Science.gov

Sample records for arabidopsis cyp51a2 mutant

  1. Radiation-sensitive mutants of Arabidopsis thaliana

    SciTech Connect

    Jenkins, M.E.; Harlow, G.R.; Liu, Z.

    1995-06-01

    Five Arabidopsis mutants have been isolated on the basis of hypersensitivity of leaf tissue to UV light. For each mutant, the UV-hypersensitive phenotype (uvh) was inherited as a single recessive Mendelian trait. In addition, each uvh mutant represented a separate complementation group. Three of the mutations producing the UV hypersensitive phenotype have been mapped relative to either genetic markers or physical microsatellite polymorphisms. Locus UVH1 is linked to nga76 on chromosome 5, UVH3 to GL1 on chromosome three, and UVH6 to nga59 on chromosome 1. Each uvh mutant has a characteristic pattern of sensitivity based on UV sensitivity of leaf tissue, UV sensitivity of root tissue, and ionizing radiation sensitivity of seeds. On the basis of these patterns, possible molecular defects in these mutants are discussed. 30 refs., 3 figs., 5 tabs.

  2. Arabidopsis MET1 cytosine methyltransferase mutants.

    PubMed Central

    Kankel, Mark W; Ramsey, Douglas E; Stokes, Trevor L; Flowers, Susan K; Haag, Jeremy R; Jeddeloh, Jeffrey A; Riddle, Nicole C; Verbsky, Michelle L; Richards, Eric J

    2003-01-01

    We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis. PMID:12663548

  3. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  4. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  5. Imaging lipid droplets in Arabidopsis mutants

    USDA-ARS?s Scientific Manuscript database

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  6. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    DOE PAGES

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes ofmore » mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less

  7. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    SciTech Connect

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; Kim, Ryeo Jin; Yang, Weili; Shorrosh, Basil; Suh, Mi Chung; Ohlrogge, John

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.

  8. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana

    PubMed Central

    Buer, Charles S.; Djordjevic, Michael A.

    2009-01-01

    Flavonoids are low molecular weight secondary plant metabolites with a myriad of functions. As flavonoids affect auxin transport (an important growth-controlling hormone) and are biologically active in eukaryotes, flavonoid mutants were expected to have undescribed architectural phenotypes. The Arabidopsis thaliana transparent testa (tt) mutants are compromised in the enzymatic steps or transcriptional regulators affecting flavonoid synthesis. tt mutant seedlings were grown on hard-slanted agar (a stress condition), under varying light conditions, and in soil to examine the resulting growth patterns. These tt mutants revealed a wide variety of architectural phenotypes in root and aerial tissues. Mutants with increased inflorescences, siliques, and lateral root density or reduced stature are traits that could affect plant yield or performance under certain environmental conditions. The regulatory genes affected in architectural traits may provide useful molecular targets for examination in other plants. PMID:19129166

  9. Floral glycerolipid profiles in homeotic mutants of Arabidopsis thaliana.

    PubMed

    Nakamura, Yuki; Liu, Yu-Chi; Lin, Ying-Chen

    2014-08-08

    Flowers have distinct glycerolipid composition, yet its floral organ-specific profile remains elusive in Arabidopsis whose flowers are too tiny to dissect different floral organs. Here, we employed known floral homeotic mutants agamous-1 (ag-1) and apetala3-3 (ap3-3) to facilitate sample preparation enriched in different floral organs. The result of analysis on different polar glycerolipid classes and their fatty acid composition demonstrated that flowers of ap3-3 and ag-1 have distinct glycerolipid composition from that of wild type. Moreover, distinct set of glycerolipid biosynthetic genes is expressed in these mutants by qRT-PCR gene expression analysis. These data suggest that glycerolipid profile is distinct among different floral organs of Arabidopsis thaliana. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Mutants of Arabidopsis as tools for physiology and molecular biology

    SciTech Connect

    Somerville, C.R.; Artus, N.; Browse, J.; Caspar, T.; Estelle, M.; Haughn, G.; Kunst, L.; Martinez, J.; McCourt, P.; Moffatt, B.

    1986-04-01

    The authors discuss the importance of developing a facile system for genetic analysis in higher plants which can be used to approach problems specific to plant biology in much the same way that molecular genetic approaches have been used in other classes of organisms such as yeast and Drosophila. Toward this end, they have developed methods for the isolation and analysis of mutants of Arabidopsis with specific alterations in photosynthesis, photorespiration, starch metabolism, lipid metabolism, purine metabolism, amino acid metabolism and phytohormone responses. The utility of this collection of mutants for studying problems in physiology and biochemistry is illustrated with selected examples.

  11. Mutants of Arabidopsis with altered regulation of starch degradation

    SciTech Connect

    Caspar, T.; Lin, Tsanpiao; Kakefuda, G.; Benbow, L.; Preiss, J.; Somerville, C. )

    1991-04-01

    Mutants of Arabidopsis thaliana (L.) Heynh. with altered regulation of starch degradation were identified by screening for plants that retained high levels of leaf starch after a period of extended darkness. The mutant phenotype was also expressed in seeds, flowers, and roots, indicating that the same pathway of starch degradation is used in these tissues. In many respects, the physiological consequences of the mutations were equivalent to the effects observed in previously characterized mutants of Arabidopsis that are unable to synthesize starch. One mutant line, which was characterized in detail, had normal levels of activity of the starch degradative enzymes {alpha}-amylase, {beta}-amylase, phosphorylase, D-enzyme, and debranching enzyme. Thus, it was not possible to establish a biochemical basis for the phenotype, which was due to a recessive mutant at a locus designated sex 1 at position 12.2 on chromosome 1. This raises the possibility that hitherto unidentified factors, altered by the mutation, play a key role in regulating or catalyzing starch degradation.

  12. A metal-accumulator mutant of Arabidopsis thaliana.

    PubMed Central

    Delhaize, E

    1996-01-01

    A mutation designated man1 (for manganese accumulator) was found to cause Arabidopsis thaliana seedlings to accumulate a range of metals. The man1 mutation segregated as a single recessive locus located on chromosome 3. When grown on soil, mutant seedlings accumulated Mn (7.5 times greater than wild type), Cu (4.6 times greater than wild type), Zn (2.8 times greater than wild type), and Mg (1.8 times greater than wild type) in leaves. In addition to these metals, the man1 mutant accumulated 2.7-fold more S in leaves, primarily in the oxidized form, than wild-type seedlings. Analysis of seedlings grown by hydroponic culture showed a similar accumulation of metals in leaves of man1 mutants. Roots of man1 mutants also accumulated metals, but unlike leaves they accumulated 10-fold more total Fe (symplasmic and apoplasmic combined) than wild-type roots. Roots of man1 mutants possessed greater (from 1.8- to 20-fold) ferric-chelate reductase activity than wild-type seedings, and this activity was not responsive to changes of Mn nutrition in either genotype. Taken together, these results suggest that the man1 mutation disrupts the regulation of metal-ion uptake or homeostasis in Arabidopsis. PMID:8754685

  13. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  14. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  15. Extensive Phenotypic Variation in Early Flowering Mutants of Arabidopsis1

    PubMed Central

    Pouteau, Sylvie; Ferret, Valérie; Gaudin, Valérie; Lefebvre, Delphine; Sabar, Mohammed; Zhao, Gengchun; Prunus, Franck

    2004-01-01

    Flowering time, the major regulatory transition of plant sequential development, is modulated by multiple endogenous and environmental factors. By phenotypic profiling of 80 early flowering mutants of Arabidopsis, we examine how mutational reduction of floral repression is associated with changes in phenotypic plasticity and stability. Flowering time measurements in mutants reveal deviations from the linear relationship between the number of leaves and number of days to bolting described for natural accessions and late flowering mutants. The deviations correspond to relative early bolting and relative late bolting phenotypes. Only a minority of mutants presents no detectable phenotypic variation. Mutants are characterized by a broad release of morphological pleiotropy under short days, with leaf characters being most variable. They also exhibit changes in phenotypic plasticity across environments for florigenic-related responses, including the reaction to light and dark, photoperiodic behavior, and Suc sensitivity. Morphological pleiotropy and plasticity modifications are differentially distributed among mutants, resulting in a large diversity of multiple phenotypic changes. The pleiotropic effects observed may indicate that floral repression defects are linked to global developmental perturbations. This first, to our knowledge, extensive characterization of phenotypic variation in early flowering mutants correlates with the reports that most factors recruited in floral repression at the molecular genetic level correspond to ubiquitous regulators. We discuss the importance of functional ubiquity for floral repression with respect to robustness and flexibility of network biological systems. PMID:15122022

  16. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation

    PubMed Central

    Riegler, Heike; Geserick, Claudia; Zrenner, Rita

    2011-01-01

    A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum. PMID:21599668

  17. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    SciTech Connect

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  18. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    NASA Technical Reports Server (NTRS)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  19. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    NASA Technical Reports Server (NTRS)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  20. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Treesearch

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  1. Arabidopsis Mutant bik1 Exhibits Strong Resistance to Plasmodiophora brassicae

    PubMed Central

    Chen, Tao; Bi, Kai; He, Zhangchao; Gao, Zhixiao; Zhao, Ying; Fu, Yanping; Cheng, Jiasen; Xie, Jiatao; Jiang, Daohong

    2016-01-01

    Botrytis-induced kinase1 (BIK1), a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1, and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2, and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P. brassicae. Compared with that of the wild-type plants, the root hair and cortical infection rate of bik1 mutant were significantly reduced by about 40–50%. A considerable portion of bik1 roots failed to form typical galls. Even if some small galls were formed, they were filled with multinucleate secondary plasmodia. The bik1 plants accumulated less reactive oxygen species (ROS) at infected roots than other mutants and wild-type plants. Exogenous salicylic acid (SA) treatment alleviated the clubroot symptoms in wild-type plants, and the expression of the SA signaling marker gene PR1 was significantly increased in bik1. Both sid2 (salicylic acid induction-deficient 2) and npr1-1 [non-expresser of PR genes that regulate systemic acquired resistance (SAR)] mutants showed increased susceptibility to P. brassicae compared with wild-type plants. These results suggest that the resistance of bik1 to P. brassicae is possibly mediated by SA inducible mechanisms. PMID:27679580

  2. Characterization of dwarf GA mutants of arabidopsis thaliana

    SciTech Connect

    Talon, M.; Zeevaart, J.A.D. ); Koornneef, M. )

    1990-05-01

    The presence of three separate gibberellin (GA) pathways in wild-type Arabidopsis was established by analysis of the endogenous GAs by GC-MS: (1) The 13-hydroxylation pathway (GA{sub 51}, GA{sub 44}, GA{sub 19}, GA{sub 17}, GA{sub 20}, GA{sub 1}, GA{sub 29}, and GA{sub 8}); (2) the 3{sup {beta}}, 13- pathway (GA{sub 12}, GA{sub 15}, GA{sub 24}, GA{sub 25}, GA{sub 9}, and GA{sub 51}), and (3) the 3{beta}-hydroxylation pathway (GA{sub 37}, GA{sub 27}, GA{sub 36}, GA{sub 13}, GA{sub 4}, and GA{sub 34}). The GA-responsive mutants {und ga-1}, {und ga-2}, {und ga-3}, {und ga-4}, and {und ga-5}, as well as the GA-insensitive mutant {und gai} showed altered GA metabolism which resulted in accumulation, reduction, or lack of specific GAs. These data, together with results from feeding experiments with GAs and precursors, provide evidence for the steps in the pathways blocked in each mutant.

  3. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    PubMed Central

    Reisberg, Eva E.; Hildebrandt, Ulrich; Riederer, Markus; Hentschel, Ute

    2013-01-01

    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria. PMID:24223831

  4. The enl mutants enhance the lrx1 root hair mutant phenotype of Arabidopsis thaliana.

    PubMed

    Diet, Anouck; Brunner, Susanne; Ringli, Christoph

    2004-06-01

    The development of root hairs serves as an excellent model to study cell growth using both cytological and genetic approaches. In the past, we have characterized LRX1, an extracellular protein of Arabidopsis consisting of an LRR-domain and a structural extensin domain. LRX1 is specifically expressed in root hairs and lrx1 mutants show severe deficiencies in root hair development. In this work, we describe the characterization of enl (enhancer of lrx1) mutants that were isolated in a visual screen of an ethylmethanesulfonate -mutagenized lrx1 line for plants exhibiting an enhanced lrx1 phenotype. Four recessive enl mutants were analyzed, three of which define new genetic loci involved in root hair development. The mutations at the enl loci and lrx1 result in additive phenotypes in enl/lrx1 double mutants. One enl mutant is affected in the ACTIN2 gene and encodes a protein with a 22 amino acid deletion at the C-terminus. The comparison of molecular and phenotypic data of different actin2 alleles suggests that the truncated ACTIN2 protein is still partially functional.

  5. Root-Growth Behavior of the Arabidopsis Mutant rgr11

    PubMed Central

    Mullen, Jack L.; Turk, Ed; Johnson, Karin; Wolverton, Chris; Ishikawa, Hideo; Simmons, Carl; Söll, Deiter; Evans, Michael L.

    1998-01-01

    In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting. PMID:9847088

  6. Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana.

    PubMed

    Kawanabe, Takahiro; Fujimoto, Ryo

    2011-10-01

    Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    SciTech Connect

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  8. Characterization of grape Gibberellin Insensitive 1 mutant alleles in transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    We generated a dozen of different mutations in the grape Gibberellin Insensitive or GAI sequence, transformed them into Arabidopsis under the control of 35S, Arabidopsis or grape GAI promoter, and evaluated the impact of these mutant alleles on plant growth and development. These GAI sequence varian...

  9. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    PubMed

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  10. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  11. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  12. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    PubMed

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.

  13. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant.

    PubMed Central

    Regan, SM; Moffatt, BA

    1990-01-01

    Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development. PMID:12354970

  14. hydra Mutants of Arabidopsis Are Defective in Sterol Profiles and Auxin and Ethylene Signaling

    PubMed Central

    Souter, Martin; Topping, Jennifer; Pullen, Margaret; Friml, Jiri; Palme, Klaus; Hackett, Rachel; Grierson, Don; Lindsey, Keith

    2002-01-01

    The hydra mutants of Arabidopsis are characterized by a pleiotropic phenotype that shows defective embryonic and seedling cell patterning, morphogenesis, and root growth. We demonstrate that the HYDRA1 gene encodes a Δ8-Δ7 sterol isomerase, whereas HYDRA2 encodes a sterol C14 reductase, previously identified as the FACKEL gene product. Seedlings mutant for each gene are similarly defective in the concentrations of the three major Arabidopsis sterols. Promoter::reporter gene analysis showed misexpression of the auxin-regulated DR5 and ACS1 promoters and of the epidermal cell file–specific GL2 promoter in the mutants. The mutants exhibit enhanced responses to auxin. The phenotypes can be rescued partially by inhibition of auxin and ethylene signaling but not by exogenous sterols or brassinosteroids. We propose a model in which correct sterol profiles are required for regulated auxin and ethylene signaling through effects on membrane function. PMID:12034894

  15. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.

    PubMed Central

    Lorenzen, M; Racicot, V; Strack, D; Chapple, C

    1996-01-01

    Sinapoylmalate is one of the major phenylpropanoid metabolites that is accumulated in the vegetative tissue of Arabidopsis thaliana. A thin-layer chromatography-based mutant screen identified two allelic mutant lines that accumulated sinapoylglucose in their leaves in place of sinapoylmalate. Both mutations were found to be recessive and segregated as single Mendelian genes. These mutants define a new locus called SNG1 for sinapoylglucose accumulator. Plants that are homozygous for the sng1 mutation accumulate normal levels of malate in their leaves but lack detectable levels of the final enzyme in sinapate ester biosynthesis, sinapoylglucose:malate sinapoyltransferase. A study of wild-type and sng1 seedlings found that sinapic acid ester biosynthesis in Arabidopsis is developmentally regulated and that the accumulation of sinapate esters is delayed in sng1 mutant seedlings. PMID:8972602

  16. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    SciTech Connect

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  17. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis.

    PubMed

    Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J

    2017-04-01

    Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.

  18. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    USDA-ARS?s Scientific Manuscript database

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  19. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  20. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  1. Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6

    PubMed Central

    Takáč, Tomáš; Vadovič, Pavol; Pechan, Tibor; Luptovčiak, Ivan; Šamajová, Olga; Šamaj, Jozef

    2016-01-01

    Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants. PMID:27324189

  2. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    PubMed

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  3. Characterization of gravitropic inflorescence bending in brassinosteroid biosynthesis and signaling Arabidopsis mutants.

    PubMed

    Arteca, Richard N; Arteca, Jeannette M

    2011-07-15

    The interaction between the plant hormones, brassinosteroids and auxins has been documented in various processes using a variety of plants and plant parts. In this study, detached inflorescences from brassinosteroid biosynthesis and signaling Arabidopsis mutants were evaluated for their gravitropic bending in response to epibrassinolide (EBR) and indole-3-acetic acid (IAA). EBR supplied to the base of detached inflorescences stimulated gravitropic bending in all BR biosynthetic mutants but there was no effect on the BR signaling mutant or wild type plants. When IAA was supplied to the base of BR mutant inflorescences both natural and EBR-induced gravitropic bending was inhibited. Treatment with the auxin inhibitors also decreased both natural and EBR-induced gravitropic bending. No gravitropic bending was observed when the apical tips of BR mutant inflorescences were removed. IAA treatment to the tips of decapitated BR mutant inflorescences restored gravitropic bending to values observed in the inflorescences with an apical tip, however, EBR applied to the tip had no effect. When decapitated inflorescences from BR mutants were treated with IAA to the base and either gel, EBR or IAA was applied to the tip; there was no gravitropic bending. These results show that brassinosteroids have a role in the gravitropic bending response in Arabidopsis and mutants serve to uncover this hidden contributor.

  4. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  5. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    PubMed Central

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-01-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. PMID:7770517

  6. Purification of a. beta. -amylase that accumulates in Arabidopsis thaliana mutants defective in starch metabolism. [Arabidopsis thaliana

    SciTech Connect

    Monroe, J.D.; Preiss, J. )

    1990-11-01

    Amylase activity is elevated 5- to 10-fold in leaves of several different Arabidopsis thaliana mutants defective in starch metabolism when they are grown under a 12-hour photoperiod. Activity is also increased when plants are grown under higher light intensity. It was previously determined that the elevated activity was an extrachloroplastic {beta}-(exo)amylase. Due to the location of this enzyme outside the chloroplast, its function is not known. The enzyme was purified to homogeneity from leaves of both a starchless mutant deficient in plastid phosphoglucomutase and from the wild type using polyethylene glycol fractionation and cyclohexaamylose affinity chromatography. The molecular mass of the {beta}-amylase from both sources was 55,000 daltons as determined by denaturing gel electrophoresis. Gel filtration studies indicated that the enzyme was a monomer. The specific activities of the purified protein from mutant and wild-type sources, their substrate specificities, and K{sub m} for amylopectin were identical. Based on these results it was concluded that the mutant contained an increased level of {beta}-amylase protein. Enzyme neutralization studies using a polyclonal antiserum raised to purified {beta}-amylase showed that in each of two starchless mutants, one starch deficient mutant and one starch overproducing mutant, the elevated amylase activity was due to elevated {beta}-amylase protein.

  7. Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant.

    PubMed

    Phee, Bong-Kwan; Park, Sebyul; Cho, Jin-Hwan; Jeon, Jong-Seong; Bhoo, Seong Hee; Hahn, Tae-Ryong

    2007-04-30

    An Arabidopsis hy4 mutant that is specifically impaired in its ability to undergo blue light dependent photomorphogenesis was used to identify cryptochrome 1 signaling-related components. Proteomic analysis revealed about 205 differentially expressed protein spots in the blue light-irradiated hy4 mutant compared to the wild-type. The proteins corresponding to 28 up-regulated and 33 down-regulated spots were identified. Obvious morphological changes in the hy4 mutant were closely related to the expression of various transcription factors. Our findings suggest that blue light signals may be involved in many cellular processes including disease resistance and stress responses.

  8. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis.

    PubMed

    Castle, L A; Errampalli, D; Atherton, T L; Franzmann, L H; Yoon, E S; Meinke, D W

    1993-12-01

    Over 5000 transgenic families of Arabidopsis thaliana produced following seed transformation with Agrobacterium tumefaciens were screened for embryonic lethals, defectives, and pattern mutants. One hundred and seventy-eight mutants with a wide range of developmental abnormalities were identified. Forty-one mutants appear from genetic studies to be tagged (36% of the 115 mutants examined in detail). Mapping with visible markers demonstrated that mutant genes were randomly distributed throughout the genome. Seven mutant families appeared to contain chromosomal translocations because the mutant genes exhibited linkage to visible markers on two different chromosomes. Chromosomal rearrangements may therefore be widespread following seed transformation. DNA gel blot hybridizations with 34 tagged mutants and three T-DNA probes revealed a wide range of insertion patterns. Models of T-DNA structure at each mutant locus were constructed to facilitate gene isolation. The value of such models was demonstrated by using plasmid rescue to clone flanking plant DNA from four tagged mutants. Further analysis of genes isolated from these insertional mutants should help to elucidate the relationship between gene function and plant embryogenesis.

  9. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid

    PubMed Central

    Roy, Sujit; Das, Kali Pada

    2017-01-01

    Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis. PMID:28046013

  10. Mutants in Arabidopsis thaliana with altered shoot gravitropism

    SciTech Connect

    Bullen, B.L.; Poff, K.L.

    1987-04-01

    A procedure has been developed and used to screen 40,000 m-2 seedlings of Arabidopsis thaliana for strains with altered shoot gravitropism. Several strains have been identified for which shoot gravitropism is considerably more random than that of their wild-type parent (based on frequency distribution histograms of the gravitropic response to a 1 g stimulus). One such strain exhibits normal hypocotyl phototropism and normal root gravitropism. Thus, the gravitropism pathway in the shoot contains at least one mutable element which is not required for root gravitropism.

  11. Brassinosteroid-Insensitive Dwarf Mutants of Arabidopsis Accumulate Brassinosteroids1

    PubMed Central

    Noguchi, Takahiro; Fujioka, Shozo; Choe, Sunghwa; Takatsuto, Suguru; Yoshida, Shigeo; Yuan, Heng; Feldmann, Kenneth A.; Tax, Frans E.

    1999-01-01

    Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels. PMID:10557222

  12. RARGE II: an integrated phenotype database of Arabidopsis mutant traits using a controlled vocabulary.

    PubMed

    Akiyama, Kenji; Kurotani, Atsushi; Iida, Kei; Kuromori, Takashi; Shinozaki, Kazuo; Sakurai, Tetsuya

    2014-01-01

    Arabidopsis thaliana is one of the most popular experimental plants. However, only 40% of its genes have at least one experimental Gene Ontology (GO) annotation assigned. Systematic observation of mutant phenotypes is an important technique for elucidating gene functions. Indeed, several large-scale phenotypic analyses have been performed and have generated phenotypic data sets from many Arabidopsis mutant lines and overexpressing lines, which are freely available online. Since each Arabidopsis mutant line database uses individual phenotype expression, the differences in the structured term sets used by each database make it difficult to compare data sets and make it impossible to search across databases. Therefore, we obtained publicly available information for a total of 66,209 Arabidopsis mutant lines, including loss-of-function (RATM and TARAPPER) and gain-of-function (AtFOX and OsFOX) lines, and integrated the phenotype data by mapping the descriptions onto Plant Ontology (PO) and Phenotypic Quality Ontology (PATO) terms. This approach made it possible to manage the four different phenotype databases as one large data set. Here, we report a publicly accessible web-based database, the RIKEN Arabidopsis Genome Encyclopedia II (RARGE II; http://rarge-v2.psc.riken.jp/), in which all of the data described in this study are included. Using the database, we demonstrated consistency (in terms of protein function) with a previous study and identified the presumed function of an unknown gene. We provide examples of AT1G21600, which is a subunit in the plastid-encoded RNA polymerase complex, and AT5G56980, which is related to the jasmonic acid signaling pathway.

  13. Engineering vitamin E content: from Arabidopsis mutant to soy oil.

    PubMed

    Van Eenennaam, Alison L; Lincoln, Kim; Durrett, Timothy P; Valentin, Henry E; Shewmaker, Christine K; Thorne, Greg M; Jiang, Jian; Baszis, Susan R; Levering, Charlene K; Aasen, Eric D; Hao, Ming; Stein, Joshua C; Norris, Susan R; Last, Robert L

    2003-12-01

    We report the identification and biotechnological utility of a plant gene encoding the tocopherol (vitamin E) biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase. This gene was identified by map-based cloning of the Arabidopsis mutation vitamin E pathway gene3-1 (vte3-1), which causes increased accumulation of delta-tocopherol and decreased gamma-tocopherol in the seed. Enzyme assays of recombinant protein supported the hypothesis that At-VTE3 encodes a 2-methyl-6-phytylbenzoquinol methyltransferase. Seed-specific expression of At-VTE3 in transgenic soybean reduced seed delta-tocopherol from 20 to 2%. These results confirm that At-VTE3 protein catalyzes the methylation of 2-methyl-6-phytylbenzoquinol in planta and show the utility of this gene in altering soybean tocopherol composition. When At-VTE3 was coexpressed with At-VTE4 (gamma-tocopherol methyltransferase) in soybean, the seed accumulated to >95% alpha-tocopherol, a dramatic change from the normal 10%, resulting in a greater than eightfold increase of alpha-tocopherol and an up to fivefold increase in seed vitamin E activity. These findings demonstrate the utility of a gene identified in Arabidopsis to alter the tocopherol composition of commercial seed oils, a result with both nutritional and food quality implications.

  14. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  15. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  16. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability.

    PubMed

    Karthikeyan, Athikkattuvalasu S; Jain, Ajay; Nagarajan, Vinay K; Sinilal, Bhaskaran; Sahi, Shivendra V; Raghothama, Kashchandra G

    2014-04-01

    Phosphate (Pi) deficiency triggers local Pi sensing-mediated inhibition of primary root growth and development of root hairs in Arabidopsis (Arabidopsis thaliana). Generation of activation-tagged T-DNA insertion pools of Arabidopsis expressing the luciferase gene (LUC) under high-affinity Pi transporter (Pht1;4) promoter, is an efficient approach for inducing genetic variations that are amenable for visual screening of aberrations in Pi deficiency responses. Putative mutants showing altered LUC expression during Pi deficiency were identified and screened for impairment in local Pi deficiency-mediated inhibition of primary root growth. An isolated mutant was analyzed for growth response, effects of Pi deprivation on Pi content, primary root growth, root hair development, and relative expression levels of Pi starvation-responsive (PSR) genes, and those implicated in starch metabolism and Fe and Zn homeostasis. Pi deprived local phosphate sensing impaired (lpsi) mutant showed impaired primary root growth and attenuated root hair development. Although relative expression levels of PSR genes were comparable, there were significant increases in relative expression levels of IRT1, BAM3 and BAM5 in Pi deprived roots of lpsi compared to those of the wild-type. Better understanding of molecular responses of plants to Pi deficiency or excess will help to develop suitable remediation strategies for soils with excess Pi, which has become an environmental concern. Hence, lpsi mutant will serve as a valuable tool in identifying molecular mechanisms governing adaptation of plants to Pi deficiency.

  17. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    PubMed Central

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  18. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis.

    PubMed

    Weng, Hua; Molina, Isabel; Shockey, Jay; Browse, John

    2010-04-01

    As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cells. Long-chain acyl-CoA synthetases (LACS) catalyze the formation of long-chain acyl-CoAs and the Arabidopsis genome contains a family of nine genes shown to encode LACS enzymes. LACS2 is required for cutin biosynthesis, as revealed by previous investigations on lacs2 mutants. Here, we characterize lacs1 mutants of Arabidopsis that reveals a role for LACS1 in biosynthesis of cuticular wax components. lacs1 lacs2 double-mutant plants displayed pleiotropic phenotypes including organ fusion, abnormal flower development and reduced seed set; phenotypes not found in either of the parental mutants. The leaf cuticular permeability of lacs1 lacs2 was higher than that of either lacs1 or lacs2 single mutants, as determined by measurements of chlorophyll leaching from leaves immersed in 80% ethanol, staining with toluidine blue dye and direct measurements of water loss. Furthermore, lacs1 lacs2 mutant plants are highly susceptible to drought stress. Our results indicate that a deficiency in cuticular wax synthesis and a deficiency in cutin synthesis together have compounding effects on the functional integrity of the cuticular barrier, compromising the ability of the cuticle to restrict water movement, protect against drought stress and prevent organ fusion.

  19. Generation of Arabidopsis mutants by heterologous expression of a full length cDNA library from tomato fruits

    USDA-ARS?s Scientific Manuscript database

    Heterologous expression of cDNA libraries in Arabidopsis and other plants has been used for gene identifications. To identify functions of tomato genes, we expressed a tomato full-length cDNA library in Arabidopsis thaliana and generated over 7,000 mutants. We constructed a tomato cDNA library with ...

  20. A sequence-based map of Arabidopsis genes with mutant phenotypes.

    PubMed

    Meinke, David W; Meinke, Laura K; Showalter, Thomas C; Schissel, Anna M; Mueller, Lukas A; Tzafrir, Iris

    2003-02-01

    The classical genetic map of Arabidopsis contains 462 genes with mutant phenotypes. Chromosomal locations of these genes have been determined over the past 25 years based on recombination frequencies with visible and molecular markers. The most recent update of the classical map was published in a special genome issue of Science that dealt with Arabidopsis (D.W. Meinke, J.M. Cherry, C. Dean, S.D. Rounsley, M. Koornneef [1998] Science 282: 662-682). We present here a comprehensive list and sequence-based map of 620 cloned genes with mutant phenotypes. This map documents for the first time the exact locations of large numbers of Arabidopsis genes that give a phenotype when disrupted by mutation. Such a community-based physical map should have broad applications in Arabidopsis research and should serve as a replacement for the classical genetic map in the future. Assembling a comprehensive list of genes with a loss-of-function phenotype will also focus attention on essential genes that are not functionally redundant and ultimately contribute to the identification of the minimal gene set required to make a flowering plant.

  1. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Bullen, B. L.; Best, T. R.; Gregg, M. M.; Poff, K. L.; Barsel, S-E (Principal Investigator)

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.

  2. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L. ) Heynh

    SciTech Connect

    Bullen, B.L.; Best, T.R.; Gregg, M.M.; Barsel, S.E.; Poff, K.L. )

    1990-06-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.

  3. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme.

    PubMed

    Zeeman, S C; Northrop, F; Smith, A M; Rees, T

    1998-08-01

    The aim of this work was to identify enzymes that participate in the degradation of transitory starch in Arabidopsis. A mutant line was isolated by screening leaves at the end of the night for the presence of starch. The mutant had a higher starch content than the wild-type throughout the diurnal cycle. This accumulation was due to a reduction in starch breakdown, leading to an imbalance between the rates of synthesis and degradation. No reduction in the activity of endo-amylase (alpha-amylase), beta-amylase, starch phosphorylase, maltase, pullulanase or D-enzyme could be detected in crude extracts of leaves of the mutant. However, native PAGE in gels containing amylopectin revealed that a starch-hydrolysing activity, putatively identified as an endo-amylase and present in wild-type chloroplasts, was absent or appreciably reduced in the mutant. This is the first time that a specific enzyme required for starch degradation has been identified in leaves.

  4. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation.

    PubMed Central

    Azpiroz, R; Wu, Y; LoCascio, J C; Feldmann, K A

    1998-01-01

    Cell elongation is a developmental process that is regulated by light and phytohormones and is of critical importance for plant growth. Mutants defective in their response to light and various hormones are often dwarfs. The dwarfed phenotype results because of a failure in normal cell elongation. Little is known, however, about the basis of dwarfism as a common element in these diverse signaling pathways and the nature of the cellular functions responsible for cell elongation. Here, we describe an Arabidopsis mutant, dwarf4 (dwf4), whose phenotype can be rescued with exogenously supplied brassinolide. dwf4 mutants display features of light-regulatory mutants, but the dwarfed phenotype is entirely and specifically brassinosteroid dependent; no other hormone can rescue dwf4 to a wild-type phenotype. Therefore, an intact brassinosteroid system is an absolute requirement for cell elongation. PMID:9490745

  5. hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning.

