ar method will be presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.

  15. Monte-Carlo sorption and neutron diffraction study of the filling isotherm in clathrate hydrates

    SciTech Connect

    Klapproth, Alice; Kuhs, Werner F.; Chazallon, Bertrand

    1999-06-15

    We are interested in the thermodynamics of the gas filling of clathrate hydrates. In order to determine the pressure-dependent filling of the cages, neutron powder diffraction experiments on N{sub 2} and CO{sub 2} clathrates were performed. Interaction potentials were refined by comparing the experimentally determined fillings with those generated by MC-sorption calculations. Unsatisfactory agreement between experiment and simulation is observed when using the widely employed SPC water-water interaction potential.

  16. Aging Studies of Filled and Unfilled VCE

    SciTech Connect

    Letant, S; Herberg, J; Alviso, C; Small, W; Mulcahy, H; Pearson, M; Wilson, T; Chinn, S; Maxwell, R

    2009-11-10

    This report presents data on the effects of temperature and gamma radiation on the chemical and structural properties of both filled and unfilled VCE material produced by the Kansas City Plant using WR-qualified processes. Thermal effects up to 300 C and gamma irradiation doses of 1 MRad and 25 MRad were investigated under atmospheric conditions. Characterization techniques used in the study comprise Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Tensile Testing, Solid Phase MicroExtraction - Gas Chromatography/Mass Spectrometry (SPME-GC/MS), phenol extraction followed by HPLC, and various Nuclear Magnetic Resonance (NMR) techniques including: {sup 13}C, {sup 13}C {l_brace}{sup 1}H{r_brace} cross polarization (CP), {sup 1}H magic angle spinning (MAS), 13C{l_brace}{sup 1}H{r_brace} Wide-line-Separation (2D-WISE) and development of Center band-Only Detection of Exchange (CODEX).

  17. Scattering and Sputtering Processes of Ar^+ and Cu^+ Ions on Cu Surfaces: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Abrams, Cameron; Graves, David B.

    1998-10-01

    A better understanding of how energetic Ar^+ and Cu^+ ions from plasmas interact with copper surfaces is crucial for further development of metallization technologies. We present results of molecular dynamics (MD) simulations of Ar^+ and Cu^+ ions impacting model Cu surfaces with a variety of impact energies (50 - 200 eV) and angles. We modeled Cu-Cu interactions using the EAM potential energy function (PEF) and Ar-Cu interactions using the ZBL PEF.(K. Gärtner et al.), Nucl. Instr. Meth. Phys. Res. B 102, 183 (1995). We report the total sputtering and reflection yields for these energies and angles. We report spatial distributions of sputter and reflection yields with respect to angle of ejection, and compare our MD results to recent experimental findings.(C. Doughty, S. M. Gorbatkin, and L. A. Berry, J. Appl. Phys. 82), 1868 (1997). The effects of changing ion energy and angle on these quantities are discussed. For example, we observe that the sputter yield for Ar^+ on Cu decreases as the Ar^+ ion's incident angle is increased from 30^circ to 60^circ from normal. These results shed light on the dynamics of low energy ion/metal surface interactions and provide a useful databases for use in profile evolution simulations of Cu seed layer deposition and trench/via fill.

  18. Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling

    PubMed Central

    Baldwin, Suzanne L.; Das, J. P.

    2015-01-01

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An 40Ar/39Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that 40Ar/39Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric 38Ar/36Ar and 20Ne/22Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  19. Estimate of the 42Ar content in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Kornoukhov, V. N.; Jants, V. E.

    1997-02-01

    42Ar is a potential source of background in large volume argon-based detectors. The production of the 42Ar isotope both by cosmic rays and by neutrons produced by testing of nuclear weapons is discussed. We demonstrate that main channel of the 42Ar production is from atmospheric testing of nuclear bombs from 1945 to 1962 and the 42Ar content must be less than 1.3 × 10 -23 parts of 42Ar per part of natAr.

  20. Higher Precision: Opening A New 40Ar/39Ar Can Of Worms

    NASA Astrophysics Data System (ADS)

    Heizler, M. T.

    2012-12-01

    Advances in technology often lead to advances in science and this is true for the noble gas community that is currently being inundated with new multi-collector mass spectrometers. For the 40Ar/39Ar community, the ARGUS VI mass spectrometers are yielding age precision on individual age spectrum steps or single grain fusion ages that is commonly an order of magnitude improved over the MAP-215-50 instruments. Just as age spectrum analyses did in the 1960's, and single crystal laser fusion did in the 1980's, new data now yields another level of insight about isotopic behavior and an improved geological understanding, but also reveals difficult to understand complexity. Ongoing with geochronology studies, NM Tech is revisiting many of the commonly used 40Ar/39Ar flux monitor standards used throughout the argon community. Single grain analysis of AC-2, FC-2 sanidine, TCR-2 sanidine, GA1550 biotite, Fireclay sanidine and PP20 hornblende all yield scattered distributions except for AC-2. Typical single crystal 1 sigma precision for FC-2 and TCR sanidine is 0.02 and 0.06%, respectively with both samples heterogeneous at the 25 ka level. GA1550 biotite is measured to 0.02% and as governed by an MSWD value of 3.5 has a relatively tight age population. The ca. 313 Ma Fireclay sanidine grains yields ~0.1 Ma age precision, but scatters by more than 1 Ma. PP20 hornblende single grains (~1175 Ma) vary by ~25 Ma however most scatter by ±5 Ma. AC-2 is the youngest standard (~1.18 Ma) and we obtain single grain precision of 0.15% and commonly a normal distribution about a total age error of <1 ka 1 sigma. Incremental heating of single grain sanidine standards yields a variety of age spectrum shapes that are commonly not flat. For instance FC-2 shows disturbance for individual steps at about 0.3 Ma that is well resolved with high precision analysis. In general, nearly all sanidines step heated on the ARGUS VI show non-ideal behavior indicating that combinations of slight argon loss

  1. Understanding of matrix embedding: a theoretical spectroscopic study of CO interacting with Ar clusters, surfaces and matrices.

    PubMed

    Mahjoubi, K; Benoit, D M; Jaidane, N-E; Al-Mogren, M Mogren; Hochlaf, M

    2015-07-14

    Through benchmark studies, we explore the performance of PBE density functional theory, with and without Grimme's dispersion correction (DFT-D3), in predicting spectroscopic properties for molecules interacting with rare gas matrices. Here, a periodic-dispersion corrected model of matrix embedding is used for the first time. We use PBE-D3 to determine the equilibrium structures and harmonic vibrational frequencies of carbon monoxide in interaction with small Ar clusters (CO-Arn, n = 1, 2, 3), with an Ar surface and embedded in an Ar matrix. Our results show a converging trend for both the vibrational frequencies and binding energies when going from the gas-phase to a fully periodic approach describing CO embedding in Ar. This trend is explained in terms of solvation effects, as CO is expected to alter the structure of the Ar matrix. Due to a competition between CO-Ar interactions and Ar-Ar interactions, perturbations caused by the presence of CO are found to extend over several Å in the matrix. Accordingly, it is mandatory to fully relax rare gas matrices when studying their interaction with embedded molecules. Moreover, we show that the binding energy per Ar is almost constant (∼-130 cm(-1) atom(-1)) regardless of the environment of the CO molecule. Finally, we show that the concentration of the solute into the cold matrix influences the spectroscopic parameters of molecules embedded into cold matrices. We suggest hence that several cautions should be taken before comparing these parameters to gas phase measurements and to theoretical data of isolated species.

  2. Stratigraphy and Ar/Ar geochronology of the Miocene lignite-bearing Tunçbilek-Domaniç Basin, western Anatolia

    NASA Astrophysics Data System (ADS)

    Helvacı, C.; Ersoy, E. Y.; Billor, M. Z.

    2016-08-01

    The Tunçbilek-Domaniç Basin is one of the Neogene basins containing economic coal deposits in western Anatolia, Turkey. The basin fill represents fluvial to lacustrine sedimentary units which are interlayered with volcanic rocks with bimodal composition. In order to reveal the stratigraphy and the exact ages of the basin fill and coal deposits, and to explore the tectonic evolution of the basin, we present new field data and Ar/Ar age data from the volcanic units. The field studies and the age data indicate that the whole basin fills were deposited between ~23 and ~19 Ma (Aquitanian-Early Burdigalian) without any unconformity. Taking into account the ages of the coal-bearing sedimentary units in the other Neogene basins in the region, it is concluded that most of the economic coal deposits in the western Anatolia were formed during Aquitanian. The field studies also show that the deposition of the sedimentary units in the basin was controlled by the NE-SW-trending strike- to oblique-slip normal faults. In a regional scale, tectonic evolution of the Tunçbilek-Domaniç Basin is linked to the differential stretching in the hanging wall of the southerly located, a crustal-scale low-angle detachment fault (the Simav detachment fault) that controlled the Early Miocene exhumation of the Menderes Extensional Core Complex.