    PubMed

    Pineau, Christophe; Freydier, Amandine; Ranocha, Philippe; Jauneau, Alain; Turner, Simon; Lemonnier, Gaëtan; Renou, Jean-Pierre; Tarkowski, Petr; Sandberg, Göran; Jouanin, Lise; Sundberg, Björn; Boudet, Alain-Michel; Goffner, Deborah; Pichon, Magalie

    2005-10-01

    By screening a T-DNA population of Arabidopsis mutants for alterations in inflorescence stem vasculature, we have isolated a mutant with a dramatic increase in vascular tissue development, characterized by a continuous ring of xylem/phloem. This phenotype is the consequence of premature and numerous cambial cell divisions in both the fascicular and interfascicular regions that result in the loss of the alternate vascular bundle/fiber organization typically observed in Arabidopsis stems. The mutant was therefore designated high cambial activity (hca). The hca mutation also resulted in pleiotropic effects including stunting and a delay in developmental events such as flowering and senescence. The physiological characterization of hca seedlings in vitro revealed an altered auxin and cytokinin response and, most strikingly, an enhanced sensitivity to cytokinin. These results were substantiated by comparative microarray analysis between hca and wild-type plants. The genetic analysis of hca indicated that the mutant phenotype was not tagged by the T-DNA and that the hca mutation segregated as a single recessive locus, mapping to the long arm of chromosome 4. We propose that hca is involved in mechanisms controlling the arrangement of vascular bundles throughout the plant by regulating the auxin-cytokinin sensitivity of vascular cambial cells. Thus, the hca mutant is a useful model for examining the genetic and hormonal control of cambial growth and differentiation.

  6. On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant

    PubMed Central

    Dall'Osto, Luca; Cazzaniga, Stefano; Wada, Masamitsu; Bassi, Roberto

    2014-01-01

    Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis. Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis. We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions. PMID:24591708

  7. On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant.

    PubMed

    Dall'Osto, Luca; Cazzaniga, Stefano; Wada, Masamitsu; Bassi, Roberto

    2014-04-19

    Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis. Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis. We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions.

  8. Identification of Mutants of Arabidopsis Defective in Acclimation of Photosynthesis to the Light Environment1

    PubMed Central

    Walters, Robin G.; Shephard, Freya; Rogers, Jennifer J.M.; Rolfe, Stephen A.; Horton, Peter

    2003-01-01

    In common with many other higher plant species, Arabidopsis undergoes photosynthetic acclimation, altering the composition of the photosynthetic apparatus in response to fluctuations in its growth environment. The changes in photosynthetic function that result from acclimation can be detected in a noninvasive manner by monitoring chlorophyll (Chl) fluorescence. This technique has been used to develop a screen that enables the rapid identification of plants defective at ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT (APE) loci. The application of this screen to a population of T-DNA-transformed Arabidopsis has successfully led to the identification of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis and pigment composition in leaves from three such mutants showed that they had altered acclimation responses to the growth light environment, each having a distinct acclimation-defective phenotype, demonstrating that screening for mutants using Chl fluorescence is a viable strategy for the investigation of acclimation. Sequencing of the genomic DNA flanking the T-DNA elements showed that in the ape1 mutant, a gene was disrupted that encodes a protein of unknown function but that appears to be specific to photosynthetic organisms, whereas the ape2 mutant carries an insertion in the region of the TPT gene encoding the chloroplast inner envelope triose phosphate/phosphate translocator. PMID:12586872

  9. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    SciTech Connect

    Hugly, S.; McCourt, P.; Somerville, C. ); Browse, J. ); Patterson, G.W. )

    1990-07-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18{degree}C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of {sup 14}CO{sub 2} into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury.

  11. The TOC159 mutant of Arabidopsis thaliana accumulates altered levels of saturated and polyunsaturated fatty acids.

    PubMed

    Afitlhile, Meshack; Fry, Morgan; Workman, Samantha

    2015-02-01

    We evaluated whether the TOC159 mutant of Arabidopsis called plastid protein import 2-2 (ppi2-2) accumulates normal levels of fatty acids, and transcripts of fatty acid desaturases and galactolipid synthesis enzymes. The ppi2-2 mutant accumulates decreased pigments and total fatty acid content. The MGD1 gene was downregulated and the mutant accumulates decreased levels of monogalactosyldiacylglycerol (MGDG) and 16:3, which suggests that the prokaryotic pathway was impaired in the mutant. The HY5 gene, which encodes long hypocotyl5 transcription factor, was upregulated in the mutant. The DGD1 gene, an HY5 target was marginally increased and the mutant accumulates digalactosyldiacylglycerol at the control level. The mutant had increased expression of 3-ketoacyl-ACP synthase II gene, which encodes a plastid enzyme that elongates 16:0 to 18:0. Interestingly, glycerolipids in the mutant accumulate increased levels of 18:0. A gene that encodes stearoyl-ACP desaturase (SAD) was expressed at the control level and 18:1 was increased, which suggest that SAD may be strongly regulated at the posttranscriptional level. The molar ratio of MGDG to bilayer forming plastid lipids was decreased in the cold-acclimated wild type but not in the ppi2-2 mutant. This indicates that the mutant was unresponsive to cold-stress, and is consistent with increased levels of 18:0, and decreased 16:3 and 18:3 in the ppi2-2 mutant. Overall, these data indicate that a defective Toc159 receptor impaired the synthesis of MGDG, and affected desaturation of 16 and 18-carbon fatty acids. We conclude that expression of the MGD1 gene and synthesis of MGDG are tightly linked to plastid biogenesis.

  12. Use of Arabidopsis eceriferum mutants to explore plant cuticle biosynthesis.

    PubMed

    Samuels, Lacey; DeBono, Allan; Lam, Patricia; Wen, Miao; Jetter, Reinhard; Kunst, Ljerka

    2008-05-31

    The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we'll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.

  13. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination

    PubMed Central

    Yao, Youli; Bilichak, Andriy; Golubov, Andrey; Kovalchuk, Igor

    2016-01-01

    ABSTRACT Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis. PMID:26901311

  14. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination.

    PubMed

    Yao, Youli; Bilichak, Andriy; Golubov, Andrey; Kovalchuk, Igor

    2016-07-02

    Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.

  15. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen.

    PubMed Central

    Zeeman, S C; Umemoto, T; Lue, W L; Au-Yeung, P; Martin, C; Smith, A M; Chen, J

    1998-01-01

    In this study, our goal was to evaluate the role of starch debranching enzymes in the determination of the structure of amylopectin. We screened mutant populations of Arabidopsis for plants with alterations in the structure of leaf starch by using iodine staining. The leaves of two mutant lines stained reddish brown, whereas wild-type leaves stained brownish black, indicating that a more highly branched polyglucan than amylopectin was present. The mutants were allelic, and the mutation mapped to position 18.8 on chromosome 1. One mutant line lacked the transcript for a gene with sequence similarity to higher plant debranching enzymes, and both mutants lacked a chloroplastic starch-hydrolyzing enzyme. This enzyme was identified as a debranching enzyme of the isoamylase type. The loss of this isoamylase resulted in a 90% reduction in the accumulation of starch in this mutant line when compared with the wild type and in the accumulation of the highly branched water-soluble polysaccharide phytoglycogen. Both normal starch and phytoglycogen accumulated simultaneously in the same chloroplasts in the mutant lines, suggesting that isoamylase has an indirect rather than a direct role in determining amylopectin structure. PMID:9761796

  16. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions.

    PubMed Central

    Shikazono, Naoya; Yokota, Yukihiko; Kitamura, Satoshi; Suzuki, Chihiro; Watanabe, Hiroshi; Tano, Shigemitsu; Tanaka, Atsushi

    2003-01-01

    Irradiation of Arabidopsis thaliana by carbon ions was carried out to investigate the mutational effect of ion particles in higher plants. Frequencies of embryonic lethals and chlorophyll-deficient mutants were found to be significantly higher after carbon-ion irradiation than after electron irradiation (11-fold and 7.8-fold per unit dose, respectively). To estimate the mutation rate of carbon ions, mutants with no pigments on leaves and stems (tt) and no trichomes on leaves (gl) were isolated at the M2 generation and subjected to analysis. Averaged segregation rate of the backcrossed mutants was 0.25, which suggested that large deletions reducing the viability of the gametophytes were not transmitted, if generated, in most cases. During the isolation of mutants, two new classes of flavonoid mutants (tt18, tt19) were isolated from carbon-ion-mutagenized M2 plants. From PCR and sequence analysis, two of the three tt18 mutant alleles were found to have a small deletion within the LDOX gene and the other was revealed to contain a rearrangement. Using the segregation rates, the mutation rate of carbon ions was estimated to be 17-fold higher than that of electrons. The isolation of novel mutants and the high mutation rate suggest that ion particles can be used as a valuable mutagen for plant genetics. PMID:12702688

  17. Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana

    SciTech Connect

    Martinez-Zapater, J.M. ); Somerville, C.R. )

    1990-03-01

    We have analyzed the response to vernalization and light quality of six classes of late-flowering mutants (fb, fca, fe, fg, ft, and fy) previously isolated following mutagenesis of the early Landsberg race of Arabidopsis thaliana (L.) Heynh. When grown in continuous fluorescent illumination, four mutants (fca, fe, ft, and fy) and the Landsberg wild type exhibited a reduction in both flowering time and leaf number following 6 weeks of vernalization. A significant decrease in flowering time was also observed for all the mutants and the wild type when constant fluorescent illumination was supplemented with irradiation enriched in the red and far red regions of the spectrum. In the most extreme case, the late-flowering phenotype of the fca mutant was completely suppressed by vernalization, suggesting that this mutation has a direct effect on flowering. The fe and fy mutants also showed a more pronounced response than wild type to both vernalization and incandescent supplementation. The ft mutant showed a similar response to that of the wild type. The fb and fg mutants were substantially less sensitive to these treatments. These results are interpreted in the context of a multifactorial pathway for induction of flowering, in which the various mutations affect different steps of the pathway.

  18. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  19. Spaceflight experiments with Arabidopsis starch-deficient mutants support a statolith-based model for graviperception.

    PubMed

    Kiss, J Z; Edelmann, R E

    1999-01-01

    In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the "right way" in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.

  20. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  1. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  2. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  3. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis.

    PubMed

    Kiss, J Z; Guisinger, M M; Miller, A J; Stackhouse, K S

    1997-05-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  4. Spaceflight experiments with Arabidopsis starch-deficient mutants support a statolith-based model for graviperception

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Edelmann, Richard E.

    1999-01-01

    In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the “right way” in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.

  5. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    PubMed

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  6. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis.

    PubMed Central

    Howden, R; Park, S K; Moore, J M; Orme, J; Grossniklaus, U; Twell, D

    1998-01-01

    As a strategy for the identification of T-DNA-tagged gametophytic mutants, we have used T-DNA insertional mutagenesis based on screening for distorted segregation ratios by antibiotic selection. Screening of approximately 1000 transgenic Arabidopsis families led to the isolation of eight lines showing reproducible segregation ratios of approximately 1:1, suggesting that these lines are putative gametophytic mutants caused by T-DNA insertion at a single locus. Genetic analysis of T-DNA transmission through reciprocal backcrosses with wild type showed severe reductions in genetic transmission of the T-DNA through the male and/or female gametes. Direct evidence for mutant phenotypes in these lines was investigated by DAPI staining of mature pollen grains and by the analysis of seed set and embryo sac morphology in cleared ovules. One line, termed limpet pollen, showed a novel pollen phenotype in that the generative cell failed to migrate inward after pollen mitosis I, such that the generative or sperm cells remained against the pollen wall. Two other lines, andarta and tistrya, were defective in female transmission and showed an early arrest of embryo sac development with the viable megaspore not initiating the nuclear division cycles. These data demonstrate the efficacy of a segregation ratio distortion strategy for the identification of T-DNA-tagged gametophytic mutants in Arabidopsis. PMID:9611178

  7. A mutant of the Arabidopsis thaliana Toc159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that a null mutant of Arabidopsis that lacks Toc159 receptor is impaired in chloroplast biogenesis and incapable of importing photosynthetic proteins. The mutant is referred to as plastid protein import 2 or ppi2, and has an albino phenotype. In this study, we measured ...

  8. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured...

  9. Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis.

    PubMed Central

    Shah, S; Xin, Z; Browse, J

    1997-01-01

    A mutant of Arabidopsis contained increased levels of 18:3 fatty acids and correspondingly decreased levels of 18:2. The fatty acid phenotype was strongly expressed in root and seed tissues and this observation, together with other data, suggested that the mutation leads to increased activity of the endoplasmic reticulum 18:2 desaturase encoded by the FAD3 gene. Gel-blot analysis of RNA from wild-type and mutant plants established that FAD3 transcript levels were increased 80% in the mutant relative to the wild type. Genetic analysis demonstrated a linkage between the new mutation and the fad3 locus. Linkage of the mutation to fad3 raises the possibility that the lesion is an alteration to the promoter or another regulatory region of the FAD3 gene, which results in increased transcription. PMID:9276960

  10. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity

    PubMed Central

    van Wersch, Rowan; Li, Xin; Zhang, Yuelin

    2016-01-01

    Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds. PMID:27909443

  11. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  12. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress

    PubMed Central

    2014-01-01

    Background Ca2+, a versatile intracellular second messenger in various signaling pathways, initiates many responses involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce cytoplasmic Ca2+ ([Ca2+]cyt) elevation, which are responsible for the appropriate downstream responses. Results Here we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]cyt elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani, Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmic Ca2+elevation mutant1 (cycam1) is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt. It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam1 shows altered responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant. Conclusions We isolated an Arabidopsis mutant which fails to induce [Ca2+]cyt elevation in response to exudate preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related mRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca2+]cyt elevation to biotic, abiotic and oxidative stress responses. PMID:24920452

  13. Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants.

    PubMed

    Matsumoto, Shouhei; Kumasaki, Saori; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    2010-02-01

    We investigated the roles of cortical microtubules in gravity-induced modifications to the development of stem organs by analyzing morphology and orientation of cortical microtubule arrays in hypocotyls of Arabidopsis (Arabidopsis thaliana) tubulin mutants, tua3(D205N), tua4(S178Delta), and tua6(A281T), cultivated under 1g and hypergravity (300g) conditions. Hypocotyls of tubulin mutants were shorter and thicker than the wild type even at 1g, and hypergravity further suppressed elongation and stimulated expansion. The degree of such changes was clearly smaller in tubulin mutants, in particular in tua6. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1g, and the degree of twisting phenotype was intensified under hypergravity conditions, especially in tua6. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of wild-type hypocotyls. In tubulin mutants, especially in tua6, the percentage of cells with longitudinal microtubules was high even at 1g, and it was further increased by hypergravity. The twisting phenotype was most obvious at cells 10 to 12 from the top, where reorientation of cortical microtubules from transverse to longitudinal directions occurred. Moreover, the left-handed helical growth mutants (tua3 and tua4) had right-handed microtubule arrays, whereas the right-handed mutant (tua6) had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions, blockers of mechanosensitive ion channels (mechanoreceptors), suppressed the twisting phenotype in tubulin mutants under both 1g and 300 g conditions. Microtubule arrays in tubulin mutants were oriented more transversely by gadolinium treatment, irrespective of gravity conditions. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal

  14. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    NASA Technical Reports Server (NTRS)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  15. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    NASA Technical Reports Server (NTRS)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  16. Ascorbate-Deficient Mutants of Arabidopsis Grow in High Light Despite Chronic Photooxidative Stress1

    PubMed Central

    Müller-Moulé, Patricia; Golan, Talila; Niyogi, Krishna K.

    2004-01-01

    Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL. PMID:14963245

  17. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    PubMed

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  18. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity.

    PubMed

    Wang, Bo; Qin, Xinghua; Wu, Juan; Deng, Hongying; Li, Yuan; Yang, Hailian; Chen, Zhongzhou; Liu, Guoqin; Ren, Dongtao

    2016-05-10

    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6(F364L) and MPK6(F368L) mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.

  19. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants.

    PubMed Central

    Guzmán, P; Ecker, J R

    1990-01-01

    Alterations in the response of dark-grown seedlings to ethylene (the "triple response") were used to isolate a collection of ethylene-related mutants in Arabidopsis thaliana. Mutants displaying a constitutive response (eto1) were found to produce at least 40 times more ethylene than the wild type. The morphological defects in etiolated eto1-1 seedlings reverted to wild type under conditions in which ethylene biosynthesis or ethylene action were inhibited. Mutants that failed to display the apical hook in the absence of ethylene (his1) exhibited reduced ethylene production. In the presence of exogenous ethylene, hypocotyl and root of etiolated his1-1 seedlings were inhibited in elongation but no apical hook was observed. Mutants that were insensitive to ethylene (ein1 and ein2) produced increased amounts of ethylene, displayed hormone insensitivity in both hypocotyl and root responses, and showed an apical hook. Each of the "triple response" mutants has an effect on the shape of the seedling and on the production of the hormone. These mutants should prove to be useful tools for dissecting the mode of ethylene action in plants. PMID:2152173

  20. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  1. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    PubMed Central

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  2. Novel hydrotropism mutants of Arabidopsis thaliana and their altered waving response and phototropism.

    PubMed

    Takahashi, Akiko; Kobayashi, Akie; Kakimoto, Yoko; Fujii, Nobuharu; Takahashi, Hideyuki

    2003-10-01

    Roots display positive hydrotropism in response to a moisture gradient, which is important for plants to escape from water stress and regulate the directional growth by interacting with other growth movements such as gravitropism, phototropism and waving response. On Earth, hydrotropism is interfered by gravitropism in particular, so that microgravity conditions or agravitropic mutants have been used for the study of hydrotropism. However, we have recently established an experimental system for the study of hydrotropism in Arabidopsis roots that easily develop hydrotropism in response to moisture gradient by overcoming gravitropism. Using the Arabidopsis system, we isolated hydrotropism mutants named root hydrotropism (rhy). In the present study, we examined the hydrotropism, gravitropism, phototropism, waving response and elongation growth of rhy4 and rhy5 roots that were defective in positive hydrotropism. Interestingly, rhy4 roots curved away from the water source and showed a reduced waving response. Both rhy4 and rhy5 showed normal gravitropism and a slight reduction in phototropism. These results suggest that there is a mutual molecular mechanism underlying hydrotropism, waving response and/or phototropism. Thus, we have obtained novel hydrotropic mutants that will be used for revealing molecular mechanism of root hydrotropism and its interaction with waving response and/or phototropism.

  3. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    PubMed

    Melo-Oliveira, R; Oliveira, I C; Coruzzi, G M

    1996-05-14

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

  4. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.

    PubMed Central

    Landry, L G; Chapple, C C; Last, R L

    1995-01-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydroxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. PMID:8539286

  5. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    SciTech Connect

    Landry, L.G.; Last, R.L.; Chapple, C.C.S.

    1995-12-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs.

  6. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance.

    PubMed

    Zhao, Xin; Xu, Mengmeng; Wei, Rongrong; Liu, Yang

    2015-01-01

    The calcium-sensing receptor (CaS), which is localized in the chloroplasts, is a crucial regulator of extracellular calcium-induced stomatal closure in Arabidopsis. It has homologs in Oryza sativa and other plants. These sequences all have a rhodanese-like protein domain, which has been demonstrated to be associated with specific stress conditions. In this study, we cloned the Oryza sativa calcium-sensing receptor gene (OsCAS) and demonstrated that OsCAS could sense an increase of extracellular Ca2+ concentration and mediate an increase in cytosolic Ca2+ concentration. The OsCAS gene was transformed into an Arabidopsis CaS knockout mutant (Salk) and overexpressed in the transgenic plants. OsCAS promoted stomatal closure. We screened homozygous transgenic Arabidopsis plants and determined physiological indices such as the oxidative damage biomarker malondialdehyde (MDA), relative membrane permeability (RMP), proline content, and chlorophyll fluorescence parameters, after 21 days of drought treatment. Our results revealed lower RMP and MDA contents and a higher Proline content in transgenic Arabidopsis plants after drought stress, whereas the opposite was observed in Salk plants. With respect to chlorophyll fluorescence, the electron transport rate and effective PSII quantum yield decreased in all lines under drought stress; however, in the transgenic plants these two parameters changed fewer and were higher than those in wild-type and Salk plants. The quantum yield of regulated energy dissipation and nonregulated energy dissipation in PSII were higher in Salk plants, whereas these values were lower in the transgenic plants than in the wild type under drought stress. The above results suggest that the transgenic plants showed better resistance to drought stress by decreasing damage to the cell membrane, increasing the amount of osmoprotectants, and maintaining a relatively high photosynthetic capacity. In conclusion, OsCAS is an extracellular calcium-sensing receptor

  7. Characterization of N-Glycans from Arabidopsis. Application to a Fucose-Deficient Mutant1

    PubMed Central

    Rayon, Catherine; Cabanes-Macheteau, Marion; Loutelier-Bourhis, Corinne; Salliot-Maire, Isabelle; Lemoine, Jérome; Reiter, Wolf-Dieter; Lerouge, Patrice; Faye, Loïc

    1999-01-01

    The structures of glycans N-linked to Arabidopsis proteins have been fully identified. From immuno- and affinodetections on blots, chromatography, nuclear magnetic resonance, and glycosidase sequencing data, we show that Arabidopsis proteins are N-glycosylated by high-mannose-type N-glycans from Man5GlcNAc2 to Man9GlcNAc2, and by xylose- and fucose (Fuc)-containing oligosaccharides. However, complex biantenary structures containing the terminal Lewis a epitope recently reported in the literature (A.-C. Fitchette-Lainé, V. Gomord, M. Cabanes, J.-C. Michalski, M. Saint Macary, B. Foucher, B. Cavalier, C. Hawes, P. Lerouge, and L. Faye [1997] Plant J 12: 1411–1417) were not detected. A similar study was done on the Arabidopsis mur1 mutant, which is affected in the biosynthesis of l-Fuc. In this mutant, one-third of the Fuc residues of the xyloglucan has been reported to be replaced by l-galactose (Gal) (E. Zablackis, W.S. York, M. Pauly, S. Hantus, W.D. Reiter, C.C.S. Chapple, P. Albersheim, and A. Darvill [1996] Science 272: 1808–1810). N-linked glycans from the mutant were identified and their structures were compared with those isolated from the wild-type plants. In about 95% of all N-linked glycans from the mur1 plant, l-Fuc residues were absent and were not replaced by another monosaccharide. However, in the remaining 5%, l-Fuc was found to be replaced by a hexose residue. From nuclear magnetic resonance and mass spectrometry data of the mur1 N-glycans, and by analogy with data reported on mur1 xyloglucan, this subpopulation of N-linked glycans was proposed to be l-Gal-containing N-glycans resulting from the replacement of l-Fuc by l-Gal. PMID:9952469

  8. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    PubMed

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  9. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant

    SciTech Connect

    Ogas, J.; Somerville, C.; Cheng, Jin-Chen; Sung, R.

    1997-07-04

    The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabi-dopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants. 19 refs., 3 figs., 1 tab.

  10. Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome

    PubMed Central

    Stroud, Hume; Greenberg, Maxim V.C.; Feng, Suhua; Bernatavichute, Yana V.; Jacobsen, Steven E.

    2013-01-01

    SUMMARY Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. PMID:23313553

  11. Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Weise, S. E.; Kiss, J. Z.

    1999-01-01

    Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.

  12. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  13. Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L. ) Heynh lacking ADPglucose pyrophosphorylase activity

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.; Preiss, J. )

    1988-04-01

    A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F{sub 1} progeny of a cross between the mutant and wild type had a specific activity of ADP-glucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.

  14. Wax constituents on the inflorescence stems of double eceriferum mutants in Arabidopsis reveal complex gene interactions.

    PubMed

    Goodwin, S Mark; Rashotte, Aaron M; Rahman, Musrur; Feldmann, Kenneth A; Jenks, Matthew A

    2005-04-01

    To shed new light on gene involvement in plant cuticular-wax production, 11 eceriferum (cer) mutants of Arabidopsis having dramatic alterations in wax composition of inflorescence stems were used to create 14 double cer mutants each with two homozygous recessive cer loci. A comprehensive analysis of stem waxes on these double mutants revealed unexpected CER gene interactions and new ideas about individual CER gene functions. Five of the 14 double cer mutants produced significantly more total wax than one of their respective cer parents, indicating from a genetic standpoint a partial bypassing (or complementation) of one cer mutation by the other. Eight of the 14 double cer mutants had alkane amounts lower than both respective cer parents, suggesting that most of these CER gene products play a major additive role in alkane synthesis. Other results suggested that some CER genes function in more than one step of the wax pathway, including those associated with sequential steps in acyl-CoA elongation. Surprisingly, complete epistasis was not observed for any of the cer gene combinations tested. Significant overlap or redundancy of genetic operations thus appears to be a central feature of wax metabolism. Future studies of CER gene product function, as well as the utilization of CER genes for crop improvement, must now account for the complex gene interactions described here.

  15. An Arabidopsis mutant hypersensitive to red and far-red light signals.

    PubMed Central

    Genoud, T; Millar, A J; Nishizawa, N; Kay, S A; Schäfer, E; Nagatani, A; Chua, N H

    1998-01-01

    A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans. PMID:9634578

  16. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology

    NASA Technical Reports Server (NTRS)

    Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Soll, D.

    1995-01-01

    A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.

  17. Developmental Defects in Mutants of the PsbP Domain Protein 5 in Arabidopsis thaliana

    PubMed Central

    Roose, Johnna L.; Frankel, Laurie K.; Bricker, Terry M.

    2011-01-01

    Plants contain an extensive family of PsbP-related proteins termed PsbP-like (PPL) and PsbP domain (PPD) proteins, which are localized to the thylakoid lumen. The founding member of this family, PsbP, is an established component of the Photosystem II (PS II) enzyme, and the PPL proteins have also been functionally linked to other photosynthetic processes. However, the functions of the remaining seven PPD proteins are unknown. To elucidate the function of the PPD5 protein (At5g11450) in Arabidopsis, we have characterized a mutant T-DNA insertion line (SALK_061118) as well as several RNAi lines designed to suppress the expression of this gene. The functions of the photosynthetic electron transfer reactions are largely unaltered in the ppd5 mutants, except for a modest though significant decrease in NADPH dehydrogenase (NDH) activity. Interestingly, these mutants show striking plant developmental and morphological defects. Relative to the wild-type Col-0 plants, the ppd5 mutants exhibit both increased lateral root branching and defects associated with axillary bud formation. These defects include the formation of additional rosettes originating from axils at the base of the plant as well as aerial rosettes formed at the axils of the first few nodes of the shoot. The root-branching phenotype is chemically complemented by treatment with the synthetic strigolactone, GR24. We propose that the developmental defects observed in the ppd5 mutants are related to a deficiency in strigolactone biosynthesis. PMID:22174848

  18. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana.

    PubMed Central

    Schiefelbein, J; Galway, M; Masucci, J; Ford, S

    1993-01-01

    The expansion of both root hairs and pollen tubes occurs by a process known as tip growth. In this report, an Arabidopsis thaliana mutant (tip1) is described that displays defects in both root-hair and pollen-tube growth. The root hairs of the tip1 mutant plants are shorter than those of the wild-type plants and branched at their base. The tip1 pollen-tube growth defect was identified by the aberrant segregation ratio of phenotypically normal to mutant seeds in siliques from self-pollinated, heterozygous plants. Homozygous mutant seeds are not randomly distributed in the siliques, comprising only 14.4% of the total seeds, 5.3% of the seeds from the bottom half, and 2.2% of the seeds from the bottom quarter of the heterozygous siliques. Studies of pollen-tube growth in vivo showed that mutant pollen tubes grow more slowly than wild-type pollen through the transmitting tissue of wild-type flowers. Cosegregation studies indicate that the root-hair and pollen-tube defects are caused by the same genetic lesion. Based on these findings, the TIP1 gene is likely to encode a product involved in a fundamental aspect of tip growth in plant cells. PMID:8022944

  19. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology

    NASA Technical Reports Server (NTRS)

    Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Soll, D.

    1995-01-01

    A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.

  20. Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Weise, S. E.; Kiss, J. Z.

    1999-01-01

    Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.

  1. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana.

    PubMed

    Yang, Y Y; Nagatani, A; Zhao, Y J; Kang, B J; Kendrick, R E; Kamiya, Y

    1995-10-01

    Experiments were carried out to explore the involvement of gibberellins (GAs) in the light-induced germination of Arabidopsis thaliana (L.) Heynh, using wild type (WT) and phytochrome-deficient mutants (phyA, phyB and phyAphyB deficient in phytochrome A, B and A plus B, respectively). Seed germination of WT and phytochrome-deficient mutants was inhibited by uniconazole (an inhibitor of an early step in biosynthesis of GA, the oxidation of ent-kaurene) and prohexadione (an inhibitor of late steps, namely, 2 beta- and 3 beta-hydroxylation). This inhibition was overcome by simultaneous application of 10(-5) M GA4. The relative activity of GAs for promoting germination of uniconazole-treated seeds was GA4 > GA1 = GA9 > GA20. The wild type and the phyA and phyB mutants had an increased response to a red light pulse in the presence of GA1, GA4, GA9, GA20 and GA24 but there were no significant differences in activity of each GA between the mutants. Therefore, neither phytochrome A nor hytochrome B appears to regulate GA biosynthesis from GA12 to GA4 during seed germination, since the conversion of GA12 to GA9 is regulated by one enzyme (GA 20-oxidase). However, GA responsiveness appears to be regulated by phytochromes other than phytochromes A and B, since the phyAphyB double mutant retains the photoreversible increased response to GAs after a red light pulse.

  2. Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis.

    PubMed

    Weise, S E; Kiss, J Z

    1999-01-01

    Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.

  3. hxc2, an Arabidopsis mutant with an altered hypersensitive response to Xanthomonas campestris pv. campestris.

    PubMed

    Godard, F; Lummerzheim, M; Saindrenan, P; Balagué, C; Roby, D

    2000-12-01

    A chemical mutagenized population of Arabidopsis Col-0-gl plants was screened for an altered hypersensitive response (HR) after spray inoculation with an HR-inducing isolate of Xanthomonas campestris pv. campestris (strain 147). Three classes of mutant were identified: those exhibiting an HR- phenotype or partial loss of HR; hyper-responsive mutants showing necrotic lesions rapidly leading to the collapse of leaves; and susceptible mutants. One mutant belonging to the susceptible class, hxc-2, was extensively characterized. The compatible phenotype observed several days after initiation of the interaction was confirmed by measurement of in planta bacterial growth and use of bacterial strains constitutively expressing the GUS reporter gene. In the same way, accumulation of autofluorescent compounds, salicylic acid production and defence gene expression in the mutant were found to be similar to that displayed by the susceptible ecotype. Inoculation of hxc-2 with different avirulent bacteria suggests that the mutation is specific for the interaction with the Xcc 147 strain, although the mutation has been shown to affect a single dominant locus, different from the resistance locus defined by genetic analysis of resistance to Xcc 147. Genetic mapping of the mutation indicated that it is located on chromosome III, defining a previously unknown resistance function in response to X. c. campestris.

  4. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis

    PubMed Central

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J.; Xiang, Cheng-Bin

    2010-01-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a ‘sulphur-free’ solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance. PMID:20547563

  5. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.

    PubMed

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J; Xiang, Cheng-Bin

    2010-07-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a 'sulphur-free' solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance.

  6. Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea

    PubMed Central

    Sham, Arjun; Moustafa, Khaled; Al-Shamisi, Shamma; Alyan, Sofyan; Iratni, Rabah

    2017-01-01

    The WRKY33 transcription factor was reported for resistance to the necrotrophic fungus Botrytis cinerea. Using microarray-based analysis, we compared Arabidopsis WRKY33 overexpressing lines and wrky33 mutant that showed altered susceptibility to B. cinerea with their corresponding wild-type plants. In the wild-type, about 1660 genes (7% of the transcriptome) were induced and 1054 genes (5% of the transcriptome) were repressed at least twofold at early stages of inoculation with B. cinerea, confirming previous data of the contribution of these genes in B. cinerea resistance. In Arabidopsis wild-type plant infected with B. cinerea, the expressions of the differentially expressed genes encoding for proteins and metabolites involved in pathogen defense and non-defense responses, seem to be dependent on a functional WRKY33 gene. The expression profile of 12-oxo-phytodienoic acid- and phytoprostane A1-treated Arabidopsis plants in response to B. cinerea revealed that cyclopentenones can also modulate WRKY33 regulation upon inoculation with B. cinerea. These results support the role of electrophilic oxylipins in mediating plant responses to B. cinerea infection through the TGA transcription factor. Future directions toward the identification of the molecular components in cyclopentenone signaling will elucidate the novel oxylipin signal transduction pathways in plant defense. PMID:28207847

  7. Characterization of a Selenate-Resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity1[OA

    PubMed Central

    El Kassis, Elie; Cathala, Nicole; Rouached, Hatem; Fourcroy, Pierre; Berthomieu, Pierre; Terry, Norman; Davidian, Jean-Claude

    2007-01-01

    Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced 35S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis. PMID:17208959

  8. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    PubMed

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  9. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  10. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.

    PubMed

    MacAlister, Cora A; Ortiz-Ramírez, Carlos; Becker, Jörg D; Feijó, José A; Lippman, Zachary B

    2016-01-01

    Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.

  11. Interaction of Root Gravitropism and Phototropism in Arabidopsis Wild-Type and Starchless Mutants1

    PubMed Central

    Vitha, Stanislav; Zhao, Liming; Sack, Fred David

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 μmol m−2 s−1), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis. PMID:10677438

  12. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  13. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    PubMed

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  14. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  15. An In Vivo Quantitative Comparison of Photoprotection in Arabidopsis Xanthophyll Mutants

    PubMed Central

    Ware, Maxwell A.; Dall’Osto, Luca; Ruban, Alexander V.

    2016-01-01

    Contribution of different LHCII antenna carotenoids to protective NPQ (pNPQ) were tested using a range of xanthophyll biosynthesis mutants of Arabidopsis: plants were either devoid of lutein (lut2), violaxanthin (npq2), or synthesized a single xanthophyll species, namely violaxanthin (aba4npq1lut2), zeaxanthin (npq2lut2), or lutein (chy1chy2lut5). A novel pulse amplitude modulated (PAM) fluorescence analysis procedure, that used a gradually increasing actinic light intensity, allowed the efficiency of pNPQ to be tested using the photochemical quenching (qP) parameter measured in the dark (qPd). Furthermore, the yield of photosystem II (ΦPSII) was calculated, and the light intensity which induces photoinhibition in 50% of leaves for each mutant was ascertained. Photoprotective capacities of each xanthophyll were quantified, taking into account chlorophyll a/b ratios and excitation pressure. Here, light tolerance, pNPQ capacity, and ΦPSII were highest in wild type plants. Of the carotenoid mutants, lut2 (lutein-deficient) plants had the highest light tolerance, and the joint the highest ΦPSII with violaxanthin only plants. We conclude that all studied mutants possess pNPQ and a more complete composition of xanthophylls in their natural binding sites is the most important factor governing photoprotection, rather than any one specific xanthophyll suggesting a strong structural effect of the molecules upon the LHCII antenna organization and discuss the results significance for future crop development. PMID:27446097

  16. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  17. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  18. Arabidopsis haiku mutants reveal new controls of seed size by endosperm.

    PubMed

    Garcia, Damien; Saingery, Virginie; Chambrier, Pierre; Mayer, Ulrike; Jürgens, Gerd; Berger, Frédéric

    2003-04-01

    In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.

  19. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant.

    PubMed

    Swain, Swadhin; Singh, Nidhi; Nandi, Ashis Kumar

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  20. A User’s Guide to the Arabidopsis T-DNA Insertional Mutant Collections

    PubMed Central

    O'Malley, Ronan C.; Barragan, Cesar C.; Ecker, Joseph R.

    2016-01-01

    Summary The T-DNA sequence-indexed mutant collections contain insertional mutants for most Arabidopsis thaliana genes and have played an important role in plant biology research for almost two decades. By providing a large source of mutant alleles for in vivo characterization of gene function, this resource has been leveraged thousands of times to study a wide-range of problems in plant biology. Our primary goal in this chapter is to provide a general guide to strategies for the effective use of the data and materials in these collections. To do this, we provide a general introduction to the T-DNA insertional sequence-indexed mutant collections with a focus on how best to use the available data sources for good line selection. As isolation of a homozygous line is a common next step once a potential disruption line has been identified, the second half of the chapter will provide a step-by-step guide for the design and implementation of a T-DNA genotyping pipeline. Finally, we describe interpretation of genotyping results and include a troubleshooting section for common types of segregation distortions that we have observed. In this chapter we introduce both basic concepts and specific applications to new and more experienced users of the collections for the design and implementation of small- to large-scale genotyping pipelines. PMID:25757780

  1. A user's guide to the Arabidopsis T-DNA insertion mutant collections.

    PubMed

    O'Malley, Ronan C; Barragan, Cesar C; Ecker, Joseph R

    2015-01-01

    The T-DNA sequence-indexed mutant collections contain insertional mutants for most Arabidopsis thaliana genes and have played an important role in plant biology research for almost two decades. By providing a large source of mutant alleles for in vivo characterization of gene function, this resource has been leveraged thousands of times to study a wide range of problems in plant biology. Our primary goal in this chapter is to provide a general guide to strategies for the effective use of the data and materials in these collections. To do this, we provide a general introduction to the T-DNA insertional sequence-indexed mutant collections with a focus on how best to use the available data sources for good line selection. As isolation of a homozygous line is a common next step once a potential disruption line has been identified, the second half of the chapter provides a step-by-step guide for the design and implementation of a T-DNA genotyping pipeline. Finally, we describe interpretation of genotyping results and include a troubleshooting section for common types of segregation distortions that we have observed. In this chapter we introduce both basic concepts and specific applications to both new and more experienced users of the collections for the design and implementation of small- to large-scale genotyping pipelines.

  2. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis.

    PubMed

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants.

  3. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  4. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.

    PubMed Central

    Pogson, B; McDonald, K A; Truong, M; Britton, G; DellaPenna, D

    1996-01-01

    Lutein, a dihydroxy beta, epsilon-carotenoid, is the predominant carotenoid in photosynthetic plant tissue and plays a critical role in light-harvesting complex assembly and function. To further understand lutein synthesis and function, we isolated four lutein-deficient mutants of Arabidopsis that define two loci, lut1 and lut2 (for lutein deficient). These loci are required for lutein biosynthesis but not for the biosynthesis of beta, beta-carotenoids. The lut1 mutations are recessive, accumulate high levels of zeinoxanthin, which is the immediate precursor of lutein, and define lut1 as a disruption in epsilon ring hydroxylation. The lut2 mutations are semidominant, and their biochemical phenotype is consistent with a disruption of epsilon ring cyclization. The lut2 locus cosegregates with the recently isolated epsilon cyclase gene, thus, providing additional evidence that the lut2 alleles are mutations in the epsilon cyclase gene. It appears likely that the epsilon cyclase is a key step in regulating lutein levels and the ratio of lutein to beta,beta-carotenoids. Surprisingly, despite the absence of lutein, neither the lut1 nor lut2 mutation causes a visible deleterious phenotype or altered chlorophyll content, but both mutants have significantly higher levels of beta, beta-carotenoids. In particular, there is a stable increase in the xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) in both lut1 and lut2 mutants as well as an increase in zeinoxanthin in lut1 and beta-carotene in lut2. The accumulation of specific carotenoids is discussed as it pertains to the regulation of carotenoid biosynthesis and incorporation into the photosynthetic apparatus. Presumably, particular beta, beta-carotenoids are able to compensate functionally and structurally for lutein in the photosystems of Arabidopsis. PMID:8837513

  5. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening. Progress report

    SciTech Connect

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-12-31

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally ``light``-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  6. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    NASA Astrophysics Data System (ADS)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  7. The gravity persistent signal (gps) Mutants of Arabidopsis: Insights into Gravitropic Signal Transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, S.

    The gravitropic response of Arabidopsis stems is rapid with a visible within 30 min and vertical reorientation within 2 h. However, horizontal gravistimulation for 3 h at 4°C does not cause curvature. When the stems are subsequently placed in the vertical position at RT, they bend in response to the previous, horizontal gravistimulation. These results indicate that the gravity perception step can occur at 4°C, but that part of the response is sensitive to cold. At 4°C, starch-containing amyloplasts in the endodermis of the inflorescence stems sedimented normally but auxin transport was abolished indicating that the cold treatment affected early events of the signal transduction pathway that occur after amyloplast sedimentation but prior to auxin transport. The gps mutants of Arabidopsis are a unique group of mutants that respond abnormally after gravistimulation at 4°C. gps1 shows no response to the cold gravistimulation, gps2 bends the wrong way as compared to wild type and gps3 over responds, bending past the anticipated curvature. The mutants were selected from a T-DNA tagged population. Cloning strategies based on the tag have been employed to identify the genes disrupted. GPS1 was cloned using TAIL PCR and is At3g20130, a cytochrome P450, CYP705A22, of unknown function. GPS1p::GFP fusions are being used to determine temporal and spatial expression of GPS1. The mutation in gps3 appears to disrupt a non-coding region downstream of At1g43950 No function has yet been determined for this region, but it appears that the mutation disrupts transcription of a transcription factor homologous to the DNA binding domain of an auxin response factor (ARF) 9-like protein. The identity of GPS2 is as yet unknown. The gps mutants represent potentially three independent aspects of signal transduction in the gravitropic response: perception or retention of the gravity signal (gps1), determination of the polarity of the response (gps2), and the tissue specificity of the

  8. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    PubMed

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex

    PubMed Central

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571

  10. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  11. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene.

    PubMed

    Peterson, R B; Havir, E A

    2001-11-01

    We describe the properties of npq4-9, a new mutant of Arabidopsis thaliana (L.) Heynh. with reduced nonphotochemical quenching (NPQ) capacity that possesses a single amino acid substitution in the PsbS gene encoding PSII-S, a ubiquitous pigment-binding protein associated with photosystem II (PSII) of higher plants. Growth, photosynthetic pigment contents, and levels of the major PSII antenna proteins were not affected by npq4-9. Although the extent of de-epoxidatin of violaxanthin to antheraxanthin plus zeaxanthin for leaves displaying the mutant phenotype equaled or exceeded that observed for the wild type, the relative effectiveness of de-epoxidized xanthophylls in promoting NPQ was consistently lower for the mutant. Energy partitioning in PSII was analyzed in terms of the competition for singlet chlorophyll a among the processes of fluorescence, thermal dissipation, and photochemistry. The key processes of NPQ and photochemistry in open PSII centers are represented by the relative in vivo rate constants kN and kP0, respectively. The magnitude of kP0 in normal leaves declined only slightly with increasing kN, consistent with localization of NPQ primarily in the antenna complex. Conversely, a highly significant linear decline in kP0 with increasing kN was observed for the mutant, consistent with a role for the PSII reaction center in the NPQ mechanism. Although the PSII absorption cross-section for white light was not significantly different relative to that of the wild type, PSII quantum yield was significantly lower in the mutant. The resulting lower capacity for linear electron transport in the mutant primarily affected reduction of terminal acceptors other than CO2. Parallel measurements of fluorescence and in vivo absorbance at 820 nm indicated a consistently higher steady-state level of reduction of PSII acceptors and accumulation of P700+ for the mutant. This suggests that inter-photosystem electron transport in the mutant is restricted either by a higher

  12. Analysis of Vascular Development in the hydra Sterol Biosynthetic Mutants of Arabidopsis

    PubMed Central

    Pullen, Margaret; Clark, Nick; Zarinkamar, Fatemeh; Topping, Jennifer; Lindsey, Keith

    2010-01-01

    Background The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning. Methodology/Principal Findings Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2∶GUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development. Conclusions The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development. PMID:20808926

  13. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth.

    PubMed

    Lim, Benson; Smirnoff, Nicholas; Cobbett, Christopher S; Golz, John F

    2016-01-01

    In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.

  14. A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast {omega}9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast {omega}9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.

  15. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.

    PubMed

    Misyura, Maksym; Colasanti, Joseph; Rothstein, Steven J

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.

  16. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation

    PubMed Central

    Landry, Laurie G.; Stapleton, Ann E.; Lim, Jackie; Hoffman, Peter; Hays, John B.; Walbot, Virginia; Last, Robert L.

    1997-01-01

    Photolyases are DNA repair enzymes that use energy from blue light to repair pyrimidine dimers. We report the isolation of an Arabidopsis thaliana mutant (uvr2-1) that is defective in photorepair of cyclobutylpyrimidine dimers (CPDs). Whereas uvr2-1 is indistinguishable from wild type in the absence of UV light, low UV-B levels inhibit growth and cause leaf necrosis. uvr2-1 is more sensitive to UV-B than wild type when placed under white light after UV-B treatment. In contrast, recovery in darkness or in light lacking photoreactivating blue light results in equal injury in uvr2-1 and wild type. The uvr2-1 mutant is unable to remove CPDs in vivo, and plant extracts lack detectable photolyase activity. This recessive mutation segregates as a single gene located near the top of chromosome 1, and is a structural gene mutation in the type II CPD photolyase PHR1. This mutant provides evidence that CPD photolyase is required for plant survival in the presence of UV-B light. PMID:8990208

  17. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions

    PubMed Central

    Rothstein, Steven J.

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested. PMID:23162120

  18. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    PubMed Central

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  19. A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics.

    PubMed

    Van Daele, Inge; Gonzalez, Nathalie; Vercauteren, Ilse; de Smet, Lien; Inzé, Dirk; Roldán-Ruiz, Isabel; Vuylsteke, Marnik

    2012-05-01

    Because seed yield is the major factor determining the commercial success of grain crop cultivars, there is a large interest to obtain more understanding of the genetic factors underlying this trait. Despite many studies, mainly in the model plant Arabidopsis thaliana, have reported transgenes and mutants with effects on seed number and/or seed size, knowledge about seed yield parameters remains fragmented. This study investigated the effect of 46 genes, either in gain- and/or loss-of-function situations, with a total of 64 Arabidopsis lines being examined for seed phenotypes such as seed size, seed number per silique, number of inflorescences, number of branches on the main inflorescence and number of siliques. Sixteen of the 46 genes, examined in 14 Arabidopsis lines, were reported earlier to directly affect in seed size and/or seed number or to indirectly affect seed yield by their involvement in biomass production. Other genes involved in vegetative growth, flower or inflorescence development or cell division were hypothesized to potentially affect the final seed size and seed number. Analysis of this comprehensive data set shows that of the 14 lines previously described to be affected in seed size or seed number, only nine showed a comparable effect. Overall, this study provides the community with a useful resource for identifying genes with effects on seed yield and candidate genes underlying seed QTL. In addition, this study highlights the need for more thorough analysis of genes affecting seed yield. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  20. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    SciTech Connect

    Khurana, J.P.; Ren, Zhangling; Steinitz, B.; Parks, B.; Best, T.R.; Poff, K.L. )

    1989-10-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  1. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Ren, Z.; Steinitz, B.; Parks, B.; Best, T. R.; Poff, K. L.

    1989-01-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  2. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Ren, Z.; Steinitz, B.; Parks, B.; Best, T. R.; Poff, K. L.

    1989-01-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  3. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models.

    PubMed

    Mhamdi, Amna; Queval, Guillaume; Chaouch, Sejir; Vanderauwera, Sandy; Van Breusegem, Frank; Noctor, Graham

    2010-10-01

    Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.

  4. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  5. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene.

    PubMed

    Furukawa, Tomoyuki; Angelis, Karel J; Britt, Anne B

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  6. Knockout mutants as a tool to identify the subunit composition of Arabidopsis glutamine synthetase isoforms.

    PubMed

    Dragićević, Milan; Todorović, Slađana; Bogdanović, Milica; Filipović, Biljana; Mišić, Danijela; Simonović, Ana

    2014-06-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation, which catalyzes the formation of glutamine from ammonia and glutamate. Plant GS isoforms are multimeric enzymes, recently shown to be decamers. The Arabidopsis genome encodes five cytosolic (GS1) proteins labeled as GLN1;1 through GLN1;5 and one chloroplastic (GS2) isoform, GLN2;0. However, as many as 11 GS activity bands were resolved from different Arabidopsis tissues by Native PAGE and activity staining. Western analysis showed that all 11 isoforms are composed exclusively of 40 kDa GS1 subunits. Of five GS1 genes, only GLN1;1, GLN1;2 and GLN1;3 transcripts accumulated to significant levels in vegetative tissues, indicating that only subunits encoded by these three genes produce the 11-band zymogram. Even though the GS2 gene also had significant expression, the corresponding activity was not detected, probably due to inactivation. To resolve the subunit composition of 11 active GS1 isoforms, homozygous knockout mutants deficient in the expression of different GS1 genes were selected from the progeny of T-DNA insertional SALK and SAIL lines. Comparison of GS isoenzyme patterns of the selected GS1 knockout mutants indicated that all of the detected isoforms consist of varying proportions of GLN1;1, GLN1;2 and GLN1;3 subunits, and that GLN1;1 and GLN1;3, as well as GLN1;2 and GLN1;3 and possibly GLN1;1 and GLN1;2 proteins combine in all proportions to form active homo- and heterodecamers.

  7. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase.

    PubMed

    Cornah, Johanna E; Germain, Véronique; Ward, Jane L; Beale, Michael H; Smith, Steven M

    2004-10-08

    The aim of this research was to test the role of the glyoxylate cycle enzyme malate synthase (MLS) in lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis. We hypothesized that in the absence of MLS, succinate produced by isocitrate lyase (ICL) could still feed into the tricarboxylic acid cycle, whereas glyoxylate could be converted to sugars using enzymes of the photorespiratory pathway. To test this hypothesis we isolated knock-out mls mutants and studied their growth and metabolism in comparison to wild type and icl mutant seedlings. In contrast to icl seedlings, which grow slowly and are unable to convert lipid into sugars (Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M. & Graham, I. A. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5669-5674), mls seedlings grow faster, use their lipid more rapidly, and are better able to establish as plantlets. Transcriptome and metabolome analyses show that icl seedlings exhibit many features characteristic of carbohydrate starvation, whereas mls seedlings differ relatively little from wild type. In the light mls seedlings generate more sugars than icl seedlings, and when fed with [14C]acetate, 14C-labeling of sugars is three times greater than in icl seedlings and more than half that in wild type seedlings. The mls seedlings also accumulate more glycine and serine than icl or wild type seedlings, consistent with a diversion of glyoxylate into these intermediates of the photorespiratory pathway. We conclude that, in contrast to bacteria and fungi in which MLS is essential for gluconeogenesis from acetate or fatty acids, MLS is partially dispensable for lipid utilization and gluconeogenesis in Arabidopsis seedlings.

  8. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed Central

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  9. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed.

  10. Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones.

    PubMed

    Chateau, S; Sangwan, R S; Sangwan-Norreel, B S

    2000-12-01

    Many plant species and/or genotypes are highly recalcitrant to Agrobacterium-mediated genetic transformation, and yet little is known about this phenomenon. Using several Arabidopsis genotypes/ecotypes, the results of this study indicated that phytohormone pretreatment could overcome this recalcitrance by increasing the transformation rate in the known recalcitrant genotypes. Transient expression of a T-DNA encoded ss-glucuronidase (GUS) gene and stable kanamycin resistance were obtained for the ten Arabidopsis genotypes tested as well as for the mutant uvh1 (up to 69% of petioles with blue spots and up to 42% resistant calli). Cultivation of Arabidopsis tissues on phytohormones for 2-8 d before co-cultivation with Agrobacterium tumefaciens significantly increased transient GUS gene expression by 2-11-fold and stable T-DNA integration with petiole explants. Different Arabidopsis ecotypes revealed differences in their susceptibility to Agrobacterium-mediated transformation and in their type of reaction to pre-cultivation (three types of reactions were defined by gathering ecotypes into three groups). The Arabidopsis uvh1 mutant described as defective in a DNA repair system showed slightly lower competence to transformation than did its progenitor Colombia. This reduced transformation competence, however, could be overcome by 4-d pre-culture with phytohormones. The importance of pre-cultivation with phytohormones for genetic transformation is discussed.

  11. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.

    PubMed

    Marshall, Carine M; Tartaglio, Virginia; Duarte, Maritza; Harmon, Frank G

    2016-10-01

    The circadian clock allows plants to anticipate and respond to daily changes in ambient temperature. Mechanisms establishing the timing of circadian rhythms in Arabidopsis thaliana through temperature entrainment remain unclear. Also incompletely understood is the temperature compensation mechanism that maintains consistent period length within a range of ambient temperatures. A genetic screen for Arabidopsis mutants affecting temperature regulation of the PSEUDO-RESPONSE REGULATOR7 promoter yielded a novel allele of the SICKLE (SIC) gene. This mutant, sic-3, and the existing sic-1 mutant both exhibit low-amplitude or arrhythmic expression of core circadian clock genes under cool ambient temperature cycles, but not under light-dark entrainment. sic mutants also lengthen free running period in a manner consistent with impaired temperature compensation. sic mutant alleles accumulate LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) splice variants, among other alternatively spliced transcripts, which is exacerbated by cool temperatures. The cca1-1 lhy-20 double mutant is epistatic to sic-3, indicating the LHY and CCA1 splice variants are needed for sic-3 circadian clock phenotypes. It is not expected that SIC is directly involved in the circadian clock mechanism; instead, SIC likely contributes to pre-mRNA metabolism, and the splice variants that accumulate in sic mutants likely affect the circadian clock response to cool ambient temperature. © 2016 American Society of Plant Biologists. All rights reserved.

  12. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing

    PubMed Central

    Tartaglio, Virginia

    2016-01-01

    The circadian clock allows plants to anticipate and respond to daily changes in ambient temperature. Mechanisms establishing the timing of circadian rhythms in Arabidopsis thaliana through temperature entrainment remain unclear. Also incompletely understood is the temperature compensation mechanism that maintains consistent period length within a range of ambient temperatures. A genetic screen for Arabidopsis mutants affecting temperature regulation of the PSEUDO-RESPONSE REGULATOR7 promoter yielded a novel allele of the SICKLE (SIC) gene. This mutant, sic-3, and the existing sic-1 mutant both exhibit low-amplitude or arrhythmic expression of core circadian clock genes under cool ambient temperature cycles, but not under light-dark entrainment. sic mutants also lengthen free running period in a manner consistent with impaired temperature compensation. sic mutant alleles accumulate LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) splice variants, among other alternatively spliced transcripts, which is exacerbated by cool temperatures. The cca1-1 lhy-20 double mutant is epistatic to sic-3, indicating the LHY and CCA1 splice variants are needed for sic-3 circadian clock phenotypes. It is not expected that SIC is directly involved in the circadian clock mechanism; instead, SIC likely contributes to pre-mRNA metabolism, and the splice variants that accumulate in sic mutants likely affect the circadian clock response to cool ambient temperature. PMID:27624757

  13. Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of Arabidopsis Flavonoid Mutants with Maize Genes1

    PubMed Central

    Dong, Xiaoyun; Braun, Edward L.; Grotewold, Erich

    2001-01-01

    Mutations in the transparent testa (tt) loci abolish pigment production in Arabidopsis seed coats. The TT4, TT5, and TT3 loci encode chalcone synthase, chalcone isomerase, and dihydroflavonol 4-reductase, respectively, which are essential for anthocyanin accumulation and may form a macromolecular complex. Here, we show that the products of the maize (Zea mays) C2, CHI1, and A1 genes complement Arabidopsis tt4, tt5, and tt3 mutants, restoring the ability of these mutants to accumulate pigments in seed coats and seedlings. Overexpression of the maize genes in wild-type Arabidopsis seedlings does not result in increased anthocyanin accumulation, suggesting that the steps catalyzed by these enzymes are not rate limiting in the conditions assayed. The expression of the maize A1 gene in the flavonoid 3′ hydroxylase Arabidopsis tt7 mutant resulted in an increased accumulation of pelargonidin. We conclude that enzymes involved in secondary metabolism can be functionally exchangeable between plants separated by large evolutionary distances. This is in sharp contrast to the notion that the more relaxed selective constrains to which secondary metabolic pathways are subjected is responsible for the rapid divergence of the corresponding enzymes. PMID:11553733

  14. Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s.

    PubMed

    Shukla, Devesh; Tiwari, Manish; Tripathi, Rudra D; Nath, Pravendra; Trivedi, Prabodh Kumar

    2013-05-10

    Phytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding potential of ECs has been demonstrated in bacteria; however, no report has investigated the expression of ECs in plants. We have expressed three synthetic genes encoding ECs of different lengths in wild type (WT) Arabidopsis (Col-0 background) and a phytochelatin-deficient Arabidopsis mutant (cad1-3). After exposure to different heavy metals, the transgenic plants were examined for phenotypic changes, and metal accumulation was evaluated. The expression of EC genes rescued the sensitive phenotype of the cad1-3 mutant under heavy metal(loid) stress. Transgenic Arabidopsis plants expressing EC genes accumulated a significantly enhanced level of heavy metal(loid)s in comparison with the WT plant. The mutant complementation and enhanced heavy metal(loid) accumulation in the transgenic Arabidopsis plants suggest that ECs work in a manner similar to that of PCs in plants and that ECs could be used as an alternative for phytoremediation of heavy metal(loid) exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  16. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  17. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation.

    PubMed Central

    Harlow, G R; Jenkins, M E; Pittalwala, T S; Mount, D W

    1994-01-01

    A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage. PMID:8148646

  18. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation

    PubMed Central

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Schwambach, Joseli; Bellini, Catherine

    2014-01-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process. PMID:24596172

  20. In Vitro Root Development in Arabidopsis Thaliana Wild-Type and scr Mutants under Clinorotation

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Sarnatska, V. V.; Talalaiev, A. S.; Ovcharenko, Y. V.

    2008-06-01

    A task of our experiments was to study in vitro rhizogenesis in Arabidopsis thaliana wild type and scr mutants under slow horizontal clinorotation as a convenient model to clear up a question, whether root morphogenesis de novo will occur normally in simulated microgravity. Two methods for obtaining A. thaliana roots in vitro were used: 1) from the primary callus of leaf origin and 2) directly from leaf explants. Light and electron microscopy and RT-PCR were used for an analysis of the experimental materials. Graviperceptive cells differentiated in roots formed de novo from callus and leaf explants of wild type and scr mutants but did not function under clinorotation. Tissue and cell type patterning in a root proper as well as gene expression in all variants in the control and under clinorotation were similar that gives new evidence on normal morphogenesis in altered gravity. We proposed such model for performing the experiments on board the ISS to study morphogenesis in vitro, including differentiation of graviperceptive cells.

  1. Isolation and characterization of a novel ammonium overly sensitive mutant, amos2, in Arabidopsis thaliana.

    PubMed

    Li, Guangjie; Dong, Gangqiang; Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2012-02-01

    Ammonium (NH(4)(+)) toxicity is a significant agricultural problem globally, compromising crop growth and productivity in many areas. However, the molecular mechanisms of NH(4)(+) toxicity are still poorly understood, in part due to a lack of valuable genetic resources. Here, a novel Arabidopsis mutant, amos2 (ammonium overly sensitive 2), displaying hypersensitivity to NH(4) (+) in both shoots and roots, was isolated. The mutant exhibits the hallmarks of NH(4)(+) toxicity at significantly elevated levels: severely suppressed shoot biomass, increased leaf chlorosis, and inhibition of lateral root formation. Amos2 hypersensitivity is associated with excessive NH(4)(+) accumulation in shoots and a reduction in tissue potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)). We show that the lesion is specific to the NH(4)(+) ion, is independent of NH(4)(+) metabolism, and can be partially rescued by elevated external K(+). The amos2 lesion was mapped to a 16-cM interval on top of chromosome 1, where no similar mutation has been previously mapped. Our study identifies a novel locus controlling cation homeostasis under NH(4)(+) stress and provides a tool for the future identification of critical genes involved in the development of NH(4)(+) toxicity.

  2. The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance.

    PubMed

    Weise, Sean E; Carr, David J; Bourke, Ashley M; Hanson, David T; Swarthout, Debbie; Sharkey, Thomas D

    2015-04-01

    Photosynthetic cells of most land plant lineages have numerous small chloroplasts even though most algae, and even the early diverging land plant group the hornworts, tend to have one or a few large chloroplasts. One constraint that small chloroplasts could improve is the resistance to CO2 diffusion from the atmosphere to the chloroplast stroma. We examined the mesophyll conductance (inverse of the diffusion resistance) of mutant Arabidopsis thaliana plants with one or only a few large chloroplasts per cell. The accumulation and replication of chloroplasts (arc) mutants of A. thaliana were studied by model fitting to gas exchange data and (13)CO2 discrimination during carbon fixation. The two methods generally agreed, but the value of the CO2 compensation point of Rubisco (Γ *) used in the model had a large impact on the estimated photosynthetic parameters, including mesophyll conductance. We found that having only a few large chloroplasts per cell resulted in a 25-50 % reduction in the mesophyll conductance at ambient CO2.

  3. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation

    PubMed Central

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-01-01

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes, but there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells. PMID:24898766

  4. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  5. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin.

    PubMed

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I

    2012-06-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response.

  6. Metabolism of Benzyladenine is Impaired in a Mutant of Arabidopsis thaliana Lacking Adenine Phosphoribosyltransferase Activity 1

    PubMed Central

    Moffatt, Barbara; Pethe, Claude; Laloue, Michel

    1991-01-01

    Formation of the riboside-5′-monophosphate is a general feature of the metabolism of cytokinins in plants. As part of a study of the biological significance of the nucleotide form of cytokinins, we analyzed a mutant of Arabidopsis thaliana deficient in adenine phosphoribosyltransferase (APRT) activity for its ability to metabolize N6-benzyladenine (BA). Formation of N6-benzyladenosine-5′-monophosphate (BAMP) was assayed in vivo, by feeding tritiated BA to wild-type and mutant plantlets, and in crude plantlet extracts. Metabolites were separated by high performance liquid chromatography and quantitated by on-line liquid scintillation spectrometry. BA was rapidly absorbed by A. thaliana plantlets and primarily converted to BAMP and to BA 7- and 9-glucosides. BA was also rapidly absorbed by APRT-deficient plantlets, but its conversion to BAMP was strongly reduced. Formation of BAMP from N6-benzyladenosine was not affected in the mutant plantlets. In vitro conversion of BA to its nucleoside-5′-monophosphate was detected in crude extracts of wild-type plantlets, but not in extracts of APRT-deficient plantlets. Therefore, results of both assays indicate that APRT-deficient tissue does not convert BA to BAMP to a significant extent. Further, nondenaturing isoelectric focusing analysis of APRT activity in leaf extracts indicated that the enzyme activities which metabolize adenine and BA into their corresponding riboside-5′-monophosphate in extracts of wild-type plantlets have the same apparent isoelectric point. These activities were not detected in extracts prepared from APRT-deficient plantlets. Thus, these results demonstrate that APRT is the main enzyme which converts BA to its nucleotide form in young A. thaliana plants and that the ribophosphorylation of BA is not a prerequisite of its absorption by the plantlets. Images Figure 4 PMID:16668070

  7. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  8. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis.

    PubMed

    Ikeuchi, Masahiro; Sato, Fumihiko; Endo, Tsuyoshi

    2016-07-01

    To analyze changes of energy allocation in PSII at non-steady state photosynthesis, the induction and relaxation of non-photochemical quenching of Chl fluorescence was re-evaluated with the use of Arabidopsis thaliana mutants in which the ability to induce non-photochemical quenching was either enhanced (npq2) or suppressed (npq1 and npq4). When dark-treated leaves of the wild type (WT) were illuminated, very high Φf,D, which represents the loss of excitation energy via non-regulated dissipation, at the beginning of light illumination was gradually decreased to the steady-state level. In contrast, ΦNPQ, representing regulated energy dissipation in PSII, was relatively constant after a significant change in the first 10 min. In npq1 and npq4 mutants, lower ΦNPQ resulted in much higher Φf,D than in the WT. Comparison of npq1 and npq4 mutants showed a kinetic difference of two types of non-photochemical quenching. Because non-photochemical quenching calculated as NPQ = Fm - Fm')/Fm' was determined by the interplay between ΦNPQ and Φf,D, NPQ and ΦNPQ, both of which represent regulatory heat dissipation, were not linearly correlated. We showed that the kinetics of NPQ formation in the light and relaxation in the dark were affected by drastic changes in Φf,D We discuss the nature of a high level of Φf,D at the dark-light transition. We also point out an unavoidable problem of applying the energy allocation model when the Fv/Fm value changes during a photoinhibiotry illumination. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Turnover of Fatty Acids during Natural Senescence of Arabidopsis, Brachypodium, and Switchgrass and in Arabidopsis β-Oxidation Mutants1[C][W][OA

    PubMed Central

    Yang, Zhenle; Ohlrogge, John B.

    2009-01-01

    During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 μg per leaf (0.6 μg mg−1 dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of β-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in β-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence. PMID:19561121

  10. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.

    PubMed

    Bross, Crystal D; Corea, Oliver R A; Kaldis, Angelo; Menassa, Rima; Bernards, Mark A; Kohalmi, Susanne E

    2011-08-01

    The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity.