  3. Paleoclimate change in the Nakuru basin, Kenya, at 119 - 109 ka derived from δ18Odiatom and diatom assemblages and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Bergner, Andreas; Deino, Alan; Leng, Melanie; Gasse, Francoise

    2016-04-01

    A 4.5m-thick diatomite bed deposited during the cold interval of the penultimate interglacial at ~119 - 109 ka documents a period in which a deep freshwater lake filled the Nakuru basin in the Central Kenya Rift (CKR), East Africa. Palaeohydrological conditions of the basin are reconstructed for the paleolake highstand using δ18Odiatom and characterization of diatom assemblages. The age of the diatomite deposit is established by precise 40Ar/39Ar-dating of intercalated pumice tuffs. The paleolake experienced multiple hydrological fluctuations on sub-orbital (~1,500 to 2,000 years) time scales. The magnitude of the δ18Odiatom change (+/- 3‰) and significant changes in the plankton-littoral ratio of the diatom assemblage (+/- 25%) suggest that the paleolake record can be interpreted in the context of long-term climatic change in East Africa. Using 40Ar/39Ar age control and nominal diatomite-sedimentation rates we establish a simplified age model of paleohydrological vs. climatic change, from which we conclude that more humid conditions prevailed in equatorial East Africa during the late Pleistocene over a relatively long time interval of several thousands years. Then, extreme insolation at eccentricity maximum and weakened zonal air-pressure gradients in the tropics favored intensified ITCZ-like convection over East Africa and deep-freshwater lake conditions.

  4. Apparatus for determining the filling pressure of a plurality of microballoons

    DOEpatents

    Jorgensen, Betty S.

    1987-01-01

    A simple apparatus for removably holding a plurality of microballoons during filling and determination of the pressure of the gas fill. The subject apparatus permits the manipulation of substantial numbers of microballoons necessary for the rapidly growing requirements for these capsules.

  5. Ar-39-Ar-40 Ages of Euerites and the Thermal History of Asteroid 4-Vesta

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.

    2002-01-01

    Eucrite meteorites are igneous rocks that derive from a large asteroid, probably 4 Vesta. Prior studies have shown that after eucrites formed, most were subsequently metamorphosed to temperatures up to equal to or greater than 800 C, and much later many were brecciated and heated by large impacts into the parent body surface. The uncommon basaltic, unbrecciated eucrites also formed near the surface but presumably escaped later brecciation, whereas the cumulate eucrites formed at depth where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new Ar-39-Ar-40 ages for nine eucrites classified as basaltic but unbrecciated, six eucrites classified as cumulate, and several basaltic-brecciated eucrites. Relatively precise Ar-Ar ages of two cumulate eucrites (Moama and EET87520) and four unbrecciated eucrites give a tight cluster at 4.48 +/1 0.01 Gyr. Ar-Ar ages of six additional unbrecciated eucrites are consistent with this age, within their larger age uncertainties. In contrast, available literature data on Pb-Pb isochron ages of four cumulate eucrites and one unbrecciated eucrite vary over 4.4-4.515 Gyr, and Sm-147 - Nd-143 isochron ages of four cumulate and three unbrecciated eucrites vary over 4.41-4.55 Gyr. Similar Ar-Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as previously proposed. Rather, we suggest that these cumulate and unbrecciated eucrites resided at depth where parent body temperatures were sufficiently high to cause the K-Ar and some other chronometers to remain open diffusion systems. From the strong clustering of Ar-Ar ages at approximately 4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event approximately 4.48 Gyr ago, which quickly cooled the samples and started the K-Ar chronometer. A large (approximately 460 km) crater

  6. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective.

    PubMed

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan

    2016-03-21

    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of

  7. The ArsD As(III) metallochaperone

    PubMed Central

    Ajees, A. Abdul; Yang, Jianbo

    2013-01-01

    Arsenic, a toxic metalloid widely existing in the environment, causes a variety of health problems. The ars operon encoded by Escherichia coli plasmid R773 has arsD and arsA genes, where ArsA is an ATPase that is the catalytic subunit of the ArsAB As(III) extrusion pump, and ArsD is an arsenic chaperone for ArsA. ArsD transfers As(III) to ArsA and increases the affinity of ArsA for As(III), allowing resistance to environmental concentrations of arsenic. Cys12, Cys13 and Cys18 in ArsD form a three sulfur-coordinated As(III) binding site that is essential for metallochaperone activity. ATP hydrolysis by ArsA is required for transfer of As(III) from ArsD to ArsA, suggesting that transfer occurs with a conformation of ArsA that transiently forms during the catalytic cycle. The 1.4 Å x-ray crystal structure of ArsD shows a core of four β-strands flanked by four α-helices in a thioredoxin fold. Docking of ArsD with ArsA was modeled in silico. Independently ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected. The locations of the mutations mapped on the surface of ArsD are consistent with the docking model. The results suggest that the interface with ArsA involves one surface of α1 helix and metalloid binding site of ArsD. PMID:21188475

  8. Ar-39-Ar-40 Evidence for Early Impact Events on the LL Parent Body

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Bogard, D. D.; Garrison, D. H.; Rubin, A. E.

    2006-01-01

    We determined Ar-39-Ar-40 ages of eight LL chondrites, and one igneous inclusion from an LL chondrite, with the object of understanding the thermal history of the LL-chondrite parent body. The meteorites in this study have a range of petrographic types from LL3.3 to LL6, and shock stages from S1 to S4. These meteorites reveal a range of K-Ar ages from 23.66 to 24.50 Ga, and peak ages from 23.74 to 24.55 Ga. Significantly, three of the eight chondrites (LL4, 5, 6) have K-Ar ages of -4.27 Ga. One of these (MIL99301) preserves an Ar-39-Ar-40 age of 4.23 +/- 0.03 Ga from low-temperature extractions, and an older age of 4.52 +/- 0.08 Ga from the highest temperature extractions. In addition, an igneous-textured impact melt DOM85505,22 has a peak Ar-39-Ar-40 age of >= 4.27 Ga. We interpret these results as evidence for impact events that occurred at about 4.27 Ga on the LL parent body that produced local impact melts, reset the Ar-39-Ar-40 ages of some meteorites, and exhumed (or interred) others, resulting in a range of cooling ages. The somewhat younger peak age of 3.74 Ga from GR095658 (LL3.3) suggests an additional impact event close to timing of impact-reset ages of some other ordinary chondrites between 3.6-3.8 Ga. The results from MIL99301 suggest that some apparently unshocked (Sl) chondrites may have substantially reset Ar-39-Ar-40 ages. A previous petrographic investigation of MIL99301 suggested that reheating to temperatures less than or equal to type 4 petrographic conditions (600C) caused fractures in olivine to anneal, resulting in a low apparent shock stage of S1 (unshocked). The Ar-39-Ar-40 age spectrum of MIL99301 is consistent with this interpretation. Older ages from high-T extractions may date an earlier impact event at 4.52 +/- 0.08 Ga, whereas younger ages from lower-T extractions date a later impact event at 4.23 Ar-39-Ar-40 0.03 Ga that may have caused annealing of feldspar and olivine

  9. 40Ar/39Ar age of Cretaceous-Tertiary boundary tektites from Haiti

    USGS Publications Warehouse

    Izett, G.A.; Dalrymple, G.B.; Snee, L.W.

    1991-01-01

    40Ar/39Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a 40Ar/39Ar age of 64.6 ?? 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.

  10. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites

    PubMed

    Kelley; Wartho

    2000-07-28

    Kimberlite eruptions bring exotic rock fragments and minerals, including diamonds, from deep within the mantle up to the surface. Such fragments are rapidly absorbed into the kimberlite magma so their appearance at the surface implies rapid transport from depth. High spatial resolution Ar-Ar age data on phlogopite grains in xenoliths from Malaita in the Solomon Islands, southwest Pacific, and Elovy Island in the Kola Peninsula, Russia, indicate transport times of hours to days depending upon the magma temperature. In addition, the data show that the phlogopite grains preserve Ar-Ar ages recorded at high temperature in the mantle, 700 degrees C above the conventional closure temperature.