  11. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery

    PubMed Central

    2011-01-01

    Background Arabidopsis thaliana is a useful model organism for deciphering the genetic determinants of seed size; however the small size of its seeds makes measurements difficult. Bulk seed weights are often used as an indicator of average seed size, but details of individual seed is obscured. Analysis of seed images is possible but issues arise from variations in seed pigmentation and shadowing making analysis laborious. We therefore investigated the use of a consumer level scanner to facilitate seed size measurements in conjunction with open source image-processing software. Results By using the transmitted light from the slide scanning function of a flatbed scanner and particle analysis of the resulting images, we have developed a method for the rapid and high throughput analysis of seed size and seed size distribution. The technical variation due to the approach was negligible enabling us to identify aspects of maternal plant growth that contribute to biological variation in seed size. By controlling for these factors, differences in seed size caused by altered parental genome dosage and mutation were easily detected. The method has high reproducibility and sensitivity, such that a mutant with a 10% reduction in seed size was identified in a screen of endosperm-expressed genes. Our study also generated average seed size data for 91 Arabidopsis accessions and identified a number of quantitative trait loci from two recombinant inbred line populations, generated from Cape Verde Islands and Burren accessions crossed with Columbia. Conclusions This study describes a sensitive, high-throughput approach for measuring seed size and seed size distribution. The method provides a low cost and robust solution that can be easily implemented into the workflow of studies relating to various aspects of seed development. PMID:21303553

  12. The Arabidopsis ABHD11 Mutant Accumulates Polar Lipids in Leaves as a Consequence of Absent Acylhydrolase Activity1[OPEN

    PubMed Central

    Vijayakumar, Anitha; Vijayaraj, Panneerselvam; Vijayakumar, Arun Kumar; Rajasekharan, Ram

    2016-01-01

    Alpha/beta hydrolase domain (ABHD)-containing proteins are structurally related with diverse catalytic activities. In various species, some ABHD proteins have been characterized and shown to play roles in lipid homeostasis. However, little is known about ABHD proteins in plants. Here, we characterized AT4G10030 (AtABHD11), an Arabidopsis (Arabidopsis thaliana) homolog of a human ABHD11 gene. In silico analyses of AtABHD11 revealed homology with other plant species with a conserved GXSXG lipid motif. Interestingly, Arabidopsis abhd11 mutant plants exhibited an enhanced growth rate compared with wild-type plants. Quantitative analyses of the total lipids showed that the mutant abhd11 has a high amount of phospholipid and galactolipid in Arabidopsis leaves. The overexpression of AtABHD11 in Escherichia coli led to a reduction in phospholipid levels. The bacterially expressed recombinant AtABHD11 hydrolyzed lyso(phospho)lipid and monoacylglycerol. Furthermore, using whole-genome microarray and real-time PCR analyses of abhd11 and wild-type plants, we noted the up-regulation of MGD1, -2, and -3 and DGD1. Together, these findings suggested that AtABHD11 is a lyso(phospho)lipase. The disruption of AtABHD11 caused the accumulation of the polar lipids in leaves, which in turn promoted a higher growth rate compared with wild-type plants. PMID:26589672

  13. The Arabidopsis ABHD11 Mutant Accumulates Polar Lipids in Leaves as a Consequence of Absent Acylhydrolase Activity.

    PubMed

    Vijayakumar, Anitha; Vijayaraj, Panneerselvam; Vijayakumar, Arun Kumar; Rajasekharan, Ram

    2016-01-01

    Alpha/beta hydrolase domain (ABHD)-containing proteins are structurally related with diverse catalytic activities. In various species, some ABHD proteins have been characterized and shown to play roles in lipid homeostasis. However, little is known about ABHD proteins in plants. Here, we characterized AT4G10030 (AtABHD11), an Arabidopsis (Arabidopsis thaliana) homolog of a human ABHD11 gene. In silico analyses of AtABHD11 revealed homology with other plant species with a conserved GXSXG lipid motif. Interestingly, Arabidopsis abhd11 mutant plants exhibited an enhanced growth rate compared with wild-type plants. Quantitative analyses of the total lipids showed that the mutant abhd11 has a high amount of phospholipid and galactolipid in Arabidopsis leaves. The overexpression of AtABHD11 in Escherichia coli led to a reduction in phospholipid levels. The bacterially expressed recombinant AtABHD11 hydrolyzed lyso(phospho)lipid and monoacylglycerol. Furthermore, using whole-genome microarray and real-time PCR analyses of abhd11 and wild-type plants, we noted the up-regulation of MGD1, -2, and -3 and DGD1. Together, these findings suggested that AtABHD11 is a lyso(phospho)lipase. The disruption of AtABHD11 caused the accumulation of the polar lipids in leaves, which in turn promoted a higher growth rate compared with wild-type plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Effects of gravity on growth phenotype in MAPs mutants of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Higuchi, Sayoko; Kumasaki, Saori; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    Hypergravity suppresses elongation growth and promotes lateral expansion of stem organs in various plants. It has been shown that cortical microtubules are involved in gravity-induced modifications of growth and development. Because microtubule-associated proteins (MAPs) are important in dynamics of microtubules, they may also play a role in the gravity response. In the present study, the roles of MAPs (MOR1, SPR1, SPR2, MAP65, and KTN1) in hypergravityinduced changes in growth and development were examined in Arabidopsis hypocotyls. The expression of MOR1, SPR1, SPR2 , and MAP65 genes was down-regulated, whereas that of KTN1 gene was increased transiently by hypergravity. We analyzed the growth behavior of MAPs mutants (mor1/rid5, spr1-2 , spr2-2, and katanin mutants) under hypergravity conditions. Hypergravity inhibited elongation growth of hypocotyls in spr1-2 as in wild-type. On the other hand, elongation growth of hypocotyls in mor1/rid5, spr2-2, and katanin mutants was suppressed as compared with wild-type under 1 g conditions, and was not affected further by hypergravity stimuli. Hypocotyls of mor1/rid5, spr1-2 , and spr2-2 also showed helical growth even under 1 g conditions, and in mor1/rid5 such a phenotype was intensified under hypergravity conditions. The alignment of cell line was abnormal in hypocotyls of katanin mutants under both 1 g and hypergravity conditions. The orientation of cortical microtubules in wildtype hypocotyls was changed from transverse direction to longitudinal or random directions by hypergravity stimuli. In mor1/rid5 hypocotyls, the orientation of microtubules was random even under 1 g condition, which was not affected by hypergravity. Furthermore, partial disruption of cortical microtubules was observed in mor1/rid5 hypocotyls. These results suggest that MAPs, especially MOR1, play an important role in maintenance of normal growth phenotype against gravity in plants probably via stabilization of microtubule structure.

  15. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis

    DOE PAGES

    Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...

    2015-06-17

    In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less

  16. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis

    SciTech Connect

    Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; Dai, Xuemei; Tian, Hainan; Zheng, Kaijie; Wang, Xiaoping; Mao, Tonglin; Chen, Jin -Gui; Wang, Shucai

    2015-06-17

    In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.

  17. Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis mlo2 Mutant1[C][W][OA

    PubMed Central

    Consonni, Chiara; Bednarek, Paweł; Humphry, Matt; Francocci, Fedra; Ferrari, Simone; Harzen, Anne; Ver Loren van Themaat, Emiel; Panstruga, Ralph

    2010-01-01

    Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens. PMID:20023151

  18. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    PubMed Central

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  19. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels.

    PubMed

    Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph

    2008-05-01

    Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.

  20. The Arabidopsis thiamin deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    PubMed

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-03-27

    Thiamin diphosphate (TPP, vitamin B1) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPP de novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll, and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-GUS activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were up-regulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. This article is protected by copyright. All rights reserved.

  1. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  2. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  3. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  4. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  5. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  6. A no hydrotropic response Root Mutant that Responds Positively to Gravitropism in Arabidopsis1[w

    PubMed Central

    Eapen, Delfeena; Barroso, María Luisa; Campos, María Eugenia; Ponce, Georgina; Corkidi, Gabriel; Dubrovsky, Joseph G.; Cassab, Gladys I.

    2003-01-01

    For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap. PMID:12586878

  7. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin.

    PubMed

    Vandenbussche, Filip; Smalle, Jan; Le, Jie; Saibo, Nelson José Madeira; De Paepe, Annelies; Chaerle, Laury; Tietz, Olaf; Smets, Raphael; Laarhoven, Lucas J J; Harren, Frans J M; Van Onckelen, Harry; Palme, Klaus; Verbelen, Jean-Pierre; Van Der Straeten, Dominique

    2003-03-01

    Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.

  8. PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant.

    PubMed

    Xu, Tengfei; Hiltbrunner, Andreas

    2017-10-06

    Phytochromes are red/far-red light receptors in plants involved in the regulation of growth and development in response to changes in the ambient environment. An important mode of action of plant phytochromes depends on their light-regulated relocation from the cytosol into the nucleus and control of gene expression; in addition, there is also evidence for a cytosolic or plasma membrane associated function of phytochromes in different species. The PHYTOCHROME INTERACTING FACTORs (PIFs) form a subgroup of the bHLH transcription factors and it is well established that PIFs are key components of phytochrome downstream signalling in the nucleus of seed plants. Recent studies identified members of the PIF family also in the liverwort Marchantia polymorpha and the moss Physcomitrella patens. Here, we show that all four potential PIF homologs from Physcomitrella have PIF function when expressed in the Arabidopsis pifQ mutant, which is deficient in multiple PIFs. We propose that PIFs are ancient components of nuclear phytochrome signalling that have emerged in the last common ancestor of today's land plants.

  9. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight.

    PubMed

    Kiss, J Z; Katembe, W J; Edelmann, R E

    1998-04-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  10. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  11. Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition.

    PubMed

    Sadler, Christina; Schroll, Bettina; Zeisler, Viktoria; Waßmann, Friedrich; Franke, Rochus; Schreiber, Lukas

    2016-09-01

    Using (14)C-labeled epoxiconazole as a tracer, cuticular permeability of Arabidopsis thaliana leaves was quantitatively measured in order to compare different wax and cutin mutants (wax2, cut1, cer5, att1, bdg, shn3 and shn1) to the corresponding wild types (Col-0 and Ws). Mutants were characterized by decreases or increases in wax and/or cutin amounts. Permeances [ms(-1)] of Arabidopsis cuticles either increased in the mutants compared to wild type or were not affected. Thus, genetic changes in wax and cutin biosynthesis in some of the investigated Arabidopsis mutants obviously impaired the coordinated cutin and wax deposition at the outer leaf epidermal cell wall. As a consequence, barrier properties of cuticles were significantly decreased. However, increasing cutin and wax amounts by genetic modifications, did not automatically lead to improved cuticular barrier properties. As an alternative approach to the radioactive transport assay, changes in chlorophyll fluorescence were monitored after foliar application of metribuzine, an herbicide inhibiting electron transport in chloroplasts. Since both, half-times of photosynthesis inhibition as well as times of complete inhibition, in fact correlated with (14)C-epoxiconazole permeances, different rates of decline of photosynthetic yield between mutants and wild type must be a function of foliar uptake of the herbicide across the cuticle. Thus, monitoring changes in chlorophyll fluorescence, instead of conducting radioactive transport assays, represents an easy-to-handle and fast alternative evaluating cuticular barrier properties of different genotypes. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  12. A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4.

    PubMed

    Gao, Peng; Li, Xiang; Cui, Dejun; Wu, Limin; Parkin, Isobel; Gruber, Margaret Y

    2010-12-01

    Flavonoids are widely distributed in plants and play important roles in human and animal health and nutrition. Model plants with discernible flavonoid phenotypes, such as Arabidopsis seed patterning lines, are valuable tools that can provide avenues for understanding flavonoid and proanthocyanidin accumulation patterns in crops. Here, we characterize the GARP family gene, KAN4, which earlier was known for its role in defining the boundary of the seed integument layers in Arabidopsis. In this report, KAN4 is shown to broadly control the flavonoid pathway in Arabidopsis seed. Loss-of-function T-DNA mutants show reduced transcript abundance for most flavonoid and proanthocyanidin genes in young siliques and decreased flavonols and variable proanthocyanidin content in mature seed. KAN4 was localized to the nucleus and could specifically bind with promoters of early and late flavonoid biosynthetic genes and PA regulatory genes. Activated over-expression of KAN4 led to the discovery of the first novel dominant Arabidopsis transparent testa mutant, sk21-D. Two KAN4 transcript splice variants with identical MYB-like B-motifs were highly expressed in sk21-D and equivalently designed activation atk4-OE lines. This extreme dual expression resulted in large, light- and dark-coloured patches on seed coats of sk21-D and atk4-OE lines, but not in non-activated over-expression lines. Flavonoid and proanthocyanidin contents and transcript amounts for genes involved in flavonoid biosynthesis also were reduced in KAN4 activation lines. These results confirm that KAN4 is a regulatory protein which modulates the content of flavonols and PA in Arabidopsis seeds. © 2010 Crown in the right of Canada. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  13. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing

    NASA Technical Reports Server (NTRS)

    Caspar, T.; Pickard, B. G.

    1989-01-01

    The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10 degrees curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 g, compared with 14 degrees in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70-80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.

  14. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing

    NASA Technical Reports Server (NTRS)

    Caspar, T.; Pickard, B. G.

    1989-01-01

    The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10 degrees curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 g, compared with 14 degrees in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70-80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.

  15. Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress

    PubMed Central

    Kumar, Deepak; Hazra, Saptarshi; Datta, Riddhi; Chattopadhyay, Sharmila

    2016-01-01

    The involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione. Microarray experiment revealed the differential regulation of about 2313 and 4131 transcripts in ein2 (ethylene insensitive mutant) and aba1.6 (abscisic acid mutant) respectively. Functional analysis exposed common down-regulated stress and defence, secondary metabolite biosynthesis viz. phenylpropanoid, lignin and flavonols, redox and transcription factors related genes in ein2, aba1.6 and pad2.1 (glutathione mutant) in response to combined stress treatment. The reduced glutathione content was less in stress treated mutants in comparison to Col-0. Again, selective down-regulated transcripts in stress treated mutants were noted up-regulated after glutathione feeding. Some of the important differentially expressed genes were also validated by comparative proteomics analysis of stress treated mutants. In summary, our results suggested the role of ethylene and abscisic acid in inducing stress-responsive genes and proteins by activating glutathione biosynthesis to combat abiotic stress conditions in plant system. PMID:27845361

  16. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity.

    PubMed

    Peterson, R B; Havir, E A

    2000-01-01

    Higher-plant chloroplasts alter the distribution of absorbed radiant energy between photosynthesis and heat formation in response to changing illumination level or environmental stress. Fluorescence imaging was used to screen 62 yellow-green T-DNA insertion mutant lines of Arabidopsis thaliana (L.) Heynh. for reduced photoprotective nonphotochemical quenching (NPQ) capacity. Pulse-modulation fluorometry was employed to characterize one line (denoted Lsr1(-)) that exhibited an approximately 50% reduction in NPQ compared to the wild type (WT). The loss in NPQ capacity was associated with the DeltapH-dependent phase of quenching (qE). Under the growth conditions employed, pigment composition and levels of the six photosystem-II light-harvesting chlorophyll a/b proteins were identical in mutant and WT. Changes in the in-vivo levels of the xanthophyll pigments violaxanthin, antheraxanthin, and zeaxanthin in excess light were the same for mutant and WT. However, use of the violaxanthin de-epoxidase inhibitor dithiothreitol indicated that a zeaxanthin-dependent component of NPQ was specifically reduced in the mutant. The mutant exhibited diminished suppression of minimum fluorescence yield (F(o)) in intense light suggesting an altered threshold in the mechanism of response to light stress in the mutant. The NPQ-deficient phenotype was meiotically transmissible as a semidominant trait and mapped near marker T27K12 on chromosome 1. The results suggest that the mutant is defective in sensing the transthylakoid DeltapH that reports exposure to excessive illumination.

  17. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure.

    PubMed

    Ali, Imran; Jan, Mehmood; Wakeel, Abdul; Azizullah, Azizullah; Liu, Bohan; Islam, Faisal; Ali, Abid; Daud, M K; Liu, Yihua; Gan, Yinbo

    2017-10-01

    Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    PubMed Central

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  19. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  20. The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity.

    PubMed

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-08-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity.

  1. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins.

    PubMed

    Satou, Masakazu; Enoki, Harumi; Oikawa, Akira; Ohta, Daisaku; Saito, Kazunori; Hachiya, Takushi; Sakakibara, Hitoshi; Kusano, Miyako; Fukushima, Atsushi; Saito, Kazuki; Kobayashi, Masatomo; Nagata, Noriko; Myouga, Fumiyoshi; Shinozaki, Kazuo; Motohashi, Reiko

    2014-07-01

    We used four mutants having albino or pale green phenotypes with disrupted nuclear-encoded chloroplast proteins to analyze the regulatory system of metabolites in chloroplast. We performed an integrated analyses of transcriptomes and metabolomes of the four mutants. Transcriptome analysis was carried out using the Agilent Arabidopsis 2 Oligo Microarray, and metabolome analysis with two mass spectrometers; a direct-infusion Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR/MS) and a gas chromatograph-time of flight mass spectrometer. Among approximately 200 known metabolites detected by the FT-ICR/MS, 71 metabolites showed significant changes in the mutants when compared with controls (Ds donor plants). Significant accumulation of several amino acids (glutamine, glutamate and asparagine) was observed in the albino and pale green mutants. Transcriptome analysis revealed altered expressions of genes in several metabolic pathways. For example, genes involved in the tricarboxylic acid cycle, the oxidative pentose phosphate pathway, and the de novo purine nucleotide biosynthetic pathway were up-regulated. These results suggest that nitrogen assimilation is constitutively promoted in the albino and pale green mutants. The accumulation of ammonium ions in the albino and pale green mutants was consistently higher than in Ds donor lines. Furthermore, genes related to pyridoxin accumulation and the de novo purine nucleotide biosynthetic pathway were up-regulated, which may have occurred as a result of the accumulation of glutamine in the albino and pale green mutants. The difference in metabolic profiles seems to be correlated with the disruption of chloroplast internal membrane structures in the mutants. In albino mutants, the alteration of metabolites accumulation and genes expression is stronger than pale green mutants.

  2. Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation.

    PubMed

    Bakshi, Madhunita; Sherameti, Irena; Meichsner, Doreen; Thürich, Johannes; Varma, Ajit; Johri, Atul K; Yeh, Kai-Wun; Oelmüller, Ralf

    2017-01-01

    Piriformospora indica is an endophytic fungus of Sebacinaceae which colonizes the roots of many plant species and confers benefits to the hosts. We demonstrate that approximately 75% of the genes, which respond to P. indica in Arabidopsis roots, differ among seedlings grown on normal phosphate (Pi) or Pi limitation conditions, and among wild-type and the wrky6 mutant impaired in the regulation of the Pi metabolism. Mapman analyses suggest that the fungus activates different signaling, transport, metabolic and developmental programs in the roots of wild-type and wrky6 seedlings under normal and low Pi conditions. Under low Pi, P. indica promotes growth and Pi uptake of wild-type seedlings, and the stimulatory effects are identical for mutants impaired in the PHOSPHATE TRANSPORTERS1;1, -1;2 and -1;4. The data suggest that the fungus does not stimulate Pi uptake, but adapts the expression profiles to Pi limitation in Pi metabolism mutants.

  3. A Cytosolic Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued Arabidopsis Seed Oil Catabolism Mutants1[W][OA

    PubMed Central

    Hernández, M. Luisa; Whitehead, Lynne; He, Zhesi; Gazda, Valeria; Gilday, Alison; Kozhevnikova, Ekaterina; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2012-01-01

    Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the β-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase. PMID:22760209

  4. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    PubMed Central

    Singh, Sunil K; Fischer, Urs; Singh, Manoj; Grebe, Markus; Marchant, Alan

    2008-01-01

    Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procuste1 (prc1-1) cellulose synthase mutant was studied in order to investigate the role of the cell wall loosening during the early stages of hair formation. Results The prc1-1 mutant exhibits uncontrolled, preferential bulging of trichoblast cells coupled with mislocalised hair positioning. Combining the prc1-1 mutant with root hair defective6-1 (rhd6-1), which on its own is almost completely devoid of root hairs results in a significant restoration of root hair formation. The pEXPANSIN7::GFP (pEXP7::GFP) marker which is specifically expressed in trichoblast cell files of wild-type roots, is absent in the rhd6-1 mutant. However, pEXP7::GFP expression in the rhd6-1/prc1-1 double mutant is restored in a subset of epidermal cells which have either formed a root hair or exhibit a bulged phenotype consistent with a function for EXP7 during the early stages of hair formation. Conclusion These results show that RHD6 acts upstream of the normal cell wall loosening event which involves EXP7 expression and that in the absence of a functional RHD6 the loosening and accompanying EXP7 expression is blocked. In the prc1-1 mutant background, the requirement for RHD6 during hair initiation is reduced which may result from a weaker cell wall structure mimicking the cell wall loosening events during hair formation. PMID:18485206

  5. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  6. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  7. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    Mutants of Arabidopsis thaliana deficient in plastid glycerol-3-phosphate acyltransferase activity have altered chloroplast membrane lipid composition. This caused an increase in the number of regions of appressed membrane per chloroplast and a decrease in the average number of thylakoid membranes in the appressed regions. The net effect was a significant decrease in the ratio of appressed to nonappressed membranes. A comparison of 77 K fluorescence emission spectra of thylakoid membranes from the mutant and wild type indicated that the ultrastructural changes were associated with an altered distribution of excitation energy transfer from antenna chlorophyll to photosystem II and photosystem I in the mutant. The changes in leaf lipid composition did not significantly affect growth or development of the mutant under standard conditions. However, at temperatures above 28{degree}C the mutant grew slightly more rapidly than the wild type, and measurements of temperature-induced fluorescence yield enhancement suggested an increased thermal stability of the photosynthetic apparatus of the mutant. These effects are consistent with other evidence suggesting that membrane lipid composition is an important determinant of chloroplast structure but has relatively minor direct effects on the function of the membrane proteins associated with photosynthetic electron transport.

  8. Genetic analysis of Arabidopsis mutants impaired in plastid lipid import reveals a role of membrane lipids in chloroplast division.

    PubMed

    Fan, Jilian; Xu, Changcheng

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed. :

  9. Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L. ) deficient in chloroplast phosphoglucomutase activity

    SciTech Connect

    Caspar, T.; Huber, S.C.; Somerville, C.

    1985-09-01

    A mutant of Arabidopsis thaliana (L.) Heynh. which lacks leaf starch was isolated by screening for plants which did not stain with iodine. When grown in a 12-h photoperiod, leaves of the wild-type accumulated substantial amounts of starch but lower levels of soluble sugars. Under these conditions, the mutant accumulated relatively high levels of soluble sugars. Rates of growth and net photosynthesis of the mutant and wild-type were indistinguishable when the plants were grown in constant illumination. However, in a short photoperiod, the growth of the mutant was severely impaired, the rate of photosynthesis was depressed relative to the wild-type, and the rate of dark respiration, which was high following the onset of darkness, exhibited an uncharacteristic decay throughout the dark period. The depressed photosynthetic capacity of the mutant may also reflect a metabolic adaptation to the accumulation of high levels of soluble carbohydrate which mimics the effects of alterations in source/sink ratio. The activities of sucrose phosphate synthase and acid invertase are significantly higher in the mutant than in the wild-type whereas ADP-glucose pyrophosphorylase activity is lower. This suggests that the activities of these enzymes may be modulated in response to metabolite concentrations or flux through the pathways.

  10. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    SciTech Connect

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  11. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2.

    PubMed

    Dugard, Christopher K; Mertz, Rachel A; Rayon, Catherine; Mercadante, Davide; Hart, Christopher; Benatti, Matheus R; Olek, Anna T; SanMiguel, Phillip J; Cooper, Bruce R; Reiter, Wolf-Dieter; McCann, Maureen C; Carpita, Nicholas C

    2016-07-01

    Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP.

  12. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle.

    PubMed

    Elena López-Calcagno, Patricia; Omar Abuzaid, Amani; Lawson, Tracy; Anne Raines, Christine

    2017-04-01

    CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin-Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle

    PubMed Central

    Elena López-Calcagno, Patricia; Omar Abuzaid, Amani; Lawson, Tracy

    2017-01-01

    Abstract CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin–Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity. PMID:28430985

  14. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network

    PubMed Central

    2012-01-01

    Background The Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known. Results In this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT) ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated) SPL15 (SPL15m) largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n) and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro interaction between DNA

  15. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter

    PubMed Central

    Wippel, Kathrin; Sauer, Norbert

    2012-01-01

    Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H+ symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully. PMID:22021573

  16. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization.

    PubMed

    Gonzalez, Kim L; Fleming, Wendell A; Kao, Yun-Ting; Wright, Zachary J; Venkova, Savina V; Ventura, Meredith J; Bartel, Bonnie

    2017-10-01

    Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers.

    PubMed

    North, Helen M; De Almeida, Aurélie; Boutin, Jean-Pierre; Frey, Anne; To, Alexandra; Botran, Lucy; Sotta, Bruno; Marion-Poll, Annie

    2007-06-01

    A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a screen for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced endogenous ABA levels in both dehydrated rosettes and seeds. Carotenoid composition analysis demonstrated that the defective locus affects neoxanthin synthesis. The ABA4 gene was identified by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has four putative helical transmembrane domains and shows significant similarity to predicted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis transgenic plants led to increased accumulation of trans-neoxanthin, indicating that the ABA4 protein has a direct role in neoxanthin synthesis. aba4 mutant phenotypes were mild compared with previously identified ABA-deficient mutants that exhibit vegetative tissue phenotypes. Indeed, ABA levels in seeds of aba4 mutants were higher than those of aba1 mutants. As aba1 mutants are also affected in a unique gene, this suggests that ABA can be produced in the aba4 mutant by an alternative pathway using violaxanthin as a substrate. It appears, therefore, that in Arabidopsis both violaxanthin and neoxanthin are in vivo substrates for 9-cis-epoxycarotenoid dioxygenases. Furthermore, significantly reduced levels of ABA were synthesized in the aba4 mutant on dehydration, demonstrating that ABA biosynthesis in response to stress must occur mainly via neoxanthin isomer precursors.

  18. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    PubMed Central

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  19. The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans.

    PubMed

    Silady, Rebecca A; Kato, Takehide; Lukowitz, Wolfgang; Sieber, Patrick; Tasaka, Masao; Somerville, Chris R

    2004-10-01

    The gravitropism defective 2 (grv2) mutants of Arabidopsis show reduced shoot phototropism and gravitropism. Amyloplasts in the shoot endodermal cells of grv2 do not sediment to the same degree as in wild type. The GRV2 gene encodes a 277-kD polypeptide that is 42% similar to the Caenorhabditis elegans RME-8 protein, which is required for endocytosis. We hypothesize that a defect in endocytosis may affect both the initial gravity sensing via amyloplasts sedimentation and the subsequent more general tropic growth response.

  20. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    PubMed

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  1. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes.

    PubMed

    Schlüter, Urte; Muschak, Michael; Berger, Dieter; Altmann, Thomas

    2003-02-01

    In the Arabidopsis mutant sdd1-1, a point mutation in a single gene (SDD1) causes specific alterations in stomatal density and distribution. In comparison to the wild type (C24), abaxial surfaces of sdd1-1 rosette leaves have about 2.5-fold higher stomatal densities. This mutant was used to study the consequence of stomatal density on photosynthesis under various light regimes. The increased stomatal density in the mutant had no significant influence on the leaf CO(2) assimilation rate (A) under constant light conditions. Mutant and wild-type plants contained similar amounts of carbohydrates under these conditions. However, exposure of plants to increasing photon flux densities resulted in differences in gas exchange and the carbohydrate metabolism of the wild type and mutant. Increased stomatal densities in sdd1-1 enabled low-light-adapted plants to have 30% higher CO(2) assimilation rates compared to the wild type when exposed to high light intensities. After 2 d under high light conditions leaves of sdd1-1 accumulated 30% higher levels of starch and hexoses than wild-type plants.

  2. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis

    PubMed Central

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2017-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: −6°C for 2 h with prior 4°C for 7 d, cold shock group: −6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  3. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis.

    PubMed

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2016-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: -6°C for 2 h with prior 4°C for 7 d, cold shock group: -6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  4. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis.

  5. Carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status.

    PubMed

    Rohde, A; Grunau, C; De Beck, L; Van Montagu, M; Rosenthal, A; Boerjan, W

    1999-09-01

    The carpel (car) mutation affects the morphology of reproductive organs in Arabidopsis thaliana. car flowers have an increased number of carpels, on average 2.7 +/- 0.8 instead of two in the wild type. Through allelism test with fon1-3 and analysis of the methylation state of the SUPERMAN (SUP) gene in car mutants, we show that car is an epi-mutation of SUP. The methylation pattern of car is clearly distinct from that of fon1-3, another epi-mutation of the SUP gene. Methylation was found predominantly in Cp(A/T)p(A/G) triplets and in CpG pairs. We suggest that the extensive SUP methylation in car has arisen from an abundant methylation of a single CpG site that was already present in abscisic acid-insensitive (abi3-4) mutants, from which car was segregating.

  6. Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata

    PubMed Central

    de Marcos, Alberto; Triviño, Magdalena; Pérez-Bueno, María Luisa; Ballesteros, Isabel; Barón, Matilde; Mena, Montaña; Fenoll, Carmen

    2015-01-01

    Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up−regulated in mute−3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute−3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of

  7. Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.

    PubMed

    de Marcos, Alberto; Triviño, Magdalena; Pérez-Bueno, María Luisa; Ballesteros, Isabel; Barón, Matilde; Mena, Montaña; Fenoll, Carmen

    2015-01-01

    Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up-regulated in mute-3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute-3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of stomata.

  8. Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis

    SciTech Connect

    Lonien, J.; Schwender, J.

    2009-11-01

    Major storage reserves of Arabidopsis (Arabidopsis thaliana) seeds are triacylglycerols (seed oils) and proteins. Seed oil content is severely reduced for the regulatory mutant wrinkled1 (wri1-1; At3g54320) and for a double mutant in two isoforms of plastidic pyruvate kinase (pkp{beta}{sub 1}pkp{alpha}; At5g52920 and At3g22960). Both already biochemically well-characterized mutants were now studied by {sup 13}C metabolic flux analysis of cultured developing embryos based on comparison with their respective genetic wild-type backgrounds. For both mutations, in seeds as well as in cultured embryos, the oil fraction was strongly reduced while the fractions of proteins and free metabolites increased. Flux analysis in cultured embryos revealed changes in nutrient uptakes and fluxes into biomass as well as an increase in tricarboxylic acid cycle activity for both mutations. While in both wild types plastidic pyruvate kinase (PK{sub p}) provides most of the pyruvate for plastidic fatty acid synthesis, the flux through PK{sub p} is reduced in pkp{beta}{sub 1}pkp{alpha} by 43% of the wild-type value. In wri1-1, PK{sub p} flux is even more reduced (by 82%), although the genes PKp{beta}{sub 1} and PKp{alpha} are still expressed. Along a common paradigm of metabolic control theory, it is hypothesized that a large reduction in PK{sub p} enzyme activity in pkp{beta}{sub 1}pkp{alpha} has less effect on PK{sub p} flux than multiple smaller reductions in glycolytic enzymes in wri1-1. In addition, only in the wri1-1 mutant is the large reduction in PK{sub p} flux compensated in part by an increased import of cytosolic pyruvate and by plastidic malic enzyme. No such limited compensatory bypass could be observed in pkp{beta}{sub 1}pkp{alpha}.

  9. dhm1, an Arabidopsis mutant with increased sensitivity to alkamides shows tumorous shoot development and enhanced lateral root formation.

    PubMed

    Pelagio-Flores, Ramón; Ortiz-Castro, Randy; López-Bucio, José

    2013-04-01

    The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.