  11. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy

    USGS Publications Warehouse

    Lanphere, M.; Champion, D.; Melluso, L.; Morra, V.; Perrotta, A.; Scarpati, C.; Tedesco, D.; Calvert, A.

    2007-01-01

    The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925??66 years in 2004 (1?? uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes. ?? Springer-Verlag 2006.

  12. 40Ar/39Ar technique of KAr dating: a comparison with the conventional technique

    USGS Publications Warehouse

    Brent, Dalrymple G.; Lanphere, M.A.

    1971-01-01

    K-Ar ages have been determined by the 40Ar/39Ar total fusion technique on 19 terrestrial samples whose conventional K-Ar ages range from 3.4 my to nearly 1700 my. Sample materials included biotite, muscovite, sanidine, adularia, plagioclase, hornblende, actinolite, alunite, dacite, and basalt. For 18 samples there are no significant differences at the 95% confidence level between the KAr ages obtained by these two techniques; for one sample the difference is 4.3% and is statistically significant. For the neutron doses used in these experiments (???4 ?? 1018 nvt) it appears that corrections for interfering Ca- and K-derived Ar isotopes can be made without significant loss of precision for samples with K/Ca > 1 as young as about 5 ?? 105 yr, and for samples with K/Ca < 1 as young as about 107 yr. For younger samples the combination of large atmospheric Ar corrections and large corrections for Ca- and K-derived Ar may make the precision of the 40Ar/39Ar technique less than that of the conventional technique unless the irradiation parameters are adjusted to minimize these corrections. ?? 1971.

  13. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites

    PubMed

    Kelley; Wartho

    2000-07-28

    Kimberlite eruptions bring exotic rock fragments and minerals, including diamonds, from deep within the mantle up to the surface. Such fragments are rapidly absorbed into the kimberlite magma so their appearance at the surface implies rapid transport from depth. High spatial resolution Ar-Ar age data on phlogopite grains in xenoliths from Malaita in the Solomon Islands, southwest Pacific, and Elovy Island in the Kola Peninsula, Russia, indicate transport times of hours to days depending upon the magma temperature. In addition, the data show that the phlogopite grains preserve Ar-Ar ages recorded at high temperature in the mantle, 700 degrees C above the conventional closure temperature. PMID:10915621

  14. 40Ar/39Ar Age of Cretaceous-Tertiary Boundary Tektites from Haiti.

    PubMed

    Izett, G A; Dalrymple, G B; Snee, L W

    1991-06-14

    (40)Ar/(39)Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 +/- 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a (40)Ar/(39)Ar age of 64.6 +/- 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.

  15. [Long-lasting filling procedures].

    PubMed

    Môle, B

    2008-01-01

    A long-lasting filling product is accepted as such when, once the result has been obtained, no correction is required before the end of an arbitrary 2-year period. Other than silicone oil, which is not officially recognized for this indication in France, pure products can be distinguished from microparticle suspensions in a vector that will disappear in a short time. Flexible implants represent a totally separate entity and remain relatively little used since surgery is necessary for implantation. Our experience has led us to prefer monomolecular filling gels, in particular polyacrylamide hydrogels, with which we have had extensive experience, over gels with microparticles that we believe expose the patient to much greater inflammatory reactions that are sometimes difficult to overcome.

  16. Particle-filled microporous materials

    DOEpatents

    McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.

    1990-09-18

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.

  17. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.; Dyrud, James F.

    1990-01-01

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  18. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.

    1992-07-14

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  19. 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Potts, Graham J.; Kelley, Simon P.

    2001-05-01

    Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low

  20. Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling

    NASA Astrophysics Data System (ADS)

    Chicheportiche, A.; Lepetit, B.; Gadéa, F. X.; Benhenni, M.; Yousfi, M.; Kalus, R.

    2014-06-01

    Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.

  1. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    SciTech Connect

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L.; Cernicharo, J.; Barlow, M. J.; Swinyard, B. M.

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  2. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hollow fills. 816.72 Section 816.72 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.72 Disposal of excess spoil: Valley fills/head-of-hollow fills. Valley fills and head-of-hollow fills shall meet the requirements of § 816.71 and the...

  3. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hollow fills. 817.72 Section 817.72 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.72 Disposal of excess spoil: Valley fill/head-of-hollow fills. Valley fills and head-of-hollow fills shall meet the requirements of § 817.71 and the...

  4. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hollow fills. 816.72 Section 816.72 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.72 Disposal of excess spoil: Valley fills/head-of-hollow fills. Valley fills and head-of-hollow fills shall meet the requirements of § 816.71 and the...

  5. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hollow fills. 817.72 Section 817.72 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.72 Disposal of excess spoil: Valley fill/head-of-hollow fills. Valley fills and head-of-hollow fills shall meet the requirements of § 817.71 and the...

  6. Electron Cyclotron Resonance-Reactive Ion Etching of III-V Semiconductors by Cyclic Injection of CH4/H2/Ar and O2 with Constant Ar Flow

    NASA Astrophysics Data System (ADS)

    Haneji, Nobuo; Segami, Goh; Ide, Tomoyoshi; Suzuki, Tatsuya; Arakawa, Taro; Tada, Kunio; Shimogaki, Yukihiro; Nakano, Yoshiaki

    2003-06-01

    Electron cyclotron resonance-reactive ion etching (ECR-RIE) is very useful for fabricating semiconductor photonic devices and integrated circuits (PICs). The mixture gas of CH4/H2 is used for etching III-V semiconductors, but the carbon polymer film deposited on the surface during the etching process presents some problems. Thus, the polymer film must be ashed off using an O2 plasma. We introduced the cyclic injection of CH4/H2/Ar and O2 to ECR-RIE, and demonstrated that it was very useful for etching of InP. However, compound semiconductors containing Al (e.g., AlGaAs and InAlAs) react with oxygen and an alumina layer is formed, which cannot be etched by CH4/H2 etching. Therefore, we used a new cyclic etching process with constant Ar flow in the chamber to remove this alumina layer by Ar ion etching, and obtained good results for etching rate and surface morphology for the compound semiconductors containing Al. We also proposed a suitable combination of three cyclic etching procedures (continuous etching, cyclic etching without constant Ar flow and cyclic etching with constant Ar flow) for etching the multilayer heterostructure of III-V semiconductors including InP and/or compound semiconductors containing Al.

  7. ArsP: a methylarsenite efflux permease

    PubMed Central

    Chen, Jian; Madegowda, Mahendra; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2015-01-01

    Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III)>Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus ArsP is the first identified efflux system specific for trivalent organoarsenicals. PMID:26234817

  8. Correlation diagrams in 40 Ar/39Ar dating: is there a correct choice?

    USGS Publications Warehouse

    Dalrymple, G.B.; Lanphere, M.A.; Pringle, M.S.

    1988-01-01

    Contrary to published assertions, the 2 types of correlation diagrams used in the interpretation of 40Ar/39Ar incremental-heating data yield the same information provided the correct mathematics are used for estimating correlation coefficients and for the least squares fit. The choice is simply between 2 illustrative, graphical displays, neither of which is fundamentally superior to the other. -Authors

  9. AR-40 AR-39 Age of an Impact-Melt Lithology in DHOFAR 961

    NASA Technical Reports Server (NTRS)

    Frasl, B.; Cohen, B. A.; Li, Z.-H.; Jolliff, B.; Korotev, R.; Zeigler, R.