  10. Expression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars.

    PubMed

    Arend, Matthias; Schnitzler, Jörg-Peter; Ehlting, Barbara; Hänsch, Robert; Lange, Theo; Rennenberg, Heinz; Himmelbach, Axel; Grill, Erwin; Fromm, Jörg

    2009-12-01

    The consequences of altered abscisic acid (ABA) sensitivity in gray poplar (Populus x canescens [Ait.] Sm.) development were examined by ectopic expression of the Arabidopsis (Arabidopsis thaliana) mutant abi1 (for abscisic acid insensitive1) gene. The expression resulted in an ABA-insensitive phenotype revealed by a strong tendency of abi1 poplars to wilt, impaired responsiveness of their stomata to ABA, and an ABA-resistant bud outgrowth. These plants therefore required cultivation under very humid conditions to prevent drought stress symptoms. Morphological alterations became evident when comparing abi1 poplars with poplars expressing Arabidopsis nonmutant ABI1 or wild-type plants. abi1 poplars showed increased stomatal size, enhanced shoot growth, and retarded leaf and root development. The increased stomatal size and its reversion to the size of wild-type plants by exogenous ABA indicate a role for ABA in regulating stomatal development. Enhanced shoot growth and retarded leaf and root development support the hypothesis that ABA acts independently from drought stress as a negative regulator of growth in shoots and as a positive regulator of growth in leaves and roots. In shoots, we observed an interaction of ABA with ethylene: abi1 poplars exhibited elevated ethylene production, and the ethylene perception inhibitor Ag(+) antagonized the enhanced shoot growth. Thus, we provide evidence that ABA acts as negative regulator of shoot growth in nonstressed poplars by restricting ethylene production. Furthermore, we show that ABA has a role in regulating shoot branching by inhibiting lateral bud outgrowth.

  11. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant.

    PubMed Central

    Staswick, P E; Su, W; Howell, S H

    1992-01-01

    Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), are plant signaling molecules that affect plant growth and gene expression. Primary root growth of wild-type Arabidopsis thaliana seedlings was inhibited 50% when seedlings were grown on agar medium containing 0.1 M MeJA. An ethyl methanesulfonate mutant (jar1) with decreased sensitivity to MeJA inhibition of root elongation was isolated and characterized. Genetic data indicated the trait was recessive and controlled by a single Mendelian factor. MeJA-induced polypeptides were detected in Arabidopsis leaves by antiserum to a MeJA-inducible vegetative storage protein from soybean. The induction of these proteins by MeJA in the mutant was at least 4-fold less in jar1 compared to wild type. In contrast, seeds of jar1 plants were more sensitive than wild type to inhibition of germination by abscisic acid. These results suggest that the defect in jar1 affects a general jasmonate response pathway, which may regulate multiple genes in different plant organs. Images PMID:11607311

  12. Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata

    PubMed Central

    González-Solís, Ariadna; Cano-Ramírez, Dora L.; Morales-Cedillo, Francisco; Tapia de Aquino, Cinthya; Gavilanes-Ruiz, Marina

    2013-01-01

    Plasmodesmata—intercellular channels that communicate adjacent cells—possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomain features is based on the use of Arabidopsis mutants in sphingolipid synthesis. Sphingolipids are canonical components of microdomains together with sterols and some glycerolipids. Moreover, sphingolipids are transducers in pathways that display programmed cell death as a defense mechanism against pathogens. The study of Arabidopsis mutants would allow determining which structural features of the sphingolipids are important for the formation and stability of microdomains, and if defense signaling networks using sphingoid bases as second messengers are associated to plasmodesmata operation. Such studies need to be complemented by analysis of the ultrastructure and the use of protein probes for plasmodesmata microdomains and may constitute a very valuable source of information to analyze these membrane structures. PMID:24478783

  13. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    PubMed Central

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  14. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

    PubMed

    Thatcher, Louise F; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D G; Manners, John M; Kazan, Kemal

    2016-04-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.

  15. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  16. The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance

    PubMed Central

    Shi, Huazhong; Xiong, Liming; Stevenson, Becky; Lu, Tiegang; Zhu, Jian-Kang

    2002-01-01

    Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na+, K+, and Li+ ions. Under NaCl stress, sos4 plants accumulate more Na+ and retain less K+ compared with wild-type plants. SOS4 encodes a pyridoxal kinase that is involved in the biosynthesis of pyridoxal-5-phosphate, an active form of vitamin B6. The expression of SOS4 cDNAs complements an Escherichia coli mutant defective in pyridoxal kinase. Supplementation of pyridoxine but not pyridoxal in the growth medium can partially rescue the sos4 defect in salt tolerance. SOS4 is expressed ubiquitously in all plant tissues. As a result of alternative splicing, two transcripts are derived from the SOS4 gene, the relative abundance of which is modulated by development and environmental stresses. Besides being essential cofactors for numerous enzymes, as shown by pharmacological studies in animal cells, pyridoxal-5-phosphate and its derivatives are also ligands for P2X receptor ion channels. Our results demonstrate that pyridoxal kinase is a novel salt tolerance determinant important for the regulation of Na+ and K+ homeostasis in plants. We propose that pyridoxal-5-phosphate regulates Na+ and K+ homeostasis by modulating the activities of ion transporters. PMID:11910005

  17. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis.

    PubMed

    Porfirova, Svetlana; Bergmuller, Eveline; Tropf, Susanne; Lemke, Rainer; Dormann, Peter

    2002-09-17

    Tocopherol (vitamin E) is a plant chloroplast lipid presumed to be involved in the response to oxidative stress. A tocopherol-deficient mutant (vte1) was isolated from Arabidopsis thaliana by using a TLC-based screening approach. Mutant plants lacked all four tocopherol forms and were deficient in tocopherol cyclase activity. Genetic mapping of vte1 and a genomics-based approach led to the identification of the ORF At4g32770 as a candidate gene for tocopherol cyclase. In vte1, At4g32770 contains a splicing site mutation and the corresponding mRNA expression is reduced. Expression of VTE1 in Escherichia coli resulted in the production of a protein with high tocopherol cyclase and tocotrienol cyclase activity. The VTE1 sequence shows no similarities to genes with known function, but is similar to that of SXD1, a gene that was recently isolated based on the availability of the sucrose export defective1 maize mutant (sxd1). Growth of the vte1 mutant, chlorophyll content, and photosynthetic quantum yield were similar to wild type under optimal growth conditions. Therefore, absence of tocopherol has no large impact on photosynthesis or plant viability, suggesting that other antioxidants can compensate for the loss of tocopherol. During photo-oxidative stress, chlorophyll content and photosynthetic quantum yield were slightly reduced in vte1 as compared with wild type indicating a potential role for tocopherol in maintaining an optimal photosynthesis rate under high-light stress.

  18. Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of Arabidopsis germination and seedling growth.

    PubMed

    Nishimura, Noriyuki; Yoshida, Tomo; Murayama, Maki; Asami, Tadao; Shinozaki, Kazuo; Hirayama, Takashi

    2004-10-01

    To gain more insight into ABA signaling mechanisms, we conducted genetic screens searching for mutants with altered ABA response in germination and post-germination growth. We isolated seven putative ABA-hypersensitive Arabidopsis mutants and named them ABA-hypersensitive germination (ahg). These mutants exhibited diminished germination or growth ability on medium supplemented with ABA. We further studied four of them: ahg1, ahg2, ahg3 and ahg4. Mapping suggested that they were new ABA-hypersensitive loci. Characterization showed that all of them had enhanced sensitivity to salinity and high osmotic stress in germinating seeds, whereas they each had distinct sugar responses. RT-PCR experiments showed that the expression patterns of the ABA-inducible genes RAB18, AtEm1, AtEm6 and ABI5 in germinating seeds were affected by these four ahg mutations, whereas those of ABI3 and ABI4 were not. ahg4 displayed slightly increased mRNA levels of several ABA-inducible genes upon ABA treatment. By contrast, ahg1 had no clear ABA-hypersensitive phenotypes in adult plants despite its strong phenotype in germination. These results suggest that ahg1, ahg2, ahg3 and ahg4 are novel ABA-hypersensitive mutants representing distinct components in the ABA response.

  19. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway.

    PubMed

    Lancien, Muriel; Martin, Melinda; Hsieh, Ming-Hsiun; Leustek, Tom; Goodman, Howard; Coruzzi, Gloria M

    2002-02-01

    The physiological role of the NADH-dependent glutamine-2-oxoglutarate aminotransferase (NADH-GOGAT) enzyme was addressed in Arabidopsis using gene expression analysis and by the characterization of a knock-out T-DNA insertion mutant (glt1-T) in the single NADH-GOGAT GLT1 gene. The NADH-GOGAT GLT1 mRNA is expressed at higher levels in roots than in leaves. This expression pattern contrasts with GLU1, the major gene encoding Fd-GOGAT, which is most highly expressed in leaves and is involved in photorespiration. These distinct organ-specific expression patterns suggested a non-redundant physiological role for the NADH-GOGAT and Fd-GOGAT gene products. To test the in vivo function of NADH-GOGAT, we conducted molecular and physiological analysis of the glt1-T mutant, which is null for NADH-GOGAT, as judged by mRNA level and enzyme activity. Metabolic analysis showed that the glt1-T mutant has a specific defect in growth and glutamate biosynthesis when photorespiration was repressed by 1% CO2. Under these conditions, the glt1-T mutant displayed a 20% decrease in growth and a dramatic 70% reduction in glutamate levels. Herein, we discuss the significance of NADH-GOGAT in non-photorespiratory ammonium assimilation and in glutamate synthesis required for plant development.

  20. A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry

    PubMed Central

    2011-01-01

    Background Efficient high throughput screening systems of useful mutants are prerequisite for study of plant functional genomics and lots of application fields. Advance in such screening tools, thanks to the development of analytic instruments. Direct analysis in real-time (DART)-mass spectrometry (MS) by ionization of complex materials at atmospheric pressure is a rapid, simple, high-resolution analytical technique. Here we describe a rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by DART-MS. Results To determine whether this DART-MS combined by multivariate analysis can perform genetic discrimination based on global metabolic profiling, intact Arabidopsis thaliana mutant seeds were subjected to DART-MS without any sample preparation. Partial least squares-discriminant analysis (PLS-DA) of DART-MS spectral data from intact seeds classified 14 different lines of seeds into two distinct groups: Columbia (Col-0) and Landsberg erecta (Ler) ecotype backgrounds. A hierarchical dendrogram based on partial least squares-discriminant analysis (PLS-DA) subdivided the Col-0 ecotype into two groups: mutant lines harboring defects in the phenylpropanoid biosynthetic pathway and mutants without these defects. These results indicated that metabolic profiling with DART-MS could discriminate intact Arabidopsis seeds at least ecotype level and metabolic pathway level within same ecotype. Conclusion The described DART-MS combined by multivariate analysis allows for rapid screening and metabolic characterization of lots of Arabidopsis mutant seeds without complex metabolic preparation steps. Moreover, potential novel metabolic markers can be detected and used to clarify the genetic relationship between Arabidopsis cultivars. Furthermore this technique can be applied to predict the novel gene function of metabolic mutants regardless of morphological phenotypes. PMID:21658279

  1. Dissection of the Complex Phenotype in Cuticular Mutants of Arabidopsis Reveals a Role of SERRATE as a Mediator

    PubMed Central

    Voisin, Derry; Nawrath, Christiane; Kurdyukov, Sergey; Franke, Rochus B.; Reina-Pinto, José J.; Efremova, Nadia; Will, Isa; Schreiber, Lukas; Yephremov, Alexander

    2009-01-01

    Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA–processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway. PMID:19876373

  2. Auxin transport in an auxin-resistant mutant of arabidopsis thaliana

    SciTech Connect

    Lincoln, C.; Benning, C.; Estelle, M.

    1987-04-01

    The authors are studying a group of allelic recessive mutations in Arabidopsis called axr-1. Homozygous axr-1 plants are resistant to exogenously applied auxin. In addition, axr-1 mutations all confer a number of development abnormalities including an apparent reduction in apical dominance, loss of normal geotropic response, and a failure to self-fertilize due to a decrease in stamen elongation. In order to determine whether this pleiotropic phenotype is due to an alteration in auxin transport they have adapted the agar block transport assay for use in Arabidopsis stem segments. Their results indicate that as in other plant species, auxin transport is strongly polar in Arabidopsis stem segments. In addition transport is inhibited by the well characterized auxin transport inhibitor N-1-naphthylphthalamic acid and the artificial auxin 2,4-D. These results as well as the characterization of transport in axr-1 plants will be presented.

  3. Membrane function in lipid mutants of Arabidopsis. First year progress report

    SciTech Connect

    Browse, J.A.

    1993-06-01

    Progress on the biochemical characterization of the fad3 mutants deficient in 18:3 fatty acid synthesis and the fab2 mutant that accumulates increased amounts of 18:0 is described. Studies of the cell biology and physiology of the fab2 and fad2 mutants have provided evidence for some of the critical roles played by unsaturated fatty acids as components of plant membranes. Finally, the fab2 mutant has allowed us to carry out the first isolation and characterization of intergenic suppressor mutations in a higher plant.

  4. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant.

    PubMed

    Sudre, Damien; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Rellán-Álvarez, Rubén; Gaymard, Frédéric; Wohlgemuth, Gert; Fiehn, Oliver; Alvarez-Fernández, Ana; Zamarreño, Angel M; Bacaicoa, Eva; Duy, Daniela; García-Mina, Jose-María; Abadía, Javier; Philippar, Katrin; López-Millán, Ana-Flor; Briat, Jean-François

    2013-07-01

    Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe-haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions.

  5. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant

    PubMed Central

    Sudre, Damien; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Rellán-Álvarez, Rubén; Gaymard, Frédéric; Wohlgemuth, Gert; Fiehn, Oliver; Álvarez-Fernández, Ana; Zamarreño, Angel M.; Bacaicoa, Eva; Duy, Daniela; García-Mina, Jose-María; Abadía, Javier; Philippar, Katrin; López-Millán, Ana-Flor; Briat, Jean-François

    2013-01-01

    Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe–haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions. PMID:23682113

  6. Cell growth and homeostasis are disrupted in arabidopsis rns2-2 mutants missing the main vacuolar RNase activity.

    PubMed

    Morriss, Stephanie C; Liu, Xiaoyi; Floyd, Brice E; Bassham, Diane C; MacIntosh, Gustavo C

    2017-09-14

    Enzymes belonging to the RNase T2 family are essential for normal rRNA turnover in eukaryotes. In Arabidopsis thaliana, this function is performed by RNS2. The null mutant rns2-2 has increased rRNA half-life and constitutive autophagy. The aim of this work was to determine the molecular changes that take place in the rns2-2 mutant that may lead to altered cellular homeostasis, manifested by the observed cellular phenotype. To determine the effect of defective rRNA turnover on cellular homeostasis, comparative transcriptome and metabolome analyses of 10-day-old wild-type and rns2-2 seedlings were used to identify molecular processes affected in the mutant. Bioinformatics analyses suggested additional phenotypes that were confirmed through direct plant size measurements and microscopy. Few genes were differentially expressed in the rns2-2 mutant, indicating that control of autophagy in this genotype is mainly achieved at the post-transcriptional level. Among differentially expressed genes, transcripts related to carbon flux processes, particularly the pentose phosphate pathway (PPP), were identified. Metabolite analyses confirmed changes in the levels of PPP intermediates. Genes related to cell wall loosening were also differentially expressed in the mutant, and a decrease in monosaccharide components of cell wall hemicellulose were found. As a potential effect of weaker cell walls, rns2-2 plants are larger than wild-type controls, due to larger cells and increased water content. Elevated levels of reactive oxygen species (ROS) were also measured in rns2-2, and the constitutive autophagy phenotype was blocked by preventing ROS production via NADPH oxidase. Lack of rRNA recycling in rns2-2 cells triggers a change in carbon flux, which is redirected through the PPP to produce ribose-5-phosphate for de novo nucleoside synthesis. rRNA or ribosome turnover is thus essential for cellular homeostasis, probably through maintenance of nucleoside levels as part of the salvage

  7. Liver and colon DNA oxidative damage and gene expression profiles of rats fed Arabidopsis thaliana mutant seeds containing contrasted flavonoids.

    PubMed

    Luceri, Cristina; Giovannelli, Lisa; Pitozzi, Vanessa; Toti, Simona; Castagnini, Cinzia; Routaboul, Jean-Marc; Lepiniec, Loic; Larrosa, Mar; Dolara, Piero

    2008-04-01

    Plant polyphenols, such as flavonoids, comprise many compounds, ranging from simple phenolic molecules (i.e. flavonols, anthocyanins) to polymeric structures with high molecular weight (as proanthocyanidins, PAs). We investigated the effects of flavonoids by feeding Wistar rats Arabidopsis thaliana seeds carrying mutations in key enzymes of the flavonoid biosynthetic pathway (15% w/w seeds for 4 weeks). The seeds used were: Ws-2 wild-type containing flavonols and PAs, tt3-4 mutant containing flavonols only, ban-5 accumulating flavonols and anthocyanins, tt4-8 mutant, deprived of flavonoids. DNA oxidative damage was significantly reduced only in the liver of rats fed tt3-4 mutant seeds. Microarray analysis of the liver revealed down-regulation of genes associated with oxidative stress, Krebs cycle, electron transport and proteasome degradation in all experimental groups compared to the tt4-8-fed reference rats; therefore, these effects were due to the flavonol content and not to high molecular weight compounds. We observed a down-regulation of inflammatory response genes in the colon mucosa in ban-5- fed rats, probably due to anthocyanin content. In conclusion, flavonols exhibited antioxidant effects at systemic level, whereas high molecular weight flavonoids affected only the colon, probably due to their limited absorption.

  8. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant.

    PubMed Central

    Clarke, J D; Liu, Y; Klessig, D F; Dong, X

    1998-01-01

    In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense. PMID:9548982

  9. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  10. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  11. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway.

    PubMed

    Robert, Céline; Noriega, Arturo; Tocino, Angel; Cervantes, Emilio

    2008-06-16

    The shape of Arabidopsis thaliana dry seed is described here as a prolate spheroid. The accuracy of this approximation is discussed. Considering its limitations, it allows a geometric approximation to the analysis of changes occurring in seed shape during imbibition prior to seed germination as well as the differences in shape between genotypes and their changes during imbibition. The triple mutant ein2-1, ers1-2, etr1-7 presents notable alterations in seed shape. In addition, seeds of this and other mutants in the ethylene signaling pathway (ctr1-1, eto1-1, etr1-1, ein2-1) show different response to imbibition than the wild type. Imbibed seeds of the wild type increase their asymmetry compared with the dry seeds. This is detected by the relative changes in the curvature values in both poles. Thus, during imbibition of the wild-type seeds, the reduction in curvature values observed in the basal pole gives them an ovoid shape. In contrast, in the seeds of the ethylene mutants, reduction in curvature values occurs in both basal and apical poles, and its shape remains as a prolate spheroid. Our data indicate that the ethylene signaling pathway is involved, in general, in the complex regulation of seed shape and, in particular, in the establishment of polarity in seeds, controlling curvature values in the seed poles.

  12. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    PubMed

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  13. Evidence for altered polar and lateral auxin transport in the gravity persistent signal (gps) mutants of Arabidopsis.

    PubMed

    Nadella, Vijayanand; Shipp, Matthew J; Muday, Gloria K; Wyatt, Sarah E

    2006-04-01

    Plant shoots do not respond when they are reoriented relative to gravity at 4 degrees C. However, when returned to vertical at room temperature, these organs bend in response to the previous cold gravistimulation. The inflorescence stem of the Arabidopsis thaliana gravity persistent signal (gps) mutants respond abnormally after the cold gravistimulation: gps1 does not bend when returned to room temperature, gps2 bends the wrong way and gps3 over-responds, curving past the predicted angle. In wild type and the mutants, basipetal auxin transport in the inflorescence stem was abolished at 4 degrees C but restored when plants were returned to room temperature. In gps1, auxin transport was increased; in both gps2 and gps3, no significant difference was found when compared to wild type. Expression of the auxin-inducible P(IAA2)::GUS reporter gene, indicated that auxin-induced gene expression was redistributed to the lower side of the inflorescence stem in wild type after gravistimulation at 4 degrees C. In gps1, no asymmetries in P(IAA2)::GUS expression were seen. In gps2, P(IAA2)::GUS expression was localized to the upper side of the stem and in gps3, asymmetric P(IAA2):GUS expression was extended throughout the elongation zone of the inflorescence stem. These results are consistent with altered lateral Indole-3-acetic-acid (IAA) gradients being responsible for the phenotype of each mutant.

  14. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis

    PubMed Central

    Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Spetea, Cornelia; Leister, Dario

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn2+ and Ca2+ homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn2+ and Ca2+ ions were differently sequestered in pam71, with Ca2+ enriched in pam71 thylakoids relative to the wild type. The changes in Ca2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn2+, but not Ca2+. Furthermore, PAM71 suppressed the Mn2+-sensitive phenotype of the yeast mutant Δpmr1. Therefore, PAM71 presumably functions in Mn2+ uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  15. Use of the "gl1" Mutant and the "CA-rop2" Transgenic Plants of "Arabidopsis thaliana" in the Biology Laboratory Course

    ERIC Educational Resources Information Center

    Zheng, Zhi-Liang

    2006-01-01

    This article describes the use of the "glabrous1 (g11)" mutant and constitutively active "(CA)-rop2" transgenic plants of "Arabidopsis thaliana" in teaching genetics laboratory for both high school and undergraduate students. The experiments provide students with F[subscript 1] and F[subscript 2] generations within a semester for genetic and…

  16. Use of the "gl1" Mutant and the "CA-rop2" Transgenic Plants of "Arabidopsis thaliana" in the Biology Laboratory Course

    ERIC Educational Resources Information Center

    Zheng, Zhi-Liang

    2006-01-01

    This article describes the use of the "glabrous1 (g11)" mutant and constitutively active "(CA)-rop2" transgenic plants of "Arabidopsis thaliana" in teaching genetics laboratory for both high school and undergraduate students. The experiments provide students with F[subscript 1] and F[subscript 2] generations within a semester for genetic and…

  17. The impact of PEPC phosphorylation on growth and development of Arabidopsis thaliana: molecular and physiological characterization of PEPC kinase mutants.

    PubMed

    Meimoun, Patrice; Gousset-Dupont, Aurélie; Lebouteiller, Bénédicte; Ambard-Bretteville, Françoise; Besin, Evelyne; Lelarge, Caroline; Mauve, Caroline; Hodges, Michael; Vidal, Jean

    2009-05-19

    Two phosphoenolpyruvate carboxylase (PEPC) kinase genes (PPCk1 and PPCk2) are present in the Arabidopsis genome; only PPCk1 is expressed in rosette leaves. Homozygous lines of two independent PPCk1 T-DNA-insertional mutants showed very little (dln1), or no (csi8) light-induced PEPC phosphorylation and a clear retard in growth under our greenhouse conditions. A mass-spectrometry-based analysis revealed significant changes in metabolite profiles. However, the anaplerotic pathway initiated by PEPC was only moderately altered. These data establish the PPCk1 gene product as responsible for leaf PEPC phosphorylation in planta and show that the absence of PEPC phosphorylation has pleiotropic consequences on plant metabolism.

  18. Genome-wide Hi-C analyses in wild type and mutants reveal high-resolution chromatin interactions in Arabidopsis

    PubMed Central

    Feng, Suhua; Cokus, Shawn J.; Schubert, Veit; Zhai, Jixian; Pellegrini, Matteo; Jacobsen, Steven E.

    2015-01-01

    SUMMARY Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered previously unknown long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals, but instead contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. PMID:25132175

  19. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik.

    PubMed

    Kushnir, S; Babiychuk, E; Storozhenko, S; Davey, M W; Papenbrock, J; De Rycke, R; Engler, G; Stephan, U W; Lange, H; Kispal, G; Lill, R; Van Montagu, M

    2001-01-01

    A mutation in the Arabidopsis gene STARIK leads to dwarfism and chlorosis of plants with an altered morphology of leaf and cell nuclei. We show that the STARIK gene encodes the mitochondrial ABC transporter Sta1 that belongs to a subfamily of Arabidopsis half-ABC transporters. The severity of the starik phenotype is suppressed by the ectopic expression of the STA2 homolog; thus, Sta1 function is partially redundant. Sta1 supports the maturation of cytosolic Fe/S protein in Deltaatm1 yeast, substituting for the ABC transporter Atm1p. Similar to Atm1p-deficient yeast, mitochondria of the starik mutant accumulated more nonheme, nonprotein iron than did wild-type organelles. We further show that plant mitochondria contain a putative l-cysteine desulfurase. Taken together, our results suggest that plant mitochondria possess an evolutionarily conserved Fe/S cluster biosynthesis pathway, which is linked to the intracellular iron homeostasis by the function of Atm1p-like ABC transporters.

  20. A New CULLIN 1 Mutant Has Altered Responses to Hormones and Light in Arabidopsis1[C][OA

    PubMed Central

    Moon, Jennifer; Zhao, Yunde; Dai, Xinhua; Zhang, Wenjing; Gray, William M.; Huq, Enamul; Estelle, Mark

    2007-01-01

    Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development. PMID:17158585

  1. Characterization of photosynthesis in Arabidopsis ER-to-plastid lipid trafficking mutants.

    PubMed

    Li, Ziru; Gao, Jinpeng; Benning, Christoph; Sharkey, Thomas D

    2012-04-01

    Vascular plants use two pathways to synthesize galactolipids, the predominant lipid species in chloroplasts-a prokaryotic pathway that resides entirely in the chloroplast, and a eukaryotic pathway that involves assembly in the endoplasmic reticulum. Mutants deficient in the endoplasmic reticulum pathway, trigalactosyldiacylglycerol (tgd1-1 and tgd2-1) mutants, had been previously identified with reduced contents of monogalactosyldiacylglycerol and digalactosyldiacylglycerol, and altered lipid molecular species composition. Here, we report that the altered lipid composition affected photosynthesis in lipid trafficking mutants. It was found that proton motive force as measured by electrochromic shift was reduced by ~40% in both tgd mutants. This effect was accompanied by an increase in thylakoid conductance attributable to ATPase activity and so the rate of ATP synthesis was nearly unchanged. Thylakoid conductance to ions also increased in tgd mutants. However, gross carbon assimilation in tgd mutants as measured by gas exchange was only marginally affected. Rubisco activity, electron transport rate, and photosystem I and II oxidation status were not altered. Despite the large differences in proton motive force, responses to heat and high light stress were similar between tgd mutants and the wild type.

  2. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection.

    PubMed

    Cazzaniga, Stefano; Li, Zhirong; Niyogi, Krishna K; Bassi, Roberto; Dall'Osto, Luca

    2012-08-01

    Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.

  3. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.

    PubMed

    Shen, Hexi; Strunks, Gary D; Klemann, Bart J P M; Hooykaas, Paul J J; de Pater, Sylvia

    2017-01-05

    Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs). However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3) and protoporphyrinogen oxidase (PPO) genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80), b-NHEJ (parp1 parp2), or both (ku80 parp1 parp2). We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants. Copyright © 2017 Shen et al.

  4. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress.

    PubMed

    Yao, Youli; Bilichak, Andriy; Titov, Viktor; Golubov, Andrey; Kovalchuk, Igor

    2013-06-01

    DNA double-strand breaks (DSBs) can be repaired via two main mechanisms: non-homologous end joining (NHEJ) and homologous recombination (HR). Our previous work showed that exposure to abiotic stresses resulted in an increase in point mutation frequency (PMF) and homologous recombination frequency (HRF), and these changes were heritable. We hypothesized that mutants impaired in DSB recognition and repair would also be deficient in somatic and transgenerational changes in PMF and HRF. To test this hypothesis, we analyzed the genome stability of the Arabidopsis thaliana mutants deficient in ATM (communication between DNA strand break recognition and the repair machinery), KU80 (deficient in NHEJ) and RAD51B (deficient in HR repair) genes. We found that all three mutants exhibited higher levels of DSBs. Plants impaired in ATM had a lower spontaneous PMF and HRF, whereas ku80 plants had higher frequencies. Plants impaired in RAD51B had a lower HRF. HRF in wild-type, atm and rad51b plants increased in response to several abiotic stressors, whereas it did not increase in ku80 plants. The progeny of stressed wild-type and ku80 plants exhibited an increase in HRF in response to all stresses, and the increase was higher in ku80 plants. The progeny of atm plants showed an increase in HRF only when the parental generation was exposed to cold or flood, whereas the progeny of rad51b plants completely lacked a transgenerational increase in HRF. Our experiments showed that mutants impaired in the recognition and repair of DSBs exhibited changes in the efficiency of DNA repair as reflected by changes in strand breaks, point mutation and HRF. They also showed that the HR RAD51B protein and the protein ATM that recognized damaged DNA might play an important role in transgenerational changes in HRF.

  5. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants

    PubMed Central

    Shen, Hexi; Strunks, Gary D.; Klemann, Bart J. P. M.; Hooykaas, Paul J. J.; de Pater, Sylvia

    2016-01-01

    Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs). However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3) and protoporphyrinogen oxidase (PPO) genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80), b-NHEJ (parp1 parp2), or both (ku80 parp1 parp2). We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants. PMID:27866150

  6. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene.

    PubMed Central

    Normanly, J; Grisafi, P; Fink, G R; Bartel, B

    1997-01-01

    Indole-3-acetonitrile (IAN) is a candidate precursor of the plant growth hormone indole-3-acetic acid (IAA). We demonstrated that IAN has auxinlike effects on Arabidopsis seedlings and that exogenous IAN is converted to IAA in vivo. We isolated mutants with reduced sensitivity to IAN that remained sensitive to IAA. These mutants were recessive and fell into a single complementation group that mapped to chromosome 3, within 0.5 centimorgans of a cluster of three nitrilase-encoding genes, NIT1, NIT2, and NIT3. Each of the three mutants contained a single base change in the coding region of the NIT1 gene, and the expression pattern of NIT1 is consistent with the IAN insensitivity observed in the nit1 mutant alleles. The half-life of IAN and levels of IAA and IAN were unchanged in the nit1 mutant, confirming that Arabidopsis has other functional nitrilases. Overexpressing NIT2 in transgenic Arabidopsis caused increased sensitivity to IAN and faster turnover of exogenous IAN in vivo. PMID:9368415

  7. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis.

    PubMed

    Hsieh, Ming-Hsiun; Chang, Chiung-Yun; Hsu, Shih-Jui; Chen, Ju-Jiun

    2008-04-01

    Plant isoprenoids are derived from two independent pathways, the cytosolic mevalonate pathway and the plastid methylerythritol 4-phosphate (MEP) pathway. We used green fluorescent fusion protein assays to demonstrate that the Arabidopsis MEP pathway enzymes are localized to the chloroplast. We have also characterized three Arabidopsis albino mutants, ispD-1, ispD-2 and ispE-1, which have T-DNA insertions in the IspD and IspE genes of the MEP pathway. Levels of photosynthetic pigments are almost undetectable in these albino mutants. Instead of thylakoids, the ispD and ispE mutant chloroplasts are filled with large vesicles. Impairments in chloroplast development and functions may signal changes in the expression of nuclear, chloroplast and mitochondrial genes. We used northern blot analysis to examine the expression of photosynthetic and respiratory genes in the ispD and ispE albino mutants. Steady-state mRNA levels of nucleus- and chloroplast-encoded photosynthetic genes are significantly decreased in the albino mutants. In contrast, transcript levels of nuclear and mitochondrial genes encoding subunits of the mitochondrial electron transport chain are increased or not affected in these mutants. Genomic Southern blot analysis revealed that the DNA amounts of mitochondrial genes are not enhanced in the ispD and ispE albino mutants. These results support the notion that the functional state of chloroplasts may affect the expression of nuclear and mitochondrial genes. The up-regulation of mitochondrial genes in the albino mutants is not caused by changes of mitochondrial DNA copy number in Arabidopsis.

  8. Regulated Ethylene Insensitivity through the Inducible Expression of the Arabidopsis etr1-1 Mutant Ethylene Receptor in Tomato1[OA

    PubMed Central

    Gallie, Daniel R.

    2010-01-01

    Ethylene serves as an important hormone controlling several aspects of plant growth and development, including fruit ripening and leaf and petal senescence. Ethylene is perceived following its binding to membrane-localized receptors, resulting in their inactivation and the induction of ethylene responses. Five distinct types of receptors are expressed in Arabidopsis (Arabidopsis thaliana), and mutant receptors have been described that repress ethylene signaling in a dominant negative manner. One such mutant, ethylene resistant1-1 (etr1-1), results in a strong ethylene-insensitive phenotype in Arabidopsis. In this study, regulated expression of the Arabidopsis etr1-1 in tomato (Solanum lycopersicum) was achieved using an inducible promoter. In the absence of the inducer, transgenic seedlings remained sensitive to ethylene, but in its presence, a state of ethylene insensitivity was induced, resulting in the elongation of the hypocotyl and root in dark-grown seedlings in the presence of ethylene, a reduction or absence of an apical hook, and repression of ethylene-inducible E4 expression. The level of ethylene sensitivity could be controlled by the amount of inducer used, demonstrating a linear relationship between the degree of insensitivity and etr1-1 expression. Induction of etr1-1 expression also repressed the epinastic response to ethylene as well as delayed fruit ripening. Restoration of ethylene sensitivity was achieved following the cessation of the induction. These results demonstrate the ability to control ethylene responses temporally and in amount through the control of mutant receptor expression. PMID:20181754

  9. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.

    PubMed

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi

    2005-06-01

    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  10. Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1 and sdd1-1 mutants.

    PubMed

    Vráblová, M; Vrábl, D; Hronková, M; Kubásek, J; Šantrůček, J

    2017-09-01

    Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood. We used wild types Col-0 and C24 and stomatal mutants sdd1-1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed. Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1-1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis. Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Transmission electron microscopy and serial reconstructions reveal novel meiotic phenotypes for the ahp2 mutant of Arabidopsis thaliana.

    PubMed

    Pathan, Nazia; Stronghill, Patti; Hasenkampf, Clare

    2013-03-01

    We have found novel phenotypes for the previously studied Arabidopsis thaliana (L.) Heynh. meiotic mutant ahp2. These phenotypes were revealed by analysis of reconstructions of normal and ahp2 nuclei that were imaged using transmission electron microscopy. Previous studies of the ahp2 mutant demonstrated that it has a general failure to form synaptonemal complexes, except for the nucleolus organizing regions, and it fails to complete reciprocal genetic exchange. Here, we show that even though the ahp2 chromosome axes have only 5% of the normal amount of synaptonemal complex formation, it nonetheless has slightly more than 40% of the axes involved in close alignment. We also observed two striking nuclear envelope associated abnormalities. Wild type nuclei contain two nucleoli, one nucleolus-like structure, and nuclear envelope associated structures that we refer to as nuclear envelope associated disks. The ahp2 nuclei have the two nucleoli, but they lack the third nucleolus-like structure and instead have a previously uncharacterized structure that spans the nuclear envelope. Additionally, ahp2 meiocytes have nuclear envelope associated disks that are narrower and more numerous (∼2×) than those seen in wild type, and unlike the wild type disks, they are in direct contact with the nuclear envelope.

  12. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    PubMed Central

    Belfield, Eric J.; Gan, Xiangchao; Mithani, Aziz; Brown, Carly; Jiang, Caifu; Franklin, Keara; Alvey, Elizabeth; Wibowo, Anjar; Jung, Marko; Bailey, Kit; Kalwani, Sharan; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas P.

    2012-01-01

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)–induced single base substitutions differed substantially from those of “background” mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations. PMID:22499668

  13. Elevated Levels of High-Melting-Point Phosphatidylglycerols Do Not Induce Chilling Sensitivity in an Arabidopsis Mutant.

    PubMed Central

    Wu, J.; Browse, J.

    1995-01-01

    Molecular species of phosphatidylglycerol that contain only 16:0, 18:0, and 16:1-trans fatty acids undergo the transition from liquid crystalline phase to gel phase at temperatures well above 20[deg]C. Several lines of evidence have been used to implicate elevated proportions of these high-melting-point molecular species as a major cause of plant chilling sensitivity. In the fatty acid biosynthesis 1 (fab1) mutant of Arabidopsis, leaf phosphatidylglycerol contained 43% high-melting-point molecular species[mdash]a higher percentage than is found in many chilling-sensitive plants. Nevertheless, the mutant was completely unaffected (when compared with wild-type controls) by a range of low-temperature treatments that quickly led to the death of cucumber and other chilling-sensitive plants. Our results clearly demonstrate that high-melting-point phosphatidylglycerols do not mediate classic chilling damage. However, growth of fab1 plants was compromised by long-term (>2 weeks) exposure to 2[deg]C. This finding and other observations are consistent with a proposition that plants native to tropical and subtropical regions have evolved many traits that are incompatible with long-term growth or development in cooler climates but that may confer selective advantages at high temperatures. PMID:12242349

  14. Evidence for a Ustilago maydis steroid 5alpha-reductase by functional expression in Arabidopsis det2-1 mutants.

    PubMed

    Basse, Christoph W; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-06-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5alpha-steroid reductases. Udh1 differs from those of known 5alpha-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5alpha-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5alpha-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins.

  15. Opposite variations in fumarate and malate dominate metabolic phenotypes of Arabidopsis salicylate mutants with abnormal biomass under chilling.

    PubMed

    Scott, Ian M; Ward, Jane L; Miller, Sonia J; Beale, Michael H

    2014-12-01

    In chilling conditions (5°C), salicylic acid (SA)-deficient mutants (sid2, eds5 and NahG) of Arabidopsis thaliana produced more biomass than wild type (Col-0), whereas the SA overproducer cpr1 was extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored using 600 MHz (1) H nuclear magnetic resonance (NMR) analysis of unfractionated polar shoot extracts. Biomass-related metabolic phenotypes were identified as multivariate data models of these NMR 'fingerprints'. These included principal components that correlated with biomass. Also, partial least squares-regression models were found to predict the relative size of plants in previously unseen experiments in different light intensities, or relative size of one genotype from the others. The dominant signal in these models was fumarate, which was high in SA-deficient mutants, intermediate in Col-0 and low in cpr1 at 5°C. Among signals negatively correlated with biomass, malate was prominent. Abundance of transcripts of the FUM2 cytosolic fumarase (At5g50950) showed strong positive correlation with fumarate levels and with biomass, whereas no significant differences were found for the FUM1 mitochondrial fumarase (At2g47510). It was confirmed that the morphological effects of SA under chilling find expression in the metabolome, with a role of fumarate highlighted.

  16. Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes.

    PubMed

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-07-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.

  17. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  18. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  19. Arabidopsis Chy1 null mutants are deficient in benzoic acid-containing glucosinolates in the seeds.

    PubMed

    Ibdah, M; Pichersky, E

    2009-07-01

    The specific set of reactions that lead to the synthesis of benzoic acid in plants is still unclear, and even the subcellular compartment in which these reactions occur is unknown. Biosynthesis of both vegetative tissues and seeds of Arabidopsis thaliana contain a class of defense compounds termed glucosinolates, but only the seeds synthesize and store high levels of two glucosinolate compounds that contain a benzoic acid moiety. To identify genes involved in the synthesis of benzoic acid (directly or via benzaldehyde) in Arabidopsis, we analysed the levels of benzoylated glucosinolates in several lines that carry mutations in genes with homology to Pseudomonas fluorescens feruloyl-CoA hydratase, an enzyme that converts feruloyl-CoA to vanillin and acetyl-CoA, a reaction analogous to the conversion of cinnamoyl-CoA to benzaldehyde. We show here that mutations in the gene At5g65940, previously shown to encode a peroxisomal protein with beta-hydroxyisobutyryl-CoA hydrolase activity and designated as Chy1, lead to a deficiency of benzoic acid-containing glucosinolates in the seeds. Furthermore, Chy1 exhibits cinnamoyl-CoA hydrolase activity with a K(m) of 2.9 mum. Our findings suggest that at least a part of benzoic acid biosynthesis occurs in the peroxisomes, although the specific pathway that leads to benzoic acid and the specific biochemical role of Chy1 remain unclear.

  20. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.

    PubMed

    Waszczak, Cezary; Kerchev, Pavel I; Mühlenbock, Per; Hoeberichts, Frank A; Van Der Kelen, Katrien; Mhamdi, Amna; Willems, Patrick; Denecker, Jordi; Kumpf, Robert P; Noctor, Graham; Messens, Joris; Van Breusegem, Frank

    2016-08-01

    Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.

  1. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29

    PubMed Central

    Mostafa, Islam; Yoo, Mi-Jeong; Zhu, Ning; Geng, Sisi; Dufresne, Craig; Abou-Hashem, Maged; El-Domiaty, Maher; Chen, Sixue

    2017-01-01

    Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3′-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29. PMID:28443122

  2. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants.

    PubMed

    Colville, Louise; Smirnoff, Nicholas

    2008-01-01

    Ascorbate is the most abundant small molecule antioxidant in plants and is proposed to function, along with other members of an antioxidant network, in controlling reactive oxygen species. A biochemical and molecular characterization of four ascorbate-deficient (vtc) Arabidopsis thaliana mutants has been carried out to determine if ascorbate deficiency is compensated by changes in the other major antioxidants. Seedlings grown in vitro were used to minimize stress and longer term developmental differences. Comparison was made with the low glutathione cad2 mutant and vtc2-1 treated with D,L-buthionine-[S,R]-sulphoximine to cause combined ascorbate and glutathione deficiency. The pool sizes and oxidation state of ascorbate and glutathione were not altered by deficiency of the other. alpha-Tocopherol and activities of monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and catalase were little affected. Ascorbate peroxidase activity was higher in vtc1, vtc2-1, and vtc2-2. Ionically bound cell wall peroxidase activity was increased in vtc1, vtc2-1, and vtc4. Supplementation with ascorbate increased cell wall peroxidase activity. 2,6-Dichlorobenzonitrile, an inhibitor of cellulose synthesis, increased cell wall peroxidase activity in the wild type and vtc1. The transcript level of an endochitinase, PR1, and PR2, but not GST6, was increased in vtc1, vtc2-1, and vtc-2-2. Endochitinase transcript levels increased after ascorbate, paraquat, salicylic acid, and UV-C treatment, PR1 after salicylic acid treatment, and PR2 after paraquat and UV-C treatment. Camalexin was higher in vtc1 and the vtc2 alleles. Induction of PR genes, cell wall peroxidase activity, and camalexin in vtc1, vtc2-1, and vtc2-2 suggests that the mutants are affected in pathogen response signalling pathways.

  3. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3

    PubMed Central

    Järvi, Sari; Isojärvi, Janne; Kangasjärvi, Saijaliisa; Salojärvi, Jarkko; Mamedov, Fikret; Suorsa, Marjaana; Aro, Eva-Mari

    2016-01-01

    Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415–425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light. PMID:27064270

  4. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans.

    PubMed

    Badenes-Perez, Francisco R; Reichelt, Michael; Gershenzon, Jonathan; Heckel, David G

    2013-02-01

    The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is an insect specialized on glucosinolate-containing Brassicaceae that uses glucosinolates in host-plant recognition. We used wild-type and mutants of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) to investigate the interaction between plant glucosinolate and myrosinase content and herbivory by larvae of the generalist Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) and the specialist P. xylostella. We also measured glucosinolate changes as a result of herbivory by these larvae to investigate whether herbivory and glucosinolate induction had an effect on oviposition preference by P. xylostella. Feeding by H. armigera and P. xylostella larvae was 2.1 and 2.5 times less, respectively, on apk1 apk2 plants (with almost no aliphatic glucosinolates) than on wild-type plants. However, there were no differences in feeding by H. armigera and P. xylostella larvae on wild-type, gsm1 (different concentrations of aliphatic glucosinolates compared to wild-type plants), and tgg1 tgg2 plants (lacking major myrosinases). Glucosinolate induction (up to twofold) as a result of herbivory occurred in some cases, depending on both the plant line and the herbivore. For H. armigera, induction, when observed, was noted mostly for indolic glucosinolates, while for P. xylostella, induction was observed in both aliphatic and indolic glucosinolates, but not in all plant lines. For H. armigera, glucosinolate induction, when observed, resulted in an increase of glucosinolate content, while for P. xylostella, induction resulted in both a decrease and an increase in glucosinolate content. Two-choice tests with wild-type and mutant plants were conducted with larvae and ovipositing moths. There were no significant differences in preference of larvae and ovipositing moths between wild-type and gsm1 mutants and between wild-type and tgg1 tgg2 mutants. However, both larvae and ovipositing moths preferred wild-type over apk

  5. Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts.

    PubMed

    de Luna-Valdez, L A; Martínez-Batallar, A G; Hernández-Ortiz, M; Encarnación-Guevara, S; Ramos-Vega, M; López-Bucio, J S; León, P; Guevara-García, A A

    2014-12-05

    Plant cells outstand for their ability to generate biomass from inorganic sources, this phenomenon takes place within the chloroplasts. The enzymatic machinery and developmental processes of chloroplasts have been subject of research for several decades, and this has resulted in the identification of a plethora of proteins that are essential for their development and function. Mutant lines for the genes that code for those proteins, often display pigment-accumulation defects (e.g., albino phenotypes). Here, we present a comparative proteomic analysis of four chloroplast-biogenesis affected mutants (cla1-1, clb2, clb5, clb19) aiming to identify novel proteins involved in the regulation of chloroplast development in Arabidopsis thaliana. We performed 2D-PAGE separation of the protein samples. These samples were then analyzed by computational processing of gel images in order to select protein spots with abundance shifts of at least twofold, statistically significant according to Student's t-test (P<0.01). These spots were subjected to MALDI-TOF mass-spectrometry for protein identification. This process resulted in the discovery of three novel proteins potentially involved in the development of A. thaliana chloroplasts, as their associated mutant lines segregate pigment-deficient plants with abnormal chloroplasts, and altered mRNA accumulation of chloroplast-development marker genes. This report highlights the potential of using a comparative proteomics strategy for the study of biological processes. Particularly, we compared the proteomes of wild-type seedlings and four mutant lines of A. thaliana affected in chloroplast biogenesis. From this proteomic analysis it was possible to detect common mechanisms in the mutants to respond to stress and cope with heterotrophy. Notably, it was possible to identify three novel proteins potentially involved in the development or functioning of chloroplasts, also it was demonstrated that plants annotated to carry T-DNA insertions

  6. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation

    PubMed Central

    Graf, Alexander; Coman, Diana; Walsh, Sean; Flis, Anna; Stitt, Mark; Gruissem, Wilhelm

    2017-01-01

    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. PMID:28250106

  7. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation.

    PubMed

    Graf, Alexander; Coman, Diana; Uhrig, R Glen; Walsh, Sean; Flis, Anna; Stitt, Mark; Gruissem, Wilhelm

    2017-03-01

    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. © 2017 The Authors.

  8. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools.

    PubMed

    Kim, Jeong Im; Ciesielski, Peter N; Donohoe, Bryon S; Chapple, Clint; Li, Xu

    2014-02-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.

  9. Proteome readjustments in the apoplastic space of Arabidopsis thaliana ggt1 mutant leaves exposed to UV-B radiation

    PubMed Central

    Trentin, Anna Rita; Pivato, Micaela; Mehdi, Syed M. M.; Barnabas, Leonard Ebinezer; Giaretta, Sabrina; Fabrega-Prats, Marta; Prasad, Dinesh; Arrigoni, Giorgio; Masi, Antonio

    2015-01-01

    Ultraviolet-B radiation acts as an environmental stimulus, but in high doses it has detrimental effects on plant metabolism. Plasma membranes represent a major target for Reactive Oxygen Species (ROS) generated by this harmful radiation. Oxidative reactions occurring in the apoplastic space are counteracted by antioxidative systems mainly involving ascorbate and, to some extent, glutathione. The occurrence of the latter and its exact role in the extracellular space are not well documented, however. In Arabidopsis thaliana, the gamma-glutamyl transferase isoform (GGT1) bound to the cell wall takes part in the so-called gamma-glutamyl cycle for extracellular glutathione degradation and recovery, and may be implicated in redox sensing and balance. In this work, oxidative conditions were imposed with Ultraviolet-B radiation (UV-B) and studied in redox altered ggt1 mutants. The response of ggt1 knockout Arabidopsis leaves to UV-B radiation was assessed by investigating changes in extracellular glutathione and ascorbate content and their redox state, and in apoplastic protein composition. Our results show that, on UV-B exposure, soluble antioxidants respond to the oxidative conditions in both genotypes. Rearrangements occur in their apoplastic protein composition, suggesting an involvement of Hydrogen Peroxide (H2O2), which may ultimately act as a signal. Other important changes relating to hormonal effects, cell wall remodeling, and redox activities are discussed. We argue that oxidative stress conditions imposed by UV-B and disruption of the gamma-glutamyl cycle result in similar stress-induced responses, to some degree at least. Data are available via ProteomeXchange with identifier PXD001807. PMID:25852701

  10. Analysis of tobamovirus multiplication in Arabidopsis thaliana mutants defective in TOM2A homologues.

    PubMed

    Fujisaki, Koki; Kobayashi, Soko; Tsujimoto, Yayoi; Naito, Satoshi; Ishikawa, Masayuki

    2008-06-01

    The TOM2A gene of Arabidopsis thaliana encodes a four-pass transmembrane protein that is required for efficient multiplication of a tobamovirus, TMV-Cg. In this study, the involvement of three TOM2A homologues in tobamovirus multiplication in A. thaliana was examined. T-DNA insertion mutations in the three homologues, separately or in combination, did not affect TMV-Cg multiplication, whereas, in the tom2a genetic background, some combinations reduced it. This result suggests that the TOM2A homologues are functional in enhancing TMV-Cg multiplication, but their contribution is much less than TOM2A. Interestingly, the multiplication of another tobamovirus, Tomato mosaic virus, was not drastically affected by any combinations of the mutations in TOM2A and its homologues as far as we examined.

  11. Mutants of arabidopsis thaliana that exhibit chlorosis in an atmosphere enriched with CO sub 2

    SciTech Connect

    Artus, N.N ); Somerville, C. )

    1989-04-01

    Two nonallelic, nuclear recessive mutations have been isolated which cause chlorosis of plants grown in an atmosphere enriched to 2% CO{sub 2}. For one of the mutant lines, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum light intensity of ca. 50 {mu}E m{sup {minus}2} s{sup {minus}1} was required for this response. For the other mutant line, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. Neither line became chlorotic in a low O{sub 2} atmosphere which suppressed photorespiration as effectively as 2% CO{sub 2}. Thus, the mutations do not impose a requirement for photorespiration. Root elongation and callus growth were not affected by high CO{sub 2} for either mutant line. The possibilities that the high CO{sub 2}-sensitive phenotypes are caused by an effect of CO{sub 2} on stomata or ethylene synthesis have also been ruled out.

  12. A SAL1 Loss-of-Function Arabidopsis Mutant Exhibits Enhanced Cadmium Tolerance in Association with Alleviation of Endoplasmic Reticulum Stress.

    PubMed

    Xi, Hongmei; Xu, Hua; Xu, Wenxiu; He, Zhenyan; Xu, Wenzhong; Ma, Mi

    2016-06-01

    SAL1, as a negative regulator of stress response signaling, has been studied extensively for its role in plant response to environmental stresses. However, the role of SAL1 in cadmium (Cd) stress response and the underlying mechanism is still unclear. Using an Arabidopsis thaliana loss-of-function mutant of SAL1, we assessed Cd resistance and further explored the Cd toxicity mechanism through analysis of the endoplasmic reticulum (ER) stress response. The loss of SAL1 function greatly improved Cd tolerance and significantly attenuated ER stress in Arabidopsis. Exposure to Cd induced an ER stress response in Arabidopsis as evidenced by unconventional splicing of AtbZIP60 and up-regulation of ER stress-responsive genes. Damage caused by Cd was markedly reduced in the ER stress response double mutant bzip28 bzip60 or by application of the ER stress-alleviating chemical agents, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (4-PBA), in wild-type plants. The Cd-induced ER stress in Arabidopsis was also alleviated by loss of function of SAL1. These results identified SAL1 as a new component mediating Cd toxicity and established the role of the ER stress response in Cd toxicity. Additionally, the attenuated ER stress in the sal1 mutant might also shed new light on the mechanism of diverse abiotic stress resistance in the SAL1 loss-of-function mutants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Mutants of circadian-associated PRR genes display a novel and visible phenotype as to light responses during de-etiolation of Arabidopsis thaliana seedlings.

    PubMed

    Kato, Takahiko; Murakami, Masaya; Nakamura, Yuko; Ito, Shogo; Nakamichi, Norihito; Yamashino, Takafumi; Mizuno, Takeshi

    2007-03-01

    In Arabidopsis thaliana, it is currently accepted that certain mutants with lesions in clock-associated genes commonly display hallmarked phenotypes with regard to three characteristic biological events: (i) altered rhythmic expression of circadian-controlled genes, (ii) changes in flowering time, and (iii) altered sensitivity to red light in elongation of hypocotyls. During the course of examination of the clock-associated mutants of PSEUDO-RESPONSE REGULATORS, PRRs, including TOC1 (PRR1), we found that they commonly show another visible phenotype of anomalous greening responses upon the onset to light exposure of etiolated seedlings. These findings are indicative of a novel link between circadian rhythms and chloroplast development.

  14. Arabidopsis brassinosteroid-overproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to jasmonic acid and pathogen.

    PubMed

    Kim, Bokyung; Fujioka, Shozo; Kwon, Mi; Jeon, Jihyun; Choe, Sunghwa

    2013-07-01

    KEY MESSAGE : Arabidopsis gulliver3 - D/dwarf4 - D displays growth-promoting phenotypes due to activation tagging of a key brassinosteroid biosynthetic gene DWARF4. In gul3-D/dwf4-D , the Jasmonate and Salicylate signaling pathways were relatively activated and suppressed, respectively. Energy allocation between growth and defense is elegantly balanced to achieve optimal development in plants. Brassinosteroids (BRs), steroidal hormones essential for plant growth, are regulated by other plant hormones, including auxin and jasmonates (JA); auxin stimulates the expression of a key brassinosteroid (BR) biosynthetic gene, DWARF4 (DWF4), whereas JA represses it. To better understand the interaction mechanisms between growth and defense, we isolated a fast-growing mutant, gulliver3-D (gul3-D), that resulted from the activation tagging of DWF4, and examined the response of this mutant to defense signals, including JA, Pseudomonas syringae pv. tomato (Pst DC3000) infection, and wounding. The degree of root growth inhibition following MeJA treatment was significantly decreased in gul3-1D/dwf4-5D relative to the wild type, suggesting that JA signaling is partially desensitized in gul3-1D. Quantitative RT-PCR analysis of the genes involved in JA and salicylic acid (SA) responses, including MYC2, PDF1.2, CORI3, PR1, and PR2, revealed that JA signaling was preferentially activated in gul3-1D, whereas SA signaling was suppressed. As a result, gul3-1D was more susceptible to a biotrophic pathogen, Pst DC3000. Based on our results, we propose a model in which BR and JA cooperate to balance energy allocation between growth and defense responses. In ambient conditions, BRs promote plant growth; however, when stresses trigger JA signaling, JA compromises BR signaling by downregulating DWF4 expression.

  15. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A

    PubMed Central

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-01-01

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses. PMID:17566111

  16. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A.

    PubMed

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-06-19

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses.

  17. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant.

    PubMed

    Paddock, Troy N; Mason, Mary E; Lima, Daniel F; Armstrong, Gregory A

    2010-03-01

    In angiosperms the strictly light-dependent reduction of protochlorophyllide to chlorophyllide is catalyzed by NADPH:protochlorophyllide oxidoreductase (POR). The Arabidopsis thaliana genome encodes three structurally related but differentially regulated POR genes, PORA, PORB and PORC. PORA is expressed primarily early in development-during etiolation, germination and greening. In contrast, PORB and PORC are not only expressed during seedling development but also throughout the later life of the plant, during which they are responsible for bulk chlorophyll synthesis. The Arabidopsis porB-1 porC-1 mutant displays a severe xantha (highly chlorophyll-deficient) phenotype characterized by smaller prolamellar bodies in etioplasts and decreased thylakoid stacking in chloroplasts. Here we have demonstrated the ability of an ectopic PORA overexpression construct to restore prolamellar body formation in the porB-1 porC-1 double mutant background. In response to illumination, light-dependent chlorophyll production, thylakoid stacking and photomorphogenesis are also restored in PORA-overexpressing porB-1 porC-1 seedlings and adult plants. An Arabidopsis porB-1 porC-1 double mutant can therefore be functionally rescued by the addition of ectopically expressed PORA, which suffices in the absence of either PORB or PORC to direct bulk chlorophyll synthesis and normal plant development.

  18. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor.

    PubMed

    Tsukagoshi, Hironaka; Saijo, Takanori; Shibata, Daisuke; Morikami, Atsushi; Nakamura, Kenzo

    2005-06-01

    A recessive mutation hsi2 of Arabidopsis (Arabidopsis thaliana) expressing luciferase (LUC) under control of a short promoter derived from a sweet potato (Ipomoea batatas) sporamin gene (Spo(min)LUC) caused enhanced LUC expression under both low- and high-sugar conditions, which was not due to increased level of abscisic acid. The hsi2 mutant contained a nonsense mutation in a gene encoding a protein with B3 DNA-binding domain. HSI2 and two other Arabidopsis proteins appear to constitute a novel subfamily of B3 domain proteins distinct from ABI3, FUS3, and LEC2, which are transcription activators involved in seed development. The C-terminal part of HSI2 subfamily proteins contained a sequence similar to the ERF-associated amphiphilic repression (EAR) motif. Deletion of the C-terminal portion of HSI2 lost in the hsi2 mutant caused reduced nuclear targeting of HSI2. Null allele of HSI2 showed even higher Spo(min)LUC expression than the hsi2 mutant, whereas overexpression of HSI2 reduced the LUC expression. Transient coexpression of 35SHSI2 with Spo(min)LUC in protoplasts repressed the expression of LUC activity, and deletion or mutation of the EAR motif significantly reduced the repression activity of HSI2. These results indicate that HSI2 and related proteins are B3 domain-EAR motif active transcription repressors.

  19. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    PubMed Central

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differences between resistant and sensitive homozygous plants were detected, respectively. Dominance levels for the fitness cost ranged from recessivity (csr1-1, ixr1-2, and axr1-3) to dominance (axr2-1) to underdominance (aux1-7). Furthermore, the dominance level of the herbicide resistance trait did not predict the dominance level of the cost of resistance. The relationship of our results to theoretical predictions of dominance and the consequences of fitness cost and its dominance in resistance management are discussed. PMID:15020435

  20. Improved growth and stress tolerance in the Arabidopsis oxt1 mutant triggered by altered adenine metabolism.

    PubMed

    Sukrong, Suchada; Yun, Kil-Young; Stadler, Patrizia; Kumar, Charan; Facciuolo, Tony; Moffatt, Barbara A; Falcone, Deane L

    2012-11-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses. A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1, a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions. Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1), an enzyme that converts adenine to adenosine monophosphate (AMP), indicating a link between purine metabolism, whole-plant growth responses, and stress acclimation. The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity. Correspondingly, oxt1 plants possess elevated levels of adenine. Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1. The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge. Finally, it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants. Collectively, these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth, leading to increases in plant biomass. The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  1. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein

    PubMed Central

    Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles. PMID:26925228

  2. In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant.

    PubMed

    Podgórska, Anna; Ostaszewska, Monika; Gardeström, Per; Rasmusson, Allan G; Szal, Bożena

    2015-01-01

    Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth. © 2014 John Wiley & Sons Ltd.

  3. Transcriptome Analysis of Arabidopsis GCR1 Mutant Reveals Its Roles in Stress, Hormones, Secondary Metabolism and Phosphate Starvation

    PubMed Central

    Chakraborty, Navjyoti; Sharma, Priyanka; Kanyuka, Kostya; Pathak, Ravi R.; Choudhury, Devapriya; Hooley, Richard A.; Raghuram, Nandula

    2015-01-01

    The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own. PMID:25668726

  4. Transcriptome analysis of Arabidopsis GCR1 mutant reveals its roles in stress, hormones, secondary metabolism and phosphate starvation.

    PubMed

    Chakraborty, Navjyoti; Sharma, Priyanka; Kanyuka, Kostya; Pathak, Ravi R; Choudhury, Devapriya; Hooley, Richard A; Raghuram, Nandula

    2015-01-01

    The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own.

  5. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence.

    PubMed

    Lee, Travis A; Vande Wetering, Scott W; Brusslan, Judy A

    2013-01-17

    Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase) and one thylakoid protein (the major light harvesting complex protein of photosystem II) were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7). Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.

  6. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    PubMed

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  7. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.

    PubMed

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da; Zhao, Yunde

    2016-07-01

    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    PubMed

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-04-05

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  9. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.

    PubMed

    Rohde, Antje; Morreel, Kris; Ralph, John; Goeminne, Geert; Hostyn, Vanessa; De Rycke, Riet; Kushnir, Sergej; Van Doorsselaere, Jan; Joseleau, Jean-Paul; Vuylsteke, Marnik; Van Driessche, Gonzalez; Van Beeumen, Jozef; Messens, Eric; Boerjan, Wout

    2004-10-01

    The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids.

  10. Molecular Phenotyping of the pal1 and pal2 Mutants of Arabidopsis thaliana Reveals Far-Reaching Consequences on Phenylpropanoid, Amino Acid, and Carbohydrate Metabolism

    PubMed Central

    Rohde, Antje; Morreel, Kris; Ralph, John; Goeminne, Geert; Hostyn, Vanessa; De Rycke, Riet; Kushnir, Sergej; Van Doorsselaere, Jan; Joseleau, Jean-Paul; Vuylsteke, Marnik; Van Driessche, Gonzalez; Van Beeumen, Jozef; Messens, Eric; Boerjan, Wout

    2004-01-01

    The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids. PMID:15377757

  11. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance.

    PubMed Central

    Bowling, S A; Clarke, J D; Liu, Y; Klessig, D F; Dong, X

    1997-01-01

    The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance. PMID:9338960

  12. Arabidopsis Brassinosteroid-Insensitive dwarf12 Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3β-Like Kinase1

    PubMed Central

    Choe, Sunghwa; Schmitz, Robert J.; Fujioka, Shozo; Takatsuto, Suguru; Lee, Mi-Ok; Yoshida, Shigeo; Feldmann, Kenneth A.; Tax, Frans E.

    2002-01-01

    Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3β family. Unlike human glycogen synthase kinase 3β, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways. PMID:12428015

  13. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent.

    PubMed

    Hall, Anne E; Bleecker, Anthony B

    2003-09-01

    Ethylene responses in Arabidopsis are controlled by the ETR receptor family. The receptors function as negative regulators of downstream signal transduction components and fall into two distinct subfamilies based on sequence similarity. To clarify the levels of functional redundancy between receptor isoforms, combinatorial mutant lines were generated that included the newly isolated ers1-2 allele. Based on the etiolated seedling growth response, all mutant combinations tested exhibited some constitutive ethylene responsiveness but also remained responsive to exogenous ethylene, indicating that all five receptor isoforms can contribute to signaling and no one receptor subtype is essential. On the other hand, light-grown seedlings and adult ers1 etr1 double mutants exhibited severe phenotypes such as miniature rosette size, delayed flowering, and sterility, revealing a distinct role for subfamily I receptors in light-grown plants. Introduction of an ein2 loss-of-function mutation into the ers1 etr1 double mutant line resulted in plants that phenocopy ein2 single mutants, indicating that all phenotypes observed in the ers1 etr1 double mutant are EIN2 dependent.

  14. Analysis of Combinatorial Loss-of-Function Mutants in the Arabidopsis Ethylene Receptors Reveals That the ers1 etr1 Double Mutant Has Severe Developmental Defects That Are EIN2 Dependent

    PubMed Central

    Hall, Anne E.; Bleecker, Anthony B.

    2003-01-01

    Ethylene responses in Arabidopsis are controlled by the ETR receptor family. The receptors function as negative regulators of downstream signal transduction components and fall into two distinct subfamilies based on sequence similarity. To clarify the levels of functional redundancy between receptor isoforms, combinatorial mutant lines were generated that included the newly isolated ers1-2 allele. Based on the etiolated seedling growth response, all mutant combinations tested exhibited some constitutive ethylene responsiveness but also remained responsive to exogenous ethylene, indicating that all five receptor isoforms can contribute to signaling and no one receptor subtype is essential. On the other hand, light-grown seedlings and adult ers1 etr1 double mutants exhibited severe phenotypes such as miniature rosette size, delayed flowering, and sterility, revealing a distinct role for subfamily I receptors in light-grown plants. Introduction of an ein2 loss-of-function mutation into the ers1 etr1 double mutant line resulted in plants that phenocopy ein2 single mutants, indicating that all phenotypes observed in the ers1 etr1 double mutant are EIN2 dependent. PMID:12953109

  15. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant

    PubMed Central

    Chen, Yuning; Ye, Dening; Held, Michael A.; Cannon, Maura C.; Ray, Tui; Saha, Prasenjit; Frye, Alexandra N.; Mort, Andrew J.; Kieliszewski, Marcia J.

    2015-01-01

    Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP). In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes. PMID:27135319

  16. The Seed Composition of Arabidopsis Mutants for the Group 3 Sulfate Transporters Indicates a Role in Sulfate Translocation within Developing Seeds1[C][W][OA

    PubMed Central

    Zuber, Hélène; Davidian, Jean-Claude; Aubert, Grégoire; Aimé, Delphine; Belghazi, Maya; Lugan, Raphaël; Heintz, Dimitri; Wirtz, Markus; Hell, Rüdiger; Thompson, Richard; Gallardo, Karine

    2010-01-01

    Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates. PMID:20702726

  17. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds.