    2016-01-01

    The South Pole-Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. The SPA basin also has another convenient property, a geochemically distinct interior, unobscured by extensive mare basalt fill. A case has been made for the possible origin of the Dhofar 961 lunar meteorite in the South Pole-Aitken (SPA) basin, based on comparing its composition with Lunar Prospector gamma-ray data for the interior of the SPA basin. Dhofar 961 contains several different impact-melt (IM) lithologies. Jolliff et al. described two classes of mafic impact-melt lithologies, one dominated by olivine (Lithology A) and the other by plagioclase (An 95-96.5) (Lithology B). Broad-beam analyses of these lithologies yielded (is) approximately 14.0 wt% FeO, 11.7 wt% MgO, and 15.4 wt% Al2O3. Lithologies A and B differ by approximately 2.5% Al2O3, 1.5% FeO and 1.5% MgO, consistent with the occurrence of olivine phenocrysts in A and plagioclase clasts in B. Both lithologies are considerably more mafic than the Apollo mafic impact-melt breccias, corresponding to olivine gabbronorite. Joy et al. used U-Pb dating to investigate phosphate fragments in the Dhofar 961 matrix and impact-melt clasts. Matrix phosphates have 4.34 to 4 Ga ages, consistent with ancient KREEP-driven magmatic episodes and Pre-Nectarian ((is) greater than 3.92 Ga). Phosphates found within Dhofar 961 crystalline impact melt breccia clasts range from 4.26 to 3.89 Ga, potentially recording events throughout the basin forming epoch of lunar history. The youngest reset ages in the Dhofar 961 sample represent an upper limit for the time of formation of the meteorite. Joy et al suggested this age represents the final impact that mixed and consolidated several generations of precursor rocks into the Dhofar meteorite group

  10. Multi-Kev X-Ray Emission from High-Z Gas Targets Fielded at Omega and NIF

    NASA Astrophysics Data System (ADS)

    May, Mark; Fournier, Kevin; Colvin, Jeff; Kane, Jave

    2010-11-01

    We report on the measured X-ray flux from gas-filled targets shot at both the OMEGA and NIF laser facilities. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ˜ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3φ (˜350 nm) laser energy delivered in a 1 ns square pulse. The NIF targets were thin walled (25 μm), 4 mm long, 4 mm inner-diameter epoxy pipes filled with 1.2 atm of a 65:35 Ar:Xe mixture. The NIF experiments heated these targets with 350 kJ of 3φ (˜350 nm) laser energy delivered in a 5 ns square pulse at up to 75 TW of laser power. The emitted X-ray flux was monitored with the X-ray diode based DANTE instruments in the sub-keV range. Two-dimensional X-ray images (for energies 3-5 keV) of the targets were recorded with gated X-ray detectors. The X-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. The results from both experiments will be compared. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. THIS FRENCH-MADE CASTING MACHINE MAKES 4, 6, 8, 10, AND 12 INCH PIPE. THE MACHINE CAN MAKE 48 EIGHT INCH PIPE AN HOUR AND UP TO 60 FOUR INCH PIPE PER HOUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  12. Quench gases for xenon- (and krypton-) filled proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Agrawal, P. C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. Results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases are presented.

  13. Hazard evaluation for 244-AR vault facility

    SciTech Connect

    BRAUN, D.J.

    1999-08-25

    This document presents the results of a hazard identification and evaluation performed on the 244-AR Vault Facility to close a USQ (USQ No.TF-98-0785, Potential Inadequacy in Authorization Basis (PIAB): To Evaluate Miscellaneous Facilities Listed In HNF-2503 And Not Addressed In The TWRS Authorization Basis) that was generated as part of an evaluation of inactive TWRS facilities. A hazard evaluation for the Hanford Site 244-AR Vault Facility was performed. The process and results of the hazard evaluation are provided in this document. A previous hazard evaluation was performed for the 244-AR Vault Facility in 1996 in support of the Basis for Interim Operation (BIO) (HNF-SD-WM-BIO-001, 1998, Revision 1) of the Tank Waste Remediation System (TWRS). The results of that evaluation are provided in the BIO. Upon review of those results it was determined that hazardous conditions that could lead to the release of radiological and toxicological material from the 244-AR vaults due to flooding was not addressed in the original hazards evaluation. This supplemental hazard evaluation addresses this oversight of the original hazard evaluation. The results of the hazard evaluation were compared to the current TWRS BIO to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. This document is not part of the AB and is not a vehicle for requesting changes to the AB. It is only intended to provide information about hazardous conditions associated with the condition and configuration of the 244-AR vault facility. The AB Control Decision process could be used to determine the applicability and adequacy of existing AB controls as well as any new controls that may be needed for the identified hazardous conditions associated with 244-AR vault flooding. This hazard evaluation does not constitute an accident analysis.

  14. Energy characteristics of light from a passively mode-locked Ar/sup +/ laser

    SciTech Connect

    Gafurov, K.G.; Krindach, D.P.; Nazarov, B.I.; Novoderezhkin, V.I.

    1983-08-01

    Results are reported from an experimental study of the maximum average and pulse powers of a passively mode-locked Ar/sup +/ laser containing a gas discharge absorber. The peak pulse power is found to increase roughly linearly with increasing absorption; it was found to depend more strongly on the ratio S of the beam cross sections in the amplifying and absorbing media. The value of S was determined experimentally for the case when several pulses were generated during the period T/sub 0/ of the Ar/sup +/ laser cavity and interacted in the absorber.

  15. SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation.

    PubMed

    Wu, Ruiqin; Cui, Yaxiong; Yuan, Xiaoyan; Yuan, Haitao; Wang, Yimei; He, Jun; Zhao, Jun; Peng, Shuangqing

    2014-09-01

    Cadmium is a potential prostate carcinogen and can mimic the effects of androgen by a mechanism that involves the hormone-binding domain of the androgen receptor (AR), which is a key transcriptional factor in prostate carcinogenesis. We focused on transcriptional activity of AR to investigate the toxicity of cadmium exposure on human prostate cell lines. Cadmium increased the proliferative index of LNCaP and the proliferative effect was obstructed significantly by AR blocking agent. In luciferase assay, cadmium activated the transcriptional activity of AR in 293T cells co-transfected with wild-type AR and an ARE (AR response elements)-luciferase reporter gene. Cadmium also increased expression of PSA, a downstream gene of AR, whereas the metal had no significant effect on AR amount. AR is regulated by multiple posttranslational modifications including SUMOylation. SUMOylated AR shows a lower transcriptional activity. SUMO-specific protease 1 (SENP1) decreases AR SUMOylation by deconjugating AR-SUMO covalent bond. We detected that cadmium increased the amount of SENP1 in a dose and time dependent manner. Knocking down of SENP1 by RNAi led to decrease of PSA expression and transcriptional activity of AR in luciferase assay. Furthermore, co-immunoprecipitation (Co-IP) results showed that SUMOylation level of AR was decreased after cadmium treatment. In conclusion, our results indicated that cadmium-induced SENP1 enhanced AR transcriptional activity by decreasing AR SUMOylation.

  16. 40Ar/39Ar Age Dating of Two Chondrules from the Bjurböle (L/LL4) Chondrite

    NASA Astrophysics Data System (ADS)

    Park, J.; Lindsay, F. N.; Turrin, B. D.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C.

    2016-08-01

    We present detailed 40Ar/39Ar results for two Bjurböle chondrules. Younger Ar/Ar step ages for one Bjurböle chondrule suggest that the analysis of single chondrules can yield more accurate meteorite ages than are obtainable from bulk samples.

  17. High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain).

    PubMed

    Alvarez-Gallego, Miriam; Garcia-Anton, Elena; Fernandez-Cortes, Angel; Cuezva, Soledad; Sanchez-Moral, Sergio

    2015-07-01

    Castañar cave contains the highest radon gas ((222)Rn) concentration in Spain with an annual average of 31.9 kBq m(-)(3). Seasonal variations with summer minimums and maximum values in fall were recorded. The reduction of air-filled porosity of soil and rock by condensation or rainfalls hides the radon exchange by gas diffusion, determining this seasonal stair-step pattern of the radon activity concentration in underground air. The effective total dose and the maximum hours permitted have been evaluated for the guides and public safety with a highly detailed radon measurement along 2011 and 2012. A network of 12 passive detectors (kodalphas) has been installed, as well as, two radon continuous monitoring in the most interesting geological sites of the subterranean environment. A follow up of the recommended time (max. 50 min) inside the underground environment has been analysed since the reopen to public visitors for not surpassing the legal maximum effective dose for tourists and guides. Results shown that public visitors would receive in fall a 12.1% of the total effective dose permitted per visit, whereas in summer it is reduced to 8.6%, while the cave guide received a total effective dose of 6.41 mSv in four months. The spatial radon maps allow defining the most suitable touristic paths according to the radon concentration distribution and therefore, appropriate fall and summer touristic paths are recommended.

  18. High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain).

    PubMed

    Alvarez-Gallego, Miriam; Garcia-Anton, Elena; Fernandez-Cortes, Angel; Cuezva, Soledad; Sanchez-Moral, Sergio

    2015-07-01

    Castañar cave contains the highest radon gas ((222)Rn) concentration in Spain with an annual average of 31.9 kBq m(-)(3). Seasonal variations with summer minimums and maximum values in fall were recorded. The reduction of air-filled porosity of soil and rock by condensation or rainfalls hides the radon exchange by gas diffusion, determining this seasonal stair-step pattern of the radon activity concentration in underground air. The effective total dose and the maximum hours permitted have been evaluated for the guides and public safety with a highly detailed radon measurement along 2011 and 2012. A network of 12 passive detectors (kodalphas) has been installed, as well as, two radon continuous monitoring in the most interesting geological sites of the subterranean environment. A follow up of the recommended time (max. 50 min) inside the underground environment has been analysed since the reopen to public visitors for not surpassing the legal maximum effective dose for tourists and guides. Results shown that public visitors would receive in fall a 12.1% of the total effective dose permitted per visit, whereas in summer it is reduced to 8.6%, while the cave guide received a total effective dose of 6.41 mSv in four months. The spatial radon maps allow defining the most suitable touristic paths according to the radon concentration distribution and therefore, appropriate fall and summer touristic paths are recommended. PMID:25863322

  19. Towards understanding the differences in irradiation effects of He, Ne and Ar plasma by investigating the physical origin of their clustering in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-wei; Li, Xiang-yan; Wu, Xuebang; Liu, C. S.; Chen, Jun-Ling; Luo, G.-N.

    2016-10-01

    While inert gas seeding to improve energy confinement has been successfully applied in many tokamak experiments, questions remain as to the irradiation effects of inert gases on tungsten. In this paper, we have systematically investigated the clustering behaviors of the inert gas atoms He, Ne and Ar in plasma-facing tungsten using first-principles calculations. Small interstitial clusters, He m , Ne m , and Ar m , can form due to the attraction between the atoms and tend to expand along the (1 1 0) planes. The inert gas clusters induce strong lattice distortions and so it is energetically favorable for a self-interstitial atom to be emitted from the clusters when the numbers of atoms are above six, three, three for He m , Ne m , and Ar m respectively. The clustering behaviors can be well explained by the intrinsic repulsive interaction between the inert gas atoms and the attractive interaction coming from the reduced valence-electron density by interstitial inert gas atoms. Compared to He, the much greater attraction between the Ne/Ar atoms and the lower trigger condition of ‘self-trapping process’ for Ne/Ar clusters provide a reasonable explanation for the difference of irradiation effects on tungsten between He and Ne/Ar plasmas, i.e. Ne/Ar plasmas cannot result in the formation of holes/bubbles and fiber-form nanostructures on tungsten surface under the same irradiation conditions as He plasma.

  20. Ar-Ar and I-Xe Ages and the Thermal History of IAB Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi

    2005-01-01

    Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material, enriched in Si, Na, Al and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New Ar-39- Ar-40 ages for silicate from three different Caddo samples are consistent with a common age of 4.50-4.51 Gyr ago. Less well defined Ar-Ar degassing ages for inclusions from two other IABs, EET8333 and Udei Station, are approx.4.32 Gyr, whereas the age for Campo del Cielo varies considerably over approx.3.23-4.56 Gyr. New I-129-Xe-129 ages for Caddo County and EET8333 are 4557.9+/-0.1 Myr and 4557-4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar-Ar degassing ages for IABs and related winonaites, the range is approx.4.32-4.53 Gyr, but several IABs give similar Ar ages of 4.50-4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body, and the younger ages to represent later 40Ar diffusion loss. The older Ar-Ar ages for IABs are similar to Sm-Nd and Rb-Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar-Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al., 1994) are consistent if the time of the post-assembly metamorphism was as late as approx.4.53 Gyr ago. However, I-Xe ages reported for some IABs define much older ages of approx.4558-4566 Myr, which cannot easily be reconciled with the much younger Ar-Ar and Sm-Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I-Xe ages have very

  1. Experimental Constraints on He, Ne, and Ar Solubility in Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.

    2015-12-01

    Experiments have been performed to constrain the solubility of He, Ne, and Ar in natural samples of antigorite from three locations. Geochemical analyses of exhumed subduction zone material [1] and well gases [2] indicate that noble gases are recycled from the surface of the earth into the mantle. The mechanism by which uncharged atoms can be bound to a mineral and subsequently recycled remains unclear, but recent experimental work suggests that ring structures in silicate minerals are ideal sites for noble gases [3]. Serpentine contains such ring structures and is abundant in subducting slabs, providing significant potential for control of the recycling of noble gases. Experiments were performed in a cold seal pressure vessel at 350°C using a mix of equal parts He, Ne, and Ar as the pressure media (Brown University, USA). Pressures varied from 0.15 to 1.13 kbar total pressure and durations varied from 20 to 188 hours. Samples were analyzed by UV laser ablation, noble gas mass spectrometry (Open University, UK). He and Ne reached equilibrium during the experiments and both exhibit Henrian behavior. Data from the cleanest sample reduces the error by approximately an order of magnitude over previous work [3] and confirms that He is significantly more soluble (HCHe=6.05x10-10 mol/g/bar) than Ne (HCNe=5.12x10-12 mol/g/bar) in antigorite. Preliminary data from the cleanest sample suggests that Ar is more soluble than both He and Ne (HCAr=1.94x10-10 mol/g/bar). This provides a mechanism for fractionation of noble gases during recycling. 1. Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., Nature Geoscience, 4, 807-812, 2011 2. Holland, G., and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Jackson, C.R.M., Parman, S.W., Kelley, S.P., Cooper, R.F., GCA, 159, 1-15, 2015

  2. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar /CH4 and Ar /C2H2 mixtures

    NASA Astrophysics Data System (ADS)

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; von Keudell, A.

    2007-05-01

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar /CH4 and Ar /C2H2 mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250μm. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56MHz, and rms voltages around 200-250V and rms currents of 0.4-0.6A are obtained. Electron densities around 8×1020m-3 and gas temperatures lower than 400K have been measured using optical emission spectroscopy for main flows of 3slm and inner capillary flows of 160SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar /CH4 and Ar /C2H2 plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C2 bands. The ratio of these two species follows different trends with the amount of precursor for Ar /CH4 and Ar /C2H2 mixtures, showing the presence of distinct chemistries in each of them. In Ar /C2H2 plasmas, CHx species are produced mainly by electron impact dissociation of C2H2 molecules, and the CHx/C2Hx ratio is independent of the precursor amount. In Ar /CH4 mixtures, C2Hx species are formed mainly by recombination of CHx species through three-body reactions, so that the CHx/C2Hx ratio depends on the amount of CH4 present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  3. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures

    SciTech Connect

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; Keudell, A. von

    2007-05-15

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250 {mu}m. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56 MHz, and rms voltages around 200-250 V and rms currents of 0.4-0.6 A are obtained. Electron densities around 8x10{sup 20} m{sup -3} and gas temperatures lower than 400 K have been measured using optical emission spectroscopy for main flows of 3 slm and inner capillary flows of 160 SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C{sub 2} bands. The ratio of these two species follows different trends with the amount of precursor for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures, showing the presence of distinct chemistries in each of them. In Ar/C{sub 2}H{sub 2} plasmas, CH{sub x} species are produced mainly by electron impact dissociation of C{sub 2}H{sub 2} molecules, and the CH{sub x}/C{sub 2}H{sub x} ratio is independent of the precursor amount. In Ar/CH{sub 4} mixtures, C{sub 2}H{sub x} species are formed mainly by recombination of CH{sub x} species through three-body reactions, so that the CH{sub x}/C{sub 2}H{sub x} ratio depends on the amount of CH{sub 4} present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  4. 7 CFR 58.923 - Filling containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filling containers. 58.923 Section 58.923 Agriculture... Procedures § 58.923 Filling containers. (a) The filling of small containers with product shall be done in a sanitary manner. The containers shall not contaminate or detract from the quality of the product in any...

  5. Filling of carbon nanotubes and nanofibres

    PubMed Central

    Gately, Reece D

    2015-01-01

    Summary The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications. PMID:25821693

  6. [sup 40]Ar/[sup 39]Ar mineral ages from southwestern Penobscot Bay, Maine: Evidence for Silurian metamorphism

    SciTech Connect

    West, D.P. Jr.; Guidotti, C.V.; Lux, D.R. . Dept. of Geological Sciences)

    1992-01-01

    The nature and timing of metamorphic events in the Coastal Lithotectonic Block of Maine remain poorly understood. Immediately west and southwest of Penobscot Bay the rocks are polymetamorphic showing evidence for at least two episodes of amphibolite facies metamorphism and later, perhaps regionally extensive, retrograde events. Hornblende mineral separates from two amphibolites din the Port Clyde area have identical Ar-40/Ar-39 plateau ages of 414.0 [+-] 3.3 and 414.0 [+-] 3.9 Ma. These ages are interpreted to reflect the time of cooling following the last significant thermal event in this area. Biotite from an amphibolite in the Port Clyde area gives a total gas age of 346.5 [+-] 3.2 Ma. Hornblende from an amphibolite 7 km to the west near Friendship gives a nearly concordant release spectrum with a plateau age of 369.0 [+-] 3.7 Ma. Coexisting biotite from this amphibolite gives a total gas age of 289.2 [+-] 2.7 Ma. Muscovite from the Waldoboro pluton has a nearly concordant release spectrum with a plateau age of 306.3 [+-] 2.2 Ma. Biotite from this sample gives a total gas age of 288.9 [+-] 2.2 Ma. The 414.0 Ma hornblende cooling ages from the Port Clyde area reflect cooling following a significant high grade Silurian thermal event. This Silurian metamorphism is the same age as tectonothermal events in the Nashoba Terrane in eastern Massachusetts, the Kingston Complex in southern New Brunswick, the Aspy Terrane in Cape Breton island, Nova Scotia, and the Hermitage Flexure in southern Newfoundland.d Thus a distinctive Silurian tectonothermal province located along the western edge of the Avalon Zone appears to extend discontinuously from Massachusetts to Newfoundland.

  7. Characterization of inductively coupled Ar and Ar/CH4 plasma using tuned single Langmuir probe and fluid simulation

    NASA Astrophysics Data System (ADS)

    Cha, Ju-Hong; Han, Moon-Ki; Seo, Kwon-Sang; Kim, Dong-Hyun; Lee, Hae June; Lee, Ho-Jun

    2015-09-01

    An inductively coupled plasma source driven by 13.56 MHz was prepared for the deposition of a-C:H and hydro-fluorocarbon thin film. Properties of the plasma source are investigated by fluid simulation including Navier-Stokes equations and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe at first and second harmonic frequency were 49dB and 46dB respectively. Dependencies of plasma parameters on process parameters were well agreed with simulation results. It was found that gas flow field significantly affect spatial distribution of electron density and temperature even in inert gas feeding case. Higher electron density and lower temperature was observed near the gas inlet area. Ar/CH4 plasma simulation results shown that hydrocarbon radical densities have their lowest value at the vicinity of gas feeding line due to high flow velocity. For input power density of 0.07 W/cm3 , CH radical density follows electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density. The result suggest that optimization of discharge power is important for controlling deposition film quality in high density plasma sources.

  8. Ar-40/Ar-39 Ages of Maskelynite Grains from ALHA 77005

    NASA Technical Reports Server (NTRS)

    Turrin, B.; Park, J.; Herzog, G. F.; Lindsay, F. N.; Delaney, J. S.; Nyquist, L. E.; Swisher, C., III

    2013-01-01

    We present Ar-40/Ar-39 measurements for twelve small (20-60 micro-g) maskelynite samples from the heavily shocked martian meteorite ALHA 77005. The reported modal composition for ALHA 77005 is 50-60% olivine (Fa28), 30-40% pyroxene (Wo5Fs23En72), approx.8% maskelynite (An53), and approx.2% opaques by volume [1]). The meteorite is usually classified as a lherzolite. Previous Studies - Ar-40/Ar-39 results from previous work display disturbed release spectra [2,3]. In study [2], Ar-40/Ar-39 measurements on a 52-mg whole-rock sample produced an extremely disturbed release spec-trum, with all calculated apparent ages > 1 Ga, (Fig. 1). In a subsequent study [3], a light and a dark phase were analyzed. A 2.3-mg sample of the light, relatively low-K phase produced a disturbed release spectrum. For the first 20% of the Ar-39(sub K), most of the apparent ages exceeded >1 Ga; the remaining 80% yielded ages between 0.3-0.5 Ga. The integrated age for this phase is 0.9 Ga.

  9. Ar-Ar Impact Heating Ages of Eucrites and Timing of the LHB

    NASA Technical Reports Server (NTRS)

    Bogard, Donald; Garrison, Daniel

    2009-01-01

    Eucrites and howardites, more than most meteorite types, show extensive impact resetting of their Ar-39-Ar-40 (K-Ar) ages approximately equal to 3.4-4.1 Ga ago, and many specimens show some disturbance of other radiometry chronometers as well. Bogard (1995) argued that this age resetting occurred on Vesta and was produced by the same general population of objects that produced many of the lunar impact basins. The exact nature of the lunar late heavy bombardment (LHB or 'cataclysm') remains controversial, but the timing is similar to the reset ages of eucrites. Neither the beginning nor ending time of the lunar LHB is well constrained. Comparison of Ar-Ar ages of brecciated eucrites with data for the lunar LHB can resolve both the origin of these impactors and the time period over which they were delivered to the inner solar system. This abstract reports some new Ar-Ar age data for eucrites, obtained since the authors' 1995 and 2003 papers.

  10. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer.

    PubMed

    Foley, Christopher; Mitsiades, Nicholas

    2016-04-01

    Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.

  11. Transport of electrons in Ar/H2 mixtures

    NASA Astrophysics Data System (ADS)

    Nikitović, Ž.; Stojanović, V.; Petrović, Z. Lj.

    2012-08-01

    In this work we present transport coefficients for electrons in Ar/H2 mixtures for the conditions used in plasma-assisted technologies for semiconductor production, i.e., in moderate and very high E/N. We used a two-term numerical solution of the Boltzmann equation at the lowest E/N (E is the electric field; N is the gas density) and correspondingly at the lowest mean energies. We also use the Monte Carlo simulation technique at moderate and high E/N. We show that a good agreement with experimental data exists for low and moderate E/N and that based on the tests for pure H2 and Ar we can model properly the swarm properties at high E/N. For the conditions of very high electric fields runaway peaks develop in the electron energy distribution function and appreciable contribution of backscattered high-energy electrons produces additional emission of Hα emission close to the anode (made of stainless steel). Results are obtained for abundances of H2 from 1% to 30%, which are necessary in kinetic models for this mixture in a number of applications.

  12. Measurements of Fe and Ar fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Lau, K. H.; Mewaldt, R. A.; Stone, E. C.

    1985-01-01

    Measurements are reported of the yields of individual isotopes of Cr to Co(Z = 24 to 27) resulting from the fragmentation of Fe-56, and the isotopes of Mg to K(Z = 12 to 19) resulting from the fragmentation of Ar-40. Recent advances in the resolution and collecting power of cosmic ray instrumentation, have led to dramatic improvements in the precision of cosmic ray composition measurements, both elemental and isotopic. The interpretation of these measurements is presently limited by uncertainties in the fragmentation cross-sections needed to correct for nuclear interactions with the interstellar gas. Cosmic ray propagation codes now rely mainly on semi-empirical cross-section formulae developed by Silberberg and Tsao (S&T), which have a typical uncertainty of approximately 25%. Relative isotope yields from the fragmentation of approximately 380 MeV/nucleon Fe-56 e and approximately 210 MeV/nucleon Ar-40 r in CH2 targets, observed during the calibration of two cosmic ray spectrometers at the Lawrence Berkeley Laboratory Bevalac are reported. These are compared with calculated yeilds based on the S&T cross-section formulae.

  13. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  14. Whole-Rock 40Ar/39Ar Step-heating Analyses, Problems and Potential

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Harrison, M.; Heizler, M. T.; Lovera, O. M.; Warren, P. H.

    2015-12-01

    Whole-rock 40Ar/39Ar step-heating analyses of extra-terrestrial materials are used to constrain the impact history of the inner solar system, the formation age of the Moon, and timing of paleomagnetic fields. Despite the importance of knowing the timing of these important events, the samples we have in hand are usually disturbed through mixing, (multiple?) impact events, and perhaps recoil loss. Extra-terrestrial 40Ar/39Ar data are typically interpreted through the assignment of essentially arbitrary plateau ages rather than through a robust physical model. Although the use of models capable of quantitatively assessing diffusive 40Ar* loss in extra-terrestrial samples has been around for nearly 50 years, this early advance has been widely ignored. Here we present implications of applying a robust, multi-activation energy, multi-diffusion domain model to step-heated 40Ar/39Ar data, with temperature cycling. Our findings show that for even a single heating event, "plateau" ages are unlikely to record meaningful ages. Further, if the sample has experienced multiple heating events or contains inherited clasts, recovering a unique solution may be impossible. Indeed the most readily interpretable portion of the age spectrum is the early heating steps which represents a maximum age estimate of the last re-heating event. Our results challenge the chronologic validity of 40Ar/39Ar "plateau" ages and by extension the hypotheses that are based on this data (e.g., the Late Heavy Bombardment). Future work will require new analytical procedures, interpretative frameworks, and (potentially) the combination of multiple chronometers to derive a robust impact history for the early solar system.

  15. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Dalrymple, G.B.; Obradovich, J.D.

    1998-01-01

    A set of 34 laser total-fusion 40Ar/39Ar analyses of sanidine from a melt layer in crater-fill deposits of the Manson impact structure in Iowa has a weighted-mean age of 74.1 ?? 0.1 Ma. This age is about 9.0 m.y. older than 40Ar/39Ar ages of shocked microcline from the Manson impact structure reported previously by others. The 74.1 Ma age of the sanidine, which is a melt product of Precambrian microcline clasts, indicates that the Manson impact structure played no part in the Cretaceous-Tertiary (K-T) mass extinction at 64.5 Ma. Moreover, incremental-heating 40Ar/39Ar ages of the sanidine show that it is essentially free of excess 40Ar and has not been influenced by postcrystallization heating or alteration. An age spectrum of the matrix of the melt layer shows effects of 39Ar recoil, including older ages in the low-temperature increments and younger ages in the high-temperature increments. At 17 places in eastern South Dakota and Nebraska, shocked quartz and feldspar grains are concentrated in the lower part of the Crow Creek Member of the Pierre Shale (Upper Cretaceous). The grains are largest (3.2 mm) in southeastern South Dakota and decrease in size (0.45 mm) to the northwest, consistent with the idea that the Manson impact structure was their source. The ubiquitous presence of shocked grains concentrated in a thin calcarenite at the base of the Crow Creek Member suggests it is an event bed recording an instant of geologic time. Ammonites below and above the Crow Creek Member limit its age to the zone of Didymoceras nebrascense of earliest late Campanian age. Plagioclase from a bentonite bed in this zone in Colorado has a 40Ar/39Ar age of 74.1 ?? 0.1 Ma commensurate with our sanidine age of 74.1 Ma for the Manson impact structure. 40Ar/39Ar ages of bentonite beds below and above the Crow Creek are consistent with our 74.1 ?? 0.1 Ma age for the Manson impact structure and limit its age to the interval ?? 74.5 0.1 to 73.8 ?? 0.1 Ma. Recently, two origins for the

  16. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  17. On the 40Ar/39Ar Dating of Low-Potassium Ocean Crust Basalt from IODP Expedition 349, South China Sea

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.

    2014-12-01

    Accurate age dates for the basement rocks in the South China Sea (SCS) basins were lacking before the execution of International Ocean Discovery Program (IODP) Expedition 349 in early 2014. This left a large margin of error in estimated opening ages for the SCS and rendered various hypotheses regarding its opening mechanism and history untested, hampering our understanding of East Asian tectonic and paleoenvironmental evolution. Therefore, high-precision 40Ar/39Ar age dating lies at the heart of Expedition 349, which in particular aimed to determine the timing of the start and cessation of seafloor spreading in the SCS. In addition, the recovery of a complete seamount apron section at Site U1431 allows 40Ar/39Ar dating of abundantly present plagioclase and biotite crystals to help establish a detailed chronology of the sedimentary and volcaniclastic sequences cored. Here we present the first 40Ar/39Ar incremental heating ages on the low-potassium (~0.1-0.2 wt% K2O) and the least altered (loss on ignition < 1.5%) mid-ocean ridge basalt (MORB) from the SCS. Plagioclase and groundmass samples were prepared using conventional mineral separation techniques, acid-leaching and hand-picking. Analyses were carried out using a new ARGUS-VI multi-collector noble gas mass spectrometer. Ages are expected to have precisions ranging between 0.1-0.3 Ma (2σ), which will allow us to precisely and accurately date the final emplacement of basalts at Sites U1431, U1433 and U1434 in the SCS basin, just prior to the cessation of spreading as all sites were slightly offset from the relict spreading center.

  18. Experiences from the ARS croplands CEAP program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multi-agency Conservation Effects Assessment Project (CEAP) within USDA produced a number of lessons that should be applicable to the use of landscape approaches to place bioenergy crops. Results from the ARS Croplands Watersheds CEAP, the NRCS CEAP, and the NIFA CEAP Watershed Assessment Studie...

  19. "Ars Dictaminis" and Modern Rhetorical Practice.

    ERIC Educational Resources Information Center

    Sewell, Ernestine P.

    Although not all the problems of writing are solved by practice in letter writing, a review of the classical texts on "ars dictaminis"--letter writing--creates a strong argument for its increased use as an exercise in college composition classrooms. By incorporating the lessons of dictamen as a device for achieving rhetorical modes--narration,…

  20. 75 FR 7637 - Arkansas Disaster #AR-00040

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00040 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arkansas dated...

  1. 76 FR 27140 - Arkansas Disaster # AR-00049

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00049 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  2. 75 FR 7636 - Arkansas Disaster #AR-00042

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00042 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  3. 76 FR 42154 - Arkansas Disaster #AR-00050

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00050 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Arkansas...

  4. 78 FR 39821 - Arkansas Disaster #AR-00064

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00064 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  5. 76 FR 42155 - Arkansas Disaster #AR-00051

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00051 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  6. 75 FR 30872 - Arkansas Disaster # AR-00043

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00043 AGENCY: U.S. Small Business Administration. ACTION: Notice SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arkansas dated...

  7. 78 FR 56979 - Arkansas Disaster # AR-00065

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00065 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  8. 76 FR 27139 - Arkansas Disaster #AR-00048

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00048 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Arkansas...

  9. 78 FR 9448 - Arkansas Disaster #AR-00061

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arkansas Disaster AR-00061 AGENCY: U.S. Small Business Administration. ACTION: Notice SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  10. New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/ 39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Kendrick, M. A.; Phillips, D.

    2009-10-01

    The release of irradiation-produced noble gas isotopes ( 38Ar Cl, 80Kr Br, 128Xe I and 39Ar K) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released ˜98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only ˜4% of the lattice-hosted 38Ar Cl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released ˜88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite. Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5-0.6 × 10 -3 and I/Cl values of 0.3-2 × 10 -6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5-2.4 × 10 -3, and I/Cl values of 11-24 × 10 -6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to ˜54 × 10 -3 and I/Cl of 284 × 10 -6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite. Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by ˜200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub

  11. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Belmahfoud, Nizar; Boichard, Jean-Luc; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Mière, Arnaud; Ramage, Karim; Vermeulen, Anne; Boulanger, Damien

    2015-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters , intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services, such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between ICARE, IPSL and OMP data centers and has been set up in the framework of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. ChArMEx data, either produced or used by the project, are documented and accessible through the database website: http://mistrals.sedoo.fr/ChArMEx. The website offers the usual but user-friendly functionalities: data catalog, user registration procedure, search tool to select and access data... The metadata (data description) are standardized, and comply with international standards (ISO 19115-19139; INSPIRE European Directive; Global Change Master Directory Thesaurus). A Digital Object Identifier (DOI) assignement procedure allows to automatically register the datasets, in order to make them easier to access, cite, reuse and verify. At present, the ChArMEx database contains about 120 datasets, including more than 80 in situ datasets (2012, 2013 and 2014 summer campaigns, background monitoring station of Ersa...), 25 model output sets (dust model intercomparison, MEDCORDEX scenarios...), a high resolution emission inventory over the Mediterranean... Many in situ datasets

  12. Timing and processes for exhumation of HP/LT rocks of the southern Brooks Range (AK): Insight from combined geochemistry and 40Ar/39Ar thermochronology of white mica

    NASA Astrophysics Data System (ADS)

    O'Brien, T.; Miller, E. L.; Grove, M. J.; Hayden, L. A.

    2015-12-01

    The obduction of an island arc onto the Arctic Alaska continental margin in the Jura-Cretaceous led to southward subduction of continental crust and high-pressure/low-temperature (HP/LT) epidote-blueschist facies metamorphism in the southern Brooks Range (BR). A regionally developed greenschist facies normal-sense shear zone system along the southern margin of the BR suggests that extensional faulting had an influential role in the exhumation of the metamorphic core. To better constrain the exhumation history of the metamorphic core of the BR, samples were collected from a N-S transect through the metamorphic core of the orogen. Electron microprobe (EMP) analyses of white micas reveal that they are composed of phengite (Si > 3.0 pfu) or a combination of phengite + paragonite. Si-content of phengites reveal a southward increase in Si from 3.1 to 3.4 pfu (corresponding to an increase in pressure). Si-contents in higher-P phengites are scattered, reflecting subsequent muscovite growth. The Si trend is matched by a southward increase in the 40Ar/39Ar total gas ages of white micas. Phengite from the north are characterized by younger ages (~115 Ma) and flatter 40Ar/39Ar spectra. Farther south, phengites and paragonites yield older 40Ar/39Ar ages. These samples yield convex, staircase 40Ar/39Ar spectra that initiate ~115-120 Ma and flatten-out ~130-138 Ma. Modeling using MacArgon proposes that an initial cooling of HP/LT metamorphism occurred ~130-138 Ma, recorded in the high-Si phengites and paragonites. Following initial cooling, modeling suggests HP/LT rocks stalled in the greenschist facies field before subsequent exhumation, resulting in the staircase 40Ar/39Ar spectra. Flatter 40Ar/39Ar spectra recorded by the northern samples and modeling of 40Ar/39Ar results from the southern samples suggest that these rocks from metamorphic core of the BR were exhumed to temperatures < 300°C by ~115 Ma.

  13. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    DOE PAGES

    Xi, Lili; Qiu, Yuting; Zhang, Wenqing; Chen, Lidong; Singh, David J.; Yang, Jihui

    2015-05-14

    Here, we report the design of novel filled CoSb3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  14. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    SciTech Connect

    Xi, Lili; Qiu, Yuting; Zhang, Wenqing; Chen, Lidong; Singh, David J.; Yang, Jihui

    2015-05-14

    Here, we report the design of novel filled CoSb3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  15. Growth of mica porphyroblasts under low-grade metamorphism - A Taiwanese case using in-situ40Ar/39Ar laser microprobe dating

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Lu, Chia-Yu

    2016-11-01

    Mica porphyroblasts, a common metamorphic microstructure, are analyzed in the slate belt of northern Taiwan where large fish-like growths are found within a meta-pyroclastics. With constraints on the time-temperature history from deposition through peak metamorphic state to exhumation, in-situ40Ar/39Ar laser microprobe dating was carried out on muscovite and corrensite fibers of mm-scale mica porphyroblasts grown on a pressure-solution seam. Because the peak metamorphic temperature and the porphyroblast formation condition (∼250 °C) remained far below the closure temperature of the K-Ar radioisotope system in muscovite, and the absence of muscovite in the mafic protolith, the dating results likely document the growth of the mica porphyroblast fabrics. The syn-kinematic nature of the analyzed porphyroblasts is confirmed by the ∼6 to ∼2.5 Ma growth ages, suggesting that the host rock was continuously deformed during the earlier two-thirds of the Taiwan Orogeny. The pattern of fiber growth, in contrast to outward-decreasing ages normally observed in peripheral recrystallization, appears random and resembles void fills in boudin openings. We postulate that syntaxial crack-seal following tensile micro-boudinage, along with slips on sub-grain boundaries, as a viable mechanism for the development of mica porphyroblasts and fish especially in lower-grade metamorphic rocks.

  16. Electronic properties of Ar and Xe under pressure

    SciTech Connect

    LeSar, R.

    1983-01-01

    A simple model for calculating ground- and excited-state properties of molecular and rare-gas crystals is presented. The electrons are considered to be tightly bound to their molecular or atomic sites and the effects of the crystal potential, calculated with local-density functionals, are treated as a perturbation of the molecules or atoms. Results for Ar to 500 kbar show that the ground-state atoms compress as the pressure is increased and that there is a gradual increase in exciton energies. Preliminary results on ground-state Xe to 1.5 Mbar show that, to about 1 Mbar, the electronic distributions of the Xe atoms compress, but beyond that there is a slight expansion.

  17. Calculation of pressure-broadened linewidths for CO in Ar

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Calculations of the pressure-broadening cross sections of CO in Ar have been made within the infinite-order sudden (IOS) and coupled states (CS) quantum scattering approximations. Two intermolecular potentials were used, a pairwise additive atom-atom potential which has been employed previously in semiclassical (modified Anderson theory) studies of this system and one calculated ab initio within an electron gas formalism. Predictions from the two potentials generally agree within about 25 percent and bracket experimental values (except for some recent high temperature data obtained in shock tube experiments). The CS approximation appears to be quite accurate although computationally expensive. The much cheaper IOS approximation is accurate for the J = 0-1 line but does not properly predict the dependence on line number. The quantum results are also compared with earlier semiclassical values.

  18. 40Ar/39Ar and U/Pb chronology of the Green Lake Pluton (Eastern Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Nomade, S.; Mundil, R.; Renne, P. R.; Onezime, J.; Paterson, S. R.

    2003-12-01

    The aim of this study is to understand the cooling (and emplacement) history of the Cretaceous Tuolumne Intrusive Suite (TIS, eastern Sierra Nevada, California) by studying its thermal effects on adjacent plutonic bodies such as the Green Lake pluton (GLP), which is a small granodioritic intrusion 5 km to the east of the TIS (ca. 5 km in diameter). Nine samples were collected from the center of the GLP towards the TIS. U/Pb zircon single-crystal analyses display an upper intercept age of 168 +/- 5 Ma (uncertainties are given at the 2σ level). 40Ar/39Ar analyses were performed on two different biotite and hornblende grain size fractions (800-900 μ m and 150-180 μ m) from each sample. Step heating experiments on large biotite and hornblende as well as total fusion analyses on 20 (biotite) to 25 (hornblende) single grains yield the following ages (relative to FCs at 28.02 Ma): (1) Biotite plateau ages (100 to 95% 39Ar) display a trend between 118.2 +/- 0.8 Ma in the center of the GLP to 83.9 +/- 1.5 Ma closest to the TIS. (2) Total fusion analyses of the 150 to 180 μ m biotite fractions yield younger ages ranging from 89 to 82 Ma. We interpret these ages as the result of partial and/or total resetting of the K/Ar system at the time of TIS emplacement at around 90 Ma (Coleman et al, 2002). (3) Age spectra from large hornblende crystals are highly discordant due to "younger" (i.e. degassed) biotite inclusions. Hornblende (150 to 180 μ m) total fusion experiments display a wide range of ages (92 to 172 Ma) with most of the ages ranging from 164 to 170 Ma (Ca/K of 15, weighted mean age of 166.2 +/- 1.6 Ma). This age is in agreement with the above reported U/Pb age and interpreted to be the "true cooling age" of hornblende devoid of biotite inclusions and unaffected by the TIS intrusion. The results demonstrate the possibility for erroneous conclusions if techniques are used which fail to reveal these spatial complexities and partial resetting of the K/Ar system. The

  19. Electron diffraction data on nucleation and growth of an hcp phase in homogeneous (Ar) and heterogeneous (Ar-Kr) clusters

    NASA Astrophysics Data System (ADS)

    Danylchenko, O. G.; Kovalenko, S. I.; Konotop, O. P.; Samovarov, V. N.

    2014-12-01

    The nucleation and growth of the hcp phase in homogeneous (Ar) and heterogeneous (Ar-Kr) clusters formed in adiabatically expanding supersonic jets of the inert gases are studied by electron diffraction. The average size of the clusters ranges from 2 × 103 to 1 × 105 atoms/cluster. A threshold size of the clusters is found at which an hcp phase forms along with the fcc structure. The relative amount of the hcp phase in the single crystal clusters increases with their size. The relative volume of the hcp phase in the heterogeneous clusters exceeds that in homogeneous clusters of the same size. A correlation is established between the relative volume of the hcp phase in the clusters and the number of "defect" planes contained in the fcc matrix from which hcp phase nucleates. It is found that in very large (δ ≥ 150 Å) polycrystalline aggregations the fraction of the hcp phase reaches a maximum and does not increase as the clusters become larger. A mechanism is proposed for the nucleation and growth of the hcp phase in inert gas clusters.

  20. Fluid/Gas Process Controller

    NASA Technical Reports Server (NTRS)

    Ramos, Sergio

    1989-01-01

    Fluid/gas controller, or "Super Burper", developed to obtain precise fill quantities of working fluid and noncondensable gas in heat pipe by incorporating detachable external reservoir into system during processing stage. Heat pipe filled with precise quantities of working fluid and noncondensable gas, and procedure controlled accurately. Application of device best suited for high-quality, high performance heat pipes. Device successfully implemented with various types of heat pipes, including vapor chambers, thermal diodes, large space radiators, and sideflows.