    PubMed

    Zuber, Hélène; Davidian, Jean-Claude; Aubert, Grégoire; Aimé, Delphine; Belghazi, Maya; Lugan, Raphaël; Heintz, Dimitri; Wirtz, Markus; Hell, Rüdiger; Thompson, Richard; Gallardo, Karine

    2010-10-01

    Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.

  18. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    PubMed Central

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  19. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE PAGES

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  20. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    SciTech Connect

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.

  1. Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress

    PubMed Central

    Kumar, Deepak; Datta, Riddhi; Hazra, Saptarshi; Sultana, Asma; Mukhopadhyay, Ria; Chattopadhyay, Sharmila

    2015-01-01

    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions. PMID:25822199

  2. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  3. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    PubMed Central

    Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui

    2016-01-01

    The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group. PMID:27703459

  4. Plastidial Fatty Acid Signaling Modulates Salicylic Acid– and Jasmonic Acid–Mediated Defense Pathways in the Arabidopsis ssi2 Mutant

    PubMed Central

    Kachroo, Aardra; Lapchyk, Ludmila; Fukushige, Hirotada; Hildebrand, David; Klessig, Daniel; Kachroo, Pradeep

    2003-01-01

    A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl–acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)–responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES–derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum–localized ω6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane–localized ω6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit

  5. Pale-green phenotype of atl31atl6 double mutant leaves is caused by disruption of 5-aminolevulinic acid biosynthesis in Arabidopsis thaliana.

    PubMed

    Maekawa, Shugo; Takabayashi, Atsushi; Huarancca Reyes, Thais; Yamamoto, Hiroko; Tanaka, Ayumi; Sato, Takeo; Yamaguchi, Junji

    2015-01-01

    Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/atl6 mutant showed normal Fv/Fm. In the pale-green leaves of the atl31/atl6, the expression of HEMA1, which encodes the key enzyme for 5-aminolevulinic acid synthesis, the rate-limiting step in chlorophyll biosynthesis, was markedly down-regulated. The expression of key transcription factor GLK1, which directly promotes HEMA1 transcription, was also significantly decreased in atl31/atl6 mutant. Finally, application of 5-aminolevulinic acid to the atl31/atl6 mutants resulted in recovery to a green phenotype. Taken together, these findings indicate that the 5-aminolevulinic acid biosynthesis step was inhibited through the down-regulation of chlorophyll biosynthesis-related genes in the pale-green leaves of atl31/atl6 mutant.

  6. Analysis of a Partial Male-Sterile Mutant of Arabidopsis thaliana Isolated from a Low-Energy Argon Ion Beam Mutagenized Pool

    NASA Astrophysics Data System (ADS)

    Xu, Min; Bian, Po; Wu, Yuejin; Yu, Zengliang

    2008-04-01

    A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations. tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility. a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis. b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later). c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.

  7. Pale-Green Phenotype of atl31 atl6 Double Mutant Leaves Is Caused by Disruption of 5-Aminolevulinic Acid Biosynthesis in Arabidopsis thaliana

    PubMed Central

    Maekawa, Shugo; Takabayashi, Atsushi; Huarancca Reyes, Thais; Yamamoto, Hiroko; Tanaka, Ayumi; Sato, Takeo; Yamaguchi, Junji

    2015-01-01

    Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/atl6 mutant showed normal Fv/Fm. In the pale-green leaves of the atl31/atl6, the expression of HEMA1, which encodes the key enzyme for 5-aminolevulinic acid synthesis, the rate-limiting step in chlorophyll biosynthesis, was markedly down-regulated. The expression of key transcription factor GLK1, which directly promotes HEMA1 transcription, was also significantly decreased in atl31/atl6 mutant. Finally, application of 5-aminolevulinic acid to the atl31/atl6 mutants resulted in recovery to a green phenotype. Taken together, these findings indicate that the 5-aminolevulinic acid biosynthesis step was inhibited through the down-regulation of chlorophyll biosynthesis-related genes in the pale-green leaves of atl31/atl6 mutant. PMID:25706562

  8. Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana.

    PubMed

    Cela, Jana; Chang, Caren; Munné-Bosch, Sergi

    2011-08-01

    Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants.

  9. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    PubMed

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE21[OPEN

    PubMed Central

    Dugard, Christopher K.; Olek, Anna T.; Cooper, Bruce R.

    2016-01-01

    Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP. PMID:27217494

  11. Arabidopsis phosphatase under-producer mutants pup1 and pup3 contain mutations in the AtPAP10 and AtPAP26 genes.

    PubMed

    Zhang, Ye; Wang, Xiaoyue; Liu, Dong

    2015-01-01

    Production and secretion of acid phosphatases (APases) is a hallmark adaptive response of plants to phosphate (Pi) deprivation. Researchers have long hypothesized that Pi starvation-induced APases are involved in internal Pi recycling and remobilization as well as in external Pi utilization. Two phosphatase under-producer (pup) mutants, pup1 and pup3, were previously isolated in Arabidopsis. Characterization of these 2 pup mutants provided the first genetic evidence for the above hypothesis. To date, however, the molecular lesions in these 2 pup mutants remain unknown. In this work, we demonstrate that pup1 and pup3 contain point mutations in the Arabidopsis purple acid phosphatase gene AtPAP10 and AtPAP26, respectively. Our results answer a long-standing question about the molecular identity of the PUP1 and PUP3 genes and corroborate the conclusions from previous studies regarding the function of AtPAP10 and AtPAP26 in plant acclimation to Pi deprivation.

  12. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant.

    PubMed

    Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph

    2017-01-01

    Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

  13. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant

    PubMed Central

    Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M.; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph

    2017-01-01

    Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi. PMID:28674541

  14. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.

    PubMed

    Kitamura, Satoshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.

  15. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants.

    PubMed Central

    Pei, Z M; Kuchitsu, K; Ward, J M; Schwarz, M; Schroeder, J I

    1997-01-01

    Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi) mutants. Slow anion channels have been proposed to play a rate-limiting role in ABA-induced stomatal closing. We now directly demonstrate that ABA strongly activates slow anion channels in wild-type guard cells. Furthermore, ABA-induced anion channel activation and stomatal closing were suppressed by protein phosphatase inhibitors. In abi1-1 and abi2-1 mutant guard cells, ABA activation of slow anion channels and ABA-induced stomatal closing were abolished. These impairments in ABA signaling were partially rescued by kinase inhibitors in abi1 but not in abi2 guard cells. These data provide cell biological evidence that the abi2 locus disrupts early ABA signaling, that abi1 and abi2 affect ABA signaling at different steps in the cascade, and that protein kinases act as negative regulators of ABA signaling in Arabidopsis. New models for ABA signaling pathways and roles for abi1, abi2, and protein kinases and phosphatases are discussed. PMID:9090884

  16. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants

    SciTech Connect

    Talon, M. Zeevaart, J.A.D. ); Koornneef, M. )

    1990-10-01

    Twenty gibberellins (GAs) have been identified in extracts from shoots of the Landsberg erecta line of Arabidopsis thaliana by full-scan gas chromatography-mass spectrometry and Kovats retention indices. Eight of them are members of the early-13-hydroxylation pathway (GA{sub 53}, GA{sub 44}, GA{sub 19}, GA{sub 17}, GA{sub 20}, GA{sub 1}, GA{sub 29}, and GA{sub 8}), six are members of the early-3-hydroxylation pathway (GA{sub 37}, GA{sub 27}, GA{sub 36}, GA{sub 13}, GA{sub 4}, and GA{sub 34}), and the remaining six are members of the non-3,13-hydroxylation pathway (GA{sub 12}, GA{sub 15}, GA{sub 24}, GA{sub 25}, GA{sub 9}, and GFA{sub 51}). Seven of these GAs were quantified in the Landsberg erecta line of Arabidopsis and in the semidwarf ga4 and ga5 mutants by gas chromatography-selected ion monitoring (SIM) using internal standards. The relative levels of the remaining 13 GAs were compared by the use of ion intensities only. The growth-response data, as well as the accumulation of GA{sub 9} in the ga4 mutant, indicate that GA{sub 9} is not active in Arabidopsis, but it must be 3{beta}-hydroxytlated to GA{sub 4} to become bioactive. It is concluded that the reduced levels of the 3{beta}-hydroxy-GAs, GA{sub 1} and GA{sub 4}, are the cause of the semidwarf growth habit of both mutants.

  17. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress.

    PubMed

    Sánchez-Corrionero, Álvaro; Sánchez-Vicente, Inmaculada; González-Pérez, Sergio; Corrales, Ascensión; Krieger-Liszkay, Anja; Lorenzo, Óscar; Arellano, Juan B

    2017-09-01

    The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen ((1)O2) and activating (1)O2-mediated cell death. Thylakoids of aba1 produced twice as much (1)O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. (1)O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of (1)O2 generation in aba1. Up-regulation of the (1)O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct (1)O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of (1)O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other (1)O2-overproducing mutants of Arabidopsis for investigating (1)O2-mediated cell death. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants.

    PubMed Central

    Chang, A K; Duggleby, R G

    1998-01-01

    Acetohydroxyacid synthase (AHAS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. Four mutants (A122V, W574S, W574L and S653N) of the AHAS gene from Arabidopsis thaliana were constructed, expressed in Escherichia coli, and the enzymes were purified. Each mutant form and wild-type was characterized with respect to its catalytic properties and sensitivity to nine herbicides. Each enzyme had a pH optimum near 7.5. The specific activity varied from 13% (A122V) to 131% (W574L) of the wild-type and the Km for pyruvate of the mutants was similar to the wild-type, except for W574L where it was five-fold higher. The activation by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined. A122V showed reduced affinity for all three cofactors, whereas S653N bound FAD more strongly than wild-type AHAS. Six sulphonylurea herbicides inhibited A122V to a similar degree as the wild-type but S653N showed a somewhat greater reduction in sensitivity to these compounds. In contrast, the W574 mutants were insensitive to these sulphonylureas, with increases in the Kiapp (apparent inhibition constant) of several hundred fold. All four mutants were resistant to three imidazolinone herbicides with decreases in sensitivity ranging from 100-fold to more than 1000-fold. PMID:9677339

  19. A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.R.; Preiss, J. )

    1988-12-01

    A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.

  20. Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis

    PubMed Central

    Kou, Jiancun; Takahashi, Shunichi; Fan, Da-Yong; Badger, Murray R.; Chow, Wah S.

    2015-01-01

    Cyclic electron flux (CEF) around Photosystem I (PS I) is difficult to quantify. We obtained the linear electron flux (LEFO2) through both photosystems and the total electron flux through PS I (ETR1) in Arabidopsis in CO2-enriched air. ΔFlux = ETR1 – LEFO2 is an upper estimate of CEF, which consists of two components, an antimycin A-sensitive, PGR5 (proton gradient regulation 5 protein)-dependent component and an insensitive component facilitated by a chloroplastic nicotinamide adenine dinucleotide dehydrogenase-like complex (NDH). Using wild type as well as pgr5 and ndh mutants, we observed that (1) 40% of the absorbed light was partitioned to PS I; (2) at high irradiance a substantial antimycin A-sensitive CEF occurred in the wild type and the ndh mutant; (3) at low irradiance a sizable antimycin A-sensitive CEF occurred in the wild type but not in the ndh mutant, suggesting an enhancing effect of NDH in low light; and (4) in the pgr5 mutant, and the wild type and ndh mutant treated with antimycin A, a residual ΔFlux existed at high irradiance, attributable to charge recombination and/or pseudo-cyclic electron flow. Therefore, in low-light-acclimated plants exposed to high light, ΔFlux has contributions from various paths of electron flow through PS I. PMID:26442071

  1. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens.

    PubMed

    Acevedo-Garcia, Johanna; Gruner, Katrin; Reinstädler, Anja; Kemen, Ariane; Kemen, Eric; Cao, Lingxue; Takken, Frank L W; Reitz, Marco U; Schäfer, Patrick; O'Connell, Richard J; Kusch, Stefan; Kuhn, Hannah; Panstruga, Ralph

    2017-08-24

    Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant plants exhibit complete immunity against infection by otherwise virulent obligate biotrophic powdery mildew fungi such as Golovinomyces orontii. While this phenotype is well documented, the interaction profile of the triple mutant with other microbes is underexplored and incomplete. Here, we thoroughly assessed and quantified the infection phenotypes of two independent powdery mildew-resistant triple mutant lines with a range of microbes. These microorganisms belong to three kingdoms of life, engage in diverse trophic lifestyles, and deploy different infection strategies. We found that interactions with microbes that do not directly enter leaf epidermal cells were seemingly unaltered or showed even enhanced microbial growth or symptom formation in the mlo2 mlo6 mlo12 triple mutants, as shown for Pseudomonas syringae and Fusarium oxysporum. By contrast, the mlo2 mlo6 mlo12 triple mutants exhibited reduced host cell entry rates by Colletotrichum higginsianum, a fungal pathogen showing direct penetration of leaf epidermal cells comparable to G. orontii. Together with previous findings, the results of this study strengthen the notion that mutations in genes MLO2, MLO6 and MLO12 not only restrict powdery mildew colonization, but also affect interactions with a number of other phytopathogens.

  2. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo.

    PubMed Central

    Hurry, V.; Anderson, J. M.; Chow, W. S.; Osmond, C. B.

    1997-01-01

    Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthophylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wildtype, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation. PMID:12223632

  3. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants

    PubMed Central

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar

    2017-01-01

    Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541

  4. An Arabidopsis mutant able to green after extended dark periods shows decreased transcripts of seed protein genes and altered sensitivity to abscisic acid

    PubMed Central

    Choy, Mun-Kit; Sullivan, James A.; Theobald, Julian C.; Davies, William J.; Gray, John C.

    2008-01-01

    An Arabidopsis mutant showing an altered ability to green on illumination after extended periods of darkness has been isolated in a screen for genomes uncoupled (gun) mutants. Following illumination for 24 h, 10-day-old dark-grown mutant seedlings accumulated five times more chlorophyll than wild-type seedlings and this was correlated with differences in plastid morphology observed by transmission electron microscopy. The mutant has been named greening after extended darkness 1 (ged1). Microarray analysis showed much lower amounts of transcripts of genes encoding seed storage proteins, oleosins, and late embryogenesis abundant (LEA) proteins in 7-day-old seedlings of ged1 compared with the wild type. RNA gel-blot analyses confirmed very low levels of transcripts of seed protein genes in ged1 seedlings grown for 2–10 d in the dark, and showed higher amounts of transcripts of photosynthesis-related genes in illuminated 10-day-old dark-grown ged1 seedlings compared with the wild type. Consensus elements similar to abscisic acid (ABA) response elements (ABREs) were detected in the upstream regions of all genes highly affected in ged1. Germination of ged1 seeds was hypersensitive to ABA, although no differences in ABA content were detected in 7-day-old seedlings. This suggests the mutant may have an altered responsiveness to ABA, affecting expression of ABA-responsive genes and plastid development during extended darkness. PMID:18931353

  5. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool tempatures and tempature-dependent alternative splicing

    USDA-ARS?s Scientific Manuscript database

    The circadian clock allows plants to anticipate and respond to daily changes in ambient temperature. Mechanisms establishing the timing of circadian rhythms in Arabidopsis thaliana through temperature entrainment remain unclear. Also incompletely understood is the temperature compensation mechanism ...

  6. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants.

    PubMed

    Cervantes, Emilio; Javier Martín, José; Ardanuy, Ramón; de Diego, Juana G; Tocino, Angel

    2010-03-15

    A new model for the description of Arabidopsis seed shape based on the comparison of the outline of its longitudinal section with a transformed cardioid is presented. The transformation consists of scaling the horizontal axis by a factor equal to the Golden Ratio. The elongated cardioid approximates the shape of the Arabidopsis seed with more accuracy than other figures. The length to width ratio in wild-type Columbia Arabidopsis dry seeds is close to the Golden Ratio and decreases over the course of imbibition. Dry seeds of etr1-1 mutants presented a reduced length to width ratio. Application of the new model based on the cardioid allows for comparison of shape between wild-type and mutant genotypes, revealing other general alterations in the seeds in ethylene signaling pathway mutants (etr1-1).

  7. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    PubMed Central

    Daszkowska-Golec, Agata; Chorazy, Edyta; Maluszynski, Miroslaw; Szarejko, Iwona

    2013-01-01

    Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress. PMID:23807502

  8. On the relationship between endoreduplication and collet hair initiation and tip growth, as determined using six Arabidopsis thaliana root-hair mutants.

    PubMed

    Sliwinska, Elwira; Mathur, Jaideep; Bewley, J Derek

    2015-06-01

    A positive correlation between nuclear DNA content and cell size, as postulated by the karyoplasmic theory, has been confirmed in many plant tissues. However, there is also evidence suggesting that there are exceptions. While in previous reports the cell size:ploidy relationship was studied in intact tissues containing cells of different sizes, here simultaneously developing single cells of collet hairs were used to study endoreduplication in Arabidopsis thaliana mutants that produce hairs of variable size and morphology. Endoreduplication in the root and collet zones of six different root-hair mutants was analysed before and after collet hair development using flow cytometry and confocal microscopy. Additionally, the changes in nuclear size (ploidy), shape, and movement in developing collet hairs of a hybrid between Arabidopsis transgenic line NLS-GFP-GUS and the rhd3 (root hair defective3) mutant were followed using time-lapse confocal microscopy. In this hybrid endoreduplication in the collet hairs was disturbed. However, based on the analyses of all mutants, no correlation was found between hair length and the ploidy of the cells in the collet and root regions. The results indicate that the karyoplasmic ratio is maintained at the beginning of collet-hair development, but tip growth proceeds in a DNA-amount-independent manner. The final size of a collet hair appears to be dependent more on genetic modifiers governing general cell physiology than on its DNA content. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Chlorophyll Synthesis in a Deetiolated (det340) Mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and Photoactive PChlide-F655.

    PubMed Central

    Lebedev, N.; Van Cleve, B.; Armstrong, G.; Apel, K.

    1995-01-01

    Chlorophyll (Chl) synthesis in Arabidopsis is controlled by two light-dependent NADPH-protochlorophyllide (PChlide) oxidoreductases (PORs), one (POR A) that is active transiently in etiolated seedlings at the beginning of illumination and another (POR B) that also operates in green plants. The function of these two enzymes during the light-induced greening of dark-grown seedlings has been studied in the wild type and a deetiolated (det340) mutant of Arabidopsis. One of the consequences of the det mutation is that POR A is constitutively down-regulated, and therefore, synthesis of the POR A enzyme is shut off. When grown in the dark, the det340 mutant lacks POR A and the photoactive PChlide-F655 species but maintains the second PChlide reductase, POR B. Previously, photoactive PChlide-F655 has often been considered to be the only PChlide form that leads to Chl formation. Despite its deficiency in POR A and photoactive PChlide-F655, the det340 mutant is able to green when placed in the light. Chl accumulation, however, proceeds abnormally. At the beginning of illumination, seedlings of det340 mutants are extremely susceptible to photooxidative damage and accumulate Chl only at extremely low light intensities. They form core complexes of photosystems I and II but are almost completely devoid of light-harvesting structures. The results of this study demonstrate that in addition to the route of Chl synthesis that has been studied extensively in illuminated dark-grown wild-type plants, a second branch of Chl synthesis exists that is driven by POR B and does not require POR A. PMID:12242369

  10. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages

    PubMed Central

    Salas-Muñoz, Silvia; Rodríguez-Hernández, Aída A.; Ortega-Amaro, Maria A.; Salazar-Badillo, Fatima B.; Jiménez-Bremont, Juan F.

    2016-01-01

    DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance. PMID:26941772

  11. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    NASA Astrophysics Data System (ADS)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  12. The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development

    PubMed Central

    Cottage, Amanda; Mott, Ellie K.; Kempster, Jennie A.; Gray, John C.

    2010-01-01

    Developing seedlings of the Arabidopsis gun1 (genomes uncoupled1) mutant, which is defective in retrograde plastid-to-nucleus signalling, show several previously unrecognized mutant phenotypes. gun1 seedlings accumulated less anthocyanin than wild-type seedlings when grown in the presence of 2% (w/v) sucrose, due to lower amounts of transcripts of early anthocyanin biosynthesis genes in gun1. Norflurazon and lincomycin, which induce retrograde signalling, further decreased the anthocyanin content of sucrose-treated seedlings, and altered the temporal pattern of anthocyanin accumulation. Lincomycin treatment altered the spatial pattern of sucrose-induced anthocyanin accumulation, suggesting that plastids provide information for the regulation of anthocyanin biosynthesis in Arabidopsis seedlings. The temporal pattern of accumulation of LHCB1 transcripts differed between wild-type and gun1 seedlings, and gun1 seedlings were more sensitive to sucrose suppression of LHCB1 transcript accumulation than wild-type seedlings. Growth and development of gun1 seedlings was more sensitive to exogenous 2% sucrose than wild-type seedlings and, in the presence of lincomycin, cotyledon expansion was enhanced in gun1 seedlings compared to the wild type. gun1 seedlings were more sensitive than wild-type seedlings to the inhibition of seedling growth and development by abscisic acid. These observations clearly implicate GUN1 and plastid signalling in the regulation of seedling development and anthocyanin biosynthesis, and indicate a complex interplay between sucrose and plastid signalling pathways. PMID:20605896

  13. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance.

    PubMed

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-07-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance.

  14. Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites.

    PubMed

    Reda, Małgorzata

    2015-01-01

    In plants sugar sensing and signal transduction involves pathways dependent or independent on HXK1 as a glucose sensor. Research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. The effect of selected carbon and nitrogen metabolites on nitrate reductase (NR) activity in Arabidopsis thaliana wild type (WT) and hxk1 mutant roots was studied. Exogenously supplied sugar, sucrose (Suc) and organic acid, 2-oxoglutarate (2-OG) led to an increase in the total and actual activity of NR. It was due to both the increase in expression of NIA genes and NR activation state. The stimulatory effect of Suc and 2-OG on nitrate reduction was less pronounced in hxk1 mutant roots with T-DNA insertion in the AtHXK1 gene encoding hexokinase1 (HXK1) and characterized by reduced hexokinase activity and root level of G6P and F6P. On the other hand, it was shown that exogenous glucose did not mimic Suc-mediated NR activation in Arabidopsis roots. Taken together, this data suggest that the Suc signaling pathway might be independent from hexose's sensor dependent mechanism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance

    PubMed Central

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-01-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance. PMID:23656872

  16. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization

    PubMed Central

    2010-01-01

    Background Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. Results In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. Conclusions This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds. PMID:20426829

  17. The Arabidopsis pi4kIIIβ1β2 double mutant is salicylic acid-overaccumulating: a new example of salicylic acid influence on plant stature

    PubMed Central

    Janda, Martin; Šašek, Vladimír; Ruelland, Eric

    2014-01-01

    Growth is the best visible sign of plant comfort. If plants are under stress, a difference in growth with control conditions can indicate that something is going wrong (or better). Phytohormones such as auxin, cytokinins, brassinosteroids or giberellins, are important growth regulators and their role in plant growth was extensively studied. On the other hand the role of salicylic acid (SA), a phytohormone commonly connected with plant defense responses, in plant growth is under-rated. However, studies with SA-overaccumulating mutants directly showed an influence of SA on plant growth. Recently we characterized an Arabidopsis SA-overaccumulating mutant impaired in phosphatidylinositol-4-kinases (pi4kIIIβ1β2). This mutant is dwarf. The crossing with mutants impaired in SA signaling revealed that pi4kIIIβ1β2 stunted rosette is due to high SA, while the short root length is not. This brings into evidence that upper and lower parts of the plants, even though they may share common phenotypes, are differently regulated. PMID:25482755

  18. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots

    PubMed Central

    Moore, Simon; Zhang, Xiaoxian; Mudge, Anna; Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2015-01-01

    • Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. • Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. • The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. • Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants. PMID:25906686

  19. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots.

    PubMed

    Moore, Simon; Zhang, Xiaoxian; Mudge, Anna; Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2015-09-01

    Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants.

  20. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis.

    PubMed

    Mitchell, Kathy; Brown, Ian; Knox, Paul; Mansfield, John

    2015-04-01

    We have investigated the cause of the restricted multiplication of hrp mutant bacteria in leaves of Arabidopsis. Our focus was on early interactions leading to differentiation between virulent wild-type and non-pathogenic hrpA mutant strains of Pseudomonas syringae pv. tomato. An initial drop in recoverable bacteria detected 0-4 h after inoculation with either strain was dependent on a functional FLS2 receptor and H2O2 accumulation in challenged leaves. Wild-type bacteria subsequently multiplied rapidly whereas the hrpA mutant was restricted within 6 h. Despite the early restriction, the hrpA mutant was still viable several days after inoculation. Analysis of intercellular washing fluids (IWFs), showed that high levels of nutrients were readily available to bacteria in the apoplast and that no diffusible inhibitors were produced in response to bacterial challenge. Histochemical and immunocytochemical methods were used to detect changes in polysaccharides (callose, two forms of cellulose, and pectin), arabinogalactan proteins (AGPs), H2O2 and peroxidase. Quantitative analysis showed very similar changes in localisation of AGPs, cellulose epitopes and callose 2 and 4 h after inoculation with either strain. However from 6 to 12 h after inoculation papillae expanded only next to the hrp mutant. In contrast to the similar patterns of secretory activity recorded from mesophyll cells, accumulation of H2O2 and peroxidase was significantly greater around the hrpA mutant within the first 4h after inoculation. A striking differential accumulation of H2O2 was also found in chloroplasts in cells next to the mutant. Ascorbate levels were lower in the IWFs recovered from sites inoculated with the hrp mutant than with wild-type bacteria. The critical response, observed at the right time and place to explain the observed differential behaviour of wild-type and hrpA mutant bacteria was the accumulation of H2O2, probably generated through Type III peroxidase activity and in

  1. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    PubMed

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  2. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  3. Detection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation.

    PubMed

    Miller, Nathan D; Durham Brooks, Tessa L; Assadi, Amir H; Spalding, Edgar P

    2010-10-01

    Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca(2+)-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function.

  4. Analysis of Arabidopsis glucose insensitive growth mutants reveals the involvement of the plastidial copper transporter PAA1 in glucose-induced intracellular signaling.

    PubMed

    Lee, Shin Ae; Yoon, Eun Kyung; Heo, Jung-Ok; Lee, Mi-Hyun; Hwang, Indeok; Cheong, Hyeonsook; Lee, Woo Sung; Hwang, Yong-sic; Lim, Jun

    2012-07-01

    Sugars play important roles in many aspects of plant growth and development, acting as both energy sources and signaling molecules. With the successful use of genetic approaches, the molecular components involved in sugar signaling have been identified and their regulatory roles in the pathways have been elucidated. Here, we describe novel mutants of Arabidopsis (Arabidopsis thaliana), named glucose insensitive growth (gig), identified by their insensitivity to high-glucose (Glc)-induced growth inhibition. The gig mutant displayed retarded growth under normal growth conditions and also showed alterations in the expression of Glc-responsive genes under high-Glc conditions. Our molecular identification reveals that GIG encodes the plastidial copper (Cu) transporter PAA1 (for P(1B)-type ATPase 1). Interestingly, double mutant analysis indicated that in high Glc, gig is epistatic to both hexokinase1 (hxk1) and aba insensitive4 (abi4), major regulators in sugar and retrograde signaling. Under high-Glc conditions, the addition of Cu had no effect on the recovery of gig/paa1 to the wild type, whereas exogenous Cu feeding could suppress its phenotype under normal growth conditions. The expression of GIG/PAA1 was also altered by mutations in the nuclear factors HXK1, ABI3, and ABI4 in high Glc. Furthermore, a transient expression assay revealed the interaction between ABI4 and the GIG/PAA1 promoter, suggesting that ABI4 actively regulates the transcription of GIG/PAA1, likely binding to the CCAC/ACGT core element of the GIG/PAA1 promoter. Our findings indicate that the plastidial Cu transporter PAA1, which is essential for plastid function and/or activity, plays an important role in bidirectional communication between the plastid and the nucleus in high Glc.

  5. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions

    USDA-ARS?s Scientific Manuscript database

    The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown un...

  6. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    PubMed Central

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  7. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein.

    PubMed

    Alboresi, Alessandro; Dall'osto, Luca; Aprile, Alessio; Carillo, Petronia; Roncaglia, Enrica; Cattivelli, Luigi; Bassi, Roberto

    2011-04-11

    Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2) accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are discussed.

  8. Structural plasticity and functional implications of internal cavities in distal mutants of type 1 non-symbiotic hemoglobin AHb1 from Arabidopsis thaliana.

    PubMed

    Faggiano, Serena; Abbruzzetti, Stefania; Spyrakis, Francesca; Grandi, Elena; Viappiani, Cristiano; Bruno, Stefano; Mozzarelli, Andrea; Cozzini, Pietro; Astegno, Alessandra; Dominici, Paola; Brogioni, Silvia; Feis, Alessandro; Smulevich, Giulietta; Carrillo, Oliver; Schmidtke, Peter; Bidon-Chanal, Axel; Luque, F Javier

    2009-12-10

    The increasing number of nonsymbiotic plant hemoglobins discovered in genomic studies in the past decade raises intriguing questions about their physiological role. Among them, the nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana deserves particular attention, as it combines an extremely high oxygen affinity with an internal hexacoordination of the distal histidine HisE7 to the heme iron in the absence of exogenous ligands. In order to gain insight into the structure-function relationships of the protein, the ligand binding properties of mutants of two conserved residues of the distal cavity, HisE7 --> Leu and PheB10 --> Leu, were investigated by experimental and computational studies and compared to results determined for the wild type (wt) protein. The Fe(2+)-deoxy HisE7 --> Leu mutant exists, as expected, in the pentacoordinated form, while a mixture of penta- and hexacoordinated forms is found for the PheB10 --> Leu mutant, with an equilibrium shifted toward the pentacoordinated form with respect to the wt protein. Spectroscopic studies of the complexes of CO and CN(-) with AHb1 and its mutants show a subtle interplay of steric and electrostatic effects by distal residues on the ligand binding to the heme. Moreover, stopped-flow and flash photolysis experiments reveal substantial kinetic differences triggered by those mutations, which are particularly manifested in the enhanced geminate rebinding and bimolecular association rate. These findings are discussed in light of the drastic alterations found by molecular dynamics simulations in the nature and distribution of internal cavities in the protein matrix of the mutants, revealing an extremely large sensitivity of the protein structure to changes in distal HisE7 and PheB10 residues. Overall, data are consistent with the putative NO-dioxygenase activity attributed to AHb1.

  9. Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response

    PubMed Central

    Gebauer, Pierre; Korn, Martin; Engelsdorf, Timo; Sonnewald, Uwe; Koch, Christian; Voll, Lars M.

    2017-01-01

    In compatible interactions, biotrophic microbial phytopathogens rely on the supply of assimilates by the colonized host tissue. It has been found in rice that phloem localized SWEET sucrose transporters can be reprogrammed by bacterial effectors to establish compatibility. We observed that sweet11/sweet12 double mutants, but not single mutants, exhibited increased resistance toward the fungal hemibiotroph Colletotrichum higginsianum (Ch), both in the biotrophic and the necrotrophic colonization phase. We therefore investigated if the phloem localized transporters AtSWEET11 and AtSWEET12 represent additive susceptibility factors in the interaction of Arabidopsis with Ch. AtSWEET12-YFP fusion protein driven by the endogenous promoter strongly accumulated at Ch infection sites and in the vasculature upon challenge with Ch. However, susceptibility of sweet12 single mutants to Ch was comparable to wild type, indicating that the accumulation of AtSWEET12 at Ch infection sites does not play a major role for compatibility. AtSWEET12-YFP reporter protein was not detectable at the plant–pathogen interface, suggesting that AtSWEET12 is not targeted by Ch effectors. AtSWEET11-YFP accumulation in pAtSWEET11:AtSWEET11-YFP plants were similar in Ch infected and mock control leaves. A close inspection of major carbohydrate metabolism in non-infected control plants revealed that soluble sugar and starch content were substantially elevated in sweet11/sweet12 double mutants during the entire diurnal cycle, that diurnal soluble sugar turnover was increased more than twofold in sweet11/sweet12, and that accumulation of free hexoses and sucrose was strongly expedited in double mutant leaves compared to wild type and both single mutants during the course of Ch infection. After 2 days of treatment, free and conjugated SA levels were significantly increased in infected and mock control leaves of sweet11/sweet12 relative to all other genotypes, respectively. Induced genes in mock treated

  10. Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of Arabidopsis Demonstrates the Key Role of this Enzyme in Root Carbon and Nitrogen Metabolism[W

    PubMed Central

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J.; Hirel, Bertrand; Dubois, Frédéric

    2012-01-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism. PMID:23054470

  11. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity

    PubMed Central

    Kuhn, Benjamin M.; Nodzyński, Tomasz; Errafi, Sanae; Bucher, Rahel; Gupta, Shibu; Aryal, Bibek; Dobrev, Petre; Bigler, Laurent; Geisler, Markus; Zažímalová, Eva; Friml, Jiří; Ringli, Christoph

    2017-01-01

    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium. PMID:28165500

  12. Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding N-acetylglucosaminyltransferase I

    SciTech Connect

    Gomez, L.; Chrispeels, M.J.

    1994-03-01

    N-Acetylglucosaminyltransferase I (EC 2.4.1.101) initiates the conversion of high-mannose asparagine-linked glycans to complex asparagine-linked glycans in plant as well as in animal cells. This Golgi enzyme is missing in the cgl mutant of Arabidopsis thaliana, and the mutant cells are unable to synthesize complex glycans. Transformation of cells from the mutant plants with the cDNA encoding human N-acetylglucosaminyltransferase I restores the wild-type phenotype of the plant cells. Fractionation of the subcellular organelles on isopycnic sucrose gradients show that the human enzyme in the complemented cells bands at the same density, 1.14 g/cm{sup 3}, typical of Golgi cisternae, as the enzyme in the wild-type plant cells. These results demonstrate that complementation results from the presence of the human enzyme in the plant Golgi apparatus, where it is functionally integrated into the biosynthetic machinery of the plant cell. In addition, given the evolutionary distance between plants and mammals and the great diversity of glycoproteins that are modified in each, there is probably no specific recognition between this Golgi enzyme and the polypeptide domains of the proteins it modifies.

  13. Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress.

    PubMed Central

    Gidrol, X; Sabelli, P A; Fern, Y S; Kush, A K

    1996-01-01

    Reactive oxygen species are common causes of cellular damages in all aerobic organisms. In Escherichia coli, the oxyR gene product is a positive regulator of the oxyR regulon that is induced in response to H2O2 stress. To identify genes involved in counteracting oxidative stress in plants, we transformed a delta oxyR mutant of E. coli with an Arabidopsis thaliana cDNA library and selected for clones that restored the ability of the delta oxyR mutant to grow in the presence of H2O2. Using this approach, we isolated a cDNA that has strong homology with the annexin super-gene family. The complemented mutant showed higher catalase activity. mRNA expression of the annexin gene in A. thaliana was higher in roots as compared with other organs and was also increased when the plants were exposed to H2O2 stress or salicylic acid. Based on the results presented in this study, we propose a novel physiological role for annexin in counteracting H2O2 stress. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:8855345

  14. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity.

    PubMed

    Kuhn, Benjamin M; Nodzyński, Tomasz; Errafi, Sanae; Bucher, Rahel; Gupta, Shibu; Aryal, Bibek; Dobrev, Petre; Bigler, Laurent; Geisler, Markus; Zažímalová, Eva; Friml, Jiří; Ringli, Christoph

    2017-02-06

    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium.

  15. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  16. The Arabidopsis pxa1 Mutant Is Defective in an ATP-Binding Cassette Transporter-Like Protein Required for Peroxisomal Fatty Acid β-Oxidation1

    PubMed Central

    Zolman, Bethany K.; Silva, Illeana D.; Bartel, Bonnie

    2001-01-01

    Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid β-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid β-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels β-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for β-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation. PMID:11706205

  17. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    PubMed

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.

  18. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  19. Molecular Characterization of the glauce Mutant: A Central Cell–Specific Function Is Required for Double Fertilization in Arabidopsis[W

    PubMed Central

    Leshem, Yehoram; Johnson, Cameron; Wuest, Samuel E.; Song, Xiaoya; Ngo, Quy A.; Grossniklaus, Ueli; Sundaresan, Venkatesan

    2012-01-01

    Double fertilization of the egg cell and the central cell by two sperm cells, resulting in the formation of the embryo and the endosperm, respectively, is a defining characteristic of flowering plants. The Arabidopsis thaliana female gametophytic mutant glauce (glc) can exhibit embryo development without any endosperm. Here, we show that in glc mutant embryo sacs one sperm cell successfully fuses with the egg cell but the second sperm cell fails to fuse with the central cell, resulting in single fertilization. Complementation studies using genes from the glc deletion interval identified an unusual genomic locus having homology to BAHD (for BEAT, AHCT, HCBT, and DAT) acyl-transferases with dual transcription units and alternative splicing that could rescue the sterility defect of glc. Expression of these transcripts appears restricted to the central cell, and expression within the central cell is sufficient to restore fertility. We conclude that the central cell actively promotes its own fertilization by the sperm cell through a signaling mechanism involving products of At1g65450. Successful fertilization of the egg cell is not blocked in the glc mutant, suggesting that evolution of double fertilization in flowering plants involved acquisition of specific functions by the central cell to enable its role as a second female gamete. PMID:22872756

  20. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Voulgari, Georgia; Papadopoulou, Galini

    2011-07-01

    Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.

  1. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  2. Arabidopsis Sucrose Transporter AtSUC9. High-Affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype1[OA

    PubMed Central

    Sivitz, Alicia B.; Reinders, Anke; Johnson, Meghan E.; Krentz, Anthony D.; Grof, Christopher P.L.; Perroux, Jai M.; Ward, John M.

    2007-01-01

    AtSUC9 (At5g06170), a sucrose (Suc) transporter from Arabidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ultrahigh affinity for Suc (K0.5 = 0.066 ± 0.025 mm). AtSUC9 showed low substrate specificity, similar to AtSUC2 (At1g22710), and transported a wide range of glucosides, including helicin, salicin, arbutin, maltose, fraxin, esculin, turanose, and α-methyl-d-glucose. The ability of AtSUC9 to transport 10 glucosides was compared directly with that of AtSUC2, HvSUT1 (from barley [Hordeum vulgare]), and ShSUT1 (from sugarcane [Saccharum hybrid]), and results indicate that type I and type II Suc transporters have different substrate specificities. AtSUC9 protein was localized to the plasma membrane by transient expression in onion (Allium cepa) epidermis. Using a whole-gene translational fusion to β-glucuronidase, AtSUC9 expression was found in sink tissues throughout the shoots and in flowers. AtSUC9 expression in Arabidopsis was dependent on intragenic sequence, and this was found to also be true for AtSUC1 (At1g71880) but not AtSUC2. Plants containing mutations in Suc transporter gene AtSUC9 were found to have an early flowering phenotype under short-day conditions. The transport properties of AtSUC9 indicate that it is uniquely suited to provide cellular uptake of Suc at very low extracellular Suc concentrations. The mutant phenotype of atsuc9 alleles indicates that AtSUC9 activity leads to a delay in floral transition. PMID:17098854

  3. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype.

    PubMed

    Sivitz, Alicia B; Reinders, Anke; Johnson, Meghan E; Krentz, Anthony D; Grof, Christopher P L; Perroux, Jai M; Ward, John M

    2007-01-01

    AtSUC9 (At5g06170), a sucrose (Suc) transporter from Arabidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ultrahigh affinity for Suc (K(0.5) = 0.066 +/- 0.025 mm). AtSUC9 showed low substrate specificity, similar to AtSUC2 (At1g22710), and transported a wide range of glucosides, including helicin, salicin, arbutin, maltose, fraxin, esculin, turanose, and alpha-methyl-d-glucose. The ability of AtSUC9 to transport 10 glucosides was compared directly with that of AtSUC2, HvSUT1 (from barley [Hordeum vulgare]), and ShSUT1 (from sugarcane [Saccharum hybrid]), and results indicate that type I and type II Suc transporters have different substrate specificities. AtSUC9 protein was localized to the plasma membrane by transient expression in onion (Allium cepa) epidermis. Using a whole-gene translational fusion to beta-glucuronidase, AtSUC9 expression was found in sink tissues throughout the shoots and in flowers. AtSUC9 expression in Arabidopsis was dependent on intragenic sequence, and this was found to also be true for AtSUC1 (At1g71880) but not AtSUC2. Plants containing mutations in Suc transporter gene AtSUC9 were found to have an early flowering phenotype under short-day conditions. The transport properties of AtSUC9 indicate that it is uniquely suited to provide cellular uptake of Suc at very low extracellular Suc concentrations. The mutant phenotype of atsuc9 alleles indicates that AtSUC9 activity leads to a delay in floral transition.

  4. Mutations in Plastidial 5-Aminolevulinic Acid Biosynthesis Genes Suppress a Pleiotropic Defect in Shoot Development of a Mitochondrial GABA Shunt Mutant in Arabidopsis.

    PubMed

    Toyokura, Koichi; Yamaguchi, Katsushi; Shigenobu, Shuji; Fukaki, Hidehiro; Tatematsu, Kiyoshi; Okada, Kiyotaka

    2015-06-01

    Plant developmental processes are co-ordinated with the status of cell metabolism, not only in mitochondria but also in plastids. In Arabidopsis thaliana, succinic semialdehyde (SSA), a GABA shunt metabolite, links the specific mitochondrial metabolic pathway to shoot development. To understand the mechanism of SSA-mediated development, we isolated a succinic semialdehyde dehydrogenase (ssadh) suppressor mutant, affected in its ability to catalyze SSA to succinic acid. We found that pleiotropic developmental phenotypes of ssadh are suppressed by a mutation in GLUTAMATE-1-SEMIALDEHYDE 2, 1-AMINOMUTASE 2 (GSA2), which encodes a plastidial enzyme converting glutatamate-1-semialdehyde to 5-aminolevulinic acid (5-ALA). In addition, a mutation in either HEMA1 or GSA1, two other enzymes for 5-ALA synthesis, also suppressed ssadh fully and partially, respectively. Furthermore, exogenous application of 5-ALA and SSA disturbed leaf development. These results suggest that metabolism in both mitochondria and plastids affect shoot development.

  5. Intronic T-DNA Insertion Renders Arabidopsis opr3 a Conditional Jasmonic Acid-Producing Mutant1[C][W][OA

    PubMed Central

    Chehab, E. Wassim; Kim, Se; Savchenko, Tatyana; Kliebenstein, Daniel; Dehesh, Katayoon; Braam, Janet

    2011-01-01

    Jasmonic acid and its derived metabolites (JAs) orchestrate plant defense against insects and fungi. 12-Oxo-phytodienoic acid (OPDA), a JA precursor, has also been implicated in plant defense. We sought to define JAs and OPDA functions through comparative defense susceptibility characteristics of three Arabidopsis (Arabidopsis thaliana) genotypes: aos, lacking JAs and OPDA; opda reductase3 (opr3), deficient in JA production but can accumulate OPDA; and transgenics that overexpress OPR3. opr3, like aos, is susceptible to cabbage loopers (Trichoplusia ni) but, relative to aos, opr3 has enhanced resistance to a necrotrophic fungus. Gas chromatography-mass spectrometry reveals that opr3 produces OPDA but no detectable JAs following wounding and looper infestation; unexpectedly, substantial levels of JAs accumulate in opr3 upon fungal infection. Full-length OPR3 transcripts accumulate in fungal-infected opr3, potentially through splicing of the T-DNA containing intron. Fungal resistance correlates with levels of JAs not OPDA; therefore, opr3 resistance to some pests is likely due to JA accumulation, and signaling activities ascribed to OPDA should be reassessed because opr3 can produce JAs. Together these data (1) reinforce the primary role JAs play in plant defense against insects and necrotrophic fungi, (2) argue for a reassessment of signaling activities ascribed to OPDA, and (3) provide evidence that mutants with intron insertions can retain gene function. PMID:21487047

  6. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    PubMed Central

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  7. Complementation of the cs dis2-11 cell cycle mutant of Schizosaccharomyces pombe by a protein phosphatase from Arabidopsis thaliana.

    PubMed

    Nitschke, K; Fleig, U; Schell, J; Palme, K

    1992-04-01

    The activities of type I protein phosphatases play a central role in eukaryotic cell cycle control. Here, we report the cloning and characterization from the flowering plant Arabidopsis thaliana of a cDNA clone named PP1-At which is highly homologous to protein phosphatase 1. The deduced amino acid sequence of PP1-At shows that the PP1-At protein is 318 amino acid residues long and has a molecular weight of 35,298 Da. The PP1-At protein has strong similarity to all other known protein phosphatase type 1 catalytic subunits. Approximately 62% of the amino acids are identical to type 1 protein phosphatases of rabbit, mouse, Saccharomyces cerevisiae and Schizosaccharomyces pombe. RNA blot analysis revealed a single mRNA species of approximately the same size as the cDNA isolated. The PP1-At-encoded mRNA of 1.3 kb is abundant in most vegetative Arabidopsis tissues, with the lowest level of expression in leaves. When transferred to the fission yeast S.pombe, the PP1-At-encoded protein can rescue a semidominant mutant, cold sensitive (cs) dis2-11, which under nonpermissive conditions is unable to complete chromosome disjunction.

  8. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae.

    PubMed

    Ellis, Christine; Karafyllidis, Ioannis; Turner, John G

    2002-10-01

    In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.

  9. Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background Cytosine methylation is an important chromatin modification that maintains genome integrity and regulates gene expression through transcriptional gene silencing. Major players in de novo methylation guided by siRNAs (known as RNA-directed DNA methylation, or RdDM), maintenance methylation, and active demethylation have been identified in Arabidopsis. However, active demethylation only occurs at a subset of RdDM loci, raising the question of how the homeostasis of DNA methylation is achieved at most RdDM loci. To identify factors that regulate the levels of cytosine methylation, we aimed to establish a transgenic reporter system that allows for forward genetic screens in Arabidopsis. Results We introduced a dual 35 S promoter (d35S) driven luciferase reporter, LUCH, into Arabidopsis and isolated a line with a moderate level of luciferase activity. LUCH produced transgene-specific 24 nucleotide siRNAs and its d35S contained methylated cytosine in CG, CHG and CHH contexts. Treatment of the transgenic line with an inhibitor of cytosine methylation de-repressed luciferase activity. Mutations in several components of the RdDM pathway but not the maintenance methylation genes resulted in reduced d35S methylation, especially CHH methylation, and de-repression of luciferase activity. A mutation in MOM1, which is known to cooperate with RdDM to silence transposons, reduced d35S DNA methylation and de-repressed LUCH expression. A mutation in ROS1, a cytosine demethylation enzyme, increased d35S methylation and reduced LUCH expression. Conclusion We developed a luciferase-based reporter, LUCH, which reports both DNA methylation directed by small RNAs and active demethylation by ROS1 in Arabidopsis. The moderate basal level of LUCH expression allows for bi-directional genetic screens that dissect the mechanisms of DNA methylation as well as demethylation. PMID:22676624

  10. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type

    PubMed Central

    Bai, Hanwen

    2011-01-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots. PMID:21921698

  11. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type.

    PubMed

    Bai, Hanwen; Wolverton, Chris

    2011-10-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.

  12. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    PubMed

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  13. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor.

    PubMed

    Fortunati, A; Piconese, S; Tassone, P; Ferrari, S; Migliaccio, F

    2008-01-01

    A new mutant of Arabidopsis named rha1 is characterized and the gene involved cloned. In roots, the mutant shows minimal right-handed slanting, reduced gravitropic response, notable resistance to 2,4-D, but scarce resistance to IAA and NAA. The roots also show a clear resistance to the auxin transport inhibitors TIBA and NPA, and to ethylene. Other characteristics are a reduced number of lateral roots and reduced size of shoot and root in the seedlings. The gene, cloned through TAIL-PCR, was found to be a heat-shock factor that maps on chromosome 5, close to and above the RFLP marker m61. The rha1 structure, mRNA, and translation product are reported. Since, so far, no other gravitropic mutant has been described as mutated in a heat-shock factor, rha1 belongs to a new group of mutants disturbed in slanting, gravitropism, and auxin physiology. As shown through the RT-PCR analyses of its expression, the gene retains the function connected with heat shock. If the characteristics connected with auxin physiology are considered, however, it is also likely that the gene, as a transcription factor, could be involved in root circumnutation, gravitropic response, and hormonal control of differentiation. Since GUS staining under the gene promoter was localized mainly in the mature tissues, rha1 does not seem to be involved in the first steps of gravitropism, but is rather related to the general response to auxin. The alterations in slanting (mainly due to reduced chiral circumnutation) and gravitropism lead to the supposition that the two processes may have, at least in part, common origins.

  14. Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves

    PubMed Central

    An, Dahee; Kim, Hyojin; Ju, Seulgi; Go, Young Sam; Kim, Hyun Uk; Suh, Mi Chung

    2017-01-01

    Triacylglycerol (TAG) is an energy-rich reserve in plant seeds that is composed of glycerol esters with three fatty acids. Since TAG can be used as a feedstock for the production of biofuels and bio-chemicals, producing TAGs in vegetative tissue is an alternative way of meeting the increasing demand for its usage. The WRINKLED1 (WRI1) gene is a well-established key transcriptional regulator involved in the upregulation of fatty acid biosynthesis in developing seeds. WRI1s from Arabidopsis and several other crops have been previously employed for increasing TAGs in seed and vegetative tissues. In the present study, we first identified three functional CsWRI1 genes (CsWRI1A. B, and C) from the Camelina oil crop and tested their ability to induce TAG synthesis in leaves. The amino acid sequences of CsWRI1s exhibited more than 90% identity with those of Arabidopsis WRI1. The transcript levels of the three CsWRI1 genes showed higher expression levels in developing seeds than in vegetative and floral tissues. When the CsWRI1A. B, or C was introduced into Arabidopsis wri1-3 loss-of-function mutant, the fatty acid content was restored to near wild-type levels and percentages of the wrinkled seeds were remarkably reduced in the transgenic lines relative to wri1-3 mutant line. In addition, the fluorescent signals of the enhanced yellow fluorescent protein (eYFP) fused to the CsWRI1 genes were observed in the nuclei of Nicotiana benthamiana leaf epidermal cells. Nile red staining indicated that the transient expression of CsWRI1A. B, or C caused an enhanced accumulation of oil bodies in N. benthamiana leaves. The levels of TAGs was higher by approximately 2.5- to 4.0-fold in N. benthamiana fresh leaves expressing CsWRI1 genes than in the control leaves. These results suggest that the three Camelina WRI1s can be used as key transcriptional regulators to increase fatty acids in biomass. PMID:28174580

  15. An UPLC-ESI-MS/MS Assay Using 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate Derivatization for Targeted Amino Acid Analysis: Application to Screening of Arabidopsis thaliana Mutants

    PubMed Central

    Salazar, Carolina; Armenta, Jenny M.; Shulaev, Vladimir

    2012-01-01

    In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The

  16. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient.

    PubMed

    Salazar-Blas, Amed; Noriega-Calixto, Laura; Campos, María E; Eapen, Delfeena; Cruz-Vázquez, Tania; Castillo-Olamendi, Luis; Sepulveda-Jiménez, Gabriela; Porta, Helena; Dubrovsky, Joseph G; Cassab, Gladys I

    2017-01-01

    Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding

  17. Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism.

    PubMed

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-02-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1×phs1a and mex1×phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1×phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.

  18. Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/coiling phenomenon

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Turk, E.; Johnson, K.; Wolverton, C.; Ishikawa, H.; Simmons, C.; Soll, D.; Evans, M. L.

    1998-01-01

    In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.

  19. Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/coiling phenomenon

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Turk, E.; Johnson, K.; Wolverton, C.; Ishikawa, H.; Simmons, C.; Soll, D.; Evans, M. L.

    1998-01-01

    In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.

  20. Global Metabolic Profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4) Loss-of-Function Mutants Exhibiting Delayed Dark-Induced Senescence

    PubMed Central

    Sequera-Mutiozabal, Miren I.; Erban, Alexander; Kopka, Joachim; Atanasov, Kostadin E.; Bastida, Jaume; Fotopoulos, Vasileios; Alcázar, Rubén; Tiburcio, Antonio F.

    2016-01-01

    Early and more recent studies have suggested that some polyamines (PAs), and particularly spermine (Spm), exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4), encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2) loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence. PMID:26925084

  1. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology

    PubMed Central

    Gilkerson, Jonathan; Callis, Judy

    2014-01-01

    Many plant growth and developmental processes are modulated by the hormone auxin. Auxin-modulated proteolysis of Aux/IAAs, a family of transcriptional repressors, represents a major mode of auxin action. Auxin facilitates the interaction of Aux/IAAs with TIR1/AFB F-box proteins, promoting their ubiquitination by the SCFTIR1/AFB ubiquitin E3 ligase leading to subsequent degradation by the 26S proteasome. To identify new genes regulating Aux/IAA proteolysis in Arabidopsis thaliana, we took a genetic approach, identifying individuals with altered degradation of an IAA1-luciferase fusion protein (IAA1-LUC). A mutant with 2-fold slower IAA1-LUC degradation rate compared with wild-type was isolated. Positional cloning identified the mutant as an allele of TOPOISOMERASE6B, named top6b-7. TOP6B encodes a subunit of a plant and archea-specific enzyme regulating endoreduplication, DNA damage repair and transcription in plants. T-DNA insertion alleles (top6b-8 and top6b-9) were also analyzed. top6b-7 seedlings are less sensitive to exogenous auxin than wild-type siblings in primary root growth assays, and experiments with DR5:GUS. Additionally, top6b-7 seedlings have a 40% reduction in the amount of endogenous IAA. These data suggest that increased IAA1-LUC half-life in top6b-7 probably results from a combination of both lower endogenous IAA levels and reduced sensitivity to auxin. PMID:25482814

  2. Disrupting Autophagy Restores Peroxisome Function to an Arabidopsis lon2 Mutant and Reveals a Role for the LON2 Protease in Peroxisomal Matrix Protein Degradation[C][W

    PubMed Central

    Farmer, Lisa M.; Rinaldi, Mauro A.; Young, Pierce G.; Danan, Charles H.; Burkhart, Sarah E.; Bartel, Bonnie

    2013-01-01

    Peroxisomes house critical metabolic reactions that are essential for seedling development. As seedlings mature, metabolic requirements change, and peroxisomal contents are remodeled. The resident peroxisomal protease LON2 is positioned to degrade obsolete or damaged peroxisomal proteins, but data supporting such a role in plants have remained elusive. Arabidopsis thaliana lon2 mutants display defects in peroxisomal metabolism and matrix protein import but appear to degrade matrix proteins normally. To elucidate LON2 functions, we executed a forward-genetic screen for lon2 suppressors, which revealed multiple mutations in key autophagy genes. Disabling core autophagy-related gene (ATG) products prevents autophagy, a process through which cytosolic constituents, including organelles, can be targeted for vacuolar degradation. We found that atg2, atg3, and atg7 mutations suppressed lon2 defects in auxin metabolism and matrix protein processing and rescued the abnormally large size and small number of lon2 peroxisomes. Moreover, analysis of lon2 atg mutants uncovered an apparent role for LON2 in matrix protein turnover. Our data suggest that LON2 facilitates matrix protein degradation during peroxisome content remodeling, provide evidence for the existence of pexophagy in plants, and indicate that peroxisome destruction via autophagy is enhanced when LON2 is absent. PMID:24179123

  3. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis.

    PubMed

    Alonso, Jose M; Stepanova, Anna N; Solano, Roberto; Wisman, Ellen; Ferrari, Simone; Ausubel, Frederick M; Ecker, Joseph R

    2003-03-04

    Five ethylene-insensitive loci (wei1-wei5) were identified by using a low-dose screen for "weak" ethylene-insensitive mutants. wei1, wei2, and wei3 seedlings showed hormone insensitivity only in roots, whereas wei4 and wei5 displayed insensitivity in both roots and hypocotyls. The genes corresponding to wei1, wei4, and wei5 were isolated using a positional cloning approach. The wei1 mutant harbored a recessive mutation in TIR1, which encodes a component of the SCF protein ubiquitin ligase involved in the auxin response. wei4, a dominant mutant, resulted from a mutation in the ethylene receptor ERS, whereas wei5, a semidominant mutant, was caused by a mutation in the EIN3-related transcription factor gene EIL1. The simultaneous loss of functional WEI5EIL1 and EIN3 nearly completely abolished the ethylene response in etiolated seedlings, and adult plants were highly susceptible to infection by the necrotrophic fungal pathogen Botrytis cinerea. Moreover, wei5eil1 ein3 double mutants were able to fully suppress constitutive signaling caused by ctr1, suggesting a synergistic interaction among these gene products. Unlike previously known root ethylene-insensitive mutants, wei2 and wei3 were not affected in their response to auxin and showed a normal response to gravity. Genetic mapping studies indicate that wei2 and wei3 correspond to previously unidentified ethylene pathway genes that may control cell-elongation processes functioning at the intersection of the ethylene and auxin response pathways.

  4. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants.

    PubMed

    Deuschle, Karen; Chaudhuri, Bhavna; Okumoto, Sakiko; Lager, Ida; Lalonde, Sylvie; Frommer, Wolf B

    2006-09-01

    Genetically encoded glucose nanosensors have been used to measure steady state glucose levels in mammalian cytosol, nuclei, and endoplasmic reticulum. Unfortunately, the same nanosensors in Arabidopsis thaliana transformants manifested transgene silencing and undetectable fluorescence resonance energy transfer changes. Expressing nanosensors in sgs3 and rdr6 transgene silencing mutants eliminated silencing and resulted in high fluorescence levels. To measure glucose changes over a wide range (nanomolar to millimolar), nanosensors with higher signal-to-noise ratios were expressed in these mutants. Perfusion of leaf epidermis with glucose led to concentration-dependent ratio changes for nanosensors with in vitro K(d) values of 600 microM (FLIPglu-600 microDelta13) and 3.2 mM (FLIPglu-3.2 mDelta13), but one with 170 nM K(d) (FLIPglu-170 nDelta13) showed no response. In intact roots, FLIPglu-3.2 mDelta13 gave no response, whereas FLIPglu-600 microDelta13, FLIPglu-2 microDelta13, and FLIPglu-170 nDelta13 all responded to glucose. These results demonstrate that cytosolic steady state glucose levels depend on external supply in both leaves and roots, but under the conditions tested they are lower in root versus epidermal and guard cells. Without photosynthesis and external supply, cytosolic glucose can decrease to <90 nM in root cells. Thus, observed gradients are steeper than expected, and steady state levels do not appear subject to tight homeostatic control. Nanosensor-expressing plants can be used to assess glucose flux differences between cells, invertase-mediated sucrose hydrolysis in vivo, delivery of assimilates to roots, and glucose flux in mutants affected in sugar transport, metabolism, and signaling.

  5. Functional Analysis of Arabidopsis Mutants Points to Novel Roles for Glutathione in Coupling H2O2 to Activation of Salicylic Acid Accumulation and Signaling

    PubMed Central

    Han, Yi; Chaouch, Sejir; Mhamdi, Amna; Queval, Guillaume; Zechmann, Bernd

    2013-01-01

    Abstract Aims: Through its interaction with H2O2, glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H2O2. Results: Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H2O2-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H2O2-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H2O2-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. Innovation: A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H2O2 signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. Conclusion: In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H2O2 to activate SA signaling, a key defense response in plants. Antioxid. Redox Signal. 18, 2106–2121. PMID:23148658

  6. THI1, a protein involved in the biosynthesis of thiamin in Arabidopsis thaliana: structural analysis of THI1(A140V) mutant.

    PubMed

    Garcia, Assuero F; Dyszy, Fabio; Munte, Claudia E; Demarco, Ricardo; Beltramini, Leila M; Oliva, Glaucius; Costa-Filho, Antonio J; Araujo, Ana P U

    2014-06-01

    In eukaryotes, there are still steps of the vitamin B1 biosynthetic pathway not completely understood. In Arabidopsis thaliana, THI1 protein has been associated with the synthesis of the thiazole ring, a finding supported by the identification of a thiamine pyrophosphate (TPP)-like compound in its structure. Here, we investigated THI1 and its mutant THI1(A140V), responsible for the thiamin auxotrophy in a A. thaliana mutant line, aiming to clarify the impact of this mutation in the stability and activity of THI1. Recently, the THI1 orthologue (THI4) was revealed to be responsible for the donation of the sulfur atom from a cysteine residue to the thiazole ring in the thiamine intermediate. In this context, we carried out a cysteine quantification in THI1 and THI1(A140V) using electron spin resonance (ESR). These data showed that THI1(A140V) contains more sulfur-containing cysteines than THI1, indicating that the function as a sulfur donor is conserved, but the rate of donation reaction is somehow affected. Also, the bound compounds were isolated from both proteins and are present in different amounts in each protein. Unfolding studies presented differences in melting temperatures and also in the concentration of guanidine at which half of the protein unfolds, thus showing that THI1(A140V) has its conformational stability affected by the mutation. Hence, despite keeping its function in the early steps during the synthesis of TPP precursor, our studies have shown a decrease in the THI1(A140V) stability, which might be slowing down the biological activity of the mutant, and thus contributing to thiamin auxotrophy.

  7. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2014-09-01

    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.

  8. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana.

    PubMed

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by F(v)/F(m) ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of alpha- and gamma-tocopherol (vitamin E) and beta-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants.

  9. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves.

    PubMed

    Kraner, Max E; Müller, Carmen; Sonnewald, Uwe

    2017-09-02

    In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status.

    PubMed

    Zhang, Bo; Pasini, Rita; Dan, Hanbin; Joshi, Naveen; Zhao, Yihong; Leustek, Thomas; Zheng, Zhi-Liang

    2014-01-01

    Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1-15 and sel1-16, which show increased expression of a sulfur deficiency-activated gene β-glucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high-affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1-15 and sel1-16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild-type, but showed higher expression of BGLU28 and other sulfur deficiency-activated genes than wild-type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1-15 and sel1-16. Taken together, the genetic evidence suggests that, in addition to its known function as a high-affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.

  11. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment.

    PubMed

    Tolin, Serena; Arrigoni, Giorgio; Trentin, Anna Rita; Veljovic-Jovanovic, Sonja; Pivato, Micaela; Zechman, Bernd; Masi, Antonio

    2013-06-01

    The existence of a gamma-glutamyl cycle consisting of intracellular GSH synthesis, extrusion to the apoplastic space and recovery by gamma-glutamyl transferase (GGT)-assisted degradation into its constituent amino acids, has been demonstrated in plants. To address the significance of this cycle in plant cells, we performed integrated biochemical, immunocytochemical, and quantitative proteomics analyses in the Arabidopsis thaliana ggt1 knockout mutant (lacking apoplastic GGT1 isoform) and its corresponding wild-type (WT). The ggt1 knockout leaves exhibited an increased ascorbate and GSH content, increased apoplastic GSH content, and enhanced protein carbonylations in the low-molecular weight range compared to WT. The combined iTRAQ and LC-MS/MS-based quantitative proteomics approach identified 70 proteins (out of 1013 identified proteins) whose abundance was significantly different in leaves of ggt1 mutant compared to WT, with a fold change ≥1.5. Mining of the proteome data for GSH-associated genes showed that disruption of gamma-glutamyl cycle in ggt1 knockout-leaves was associated with the induction of genes encoding four GSTs in the phi class (GSTF2, GSTF6, GSTF9, and GSTF10), a GSH peroxidase (GPX1), and glyoxylase II. Proteins with a lower abundance compared to the WT are involved in chloroplast functions, carbohydrate/maltose metabolism, and vegetative storage protein synthesis. Present findings suggest that GGT1 plays a role in redox signaling. The disruption of the gamma-glutamyl cycle in the ggt1 mutant results in pleiotropic effects related to biotic and abiotic stress response, antioxidant metabolism, senescence, carbohydrate metabolism, and photosynthesis, with strong implications for plant adaptation to the environment.

  12. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    PubMed

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development.

  13. Leaves of the Arabidopsis maltose exporter1 Mutant Exhibit a Metabolic Profile with Features of Cold Acclimation in the Warm

    PubMed Central

    Purdy, Sarah J.; Bussell, John D.; Nunn, Christopher P.; Smith, Steven M.

    2013-01-01

    Background Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. Principal Findings Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. Conclusions The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation. PMID:24223944

  14. Glutathione Deficiency of the Arabidopsis Mutant pad2-1 Affects Oxidative Stress-Related Events, Defense Gene Expression, and the Hypersensitive Response1[C][W][OA

    PubMed Central

    Dubreuil-Maurizi, Carole; Vitecek, Jan; Marty, Laurent; Branciard, Lorelise; Frettinger, Patrick; Wendehenne, David; Meyer, Andreas J.; Mauch, Felix; Poinssot, Benoît

    2011-01-01

    The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDA