Science.gov

Sample records for arabidopsis freezing tolerance

  1. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant.

    PubMed

    Xin, Z; Browse, J

    1998-06-23

    Temperate plants develop a greater ability to withstand freezing in response to a period of low but nonfreezing temperatures through a complex, adaptive process of cold acclimation. Very little is known about the signaling processes by which plants perceive the low temperature stimulus and transduce it into the nucleus to activate genes needed for increased freezing tolerance. To help understand the signaling processes, we have isolated mutants of Arabidopsis that are constitutively freezing-tolerant in the absence of cold acclimation. Freezing tolerance of wild-type Arabidopsis was increased from -5.5 degreesC to -12.6 degreesC by cold acclimation whereas the freezing tolerance of 26 mutant lines ranged from -6.8 degreesC to -10.6 degreesC in the absence of acclimation. Plants with mutations at the eskimo1 (esk1) locus accumulated high levels of proline, a compatible osmolyte, but did not exhibit constitutively increased expression of several cold-regulated genes involved in freezing tolerance. RNA gel blot analysis suggested that proline accumulation in esk1 plants was mediated by regulation of transcript levels of genes involved in proline synthesis and degradation. The characterization of esk1 mutants and results from other mutants suggest that distinct signaling pathways activate different aspects of cold acclimation and that activation of one pathway can result in considerable freezing tolerance without activation of other pathways.

  2. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  3. Natural Genetic Variation of Freezing Tolerance in Arabidopsis[W][OA

    PubMed Central

    Hannah, Matthew A.; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G.; Hincha, Dirk K.

    2006-01-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance. PMID:16844837

  4. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background We have previously shown that lipophilic components (LPC) of the brown seaweed Ascophyllum nodosum (ANE) improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s) of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH) gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ) representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5%) in comparison with untreated plants. A total of 463 genes (2%) were up regulated while 650 genes (3%) were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition. PMID:23171218

  5. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana

    PubMed Central

    Schulz, Elisa; Tohge, Takayuki; Zuther, Ellen; Fernie, Alisdair R.; Hincha, Dirk K.

    2016-01-01

    In plants from temperate climates such as Arabidopsis thaliana low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. This process is accompanied by massive changes in gene expression and in the content of primary metabolites and lipids. In addition, most flavonols and anthocyanins accumulate upon cold exposure, along with most transcripts encoding transcription factors and enzymes of the flavonoid biosynthetic pathway. However, no evidence for a functional role of flavonoids in plant freezing tolerance has been shown. Here, we present a comprehensive analysis using qRT-PCR for transcript, LC-MS for flavonoid and GC-MS for primary metabolite measurements, and an electrolyte leakage assay to determine freezing tolerance of 20 mutant lines in two Arabidopsis accessions that are affected in different steps of the flavonoid biosynthetic pathway. This analysis provides evidence for a functional role of flavonoids in plant cold acclimation. The accumulation of flavonoids in the activation tagging mutant line pap1-D improved, while reduced flavonoid content in different knock-out mutants impaired leaf freezing tolerance. Analysis of the different knock-out mutants suggests redundancy of flavonoid structures, as the lack of flavonols or anthocyanins could be compensated by other compound classes. PMID:27658445

  6. Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea).

    PubMed

    Khanal, Nityananda; Moffatt, Barbara A; Gray, Gordon R

    2015-05-15

    Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis, but possessing much higher constitutive levels of tolerance to abiotic stress. This study aimed to characterize the freezing tolerance of Arabidopsis (Columbia ecotype) and two ecotypes of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations. Under our growth conditions, maximal freezing tolerance was observed after two- and three-weeks of cold acclimation for Arabidopsis and Eutrema, respectively. The ecotypes of Eutrema and Arabidopsis do not differ in their constitutive level of freezing tolerance or short-term cold acclimation capacity. However Eutrema remarkably outperforms Arabidopsis in long-term acclimation capacity suggesting a wider phenotypic plasticity for the trait of freezing tolerance. The combination of drought treatment and one-week of cold acclimation was more effective than long-term cold acclimation in achieving maximum levels of freezing tolerance in Eutrema, but not Arabidopsis. Furthermore, it was demonstrated growth conditions, particularly irradiance, are determinates of the level of freezing tolerance attained during cold acclimation suggesting a role for photosynthetic processes in adaptive stress responses. PMID:25889872

  7. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis

    PubMed Central

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  8. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis

    PubMed Central

    Chinnusamy, Viswanathan; Ohta, Masaru; Kanrar, Siddhartha; Lee, Byeong-ha; Hong, Xuhui; Agarwal, Manu; Zhu, Jian-Kang

    2003-01-01

    Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants. PMID:12672693

  9. Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana.

    PubMed

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-08-28

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also functions as an RNA chaperone. Promoter-GUS transgenic plants revealed tissue-specific expression of AtCSP3 in shoot and root apical regions. When exposed to low temperature, GUS activity was extensively induced in a broader region of the roots. In transgenic plants expressing an AtCSP3-GFP fusion, GFP signals were detected in both the nucleus and cytoplasm. An AtCSP3 knock-out mutant (atcsp3-2) was sensitive to freezing compared with wild-type plants under non-acclimated and cold-acclimated conditions, whereas expression of C-repeat-binding factors and their downstream genes during cold acclimation was not altered in the atcsp3-2 mutant. Overexpression of AtCSP3 in transgenic plants conferred enhanced freezing tolerance over wild-type plants. Together, the data demonstrated an essential role of RNA chaperones for cold adaptation in higher plants.

  10. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance.

    PubMed

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2015-10-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.

  11. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398

    PubMed Central

    2013-01-01

    Background ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Results Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Conclusions Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures. PMID:24350981

  12. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

    PubMed

    Zhuang, Lili; Yuan, Xiuyun; Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  13. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  14. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    SciTech Connect

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young; Chae, Ho Byoung; Jung, Young Jun; Jung, Hyun Suk; Lee, Kyun Oh; Lee, Jung Ro; Lee, Sang Yeol

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  15. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    SciTech Connect

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  16. Genetic and Molecular Analyses of Natural Variation Indicate CBF2 as a Candidate Gene for Underlying a Freezing Tolerance Quantitative Trait Locus in Arabidopsis1[w

    PubMed Central

    Alonso-Blanco, Carlos; Gomez-Mena, Concepción; Llorente, Francisco; Koornneef, Maarten; Salinas, Julio; Martínez-Zapater, José M.

    2005-01-01

    Natural variation for freezing tolerance is a major component of adaptation and geographic distribution of plant species. However, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We have analyzed the intraspecific freezing tolerance variation existent between two geographically distant accessions of Arabidopsis (Arabidopsis thaliana), Cape Verde Islands (Cvi) and Landsberg erecta (Ler). They differed in their freezing tolerance before and after cold acclimation, as well as in the cold acclimation response in relation to photoperiod conditions. Using a quantitative genetic approach, we found that freezing tolerance differences after cold acclimation were determined by seven quantitative trait loci (QTL), named FREEZING TOLERANCE QTL 1 (FTQ1) to FTQ7. FTQ4 was the QTL with the largest effect detected in two photoperiod conditions, while five other FTQ loci behaved as photoperiod dependent. FTQ4 colocated with the tandem repeated genes C-REPEAT BINDING FACTOR 1 (CBF1), CBF2, and CBF3, which encode transcriptional activators involved in the cold acclimation response. The low freezing tolerance of FTQ4-Cvi alleles was associated with a deletion of the promoter region of Cvi CBF2, and with low RNA expression of CBF2 and of several CBF target genes. Genetic complementation of FTQ4-Cvi plants with a CBF2-Ler transgene suggests that such CBF2 allelic variation is the cause of CBF2 misexpression and the molecular basis of FTQ4. PMID:16244146

  17. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants.

    PubMed

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young; Chae, Ho Byoung; Jung, Young Jun; Jung, Hyun Suk; Lee, Kyun Oh; Lee, Jung Ro; Lee, Sang Yeol

    2015-08-01

    Overexpression of AtNTRC (AtNTRC(OE)) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid-protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress.

  18. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    PubMed Central

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression. PMID:21330789

  19. A C-Repeat Binding Factor Transcriptional Activator (CBF/DREB1) from European Bilberry (Vaccinium myrtillus) Induces Freezing Tolerance When Expressed in Arabidopsis thaliana

    PubMed Central

    Oakenfull, Rachael J.; Baxter, Robert; Knight, Marc R.

    2013-01-01

    Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function. PMID:23349799

  20. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis

    PubMed Central

    Jenkins, Gareth I.; Wang, Shuangfeng; Shang, Zhonglin; Shi, Yiting; Yang, Shuhua; Li, Xia

    2015-01-01

    Abstract Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance. PMID:26393916

  1. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis.

    PubMed

    Kim, Ye Seul; Lee, Minyoung; Lee, Jae-Hyung; Lee, Hyo-Jun; Park, Chung-Mo

    2015-09-01

    During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1-CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE-CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation.

  2. Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae.

    PubMed

    Xu, Zhi-Yan; Zhang, Xin; Schläppi, Michael; Xu, Zi-Qin

    2011-09-01

    AZI1 (AZELAIC ACID INDUCED 1) of Arabidopsis thaliana could be induced by azelaic acid and was involved in priming of systemic plant immunity. In the present work, expression of AZI1 in response to low temperature was investigated via RNA gel blot analysis. AZI1 could be induced slowly by cold stress and more than 6h treatment at 4°C was required to detect an increase in mRNA abundance. However, the high expression state could not be maintained stably and would decline to basal level when the plants were transferred to room temperature. In order to clarify the function of AZI1 in resistance to abiotic stresses, overexpressing, RNA interference and T-DNA knockout lines of this gene were used in electrolyte leakage assays. Overexpression of AZI1 resulted in reduced electrolyte leakage during freezing damage. In contrast, AZI1 knockdown and knockout lines showed increased tendencies in cellular damage after freezing treatment. To further validate the potential resistance of AZI1 to low-temperature stress, Saccharomyces cerevisiae cells were transformed with pESC-AZI1 in which AZI1 was under the control of GAL1 promoter. Compared to yeast cells containing empty pESC-URA, the survival rate of yeast cells harboring AZI1 increased obviously after freezing treatment. All these results suggested that AZI1 might be multifunctional and associated with cold tolerance of Arabidopsis.

  3. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  4. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis.

    PubMed

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2014-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193-228 (SsCBF1(193-228)). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions.

  5. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  6. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  7. Measuring freezing tolerance: Survival and regrowth assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening plants for freezing tolerance under tightly-controlled conditions is an invaluable technique for studying freezing tolerance and selecting for improved winterhardiness. Artificial freezing tests of cereal plants historically have used isolated crown and stem tissue prepared by “removing a...

  8. Freeze tolerance and avoidance in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold acclimation is a multigenic, quantitative trait that involves biochemical and structural changes that effect the physiology of a plant. Mechanisms associated with freeze tolerance or freeze avoidance develop and are lost on an annual cycle. When conducting studies to characterize and determin...

  9. Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in Arabidopsis.

    PubMed

    Tan, Wei-Juan; Xiao, Shi; Chen, Qin-Fang

    2015-01-01

    In our recent article in Molecular Plant, we reported that 3 lipase-like defense regulators SENESCENCE-ASSOCIATED GENE101 (SAG101), ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are involved in the regulation of freezing tolerance in Arabidopsis. The transcripts of SAG101, EDS1 and PAD4 were inducible by cold stress and their knockout or knockdown mutants exhibited enhanced chilling and freezing tolerance in comparison to the wild type. The freezing tolerance phenotype showed in the sag101, eds1 and pad4 mutants was correlated with the transcriptional upregulation of C-REPEAT/DRE BINDING FACTORs (CBFs) and their regulons as well as increased levels of proline. Upon cold exposure, the sag101, eds1 and pad4 mutants showed ameliorated cell death and accumulation of hydrogen peroxide, which were highly induced by freezing stress in the wild-type leaves. Moreover, the contents of salicylic acid (SA) and diacylglycerol (DAG) were significantly decreased in the sag101, eds1 and pad4 mutants compared to the wild type. Taken together, our results suggest that the SAG101, EDS1 and PAD4 are negative regulators in the freezing response and function, at least in part, by modulating the homeostasis of SA and DAG in Arabidopsis.

  10. Canalization of freeze tolerance in an alpine grasshopper.

    PubMed

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. PMID:26210007

  11. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts.

    PubMed

    Hino, A; Mihara, K; Nakashima, K; Takano, H

    1990-05-01

    Five freeze-tolerant yeast strains suitable for frozen dough were compared with ordinary commercial bakers' yeast. Kluyveromyces thermotolerans FRI 501 cells showed high survival ability after freezing when their resting cells were fermented for 0 to 180 min in modified liquid medium, and they grew to log and stationary phases. Among the freeze-tolerant strains of Saccharomyces cerevisiae, FRI 413 and FRI 869 showed higher surviving and trehalose-accumulating abilities than other S. cerevisiae strains, but were affected by a prolonged prefermentation period and by growth phases. The freeze tolerance of the yeasts was, to some extent, associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. In the freeze-sensitive yeasts, the degree of hydrolysis of trehalose may thus be affected by the kind of saccharide, unlike in freeze-tolerant yeasts. PMID:2339891

  12. Induction of Freeze-sensitive Mutants from a Freeze-tolerant Yeast, Torulaspora delbrueckii.

    PubMed

    Murakami, Y; Hahn, Y S; Yokoigawa, K; Endo, K; Kawai, H

    1994-01-01

    Freeze-sensitive strains of yeast were induced from a freeze-tolerant yeast Torulaspora delbrueckii by incubation with ethyl-methane sulfonate as a mutagen. A maximum ratio of mutation was attained by the incubation at 30°C for 75min. One-hundred and fifty strains of freeze-sensitive yeast were selected by plating-culture for the first screening. The freeze-tolerance ratio of each strain was examined based on the fermentative activity before and after freezing in liquid medium and dough. Strain 60B3 showed the highest freeze-sensitivity in a pre-fermented frozen dough (pre-fermented at 30°C for 2h, and frozen at -20°C for 7 days) among eight strains finally selected. PMID:27315725

  13. Logistic Regression Analysis of Freezing Tolerance in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four winter wheat cultivars, Eltan, Froid, Kestrel, and Tiber, were cold-acclimated for five weeks and then tested for freezing tolerance in a programmable freezer. The temperature of the soil was recorded every two minutes and the freezing episode was described as five parameters: the minimum temp...

  14. Avoidance and tolerance of freezing in ectothermic vertebrates.

    PubMed

    Costanzo, Jon P; Lee, Richard E

    2013-06-01

    Ectothermic vertebrates have colonized regions that are seasonally or perpetually cold, and some species, particularly terrestrial hibernators, must cope with temperatures that fall substantially below 0°C. Survival of such excursions depends on either freeze avoidance through supercooling or freeze tolerance. Supercooling, a metastable state in which body fluids remain liquid below the equilibrium freezing/melting point, is promoted by physiological responses that protect against chilling injury and by anatomical and behavioral traits that limit risk of inoculative freezing by environmental ice and ice-nucleating agents. Freeze tolerance evolved from responses to fundamental stresses to permit survival of the freezing of a substantial amount of body water under thermal and temporal conditions of ecological relevance. Survival of freezing is promoted by a complex suite of molecular, biochemical and physiological responses that limit cell death from excessive shrinkage, damage to macromolecules and membranes, metabolic perturbation and oxidative stress. Although freeze avoidance and freeze tolerance generally are mutually exclusive strategies, a few species can switch between them, the mode used in a particular instance of chilling depending on prevailing physiological and environmental conditions.

  15. Avoidance and tolerance of freezing in ectothermic vertebrates.

    PubMed

    Costanzo, Jon P; Lee, Richard E

    2013-06-01

    Ectothermic vertebrates have colonized regions that are seasonally or perpetually cold, and some species, particularly terrestrial hibernators, must cope with temperatures that fall substantially below 0°C. Survival of such excursions depends on either freeze avoidance through supercooling or freeze tolerance. Supercooling, a metastable state in which body fluids remain liquid below the equilibrium freezing/melting point, is promoted by physiological responses that protect against chilling injury and by anatomical and behavioral traits that limit risk of inoculative freezing by environmental ice and ice-nucleating agents. Freeze tolerance evolved from responses to fundamental stresses to permit survival of the freezing of a substantial amount of body water under thermal and temporal conditions of ecological relevance. Survival of freezing is promoted by a complex suite of molecular, biochemical and physiological responses that limit cell death from excessive shrinkage, damage to macromolecules and membranes, metabolic perturbation and oxidative stress. Although freeze avoidance and freeze tolerance generally are mutually exclusive strategies, a few species can switch between them, the mode used in a particular instance of chilling depending on prevailing physiological and environmental conditions. PMID:23678097

  16. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains.

    PubMed

    Tanghe, An; Van Dijck, Patrick; Dumortier, Françoise; Teunissen, Aloys; Hohmann, Stefan; Thevelein, Johan M

    2002-12-01

    Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications. PMID:12450819

  17. Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone, thus the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of...

  18. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    PubMed Central

    O’Keefe, Kimberly; Nippert, Jesse B.; Swemmer, Anthony M.

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  19. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events.

    PubMed

    O'Keefe, Kimberly; Nippert, Jesse B; Swemmer, Anthony M

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  20. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    PubMed Central

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  1. Freezing tolerance of winter wheat as influenced by extended growth at low temperature and exposure to freeze-thaw cycles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the seasons progress, autumn-planted winter wheat plants (Triticum aestivum L.) first gain, then progressively lose freezing tolerance. Exposing the plants to freeze-thaw cycles of -3/3°C results in increased ability to tolerate subsequent freezing to potentially damaging temperatures. This stu...

  2. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.

    PubMed

    Larson, Don J; Barnes, Brian M

    2016-01-01

    Ice nucleation across the skin of wood frogs (Lithobates sylvaticus) rapidly induces endogenous production of glucose, a cryoprotectant necessary for freeze tolerance. In laboratory studies of freeze tolerance, wood frogs are cooled slowly, often at -0.05°C h(-1), to facilitate high cryoprotectant production and survival. Under natural conditions in Alaska, however, wood frogs accumulate maximal tissue glucose concentrations while cooling at much faster rates, -0.35° to -1.6°C h(-1), and in addition undergo multiple successive freeze-thaw cycles before remaining frozen for the winter. We examined whether simulating these ecologically relevant cooling rates and repeated freeze-thaw events in captive wood frogs results in the high glucose concentrations found in naturally frozen wood frogs. We found that over successive freezing and thawing events, glucose concentrations increased stepwise in all measured tissues. Short thawing periods did not result in a statistically significant decline of glucose concentrations. Wood frogs that experienced three freeze-thaw events had fresh weight glucose concentrations that approached values found in tissues of wood frogs frozen in natural conditions. Laboratory wood frogs survive frozen for 2 mo, while wood frogs frozen under natural conditions survive frozen for up to 7 mo at temperatures below -18°C. We hypothesize that repeated freeze-thaw cycles with rapid cooling and warming rates allow for greater survival in Alaskan wood frogs through enhanced cryoprotectant production. PMID:27327184

  3. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.

    PubMed

    Larson, Don J; Barnes, Brian M

    2016-01-01

    Ice nucleation across the skin of wood frogs (Lithobates sylvaticus) rapidly induces endogenous production of glucose, a cryoprotectant necessary for freeze tolerance. In laboratory studies of freeze tolerance, wood frogs are cooled slowly, often at -0.05°C h(-1), to facilitate high cryoprotectant production and survival. Under natural conditions in Alaska, however, wood frogs accumulate maximal tissue glucose concentrations while cooling at much faster rates, -0.35° to -1.6°C h(-1), and in addition undergo multiple successive freeze-thaw cycles before remaining frozen for the winter. We examined whether simulating these ecologically relevant cooling rates and repeated freeze-thaw events in captive wood frogs results in the high glucose concentrations found in naturally frozen wood frogs. We found that over successive freezing and thawing events, glucose concentrations increased stepwise in all measured tissues. Short thawing periods did not result in a statistically significant decline of glucose concentrations. Wood frogs that experienced three freeze-thaw events had fresh weight glucose concentrations that approached values found in tissues of wood frogs frozen in natural conditions. Laboratory wood frogs survive frozen for 2 mo, while wood frogs frozen under natural conditions survive frozen for up to 7 mo at temperatures below -18°C. We hypothesize that repeated freeze-thaw cycles with rapid cooling and warming rates allow for greater survival in Alaskan wood frogs through enhanced cryoprotectant production.

  4. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.

    PubMed

    Tanghe, An; Van Dijck, Patrick; Colavizza, Didier; Thevelein, Johan M

    2004-06-01

    Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.

  5. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.

    PubMed

    Tanghe, An; Van Dijck, Patrick; Colavizza, Didier; Thevelein, Johan M

    2004-06-01

    Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought. PMID:15184134

  6. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.

  7. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants. PMID:24329902

  8. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis.

    PubMed

    Artlip, Timothy S; Wisniewski, Michael E; Takatsuji, Hiroshi; Bassett, Carole L

    2016-08-01

    Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage. PMID:26806544

  9. Identification of a novel LEA protein involved in freezing tolerance in wheat.

    PubMed

    Sasaki, Kentaro; Christov, Nikolai Kirilov; Tsuda, Sakae; Imai, Ryozo

    2014-01-01

    Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.

  10. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  11. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    NASA Astrophysics Data System (ADS)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  12. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.

    PubMed

    Panadero, Joaquín; Hernández-López, Maria José; Prieto, José Antonio; Randez-Gil, Francisca

    2007-08-01

    Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys(2)/His(2)-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Deltacnb1 and Deltacrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.

  13. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.

    PubMed

    Panadero, Joaquín; Hernández-López, Maria José; Prieto, José Antonio; Randez-Gil, Francisca

    2007-08-01

    Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys(2)/His(2)-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Deltacnb1 and Deltacrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways. PMID:17557846

  14. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.

    PubMed

    Worland, M R; Wharton, D A; Byars, S G

    2004-01-01

    The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.

  15. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.

    PubMed

    Pino, María-Teresa; Skinner, Jeffrey S; Park, Eung-Jun; Jeknić, Zoran; Hayes, Patrick M; Thomashow, Michael F; Chen, Tony H H

    2007-09-01

    Solanum tuberosum is a frost-sensitive species incapable of cold acclimation. A brief exposure to frost can significantly reduce its yields, while hard frosts can completely destroy entire crops. Thus, gains in freezing tolerance of even a few degrees would be of considerable benefit relative to frost damage. The S. tuberosum cv. Umatilla was transformed with three Arabidopsis CBF genes (AtCBF1-3) driven by either a constitutive CaMV35S or a stress-inducible Arabidopsis rd29A promoter. AtCBF1 and AtCBF3 over-expression via the 35S promoter increased freezing tolerance about 2 degrees C, whereas AtCBF2 over-expression failed to increase freezing tolerance. Transgenic plants of AtCBF1 and AtCBF3 driven by the rd29A promoter reached the same level of freezing tolerance as the 35S versions within a few hours of exposure to low but non-freezing temperatures. Constitutive expression of AtCBF genes was associated with negative phenotypes, including smaller leaves, stunted plants, delayed flowering, and reduction or lack of tuber production. While imparting the same degree of freezing tolerance, control of AtCBF expression via the stress-inducible promoter ameliorated these negative phenotypic effects and restored tuber production to levels similar to wild-type plants. These results suggest that use of a stress-inducible promoter to direct CBF transgene expression can yield significant gains in freezing tolerance without negatively impacting agronomically important traits in potato.

  16. The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points.

    PubMed

    Kristiansen, E; Li, N G; Averensky, A I; Laugsand, A E; Zachariassen, K E

    2009-07-01

    Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below -37 degrees C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.

  17. Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance.

    PubMed

    Churchill, T A; Storey, K B

    1993-12-01

    Wood frogs, Rana sylvatica, tolerate the loss of 50-60% of total body water during experimental dehydration. The rate of water loss for unprotected frogs is the same whether animals are frozen (at -2 degrees C) or unfrozen (at 1 degrees C) but is greatly reduced when frogs are frozen under a protective layer of moss. Dehydrational death could occur in as little as 7-9 days for unprotected animals; this indicates the importance for winter survival of selecting well-protected and damp hibernation sites. Prior dehydration affected the cooling and freezing properties of frogs, reducing supercooling point and the amount of ice formed after 24 h at -2 degrees C and acting synergistically with freezing exposure in stimulating cryoprotectant synthesis. Analysis of the effects of controlled dehydration at 5 degrees C showed that changes in body water content alone (without freezing) stimulated liver glycogenolysis and the export of high concentrations of glucose into blood and other organs. Autumn-collected frogs dehydrated to 50% of total body water lost showed glucose levels of 165-1,409 nmol/mg protein in different organs, increases of 9- to 313-fold compared with control values and reaching final levels very similar to those induced by freezing exposure. The data support the proposal that various adaptations for natural freeze tolerance may have been derived from preexisting mechanisms for dealing with water stress in amphibians and that cell volume change may be one of the signals involved in triggering and sustaining molecular adaptations (e.g., cryoprotectant output) that support freezing survival.

  18. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    PubMed

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  19. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    PubMed

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress.

  20. A whole-plant screening test to identify genotypes with superior freezing tolerance.

    PubMed

    Bertrand, Annick; Castonguay, Yves; Bourassa, Josée

    2014-01-01

    Freezing tolerance is a determinant factor of persistence of perennials grown in northern climate. Selection for winterhardiness in field nurseries is difficult because of the unpredictability of occurrence of test winters allowing the identification of hardy genotypes. Here we describe a whole-plant assay entirely performed indoor in growth chambers and walk-in freezers to identify genotypes with superior tolerance to freezing within populations of open pollinated species. Three successive freezing stresses are applied to progressively eliminate 90 % of the population and to retain only the 10 % best performing genotypes. This approach can be used to generate recurrently selected populations more tolerant to freezing in different species.

  1. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  2. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).

    PubMed

    Fisker, Karina Vincents; Holmstrup, Martin; Malte, Hans; Overgaard, Johannes

    2014-11-01

    Freeze-tolerant organisms survive internal ice formation; however, the adaptations to repeated freeze-thaw cycles are often not well investigated. Here we report how three geographically different populations of Enchytraeus albidus (Germany, Iceland and Svalbard) respond to three temperature treatments - constant thawed (0°C), constant freezing (-5°C) and fluctuating temperature (0 to -5°C) - over a period of 42 days. Survival varied between treatments and populations such that enchytraeids from arctic locations had a higher survival following prolonged freeze periods compared with temperate populations. However, enchytraeids from temperate locations had the same survival rate as arctic populations when exposed to repeated freeze-thaw events. Across all populations, metabolic rate decreased markedly in frozen animals (-5°C) compared with thawed controls (0°C). This decrease is likely due to the lower temperature of frozen animals, but also to the transition to the frozen state per se. Animals exposed to repeated freeze-thaw events had an intermediate metabolic rate and freeze-thaw events were not associated with pronounced excess energetic costs. Overwintering under either condition was not associated with a decrease in lipid content; however, during exposure to constant freezing and repeated freeze-thaw events there was a noticeable decrease in carbohydrate stores over time. Thus, animals exposed to constant freezing showed a decrease in glycogen stores, while both glucose and glycogen content decreased over time when the organisms were exposed to repeated freezing. The results therefore suggest that carbohydrate resources are important as a fuel for E. albidus during freezing whereas lipid resources are of marginal importance. PMID:25214492

  3. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  4. Genetic Architecture of NaCl Tolerance in Arabidopsis1

    PubMed Central

    Quesada, Víctor; García-Martínez, Santiago; Piqueras, Pedro; Ponce, María Rosa; Micol, José Luis

    2002-01-01

    The little success of breeding approaches toward the improvement of salt tolerance in crop species is thought to be attributable to the quantitative nature of most, if not all the processes implicated. Hence, the identification of some of the quantitative trait loci (QTL) that contribute to natural variation in salt tolerance should be instrumental in eventually manipulating the perception of salinity and the corresponding responses. A good choice to reach this goal is the plant model system Arabidopsis, whose complete genome sequence is now available. Aiming to analyze natural variability in salt tolerance, we have compared the ability of 102 wild-type races (named ecotypes or accessions) of Arabidopsis to germinate on 250 mm NaCl, finding a wide range of variation among them. Accessions displaying extremely different responses to NaCl were intercrossed, and the phenotypes found in their F2 progenies suggested that natural variation in NaCl tolerance during germination was under polygenic controls. Genetic distances calculated on the basis of variations in repeat number at 22 microsatellites, were analyzed in a group of either extremely salt-tolerant or extremely salt-sensitive accessions. We found that most but not all accessions with similar responses to NaCl are phylogenetically related. NaCl tolerance was also studied in 100 recombinant inbred lines derived from a cross between the Columbia-4 and Landsberg erecta accessions. We detected 11 QTL harboring naturally occurring alleles that contribute to natural variation in NaCl tolerance in Arabidopsis, six at the germination and five at the vegetative growth stages, respectively. At least five of these QTL are likely to represent loci not yet described by their relationship with salt stress. PMID:12376659

  5. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Takahashi, Nobuyuki; Inoue, Yoshiharu

    2007-06-01

    The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast.

  6. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration.

    PubMed

    Hayashi, Masakazu; Wharton, David A

    2011-04-01

    The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S (50)) of -2.5°C after cooling at 0.5°C min(-1) and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S (50) being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S (50) is lowered by 0.55°C, compared to the control, after 4 h freezing at -1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.

  7. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    PubMed

    McGill, Lorraine M; Shannon, Adam J; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A; Burnell, Ann M

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent "ecological fitting

  8. Anhydrobiosis and Freezing-Tolerance: Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats

    PubMed Central

    McGill, Lorraine M.; Shannon, Adam J.; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A.; Burnell, Ann M.

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent “ecological fitting

  9. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    PubMed

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  10. Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids.

    PubMed

    Silva, Ana L Patrício; Enggrob, Kirsten; Slotsbo, Stine; Amorim, Mónica J B; Holmstrup, Martin

    2014-08-19

    Due to global warming it is predicted that freeze-thaw cycles will increase in Arctic and cold temperate regions. The effects of this variation becomes of particular ecological importance to freeze-tolerant species when it is combined with chemical pollutants. We compared the effect of control temperature (2 °C), daily freeze-thaw cycles (2 to -4 °C) and constant freezing (-2 °C) temperatures on the cold-tolerance of oligochaete worms (Enchytraeus albidus) and tested how survival was influenced by pre-exposure to 4-nonylphenol (4-NP), a common nonionic detergent found in sewage sludge amended soils. Results showed that combined effect of 4-NP and daily freeze-thaw cycles can cause higher mortality to worms as compared with sustained freezing or control temperature. Exposure to 4-NP caused a substantial depletion of glycogen reserves which is catabolized during freezing to produce cryoprotective concentrations of free glucose. Further, exposure to freeze-thaw cycles resulted in higher concentrations of 4-NP in worm tissues as compared to constant freezing or control temperature (2 °C). Thus, worms exposed to combined effect of freeze-thaw cycles and 4-NP suffer higher consequences, with the toxic effect of the chemical potentiating the deleterious effects of freezing and thawing.

  11. Screening Stress Tolerance Traits in Arabidopsis Cell Cultures.

    PubMed

    Pérez-Salamó, Imma; Boros, Bogáta; Szabados, László

    2016-01-01

    Screening for tolerance traits in plant cell cultures can combine the efficiency of microbial selection and plant genetics. Agrobacterium-mediated transformation can efficiently introduce cDNA library to cell suspension cultures generating population of randomly transformed microcolonies. Transformed cultures can subsequently be screened for tolerance to different stress conditions such as salinity, high osmotic, or oxidative stress conditions. cDNA inserts in tolerant cell lines can be easily identified by PCR amplification and homology search of the determined nucleotide sequences. The described methods have been tested and used to identify regulatory genes controlling salt tolerance in Arabidopsis. As cDNA libraries can be prepared from any plants, natural diversity can be explored by using extremophile plants as gene source. PMID:26867628

  12. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration.

  13. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. PMID:27489218

  14. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    PubMed

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.

  15. Expression of miRNAs in response to freezing and anoxia stresses in the freeze tolerant fly Eurosta solidaginis.

    PubMed

    Lyons, Pierre J; Storey, Kenneth B; Morin, Pier

    2015-08-01

    Insect cold hardiness is associated with substantial metabolic rate suppression, often including developmental diapause as well as metabolic suppression imposed by freezing and freeze-associated oxygen limitation. MicroRNAs, small non-coding transcripts that bind to mRNA, are known modulators of hypometabolism in freeze tolerant insects. To further contribute to the growing signature of stress-responsive miRNAs, this study amplified and quantified changes in the expression levels of four microRNA species, miR-8, miR-9, miR-92b and miR-277, in response to freezing or anoxia exposures of freeze tolerant gall fly larvae, Eurosta solidaginis. MiR-92b levels were significantly elevated by 1.57-fold in frozen E. solidaginis at -15°C as compared with 5°C controls, whereas miR-92b levels were significantly reduced in anoxic E. solidaginis to levels that were 0.77-fold as compared with larvae held under normoxic conditions. The other miRNAs investigated showed no significant changes in stressed larvae. These data demonstrate differential miR-92b expression in frozen/anoxic versus control insect larvae and position this miRNA as a stress responsive marker in this model insect.

  16. Expression of miRNAs in response to freezing and anoxia stresses in the freeze tolerant fly Eurosta solidaginis.

    PubMed

    Lyons, Pierre J; Storey, Kenneth B; Morin, Pier

    2015-08-01

    Insect cold hardiness is associated with substantial metabolic rate suppression, often including developmental diapause as well as metabolic suppression imposed by freezing and freeze-associated oxygen limitation. MicroRNAs, small non-coding transcripts that bind to mRNA, are known modulators of hypometabolism in freeze tolerant insects. To further contribute to the growing signature of stress-responsive miRNAs, this study amplified and quantified changes in the expression levels of four microRNA species, miR-8, miR-9, miR-92b and miR-277, in response to freezing or anoxia exposures of freeze tolerant gall fly larvae, Eurosta solidaginis. MiR-92b levels were significantly elevated by 1.57-fold in frozen E. solidaginis at -15°C as compared with 5°C controls, whereas miR-92b levels were significantly reduced in anoxic E. solidaginis to levels that were 0.77-fold as compared with larvae held under normoxic conditions. The other miRNAs investigated showed no significant changes in stressed larvae. These data demonstrate differential miR-92b expression in frozen/anoxic versus control insect larvae and position this miRNA as a stress responsive marker in this model insect. PMID:25998089

  17. Simultaneous freeze tolerance and avoidance in individual fungus gnats, Exechia nugatoria.

    PubMed

    Sformo, Todd; Kohl, F; McIntyre, J; Kerr, P; Duman, J G; Barnes, B M

    2009-10-01

    Freeze tolerance and freeze avoidance are typically described as mutually exclusive strategies for overwintering in animals. Here we show an insect species that combines both strategies. Individual fungus gnats, collected in Fairbanks, Alaska, display two freezing events when experimentally cooled and different rates of survival after each event (mean +/- SEM: -31.5 +/- 0.2 degrees C, 70% survival and -50.7 +/- 0.4 degrees C, 0% survival). To determine which body compartments froze at each event, we dissected the abdomen from the head/thorax and cooled each part separately. There was a significant difference between temperature levels of abdominal freezing (-30.1 +/- 1.1 degrees C) and head/thorax freezing (-48.7 +/- 1.3 degrees C). We suggest that freezing is initially restricted to one body compartment by regional dehydration in the head/thorax that prevents inoculative freezing between the freeze-tolerant abdomen (71.0 +/- 0.8% water) and the supercooled, freeze-sensitive head/thorax (46.6 +/- 0.8% water).

  18. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa1[OPEN

    PubMed Central

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M.; Hunter, Ben

    2016-01-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana. Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  19. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa.

    PubMed

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M; Hunter, Ben; Bomblies, Kirsten

    2016-05-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  20. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  1. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    PubMed

    Wang, Shuai; Bai, Ge; Wang, Shu; Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-05-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  2. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.

    PubMed

    Benedict, Catherine; Skinner, Jeffrey S; Meng, Rengong; Chang, Yongjian; Bhalerao, Rishikesh; Huner, Norman P A; Finn, Chad E; Chen, Tony H H; Hurry, Vaughan

    2006-07-01

    The meristematic tissues of temperate woody perennials must acclimate to freezing temperatures to survive the winter and resume growth the following year. To determine whether the C-repeat binding factor (CBF) family of transcription factors contributing to this process in annual herbaceous species also functions in woody perennials, we investigated the changes in phenotype and transcript profile of transgenic Populus constitutively expressing CBF1 from Arabidopsis (AtCBF1). Ectopic expression of AtCBF1 was sufficient to significantly increase the freezing tolerance of non-acclimated leaves and stems relative to wild-type plants. cDNA microarray experiments identified genes up-regulated by ectopic AtCBF1 expression in Populus, demonstrated a strong conservation of the CBF regulon between Populus and Arabidopsis and identified differences between leaf and stem regulons. We studied the induction kinetics and tissue specificity of four CBF paralogues identified from the Populus balsamifera subsp. trichocarpa genome sequence (PtCBFs). All four PtCBFs are cold-inducible in leaves, but only PtCBF1 and PtCBF3 show significant induction in stems. Our results suggest that the central role played by the CBF family of transcriptional activators in cold acclimation of Arabidopsis has been maintained in Populus. However, the differential expression of the PtCBFs and differing clusters of CBF-responsive genes in annual (leaf) and perennial (stem) tissues suggest that the perennial-driven evolution of winter dormancy may have given rise to specific roles for these 'master-switches' in the different annual and perennial tissues of woody species.

  3. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    PubMed

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  4. Freezing and Desiccation Tolerance in Entomopathogenic Nematodes: Diversity and Correlation of Traits

    PubMed Central

    Shapiro-Ilan, David I.; Brown, Ian; Lewis, Edwin E.

    2014-01-01

    The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the

  5. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough.

    PubMed

    Murakami, Y; Yokoigawa, K; Kawai, F; Kawai, H

    1996-11-01

    The lipid composition of some commercial bakers' yeasts having different freeze-sensitivity in frozen dough was investigated to clarify the correlation between their lipid composition and freeze-tolerance. The total lipid content including neutral lipid, free fatty acid, sterol, and phospholipid ranged between 23.0 to 32.2 mg/100 mg protein of the yeasts tested. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were the main phospholipids found in all yeast strains, but no distinct difference in these components between freeze-tolerant and freeze-sensitive strains was observed. Palmitoleic (C16:1), oleic (C18:1), palmitic (16:0), and stearic (C18:0) acids were the major fatty acids present in total lipid and phospholipid, and unsaturation indices of fatty acid in these lipid components were almost equal by the strains. The molar ratios of sterol to phospholipid of freeze-sensitive strains were higher than those of freeze-tolerant strains. The difference in the sterol-phospholipid ratio that influences the fluidity of plasma membranes in yeast cells was supposed to reflect the difference in freeze-sensitivity of bakers' yeast. PMID:8987866

  6. Improving the freeze tolerance of bakers' yeast by loading with trehalose.

    PubMed

    Hirasawa, R; Yokoigawa, K; Isobe, Y; Kawai, H

    2001-03-01

    We examined the freeze tolerance of bakers' yeast loaded with exogenous trehalose. Freeze-tolerant and freeze-sensitive compressed bakers' yeast samples were soaked at several temperatures in 0.5 M and 1 M trehalose and analyzed. The intracellular trehalose contents in both types of bakers' yeast increased with increasing soaking period. The initial trehalose-accumulation rate increased with increasing exogenous trehalose concentration and soaking temperature. The maximum trehalose content was almost identical (200-250 mg/g of dry cells) irrespective of the soaking temperature and the type of bakers' yeast, but depended on the exogenous trehalose concentration. The leavening ability of both types of bakers' yeast loaded with trehalose was almost identical to that of the respective original cells, irrespective of the soaking conditions. The freeze-tolerant ratio (FTR) of both types of bakers' yeast increased with increasing intracellular trehalose content. However, FTR decreased during over-soaking after the maximum amount of trehalose had accumulated. FTR of the freeze-sensitive bakers' yeast was more efficiently improved than that of the freeze-tolerant type.

  7. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids.

    PubMed

    del Pozo, Juan C; Ramirez-Parra, Elena

    2014-12-01

    Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.

  8. Freezing tolerance and water relations of Opuntia fragilis from Canada and the United States

    SciTech Connect

    Loik, M.E.; Nobel, P.S. )

    1993-09-01

    To investigate the influence of winter climate on freezing tolerance at the population level, minimum January air temperatures in the field and cold acclimation determined in the laboratory were compared for Opuntia fragilis. Populations occurred at 20 locations as far north as 56[degrees]46' N latitude and at elevations up to 3029 m in Canada and the United States, most of which experience extreme freezing temperatures each winter. Low-temperature responses and water relations of stems were examined in the laboratory at day/night air temperatures of 25[degrees]/15[degrees]C and 14 d after the plants were shifted to a 5[degrees]/[minus]5[degrees]C temperature cycle. Cold acclimation averaged 17[degrees]C and freezing tolerance averaged [minus]29[degrees]C for the 20 populations following a shift to low day/night air temperatures, indicating that O. fragilis has the greatest cold acclimation ability and the greatest freezing tolerance reported for any cactus. Moreover, freezing tolerance and cold acclimation were both positively correlated (r[sup 2] [congruent] 0.7) with the minimum temperatures at the 20 locations. Plants lost water during low-temperature acclimation, leading to 30% decreases in cladode and chlorenchyma thickness; the decrease in water content was greater for the five warmest populations than for the five coldest ones. Over the same period, the average osmotic pressure of the chlorenchyma increased from 1.42 to 1.64 MPa, and the relative water content (RWC) decreased from 0.58 to 0.49, but the average osmotic pressure of saturated chlorenchyma was unchanged, indicating no net change in solute content during acclimation. Although the role of water relations in freezing tolerance is unclear, the substantial freezing tolerance and cold acclimation ability of O. fragilis leads to its distribution into regions of Canada and the United States that experience minimum temperatures below [minus]40[degrees]C during the winter. 47 refs., 3 figs., 5 tabs.

  9. The relationship of freeze tolerance with intracellular compounds in baker's yeasts.

    PubMed

    Shi, Xiaojian; Miao, Yelian; Chen, Jie Yu; Chen, Jun; Li, Wenli; He, Xun; Wang, Jining

    2014-03-01

    Freeze-tolerant baker's yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker's yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker's yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker's yeast cells, breeding better freeze-tolerant baker's yeast strains, and developing more effective cryoprotectants. PMID:24482281

  10. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Doelling, Adam R W; Griffis, Nicole; Williams, Jason B

    2014-08-01

    Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze-thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to -18°C or a single freeze to -18°C for 20days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26±0.66μgglycerol·ngprotein(-1) for all treatments and time points) or sorbitol (18.8±2.9μgsorbitol·mgprotein(-1) for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3±2.2μgsorbitol·mgprotein(-1)) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7±1.6mmoltrolox·ngprotein(-1)) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20d freeze regardless of time post final thaw, indicating these animals may have had an impaired

  11. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Doelling, Adam R W; Griffis, Nicole; Williams, Jason B

    2014-08-01

    Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze-thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to -18°C or a single freeze to -18°C for 20days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26±0.66μgglycerol·ngprotein(-1) for all treatments and time points) or sorbitol (18.8±2.9μgsorbitol·mgprotein(-1) for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3±2.2μgsorbitol·mgprotein(-1)) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7±1.6mmoltrolox·ngprotein(-1)) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20d freeze regardless of time post final thaw, indicating these animals may have had an impaired

  12. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.

    PubMed

    Tunc-Ozdemir, Meral; Miller, Gad; Song, Luhua; Kim, James; Sodek, Ahmet; Koussevitzky, Shai; Misra, Amarendra Narayan; Mittler, Ron; Shintani, David

    2009-09-01

    Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP. Moreover, the accumulation of these compounds in plants subjected to oxidative stress was accompanied by enhanced expression of transcripts encoding thiamin biosynthetic enzymes. When supplemented with exogenous thiamin, wild-type plants displayed enhanced tolerance to oxidative stress induced by paraquat. Thiamin application was also found to protect the reactive oxygen species-sensitive ascorbate peroxidase1 mutant from oxidative stress. Thiamin-induced tolerance to oxidative stress was accompanied by decreased production of reactive oxygen species in plants, as evidenced from decreased protein carbonylation and hydrogen peroxide accumulation. Because thiamin could protect the salicylic acid induction-deficient1 mutant against oxidative stress, thiamin-induced oxidative protection is likely independent of salicylic acid signaling or accumulation. Taken together, our studies suggest that thiamin and TPP function as important stress-response molecules that alleviate oxidative stress during different abiotic stress conditions.

  13. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions

    PubMed Central

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P.

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  14. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions.

    PubMed

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  15. Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray.

    PubMed

    Taji, Teruaki; Seki, Motoaki; Satou, Masakazu; Sakurai, Tetsuya; Kobayashi, Masatomo; Ishiyama, Kanako; Narusaka, Yoshihiro; Narusaka, Mari; Zhu, Jian-Kang; Shinozaki, Kazuo

    2004-07-01

    Salt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays. Although salt cress plants are salt tolerant and can grow in 500 mm NaCl medium, they do not have salt glands or other morphological alterations either before or after salt adaptation. This suggests that the salt tolerance in salt cress results from mechanisms that are similar to those operating in glycophytes. To elucidate the differences in the regulation of salt tolerance between salt cress and Arabidopsis, we analyzed the gene expression profiles in salt cress by using a full-length Arabidopsis cDNA microarray. In salt cress, only a few genes were induced by 250 mm NaCl stress in contrast to Arabidopsis. Notably a large number of known abiotic- and biotic-stress inducible genes, including Fe-SOD, P5CS, PDF1.2, AtNCED, P-protein, beta-glucosidase, and SOS1, were expressed in salt cress at high levels even in the absence of stress. Under normal growing conditions, salt cress accumulated Pro at much higher levels than did Arabidopsis, and this corresponded to a higher expression of AtP5CS in salt cress, a key enzyme of Pro biosynthesis. Furthermore, salt cress was more tolerant to oxidative stress than Arabidopsis. Stress tolerance of salt cress may be due to constitutive overexpression of many genes that function in stress tolerance and that are stress inducible in Arabidopsis. PMID:15247402

  16. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  17. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses.

  18. The PSE1 gene modulates lead tolerance in Arabidopsis

    PubMed Central

    Fan, Tingting; Yang, Libo; Wu, Xi; Ni, Jiaojiao; Jiang, Haikun; Zhang, Qi’an; Fang, Ling; Sheng, Yibao; Ren, Yongbing; Cao, Shuqing

    2016-01-01

    Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40. PMID:27335453

  19. Boar semen can tolerate rapid cooling rates prior to freezing.

    PubMed

    Juarez, Jorge D; Parrilla, Inma; Vazquez, Juan M; Martinez, Emilio A; Roca, Jordi

    2011-01-01

    Two experiments were performed in the present study that demonstrated that boar spermatozoa are capable of surviving rapid cooling rates within a range of 15-5 °C before freezing. Boar ejaculates diluted in Beltsville thawing solution (BTS) (1:1, v/v) were held at 17-20 °C and shipped over a 24-h time period from two AI centres to a cryobiology laboratory, where they were pooled (Experiment 1) or cryopreserved individually (Experiment 2) using a standard 0.5-mL straw freezing protocol. The effects of cooling before freezing were assessed after thawing through the objective evaluation of sperm motility and flow cytometric analysis of membrane integrity, acrosomal status, changes in membrane lipid architecture monitored by merocyanine and annexin V binding and intracellular production of reactive oxygen species. In Experiment 1 (six replicates), two semen pools (five ejaculates per pool) were cooled from 15 to 5 °C at rates of 0.08, 0.13, 0.40 and 1.50 °C min(-1). These cooling rates did not result in any significant differences (P>0.05) in any of the post-thaw sperm assessments, even in thawed samples incubated under capacitation conditions. In Experiment 2, three individual ejaculates from 16 boars were slowly (0.08 °C min(-1)) or rapidly (1.5 °C min(-1)) cooled before freezing. A consistent interboar variability (P<0.01) was detected, which was independent of the cooling rate used. Cooling rate only significantly influenced (P<0.05) sperm assessments in four of 16 boars, which exhibited slightly higher percentages of motile cells and intact plasma and acrosomal membranes in the samples that had been cooled slowly. These findings demonstrate that boar spermatozoa undergoing cryopreservation can withstand rapid cooling rates before freezing. PMID:21635817

  20. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.

    PubMed

    Wilson, Sandra L; Frazer, Corey; Cumming, Brian F; Nuin, Paulo A S; Walker, Virginia K

    2012-11-01

    Osmotic stress can accompany increases in solute concentrations because of freezing or high-salt environments. Consequently, microorganisms from environments with a high-osmotic potential may exhibit cross-tolerance to freeze stress. To test this hypothesis, enrichments derived from the sediment and water of temperate lakes with a range of salt concentrations were subjected to multiple freeze-thaw cycles. Surviving isolates were identified and metagenomes were sampled prior to and following selection. Enrichments from alkali lakes were typically the most freeze-thaw resistant with only 100-fold losses in cell viability, and those from freshwater lakes were most susceptible, with cell numbers reduced at least 100,000-fold. Metagenomic analysis suggested that selection reduced assemblage diversity more in freshwater samples than in those from saline lakes. Survivors included known psychro-, halo- and alkali-tolerant bacteria. Characterization of freeze-thaw-resistant isolates from brine and alkali lakes showed that few isolates had ice-associating activities such as antifreeze or ice nucleation properties. However, all brine- and alkali-derived isolates had high intracellular levels of osmolytes and/or appeared more likely to form biofilms. Conversely, these phenotypes were infrequent amongst the freshwater-derived isolates. These observations are consistent with microbial cross-tolerance between osmotic and freeze-thaw stresses. PMID:22551442

  1. The interaction between freezing tolerance and phenology in temperate deciduous trees

    PubMed Central

    Vitasse, Yann; Lenz, Armando; Körner, Christian

    2014-01-01

    Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748

  2. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Takahashi, Nobuyuki; Inoue, Yoshiharu

    2007-06-01

    The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast. PMID:17505771

  3. The Small G Protein AtRAN1 Regulates Vegetative Growth and Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Xu, Peipei; Zang, Aiping; Chen, Haiying; Cai, Weiming

    2016-01-01

    The evolutionarily conserved small G-protein Ran plays important role in nuclear translocation of proteins, cell cycle regulation, and nuclear envelope maintenance in mammalian cells and yeast. Arabidopsis Ran proteins are encoded by a family of four genes and are highly conserved at the protein level. However, their biological functions are poorly understood. We report here that AtRAN1 plays an important role in vegetative growth and the molecular improvement of stress tolerance in Arabidopsis. AtRAN1 overexpression promoted vegetative growth and enhanced abiotic tolerance, while the atran1 atran3 double mutant showed higher freezing sensitivity than WT. The AtRAN1 gene is ubiquitously expressed in plants, and the expression levels are higher in the buds, flowers and siliques. Subcellular localization results showed that AtRAN1 is mainly localized in the nucleus, with some present in the cytoplasm. AtRAN1 could maintain cell division and cell cycle progression and promote the formation of an intact nuclear envelope, especially under freezing conditions. PMID:27258048

  4. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis

    PubMed Central

    Mao, Xinguo; Zhang, Hongying; Tian, Shanjun; Chang, Xiaoping; Jing, Ruilian

    2010-01-01

    Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity worldwide. Protein phosphorylation/dephosphorylation are major signalling events induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase2 family members play essential roles in response to hyperosmotic stresses in Arabidopsis, rice, and maize. In this study, the function of TaSnRK2.4 in drought, salt, and freezing stresses in Arabidopsis was characterized. A translational fusion protein of TaSnRK2.4 with green fluorescent protein showed subcellular localization in the cell membrane, cytoplasm, and nucleus. To examine the role of TaSnRK2.4 under various environmental stresses, transgenic Arabidopsis plants overexpressing wheat TaSnRK2.4 under control of the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaSnRK2.4 resulted in delayed seedling establishment, longer primary roots, and higher yield under normal growing conditions. Transgenic Arabidopsis overexpressing TaSnRK2.4 had enhanced tolerance to drought, salt, and freezing stresses, which were simultaneously supported by physiological results, including decreased rate of water loss, enhanced higher relative water content, strengthened cell membrane stability, improved photosynthesis potential, and significantly increased osmotic potential. The results show that TaSnRK2.4 is involved in the regulation of enhanced osmotic potential, growth, and development under both normal and stress conditions, and imply that TaSnRK2.4 is a multifunctional regulatory factor in Arabidopsis. Since the overexpression of TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, TaSnRK2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops. PMID:20022921

  5. Cryoprotectants and Extreme Freeze Tolerance in a Subarctic Population of the Wood Frog

    PubMed Central

    Costanzo, Jon P.; Reynolds, Alice M.; do Amaral, M. Clara F.; Rosendale, Andrew J.; Lee, Richard E.

    2015-01-01

    Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica. PMID:25688861

  6. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.

    PubMed

    Costanzo, Jon P; Reynolds, Alice M; do Amaral, M Clara F; Rosendale, Andrew J; Lee, Richard E

    2015-01-01

    Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica. PMID:25688861

  7. Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana.

    PubMed Central

    Quesada, V; Ponce, M R; Micol, J L

    2000-01-01

    Stress caused by the increased salinity of irrigated fields impairs plant growth and is one of the major constraints that limits crop productivity in many important agricultural areas. As a contribution to solving such agronomic problems, we have carried out a large-scale screening for Arabidopsis thaliana mutants induced on different genetic backgrounds by EMS treatment, fast neutron bombardment, or T-DNA insertions. From the 675,500 seeds we screened, 17 mutant lines were isolated, all but one of which yielded 25-70% germination levels on 250 mm NaCl medium, a condition in which their ancestor ecotypes are unable to germinate. Monogenic recessive inheritance of NaCl-tolerant germination was displayed with incomplete penetrance by all the selected mutants, which fell into five complementation groups. These were named SALOBRENO (SAN) and mapped relative to polymorphic microsatellites, the map positions of three of them suggesting that they are novel genes. Strains carrying mutations in the SAN1-SAN4 genes display similar responses to both ionic effects and osmotic pressure, their germination being NaCl and mannitol tolerant but KCl and Na(2)SO(4) sensitive. In addition, NaCl-, KCl-, and mannitol-tolerant as well as abscisic-acid-insensitive germination was displayed by sañ5, whose genetic and molecular characterization indicates that it carries an extremely hypomorphic or null allele of the ABI4 gene, its deduced protein product lacking the APETALA2 DNA binding domain. PMID:10629000

  8. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Zhang, Hongying; Qian, Xueya; Li, Ang; Zhao, Guangyao; Jing, Ruilian

    2012-01-01

    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops. PMID:22330896

  9. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis.

    PubMed

    Mao, Xinguo; Zhang, Hongying; Qian, Xueya; Li, Ang; Zhao, Guangyao; Jing, Ruilian

    2012-05-01

    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2-GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops.

  10. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

    PubMed Central

    Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.

    2014-01-01

    Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113

  11. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    PubMed

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance.

  12. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    PubMed

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance. PMID:12514069

  13. Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum.

    PubMed

    Hengherr, S; Reuner, A; Brümmer, F; Schill, R O

    2010-05-01

    In tardigrades, tolerance to low temperature is well known and allows them to cope with subzero temperatures in their environment. Although the ability to tolerate freezing body water has been demonstrated in some tardigrades, freeze tolerance of embryonic stages has been little studied, although this has ecological significance. In this study, we evaluated the subzero temperature survival of five different developmental stages of the eutardigrade species Milnesium tardigradum after freezing to -30 degrees C. Embryos were exposed to five different cooling rates between room temperature and -30 degrees C at 1 degrees C/h, 3 degrees C/h, 5 degrees C/h, 7 degrees C/h, and 9 degrees C/h followed by a warming period at 10 degrees C/h. The results showed that the developmental stage and the cooling rate have a significant effect on the hatching rate. Less developed embryonic stages were more sensitive to freezing at higher freezing rates than more developed stages. Differential Scanning Calorimetry (DSC) was used to determine the temperature of crystallization (Tc) in single embryos of the different developmental stages and revealed no differences between the stages. Based on the calorimetric data, we also conclude that the ice nucleation is homogeneous in embryonic stages in tardigrades, as also recently shown for fully developed tardigrades, and not triggered by nucleating agents.

  14. Physiological and molecular characterization of lucerne (Medicago sativa L.) germplasm with improved seedling freezing tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted greenhouse experiments to compare 14 alfalfa germplasms for their survival following freezing. Among these germplasms are collections adapted to the Grand River National Grasslands in South Dakota. Our hypothesis was that these collections developed tolerance to survive the frigid gro...

  15. Alteration of Gene Expression during the Induction of Freezing Tolerance in Brassica napus Suspension Cultures.

    PubMed

    Johnson-Flanagan, A M; Singh, J

    1987-11-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 degrees C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [(35)S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants. PMID:16665763

  16. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    SciTech Connect

    Johnson-Flanagan, A.M.; Singh, J.

    1987-11-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20/sup 0/C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of (/sup 35/S)methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants.

  17. Supercooling Point Plasticity During Cold Storage in the Freeze-tolerant Sugarbeet Root Maggot Tetanops myopaeformis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), overwinters as a freeze-tolerant 3rd instar larva. While most larvae are thought to overwinter for only one year, some may exhibit prolonged diapause in the field. In the laboratory, they can live for over five years using a combination of ...

  18. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    PubMed

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough.

  19. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    PubMed

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough. PMID:17046536

  20. MicroRNA regulation in heart and skeletal muscle over the freeze-thaw cycle in the freeze tolerant wood frog.

    PubMed

    Bansal, Saumya; Luu, Bryan E; Storey, Kenneth B

    2016-02-01

    The North American wood frog, Rana sylvatica, is one of just a few anuran species that tolerates whole body freezing during the winter and has been intensely studied to identify the biochemical adaptations that support freeze tolerance. Among these adaptations is the altered expression of many genes, making freeze-responsive changes to gene regulatory mechanisms a topic of interest. The present study focuses on the potential involvement of microRNAs as one such regulatory mechanism and aims to better understand freeze/thaw stress-induced microRNA responses in the freeze-tolerant wood frog. Using quantitative PCR, relative levels of 53 microRNAs were measured in heart and skeletal muscle of control, 24 h frozen, and 8 h thawed frogs. MicroRNAs showed tissue specific expression patterns: 21 microRNAs decreased in the heart during thawing, whereas 16 microRNAs increased during freezing stress in skeletal muscle. These findings suggest that select genes may be activated and suppressed in heart and skeletal muscle, respectively, in response to freezing. Bioinformatics analysis using the DIANA miRPath program (v.2.0) predicted that the differentially expressed microRNAs may collectively regulate tissue-specific cellular pathways to promote survival of wood frogs undergoing freezing and thawing.

  1. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.

    PubMed

    Pang, Qiuying; Chen, Sixue; Dai, Shaojun; Chen, Yazhou; Wang, Yang; Yan, Xiufeng

    2010-05-01

    Salinity is a major abiotic stress affecting plant cultivation and productivity. Thellungiella halophila is a halophyte and has been used as a model for studying plant salt tolerance. Understanding the molecular mechanisms of salinity tolerance will facilitate the generation of salt tolerant crops. Here we report comparative leaf proteomics of Arabidopsis, a glycophyte, and its close relative Thellungiella, a halophyte, under different salt stress conditions. Proteins from control and NaCl treated Arabidopsis and Thellungiella leaf samples were extracted and separated by two-dimensional gel electrophoresis. A total of 88 protein spots from Arabidopsis gels and 37 protein spots from Thellungiella gels showed significant changes. Out of these spots, a total of 79 and 32 proteins were identified by mass spectrometry in Arabidopsis and Thellungiella, respectively. Most of the identified proteins were involved in photosynthesis, energy metabolism, and stress response in Arabidopsis and Thellungiella. As a complementary approach, isobaric tag for relative and absolute quantification (iTRAQ) LC-MS was used to identify crude microsomal proteins. A total of 31 and 32 differentially expressed proteins were identified in Arabidopsis and Thellungiella under salt treatment, respectively. Overall, there were more proteins changed in abundance in Arabidopsis than in Thellungiella. Distinct patterns of protein changes in the two species were observed. Collectively, this work represents the most extensive proteomic description of salinity responses of Arabidopsis and Thellungiella and has improved our knowledge of salt tolerance in glycophytes and halophytes. PMID:20377188

  2. Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat.

    PubMed

    Zabotin, Alexey I; Barisheva, Tatyana S; Trofimova, Oksana I; Toroschina, Tatyana E; Larskaya, Irina A; Zabotina, Olga A

    2009-09-01

    In this paper, we continue our studies of the previously discovered [O.A. Zabotina, D.A. Ayupova, O.N. Larskaya, O.N. Nikolaeva, G.I. Petrovicheva, A.I. Zabotin, Physiologically active oligosaccharides, accumulating in the roots of winter wheat during adaptation to low temperature, Russian Journal of Plant Physiology 45 (1998) 262] oligosaccharin (physiologically active oligosaccharide) GXAG, which stimulates the acquisition of freezing tolerance in winter varieties of Triticum aestivum L. The transient accumulation of GXAG in the tissues of winter wheat correlates with the temporal activation of cell wall glycosidases during the first hours of cold acclimation (2 degrees C). This finding suggests that the oligosaccharin is liberated as a result of the intensification of hemicellulose turnover. At low concentrations, GXAG initiates the acquisition of freezing tolerance in winter plants, in a manner similar to ABA, even at room temperature. The resultant effect of ABA and GXAG on the freezing tolerance of winter wheat depends on the sequence of pre-treatments with these two factors. When seedlings are pre-treated with GXAG a few hours before treatment with ABA, the effect is synergistic, and its impact depends on the duration of pre-treatment with GXAG. When ABA is applied first, the resultant effect on freezing tolerance is additive. The results obtained here lead to the conclusion that oligosaccharin, accumulating during the first hours of cold acclimation, functions as a partner of ABA during the initiation of freezing tolerance acquisition in winter plants. We hypothesize that GXAG increases cell receptivity to ABA signaling. PMID:19467881

  3. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia.

    PubMed

    Pennycooke, Joyce C; Jones, Michelle L; Stushnoff, Cecil

    2003-10-01

    Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants.

  4. Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1

    PubMed Central

    Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil

    2003-01-01

    α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  5. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  6. Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

    PubMed

    Isshiki, Ryutaro; Galis, Ivan; Tanakamaru, Shigemi

    2014-02-01

    The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species. PMID:24325406

  7. Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

    PubMed

    Isshiki, Ryutaro; Galis, Ivan; Tanakamaru, Shigemi

    2014-02-01

    The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species.

  8. HIF-1alpha involvement in low temperature and anoxia survival by a freeze tolerant insect.

    PubMed

    Morin, Pier; McMullen, David C; Storey, Kenneth B

    2005-12-01

    Winter survival for many insect species relies on the ability to endure the freezing of extracellular body fluids. Because freezing impedes oxygen delivery to tissues, one component of natural freeze tolerance is a well-developed anoxia/ischemia resistance. The present study explores the responses of the hypoxia-inducible factor-1alpha (HIF-1alpha) to cold, freezing and anoxia exposures in the freeze tolerant goldenrod gall fly larva, Eurosta solidaginis. Reverse transcription-PCR was used to quantify hif-1alpha transcript levels; transcripts were significantly elevated by approximately 70% in chilled (3 ( composite function)C), frozen (-16 ( composite function)C) and thawed (returned to 3 ( composite function)C) insects, compared with 15 ( composite function)C controls. Transcripts also rose by approximately 3-fold in insects given anoxia exposure under a nitrogen gas atmosphere. Cold and freezing exposure also elevated HIF-1alpha protein content in the larvae and HIF-1alpha levels increased over the winter months in insects sampled from an outdoor population; levels peaked in February at 2.1-fold higher than in September. A partial sequence of HIF-1alpha that covers the bHLH and PAS domains of the protein was obtained from E. solidaginis and sequence analysis revealed that this segment shared 62% identity overall with Drosophila melanogaster HIF-1alpha and higher percent identities within specific domains: 76% within the bHLH domain and 70% within the PAS domain. The data provide the first documentation of a potential role for HIF-1 in regulating the expression of genes that can aid freezing survival in a cold-hardy animal.

  9. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars

    NASA Astrophysics Data System (ADS)

    Marshall, Katie E.; Sinclair, Brent J.

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  10. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars.

    PubMed

    Marshall, Katie E; Sinclair, Brent J

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  11. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    PubMed Central

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  12. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

    PubMed

    Elnitsky, Michael A; Benoit, Joshua B; Lopez-Martinez, Giancarlo; Denlinger, David L; Lee, Richard E

    2009-09-01

    Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present study assessed the tolerance and physiological response of B. antarctica larvae to salinity exposure, and examined the effect of seawater acclimation on their subsequent tolerance of freezing, dehydration and heat shock. Midge larvae tolerated extended exposure to hyperosmotic seawater; nearly 50% of larvae survived a 10-day exposure to 1000 mOsm kg(-1) seawater and approximately 25% of larvae survived 6 days in 2000 mOsm kg(-1) seawater. Exposure to seawater drastically reduced larval body water content and increased hemolymph osmolality. By contrast, immersion in freshwater did not affect water content or hemolymph osmolality. Hyperosmotic seawater exposure, and the accompanying osmotic dehydration, resulted in a significant correlation between the rate of oxygen consumption and larval water content and induced the de novo synthesis and accumulation of several organic osmolytes. A 3-day exposure of larvae to hyperosmotic seawater increased freezing tolerance relative to freshwater-acclimated larvae. Even after rehydration, the freezing survival of larvae acclimated to seawater was greater than freshwater-acclimated larvae. Additionally, seawater exposure increased the subsequent tolerance of larvae to dehydration. Our results further illustrate the similarities between these related, yet distinct, forms of osmotic stress and add to the suite of physiological responses used by larvae to enhance survival in the harsh and unpredictable Antarctic environment. PMID:19684222

  13. Urea is not a universal cryoprotectant among hibernating anurans: evidence from the freeze-tolerant boreal chorus frog (Pseudacris maculata).

    PubMed

    Higgins, Steven A; Swanson, David L

    2013-02-01

    Freeze-tolerant organisms accumulate a diversity of low molecular weight compounds to combat negative effects of ice formation. Previous studies of anuran freeze tolerance have implicated urea as a cryoprotectant in the wood frog (Lithobates sylvatica). However, a cryoprotective role for urea has been identified only for wood frogs, though urea accumulation is an evolutionarily conserved mechanism for coping with osmotic stress in amphibians. To identify whether multiple solutes are involved in freezing tolerance in the boreal chorus frog (Pseudacris maculata), we examined seasonal and freezing-induced variation in several potential cryoprotectants. We further tested for a cryoprotective role for urea by comparing survival and recovery from freezing in control and urea-loaded chorus frogs. Tissue levels of glucose, urea, and glycerol did not vary significantly among seasons for heart, liver, or leg muscle. Furthermore, no changes in urea or glycerol levels were detected with exposure to freezing temperatures in these tissues. Urea-loading increased tissue urea concentrations, but failed to enhance freezing survival or facilitate recovery from freezing in chorus frogs in this study, suggesting little role for urea as a natural cryoprotectant in this species. These data suggest that urea may not universally serve as a primary cryoprotectant among freeze-tolerant, terrestrially hibernating anurans. PMID:23142424

  14. Evidence for a novel cryoprotective protein from freeze-tolerant larvae of the goldenrod gall fly Eurosta solidaginis.

    PubMed

    Pruitt, Nancy L; Moqueet, Nasheed; Shapiro, Craig A

    2007-02-01

    Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) from populations in northern North America transition from freeze-susceptible to freeze-tolerant just prior to the onset of winter. While studies have documented the accumulation of carbohydrate cryoprotectants during this transition, protein cryoprotectants common to other freeze-tolerant species have not been reported in the gall fly. Using larvae collected from a population in Madison County, NY, which changes from freeze-susceptible to freeze-tolerant in early October, we assayed for the presence of factors that could preserve the catalytic activity of the cold-labile enzyme, rabbit muscle lactate dehydrogenase. Freezing this enzyme with a heat-stable, hydrophilic fraction derived from homogenates of both freeze-tolerant larvae and those in the process of becoming freeze-tolerant preserved between 70% and 80% of this enzyme's activity. Neither a comparable solution of bovine serum albumin nor the naturally-occurring carbohydrates (glycerol, sorbitol, or trehalose) conferred this level of cryoprotection. The putative cryoprotective protein from gall fly larvae did not bind to a weak anion exchanger, implying that its character may be cationic.

  15. Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis.

    PubMed

    Zhou, Yanli; Cheng, Ying; Yang, Yunqiang; Li, Xiong; Supriyo, Basak; Sun, Xudong; Yang, Yongping

    2016-09-01

    The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants. PMID:27393148

  16. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata.

    PubMed

    Medeiros, Juliana S; Pockman, William T

    2011-01-01

    Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k₁). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 °C compared to well-watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole-plant function following exposure to -15 °C; drought-exposed plants exhibited less cell death, greater leaf retention, higher k₁ and higher rates of gas exchange than well-watered plants. Both drought-exposed and well-watered plants experienced 100% mortality following exposure to -24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes. PMID:20825578

  17. Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance.

    PubMed

    Blödner, Constanze; Skroppa, Torre; Johnsen, Oystein; Polle, Andrea

    2005-05-01

    The goal of the present study was to investigate whether seedlings of Norway spruce (Picea abies [L.] Karst.) from a frost tolerant progeny (P2), were more drought tolerant than seedlings from a less frost tolerant progeny (P1). Progenies differing in freezing tolerance were identified by exposing seedlings in autumn in a large-scale trial to temperatures from -11 to -15 degrees C and scoring the degree of needle injury. Seedlings from P1 and P2 were grown from seeds for about 1 year under controlled conditions in a climatized growth room and were exposed to drought stress by withholding water for about 3 weeks. Drought caused reductions in biomass in both progenies but to a stronger extent in P1 than in P2. Seedlings of P2 were able to fully maintain root biomass. They also showed less water loss in different tissues. Decreases in quantum yield efficiency of photosystem II of dark-adapted plants occurred several days later in P2 than in P1. New proteins of molecular masses of 24.3 and 25.5 kDa appeared during drought stress. Since they occurred in both progenies a role of these proteins in progeny-related differences in drought performance is unlikely. Progeny 2 contained inherently higher superoxide dismutase and lower peroxidase activities than progeny 1. In conclusion, freezing and drought-tolerance respective -sensitivity were co-occurring traits in the spruce progenies studied here. Pre-existing high activities of enzymes protecting against oxidative stress in seedlings may have contributed to increase stress tolerance in P2 compared with P1. PMID:15940872

  18. Adaptive evolution of baker's yeast in a dough-like environment enhances freeze and salinity tolerance.

    PubMed

    Aguilera, Jaime; Andreu, Pasqual; Randez-Gil, Francisca; Prieto, Jose Antonio

    2010-03-01

    We used adaptive evolution to improve freeze tolerance of industrial baker's yeast. Our hypothesis was that adaptation to low temperature is accompanied by enhanced resistance of yeast to freezing. Based on this hypothesis, yeast was propagated in a flour-free liquid dough model system, which contained sorbitol and NaCl, by successive batch refreshments maintained constantly at 12°C over at least 200 generations. Relative to the parental population, the maximal growth rate (µ(max)) under the restrictive conditions, increased gradually over the time course of the experiment. This increase was accompanied by enhanced freeze tolerance. However, these changes were not the consequence of genetic adaptation to low temperature, a fact that was confirmed by prolonged selection of yeast cells in YPD at 12°C. Instead, the experimental populations showed a progressive increase in NaCl tolerance. This phenotype was likely achieved at the expense of others traits, since evolved cells showed a ploidy reduction, a defect in the glucose derepression mechanism and a loss in their ability to utilize gluconeogenic carbon sources. We discuss the genetic flexibility of S. cerevisiae in terms of adaptation to the multiple constraints of the experimental design applied to drive adaptive evolution and the technologically advantageous phenotype of the evolved population. PMID:21255321

  19. Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica.

    PubMed

    Lee, M R; Lee, R E; Strong-Gunderson, J M; Minges, S R

    1995-08-01

    Ice-nucleating active (INA) bacteria were isolated from the gut of field-collected freeze-tolerant wood frogs (Rana sylvatica) collected in winter. Thirteen strains of Pseudomonas fluorescens, four strains of Pseudomonas putida, and two strains of Enterobacter agglomerans had ice-nucleating activity. Each of the INA pseudomonad strains was psychrophilic. P. putida strains were differentiated from P. fluorescens strains by gelatinase, lecithinase, and lipase production. The maximum nucleation temperatures (Tmax) of aqueous suspensions (10(9) bacteria/ml) of the four INA P. putida strains ranged from -1.6 to -3.0 degrees C, which places this INA species among the most potent known biological nucleators. Ingestion of INA P. putida isolated from R. sylvatica by another freeze-tolerant frog. Pseudacris crucifer, decreased the capacity of this frog to supercool and remain unfrozen at -2 degrees C. This is the first report of INA bacteria isolated from a vertebrate, and suggests that, as part of the gut flora in some posthibernation freeze-tolerant wood frogs, these bacteria may play a role in enhancing winter survival by promoting ice nucleation at high subzero temperatures (ca. -2 degrees C). PMID:7656570

  20. Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions

    PubMed Central

    Katori, Taku; Ikeda, Akiro; Iuchi, Satoshi; Kobayashi, Masatomo; Shinozaki, Kazuo; Maehashi, Kenji; Sakata, Yoichi; Tanaka, Shigeo; Taji, Teruaki

    2010-01-01

    Many accessions (ecotypes) of Arabidopsis have been collected. Although few differences exist among their nucleotide sequences, these subtle differences induce large genetic variation in phenotypic traits such as stress tolerance and flowering time. To understand the natural variability in salt tolerance, large-scale soil pot experiments were performed to evaluate salt tolerance among 350 Arabidopsis thaliana accessions. The evaluation revealed a wide variation in the salt tolerance among accessions. Several accessions, including Bu-5, Bur-0, Ll-1, Wl-0, and Zu-0, exhibited marked stress tolerance compared with a salt-sensitive experimental accession, Col-0. The salt-tolerant accessions were also evaluated by agar plate assays. The data obtained by the large-scale assay correlated well with the results of a salt acclimation (SA) assay, in which plants were transferred to high-salinity medium following placement on moderate-salinity medium for 7 d. Genetic analyses indicated that the salt tolerance without SA is a quantitative trait under polygenic control, whereas salt tolerance with SA is regulated by a single gene located on chromosome 5 that is common among the markedly salt-tolerant accessions. These results provide important information for understanding the mechanisms underlying natural variation of salt tolerance in Arabidopsis. PMID:20080827

  1. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. PMID:21999349

  2. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism.

  3. Acquisition of freezing tolerance in early autumn and seasonal changes in gall water content influence inoculative freezing of gall fly larvae, Eurosta solidaginis (Diptera, Tephritidae).

    PubMed

    Lee, R E; Hankison, S J

    2003-04-01

    We examined seasonal changes in freeze tolerance and the susceptibility of larvae of the gall fly, Eurosta solidaginis to inoculative freezing within the goldenrod gall (Solidago sp.). In late September, when the water content of the galls was high (approximately 55%), more than half of the larvae froze within their galls when held at -2.5 degrees C for 24 h, and nearly all larvae froze at -4 or -6 degrees C. At this time, most larvae survived freezing at > or = -4 degrees C. By October plants had senesced, and their water content had decreased to 33%. Correspondingly, the number of larvae that froze by inoculation at -4 and -6 degrees C also decreased, however the proportion of larvae that survived freezing increased markedly. Gall water content reached its lowest value (10%) in November, when few larvae froze during exposure to subzero temperatures > or = -6 degrees C. In winter, rain and melting snow transiently increased gall water content to values as high as 64% causing many larvae to freeze when exposed to temperatures as high as -4 degrees C. However, in the absence of precipitation, gall tissues dried and, as before, larvae were not likely to freeze by inoculation. Consequently, in nature larvae freeze earlier in the autumn and/or at higher temperatures than would be predicted based on the temperature of crystallization (T(c)) of isolated larvae. However, even in early September when environmental temperatures are relatively high, larvae exhibited limited levels of freezing tolerance sufficient to protect them if they did freeze.

  4. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune.

    PubMed

    Tamaru, Yoshiyuki; Takani, Yayoi; Yoshida, Takayuki; Sakamoto, Toshio

    2005-11-01

    The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing.

  5. Overexpression of the Vacuolar Sugar Carrier AtSWEET16 Modifies Germination, Growth, and Stress Tolerance in Arabidopsis1[W

    PubMed Central

    Klemens, Patrick A.W.; Patzke, Kathrin; Deitmer, Joachim; Spinner, Lara; Le Hir, Rozenn; Bellini, Catherine; Bedu, Magali; Chardon, Fabien; Krapp, Anne; Neuhaus, H. Ekkehard

    2013-01-01

    Here, we report that SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET16) from Arabidopsis (Arabidopsis thaliana) is a vacuole-located carrier, transporting glucose (Glc), fructose (Fru), and sucrose (Suc) after heterologous expression in Xenopus laevis oocytes. The SWEET16 gene, similar to the homologs gene SWEET17, is mainly expressed in vascular parenchyma cells. Application of Glc, Fru, or Suc, as well as cold, osmotic stress, or low nitrogen, provoke the down-regulation of SWEET16 messenger RNA accumulation. SWEET16 overexpressors (35SPro:SWEET16) showed a number of peculiarities related to differences in sugar accumulation, such as less Glc, Fru, and Suc at the end of the night. Under cold stress, 35SPro:SWEET16 plants are unable to accumulate Fru, while under nitrogen starvation, both Glc and Fru, but not Suc, were less abundant. These changes of individual sugars indicate that the consequences of an increased SWEET16 activity are dependent upon the type of external stimulus. Remarkably, 35SPro:SWEET16 lines showed improved germination and increased freezing tolerance. The latter observation, in combination with the modified sugar levels, points to a superior function of Glc and Suc for frost tolerance. 35SPro:SWEET16 plants exhibited increased growth efficiency when cultivated on soil and showed improved nitrogen use efficiency when nitrate was sufficiently available, while under conditions of limiting nitrogen, wild-type biomasses were higher than those of 35SPro:SWEET16 plants. Our results identify SWEET16 as a vacuolar sugar facilitator, demonstrate the substantial impact of SWEET16 overexpression on various critical plant traits, and imply that SWEET16 activity must be tightly regulated to allow optimal Arabidopsis development under nonfavorable conditions. PMID:24028846

  6. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  7. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  8. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well. PMID:25504198

  9. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs.

    PubMed

    Almeida, M J; Pais, C

    1996-12-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.

  10. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs.

    PubMed

    Almeida, M J; Pais, C

    1996-12-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts. PMID:8953712

  11. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) activated root malate and citrate exudation play an important role in Al tolerance in many plant species. AtALMT1, an Al-activated malate transporter, is a major contributor to Arabidopsis Al tolerance. Here, we demonstrate that a second, unrelated gene, AtMATE, encodes an Arabidopsi...

  12. Reversion of nitrate tolerance in rat aorta rings by freeze-dried red wine.

    PubMed

    Fusi, Fabio; Sgaragli, Giampietro

    2015-04-01

    Chronically administered organic nitrates induce nitrate tolerance and endothelial dysfunction, which limit their therapeutic use. eNOS uncoupling, ROS over-production, aldehyde dehydrogenase-2 as well as superoxide dismutase (SOD) oxidative inhibition, and cGMP desensitization are thought to play an important role. Natural polyphenols are effective antioxidants, which might counteract the mechanisms leading to nitrate tolerance. The aim of this work was to verify whether freeze-dried (dealcoholized) red wine (FDRW) was able to revert glyceryl trinitrate (GTN) tolerance and endothelial dysfunction induced in rat aorta rings with either GTN or diethyldithiocarbamate (DETCA), an irreversible inhibitor of Cu/Zn SOD. GTN induced a concentration-dependent relaxation of rings pre-contracted with phenylephrine. GTN spasmolysis was significantly reduced in rings pre-incubated with either GTN or DETCA. FDRW, at 2.8 µg of gallic acid equivalents (GAE)/mL concentration, was able to revert partially, though significantly, GTN-induced tolerance but not tolerance and endothelial dysfunction induced by DETCA. This work provides the first evidence in vitro that red wine components, at concentrations comparable to those achieved in human blood after moderate consumption of red wine, revert tolerance to nitrates with a mechanism possibly mediated by SOD.

  13. Reversion of nitrate tolerance in rat aorta rings by freeze-dried red wine.

    PubMed

    Fusi, Fabio; Sgaragli, Giampietro

    2015-04-01

    Chronically administered organic nitrates induce nitrate tolerance and endothelial dysfunction, which limit their therapeutic use. eNOS uncoupling, ROS over-production, aldehyde dehydrogenase-2 as well as superoxide dismutase (SOD) oxidative inhibition, and cGMP desensitization are thought to play an important role. Natural polyphenols are effective antioxidants, which might counteract the mechanisms leading to nitrate tolerance. The aim of this work was to verify whether freeze-dried (dealcoholized) red wine (FDRW) was able to revert glyceryl trinitrate (GTN) tolerance and endothelial dysfunction induced in rat aorta rings with either GTN or diethyldithiocarbamate (DETCA), an irreversible inhibitor of Cu/Zn SOD. GTN induced a concentration-dependent relaxation of rings pre-contracted with phenylephrine. GTN spasmolysis was significantly reduced in rings pre-incubated with either GTN or DETCA. FDRW, at 2.8 µg of gallic acid equivalents (GAE)/mL concentration, was able to revert partially, though significantly, GTN-induced tolerance but not tolerance and endothelial dysfunction induced by DETCA. This work provides the first evidence in vitro that red wine components, at concentrations comparable to those achieved in human blood after moderate consumption of red wine, revert tolerance to nitrates with a mechanism possibly mediated by SOD. PMID:25581420

  14. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    PubMed

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  15. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    PubMed Central

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  16. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea.

    PubMed

    Storey, Kenneth B; Lant, Benjamin; Anozie, Obiajulu O; Storey, Janet M

    2013-08-01

    The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response. PMID:23507570

  17. Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes.

    PubMed

    Márquez, Edjuly J; Rada, Fermín; Fariñas, Mario R

    2006-12-01

    The tropical high Andes experience greater daily temperature oscillations compared to seasonal ones as well as a high frequency of night frost occurrence year round. Survival of organisms, under such environmental conditions, has been determined by selective forces which have evolved into adaptations including avoidance or tolerance to freezing. These adaptations have been studied in different species of trees, shrubs and perennial herbs in páramo ecosystems, while they have not been considered in grasses, an important family of the páramo. In order to understand survival of Poaceae, resistance mechanisms were determined. The study was performed along an altitudinal gradient (2,500-4,200 m a.s.l.) in the páramo. Supercooling capacity and frost injury temperature were determined in nine species in order to establish cold resistance mechanisms. Grasses registered a very low supercooling capacity along the altitudinal gradient, with ice formation between -6 and -3 degrees C. On the other hand, frost injury temperature oscillated between -18 and -7 degrees C. Our results suggest that grasses exhibit freezing tolerance as their main cold resistance mechanism. Since grasses grow at ground level, where greatest heat loss takes place, tolerance may be related to this life form as reported for other small life forms. PMID:17024382

  18. Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells.

    PubMed

    Dang, Nghiem X; Hincha, Dirk K

    2011-06-01

    Hydrophilins are a group of proteins that are present in all organisms and that have been defined as being highly hydrophilic and rich in glycine. They are assumed to play important roles in cellular dehydration tolerance. There are 12 genes in the yeast Saccharomyces cerevisiae that encode hydrophilins and most of these genes are stress responsive. However, the functional role of yeast hydrophilins, especially in desiccation and freezing tolerance, is largely unknown. Here, we selected six candidate hydrophilins for further analysis. All six proteins were predicted to be intrinsically disordered, i.e. to have no stable structure in solution. The contribution of these proteins to the desiccation and freezing tolerance of yeast was investigated in the respective knock-out strains. Only the disruption of the genes YJL144W and YMR175W (SIP18) resulted in significantly reduced desiccation tolerance, while none of the strains was affected in its freezing tolerance under our experimental conditions. Complementation experiments showed that yeast cells overexpressing these two genes were both more desiccation and freezing tolerant, confirming the role of these two hydrophilins in yeast dehydration stress tolerance.

  19. Annual variation in glycerol mobilization and effect of freeze rigor on post-thaw locomotion in the freeze-tolerant frog Hyla versicolor.

    PubMed

    Layne, Jack R; Stapleton, Michael G

    2009-02-01

    This study documents post-thaw recovery of jump distance and cryoprotectant mobilization in the freeze-tolerant frog Hyla versicolor over two successive years. Cold acclimated frogs had plasma glycerol levels near 1.0 mM in 2004 but it was nearly 70x higher during 2005. Freezing of frogs induced nearly identical levels of plasma glycerol (ca. 177 mM) during 2004 and 2005. Plasma glucose was only mobilized upon somatic freezing, with averages ranging between 21 and 36 mM. Control jump distance showed no difference between the two years of the study. The post-thaw jump response was identical during the first 2 years despite large differences in glycerol mobilization between these 2 years. Recovery proceeded much faster in 2005 when frogs mobilized glycerol prior to freeze exposure. Frogs were more impaired in their locomotion performance during the initial stages of recovery period when they were frozen at a lower temperature (-3 vs. -1.5 degrees C) but they eventually recovered. Moderate lengthening of the freeze duration (3 vs. 7 days) with the 2004 collection group did not affect recovery of jump distance when frogs were frozen at -1.5 degrees C. Hence, postfreeze impairment of locomotion is dependent of the intensity of the freeze temperature but it is a reversible process that is mitigated when glycerol is more freely distributed to body tissues.

  20. Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect.

    PubMed

    Marshall, Katie E; Thomas, Raymond H; Roxin, Aron; Chen, Eric K Y; Brown, Jason C L; Gillies, Elizabeth R; Sinclair, Brent J

    2014-05-01

    Most animals store energy as long-chain triacylglycerols (lcTAGs). Trace amounts of acetylated triacylglycerols (acTAGs) have been reported in animals, but are not accumulated, likely because they have lower energy density than lcTAGs. Here we report that acTAGs comprise 36% of the neutral lipid pool of overwintering prepupae of the goldenrod gall fly, Eurosta solidaginis, while only 17% of the neutral lipid pool is made up of typical lcTAGs. These high concentrations of acTAGs, present only during winter, appear to be synthesized by E. solidaginis and are not found in other freeze-tolerant insects, nor in the plant host. The mixture of acTAGs found in E. solidaginis has a significantly lower melting point than equivalent lcTAGs, and thus remains liquid at temperatures at which E. solidaginis is frozen in the field, and depresses the melting point of aqueous solutions in a manner unusual for neutral lipids. We note that accumulation of acTAGs coincides with preparation for overwintering and the seasonal acquisition of freeze tolerance. This is the first observation of accumulation of acTAGs by an animal, and the first evidence of dynamic interconversion between acTAGs and lcTAGs during development and in response to stress.

  1. Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect.

    PubMed

    Marshall, Katie E; Thomas, Raymond H; Roxin, Aron; Chen, Eric K Y; Brown, Jason C L; Gillies, Elizabeth R; Sinclair, Brent J

    2014-05-01

    Most animals store energy as long-chain triacylglycerols (lcTAGs). Trace amounts of acetylated triacylglycerols (acTAGs) have been reported in animals, but are not accumulated, likely because they have lower energy density than lcTAGs. Here we report that acTAGs comprise 36% of the neutral lipid pool of overwintering prepupae of the goldenrod gall fly, Eurosta solidaginis, while only 17% of the neutral lipid pool is made up of typical lcTAGs. These high concentrations of acTAGs, present only during winter, appear to be synthesized by E. solidaginis and are not found in other freeze-tolerant insects, nor in the plant host. The mixture of acTAGs found in E. solidaginis has a significantly lower melting point than equivalent lcTAGs, and thus remains liquid at temperatures at which E. solidaginis is frozen in the field, and depresses the melting point of aqueous solutions in a manner unusual for neutral lipids. We note that accumulation of acTAGs coincides with preparation for overwintering and the seasonal acquisition of freeze tolerance. This is the first observation of accumulation of acTAGs by an animal, and the first evidence of dynamic interconversion between acTAGs and lcTAGs during development and in response to stress. PMID:24790101

  2. Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis.

    PubMed

    Courteau, Lynn A; Storey, Kenneth B; Morin, Pier

    2012-12-01

    Freeze tolerance in insects is associated with a variety of adaptations including production of cryoprotectants, specialized proteins that regulate ice formation, and energy-saving mechanisms that strongly suppress the rates of metabolic processes in the oxygen-limited frozen state. We hypothesized that microRNAs (miRNAs), small non-coding transcripts that bind to mRNA, could play a role in the global regulation of energy-expensive mRNA translation in frozen insects and would be modulated at subzero temperatures. Expression levels of miRNA species were evaluated in control (5 °C) and frozen (-15 °C) goldenrod gall fly larvae, Eurosta solidaginis, using a miRNA microarray. Levels of miR-11, miR-276, miR-71, miR-3742, miR-277-3p, miR-2543b and miR-34 were significantly reduced in frozen larvae whereas miR-284, miR-3791-5p and miR-92c-3p rose significantly in frozen larvae. Target prediction for two miRNAs, miR-277-3p and miR-284, revealed potential regulation of transcripts involved in translation and the Krebs cycle. These data constitute the first report that differential expression of miRNAs occurs in a freeze tolerant insect and suggest a mechanism for reversible gene regulation during prolonged periods of freezing over the winter months, a mechanism that can be rapidly reversed to allow renewed translation of mRNA when temperatures rise and insects thaw.

  3. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light. PMID:17537468

  4. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%).

  5. Enzymatic Regulation of Glycogenolysis in a Subarctic Population of the Wood Frog: Implications for Extreme Freeze Tolerance

    PubMed Central

    do Amaral, M. Clara F.; Lee, Richard E.; Costanzo, Jon P.

    2013-01-01

    The wood frog, Rana sylvatica, from Interior Alaska survives freezing at –16°C, a temperature 10–13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA). In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold) increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype’s exceptional freeze tolerance, which is necessary for their survival in a subarctic climate. PMID:24236105

  6. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    PubMed

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper.

  7. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    PubMed

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper. PMID:26965428

  8. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  9. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.

  10. Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Philip, Benjamin N; Yi, Shu-Xia; Elnitsky, Michael A; Lee, Richard E

    2008-04-01

    Survival of freezing not only requires organisms to tolerate ice formation within their body, but also depends on the rapid redistribution of water and cryoprotective compounds between intra- and extracellular compartments. Aquaporins are transmembrane proteins that serve as the major pathway through which water and small uncharged solutes (e.g. glycerol) enter and leave the cell. Consequently, we examined freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis, to determine whether aquaporins are present and if their presence promotes freeze tolerance of specific tissues. Immunoblotting with mammalian anti-AQP2, -AQP3 and -AQP4 revealed corresponding aquaporin homologues in E. solidaginis, whose patterns of expression varied depending on acclimation temperature and desiccation treatment. To examine the role of aquaporins in freeze tolerance, we froze fat body, midgut and salivary gland tissues in the presence and absence of mercuric chloride, an aquaporin inhibitor. Survival of fat body and midgut cells was significantly reduced when mercuric chloride was present. In contrast, survival of the salivary gland did not decrease when it was frozen with mercuric chloride. Overall, this study supports our hypothesis that naturally occurring aquaporins in E. solidaginis are regulated during desiccation and promote cell survival during freezing.

  11. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis

    PubMed Central

    Novillo, Fernando; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2004-01-01

    CBF/DREB1 (C-repeat-binding factor/dehydration responsive element-binding factor 1) genes encode a small family of transcriptional activators that have been described as playing an important role in freezing tolerance and cold acclimation in Arabidopsis. To specify this role, we used a reverse genetic approach and identified a mutant, cbf2, in which the CBF2/DREB1C gene was disrupted. Here, we show that cbf2 plants have higher capacity to tolerate freezing than WT ones before and after cold acclimation and are more tolerant to dehydration and salt stress. All these phenotypes correlate with a stronger and more sustained expression of CBF/DREB1-regulated genes, which results from an increased expression of CBF1/DREB1B and CBF3/DREB1A in the mutant. In addition, we show that the expression of CBF1/DREB1B and CBF3/DREB1A in response to low temperature precedes that of CBF2/DREB1C. These results indicate that CBF2/DREB1C negatively regulates CBF1/DREB1B and CBF3/DREB1A, ensuring that their expression is transient and tightly controlled, which, in turn, guarantees the proper induction of downstream genes and the accurate development of Arabidopsis tolerance to freezing and related stresses. PMID:15004278

  12. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana

    PubMed Central

    Atanasov, Kostadin E.; Barboza-Barquero, Luis; Tiburcio, Antonio F.; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  13. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    PubMed

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  14. Effect of freeze-thaw cycles and 4-nonylphenol on cellular energy allocation in the freeze-tolerant enchytraeid Enchytraeus albidus.

    PubMed

    Patrício-Silva, Ana L; Amorim, Mónica J B

    2016-02-01

    Due to climate change and intense anthropogenic activity, organisms from cold regions are often exposed to combined effects of temperature fluctuations and contaminants. In this investigation, we assessed the lipid, protein, and carbohydrate energy budgets; the energy available (Ea); consumed (Ec); and cellular energy allocation (CEA) of the freeze-tolerant Enchytraeus albidus, when exposed to sublethal concentrations of 4-nonylphenol (a lipophilic contaminant) for 7 days, followed by exposure to different temperature regimes (continuous 2 °C, continuous -4 °C, and daily freeze-thaw cycles (FTC) (2 to -4 °C) for additional 10 days. Results showed that a pre-exposure to 4-nonylphenol (4-NP) induced important changes in the worms' energy budgets and CEA and increased mortality with most severe effects observed for the FTC events. For FTC, lipids were the most accumulated energy source, whereas during freezing (-4 °C), proteins were the most used. FTC caused the highest Ec, indicating the higher energy requirements for organisms when shifting between freezing and thawing events. This is also in line with the higher mortality observed in FTC compared to continuous -4 °C or 2 °C. Worms exposed to continuous freezing presented relatively stable and positive levels of Ea and low levels of Ec, possibly related with the decrease in metabolism.

  15. Ectopic expression of Arabidopsis glutaredoxin gene AtGRXS17 in tomato (Solanum lycopersicum) confers tolerance to chilling stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The monothiol glutaredoxin AtGRXS17 from "Arabidopsis" confers thermotolerance in yeast, "Arabidopsis", and tomato plants. Here, we report that AtGRXS17 also enhances tolerance to chilling stress in tomato and is associated with elevation of antioxidant enzyme activities, which are known to be invol...

  16. The tolerance of the field slug Deroceras reticulatum to freezing temperatures.

    PubMed

    Cook, R T

    2004-01-01

    Cold hardiness of ectotherms has been widely studied in arthropods, but there is a more limited literature on the survival of molluscs at low temperatures. A number of intertidal species have been examined in detail, but terrestrial molluscs have largely been overlooked until recently. This paper reports results of laboratory experiments to evaluate the cold hardiness of the terrestrial slug, Deroceras reticulatum. The mean supercooling point (SCP) rose from -4.2 degree C in summer to -3.6 degree C in winter. The SCP that caused 50 percent mortality (LSCP50) remained constant at -4.7 to -4.8 degree C in both seasons, but slugs were able to survive the frozen state for longer in winter (LD50 of 31.8 minutes compared with 17.0 minutes in summer). Slug survival at freezing temperatures was prolonged to at least five hours when placed on a moist, absorbent substrate. D. reticulatum exhibits partial freeze tolerance, with an increased survival in winter. The results are discussed in relation to the natural environment of slugs.

  17. Insect freeze tolerance: Roles of protein phosphatases and protein kinase A.

    PubMed

    Pfister, Thomas D; Storey, Kenneth B

    2006-01-01

    Freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis Fitch, show multiple metabolic adaptations for subzero survival including the autumn synthesis of high concentrations of polyols. The induction and regulation of cold hardiness adaptations requires the intermediary action of signal transduction enzymes. The present study evaluates changes in the activities of cAMP-dependent protein kinase (PKA), protein phosphatases 1 (PP1), 2A, 2C, and protein tyrosine phosphatases (PTPs) over the course of the winter season and also in insects exposed to -4, -20 degrees C, or anoxic conditions in the laboratory. The increased PKA and decreased PP1 over the winter season and/or at subzero temperature support a regulatory role for these enzymes in cryoprotectant polyol synthesis. PTP activities were also strongly increased under these conditions and may act to antagonize tyrosine kinase mediated cell growth and proliferation responses and, thereby, contribute to hypometabolism and diapause over the winter.

  18. Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis.

    PubMed

    Gao, Wei; Li, Hong-Ye; Xiao, Shi; Chye, Mee-Len

    2010-08-01

    In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.

  19. Intron-length polymorphism identifies a Y2K4 dehydrin variant linked to superior freezing tolerance in alfalfa.

    PubMed

    Castonguay, Yves; Dubé, Marie-Pier; Cloutier, Jean; Michaud, Réal; Bertrand, Annick; Laberge, Serge

    2012-03-01

    Breeding alfalfa (Medicago sativa L.) with superior freezing tolerance could be accelerated by the identification of molecular markers associated to that trait. Dehydrins are a group of highly hydrophilic proteins that have been related to low temperature tolerance. We previously identified a dehydrin restriction fragment length polymorphism (RFLP) among populations recurrently selected for superior tolerance to freezing (TF). Analysis of crosses between genotypes with (D+) or without (D-) that RFLP revealed a significant impact on freezing tolerance. In this study, we sought to develop a PCR marker for freezing tolerance based on prior evidence of a relationship between size variation in Y(2)K(4) dehydrins and the RFLP. Results confirm the enrichment of Y(2)K(4) sequences of intermediate size (G2 group) in response to recurrent selection and in the D+ progeny. Analysis of genomic sequences revealed significant intron-length polymorphism (ILP) within the G2 group. G2 sequences with a characteristic short intron were more frequently found in D+ genotypes. Amplification using sequence-characterized amplified region (SCAR) primers bordering the intron confirmed an increase in the number of fragments with small introns in the D+ progeny and in the ATF5 population obtained after five cycles of recurrent selection for superior TF within the cultivar Apica (ATF0). Conversely, there was a reduction in the number of fragments with long introns in the D+ progeny and in ATF5 as compared to ATF0. Recurrent selection for superior tolerance to freezing in combination with ILP identified a sequence variant of Y(2)K(4) dehydrins associated to the phenotypic response to selection.

  20. Characterization of freezing tolerance and vernalization in Vern-, a spring-type Brassica napus line derived from a winter cross.

    PubMed

    Hawkins, Glen P; Deng, Zhanao; Kubik, Thomas J; Johnson-Flanagan, Anne M

    2002-12-01

    Exposure of winter brassicas to periods of low temperature decreases the transition required from vegetative to reproductive growth. This low-temperature exposure also results in the acquisition of freezing tolerance. To investigate the relationship between vernalization and freezing tolerance, homozygous microspore-derived (DH) lines were developed from reciprocal crosses between two winter cultivars of Brassica napus L., cv. Cascade and cv. Rebel. A resulting line, termed Vern-, expressed a high degree of freezing tolerance and was selected for study. Analysis of growth and development revealed that Vern- is a true spring type, having completely lost the vernalization requirement. Using markers previously mapped in B. rapa, it was concluded that Vern- inherited freezing-tolerance alleles from Cascade. With regard to vernalization and flowering time, Rebel, although traditionally classified as a winter type, carries spring alleles at the major and some of the minor loci. Vern- inherited these alleles from Rebel, in addition to one spring allele from Cascade. Thus, spring alleles from both parents were critical in establishing the spring phenotype observed in Vern-.

  1. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.

    PubMed

    Hengherr, S; Worland, M R; Reuner, A; Brümmer, F; Schill, R O

    2009-03-01

    Many limno-terrestrial tardigrades live in unstable habitats where they experience extreme environmental conditions such as drought, heat and subzero temperatures. Although their stress tolerance is often related only to the anhydrobiotic state, tardigrades can also be exposed to great daily temperature fluctuations without dehydration. Survival of subzero temperatures in an active state requires either the ability to tolerate the freezing of body water or mechanisms to decrease the freezing point. Considering freeze tolerance in tardigrades as a general feature, we studied the survival rate of nine tardigrade species originating from polar, temperate and tropical regions by cooling them at rates of 9, 7, 5, 3 and 1 degrees C h(-1) down to -30 degrees C then returning them to room temperature at 10 degrees C h(-1). The resulting moderate survival after fast and slow cooling rates and low survival after intermediate cooling rates may indicate the influence of a physical effect during fast cooling and the possibility that they are able to synthesize cryoprotectants during slow cooling. Differential scanning calorimetry of starved, fed and cold acclimatized individuals showed no intraspecific significant differences in supercooling points and ice formation. Although this might suggest that metabolic and biochemical preparation are non-essential prior to subzero temperature exposure, the increased survival rate with slower cooling rates gives evidence that tardigrades still use some kind of mechanism to protect their cellular structure from freezing injury without influencing the freezing temperature. These results expand our current understanding of freeze tolerance in tardigrades and will lead to a better understanding of their ability to survive subzero temperature conditions.

  2. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    SciTech Connect

    Jia, Fengjuan Qi, Shengdong Li, Hui Liu, Pu Li, Pengcheng Wu, Changai Zheng, Chengchao Huang, Jinguang

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  3. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    PubMed

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  4. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.

    PubMed

    Molojwane, E; Adams, N; Sweetlove, L J; Ingle, R A

    2015-07-01

    Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild-type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col-0 ecotype of Arabidopsis is unaffected by CN.

  5. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

    PubMed

    Zhang, Lihong; Ackley, Ashley R; Pilon-Smits, Elizabeth A H

    2007-03-01

    Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se tolerance and accumulation. Tissue sulfur levels were also compared. The Se Tolerance Index (root length+Se/root length control) varied among the accessions from 0.11 to 0.44 for selenite and from 0.05 to 0.24 for selenate. When treated with selenite, the accessions differed by two-fold in shoot Se concentration (up to 250 mgkg(-1)) and three-fold in root Se concentration (up to 1000 mgkg(-1)). Selenium accumulation from selenate varied 1.7-fold in shoot (up to 1000 mgkg(-1)) and two-fold in root (up to 650 mgkg(-1)). Across all accessions, a strong correlation was observed between Se and S concentration in both shoot and root under selenate treatment, and in roots of selenite-treated plants. Shoot Se accumulation from selenate and selenite were also correlated. There was no correlation between Se tolerance and accumulation, either for selenate or selenite. The F(1) offspring from a cross between the extreme selenate-sensitive Dijon G and the extreme selenate-tolerant Estland accessions showed intermediate selenate tolerance. In contrast, the F(1) offspring from a cross between selenite-sensitive and -tolerant accessions (Dijon GxCol-PRL) were selenite tolerant. The results from this study give new insight into the mechanisms of plant selenium (Se) tolerance and accumulation, which may help develop better plants for selenium phytoremediation or as fortified foods. PMID:16513208

  6. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana.

    PubMed

    Chen, Jian; Yang, Libo; Gu, Ju; Bai, Xiaoya; Ren, Yongbin; Fan, Tingting; Han, Yi; Jiang, Li; Xiao, Fangming; Liu, Yongsheng; Cao, Shuqing

    2015-01-01

    Pollution of soil by the heavy metal cadmium (Cd) is a global environmental problem. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is one of the most important mechanisms contributing to Cd accumulation and tolerance. However, the regulation of this pathway is poorly understood. Here, we identified an Arabidopsis thaliana cadmium-tolerant dominant mutant xcd1-D (XVE system-induced cadmium-tolerance 1) and cloned XCD1 gene (previously called MAN3), which encodes an endo-β-mannanase. Overexpression of MAN3 led to enhanced Cd accumulation and tolerance, whereas loss-of-function of MAN3 resulted in decreased Cd accumulation and tolerance. In the presence of estradiol, enhanced Cd accumulation and tolerance in xcd1-D was associated with GSH-dependent, Cd-activated synthesis of PCs, which was correlated with coordinated activation of gene expression. Cd stress-induced expression of MAN3 and the consequently increased mannanase activity, led to increased mannose content in cell walls. Moreover, mannose treatment not only rescued the Cd-sensitive phenotype of the xcd1-2 mutant, but also improved the Cd tolerance of wild-type plants. Significantly, this mannose-mediated Cd accumulation and tolerance is dependent on GSH-dependent PC concentrations via coordinated control of expression of genes involved in PC synthesis. Our results suggest that MAN3 regulates the GSH-dependent PC synthesis pathway that contributes to Cd accumulation and tolerance in A. thaliana by coordinated control of gene expression. PMID:25329733

  7. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  8. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    PubMed

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  9. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    PubMed

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana. PMID:24850836

  10. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  11. Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana.

    PubMed

    Srivastava, Sanjeeva; Rahman, Muhammad H; Shah, Salehuzzaman; Kav, Nat N V

    2006-09-01

    The constitutive expression of the pea ABR17 (abscisic acid-responsive 17) cDNA, which is a member of the group 10 family of pathogenesis-related proteins (PR 10), in Arabidopsis thaliana is reported. The presence of ABR17 transcripts and the protein in the three transgenic lines is demonstrated by reverse transcriptase-polymerase chain reaction (RT-PCR) and two-dimensional electrophoresis followed by tandem mass spectrometry, respectively. Three independently derived transgenic lines containing ABR17 germinated better in the presence of salt, cold temperature or both. Furthermore, the transgenic plants also exhibited enhanced tolerance to freezing temperature, suggesting the potential utility of the ABR17 gene to engineer multiple stress tolerance. In order to obtain insights into the mechanism underlying ABR17-mediated stress tolerance, we have compared the proteome of a transgenic line with that of its wild-type counterpart. Several proteins were observed to be significantly altered in the transgenic line, including some with a role(s) in photosynthesis, stress tolerance and the regulation of gene expression. Our findings are discussed within the context of available genes to engineer multiple stress tolerance as well as the biological activities of the ABR17 protein.

  12. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses.

    PubMed

    Zhang, Xuan; Lu, Songchong; Jiang, Changhua; Wang, Yaofeng; Lv, Bo; Shen, Jiabin; Ming, Feng

    2014-07-01

    The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR. Overexpression of RcLEA in Escherichia coli improved its growth performance compared with the control under high temperature, low temperature, NaCl and oxidative stress conditions. RcLEA was also overexpressed in Arabidopsis thaliana. The transgenic Arabidopsis showed better growth after high and low temperature treatment and exhibited less peroxide according to 3, 3-diaminobenzidine staining. However, RcLEA did not improve the tolerance to NaCl or osmotic stress in Arabidopsis. In vitro analysis showed that RcLEA was able to prevent the freeze-thaw-induced inactivation or heat-induced aggregation of various substrates, such as lactate dehydrogenase and citrate synthase. It also protected the proteome of E. coli from denaturation when the proteins were heat-shocked or subjected to acidic conditions. Furthermore, bimolecular fluorescence complementation assays suggested that RcLEA proteins function in a complex manner by making the form of homodimers. PMID:24760474

  13. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules.

    PubMed

    Jalali, M; Abedi, D; Varshosaz, J; Najjarzadeh, M; Mirlohi, M; Tavakoli, N

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate.

  14. Mechanisms for tolerating freeze-thaw stress of two evergreen chaparral species: Rhus ovata and Malosma laurina (Anacardiaceae).

    PubMed

    Pratt, R B; Ewers, F W; Lawson, M C; Jacobsen, A L; Brediger, M M; Davis, S D

    2005-07-01

    The response to freeze-thaw stress was examined for two co-occurring evergreen species, Malosma laurina and Rhus ovata. Laboratory and field experiments on adults and seedlings were made in the spring and winter in 1996 and again on adults in 2003 and 2004. Laboratory and field results indicated that the stem xylem for adults of M. laurina and R. ovata were similarly susceptible to freezing-induced cavitation (percentage loss of conductivity = 92 ± 2.6% for R. ovata and 90 ± 4.2% for M. laurina at ≤ -6°C). In contrast, leaves of M. laurina were more susceptible to freezing injury than leaves of R. ovata. Among seedlings in the field, leaves of M. laurina exhibited freezing injury at -4°C and total shoot mortality at -7.2°C, whereas co-occurring seedlings of R. ovata were uninjured. Surprisingly, R. ovata tolerates high levels of freezing-induced xylem embolism in the field, an apparently rare condition among evergreen plants. Rhus ovata avoids desiccation when xylem embolism is high by exhibiting low minimum leaf conductance compared to M. laurina. These results suggest a link between minimum leaf conductance and stem hydraulics as a mechanism permitting the persistence of an evergreen leaf habit in freezing environments.

  15. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis.

    PubMed

    Cheng, Mei-Chun; Ko, Ko; Chang, Wan-Ling; Kuo, Wen-Chieh; Chen, Guan-Hong; Lin, Tsan-Piao

    2015-09-01

    Although glutathione is well known for its reactive oxygen species (ROS) scavenging function and plays a protective role in biotic stress, its regulatory function in abiotic stress still remains to be elucidated. Our previous study showed that exogenously applied reduced glutathione (GSH) could improve abiotic stress tolerance in Arabidopsis. Here, we report that endogenously increased GSH also conferred tolerance to drought and salt stress in Arabidopsis. Moreover, both exogenous and endogenous GSH delayed senescence and flowering time. Polysomal profiling results showed that global translation was enhanced after GSH treatment and by the induced increase of GSH level by salt stress. By performing transcriptomic analyses of steady-state and polysome-bound mRNAs in GSH-treated plants, we reveal that GSH has a substantial impact on translation. Translational changes induced by GSH treatment target numerous hormones and stress signaling molecules, which might contribute to the enhanced stress tolerance in GSH-treated plants. Our translatome analysis also revealed that abscisic acid (ABA), auxin and jasmonic acid (JA) biosynthesis, as well as signaling genes, were activated during GSH treatment, which has not been reported in previously published transcriptomic data. Together, our data suggest that the increased glutathione level results in stress tolerance and global translational changes. PMID:26213235

  16. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants

    PubMed Central

    Chiappetta, Adriana; Muto, Antonella; Bruno, Leonardo; Woloszynska, Magdalena; Lijsebettens, Mieke Van; Bitonti, Maria B.

    2015-01-01

    Dehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp. europaea, var. sylvestris), the wild form of olive. To elucidate the contribution of OesDHN in the development of drought tolerance, its expression levels were investigated in oleaster plants during development and under drought stress condition. The involvement of OesDHN in plant stress response was also evaluated in Arabidopsis transgenic lines, engineered to overexpress this gene, and exposed to a controlled mild osmotic stress. OesDHN expression was found to be modulated during development and induced under mild drought stress in oleaster plants. In addition, the Arabidopsis transgenic plants showed a better tolerance to osmotic stress than wild-type plants. The results demonstrated that OesDHN expression is induced by drought stress and is able to confer osmotic stress tolerance. We suggest a role for OesDHN, as a putative functional marker of plant stress tolerance. PMID:26175736

  17. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance.

    PubMed

    Iuchi, Satoshi; Koyama, Hiroyuki; Iuchi, Atsuko; Kobayashi, Yasufumi; Kitabayashi, Sadako; Kobayashi, Yuriko; Ikka, Takashi; Hirayama, Takashi; Shinozaki, Kazuo; Kobayashi, Masatomo

    2007-06-01

    Acid soil syndrome causes severe yield losses in various crop plants because of the rhizotoxicities of ions, such as aluminum (Al(3+)). Although protons (H(+)) could be also major rhizotoxicants in some soil types, molecular mechanisms of their tolerance have not been identified yet. One mutant that was hypersensitive to H(+) rhizotoxicity was isolated from ethyl methanesulfonate mutagenized seeds, and a single recessive mutation was found on chromosome 1. Positional cloning followed by genomic sequence analysis revealed that a missense mutation in the zinc finger domain in a predicted Cys(2)His(2)-type zinc finger protein, namely sensitive to proton rhizotoxicity (STOP)1, is the cause of hypersensitivity to H(+) rhizotoxicity. The STOP1 protein belongs to a functionally unidentified subfamily of zinc finger proteins, which consists of two members in Arabidopsis based on a Blast search. The stop1 mutation resulted in no effects on cadmium, copper, lanthanum, manganese and sodium chloride sensitivitities, whereas it caused hypersensitivity to Al(3+) rhizotoxicity. This stop1 mutant lacked the induction of the AtALMT1 gene encoding a malate transporter, which is concomitant with Al-induced malate exudation. There was no induction of AtALMT1 by Al(3+) treatment in the stop1 mutant. These results indicate that STOP1 plays a critical role in Arabidopsis tolerance to major stress factors in acid soils. PMID:17535918

  18. Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolerance.

    PubMed

    Borrell, Antonio; Cutanda, M Cruz; Lumbreras, Victoria; Pujal, Judit; Goday, Adela; Culiáñez-Macià, Francisco A; Pagès, Montserrat

    2002-09-01

    The Arabidopsis gene Atrab28 has been shown to be expressed during late embryogenesis. The pattern of expression of Atrab28 mRNA and protein during embryo development is largely restricted to provascular tissues of mature embryos, and in contrast to the maize Rab28 homologue it cannot be induced by ABA and dehydration in vegetative tissues. Here, we have studied the subcellular location of Atrab28 protein and the effect of its over-expression in transgenic Arabidopsis plants. The Atrab28 protein was mainly detected in the nucleus and nucleolus of cells from mature embryos. In frame fusion of Atrab28 to the reporter green fluorescent protein (GFP) directed the GFP to the nucleus in transgenic Arabidopsis and in transiently transformed onion cells. Analysis of chimeric constructs identified an N-terminal region of 60 amino acids containing a five amino acid motif QPKRP that was necessary for targeting GFP to the nucleus. These results indicate that Atrab28 protein is targeted to the nuclear compartments by a new nuclear localization signal (NLS). Transgenic Arabidopsis plants, with gain of Atrab28 function, showed faster germination rates under either standard or salt and osmotic stress conditions. Moreover, improved cation toxicity tolerance was also observed not only during germination but also in seedlings. These results suggest a role of Atrab28 in the ion cell balance during late embryogenesis and germination. PMID:12175017

  19. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis

    PubMed Central

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  20. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  1. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance.

  2. Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata).

    PubMed

    Angelcheva, Liudmila; Mishra, Yogesh; Antti, Henrik; Kjellsen, Trygve D; Funk, Christiane; Strimbeck, Richard G; Schröder, Wolfgang P

    2014-11-01

    Siberian spruce (Picea obovata) is one of several boreal conifer species that can survive at extremely low temperatures (ELTs). When fully acclimated, its tissues can survive immersion in liquid nitrogen. Relatively little is known about the biochemical and biophysical strategies of ELT survival. We profiled needle metabolites using gas chromatography coupled with mass spectrometry (GC-MS) to explore the metabolic changes that occur during cold acclimation caused by natural temperature fluctuations. In total, 223 metabolites accumulated and 52 were depleted in fully acclimated needles compared with pre-acclimation needles. The metabolite profiles were found to develop in four distinct phases, which are referred to as pre-acclimation, early acclimation, late acclimation and fully acclimated. Metabolite changes associated with carbohydrate and lipid metabolism were observed, including changes associated with increased raffinose family oligosaccharide synthesis and accumulation, accumulation of sugar acids and sugar alcohols, desaturation of fatty acids, and accumulation of digalactosylglycerol. We also observed the accumulation of protein and nonprotein amino acids and polyamines that may act as compatible solutes or cryoprotectants. These results provide new insight into the mechanisms of freezing tolerance development at the metabolite level and highlight their importance in rapid acclimation to ELT in P. obovata.

  3. Freeze-tolerant condenser for a closed-loop heat-transfer system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)

    2002-01-01

    A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.

  4. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause.

    PubMed

    Toxopeus, Jantina; Warner, Alden H; MacRae, Thomas H

    2014-11-01

    Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications. PMID:24846336

  5. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.

    PubMed

    Wei, Pingying; Li, Zilong; Lin, Yuping; He, Peng; Jiang, Ning

    2007-10-01

    An effective, simple, and convenient method to improve yeast's multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H(2)O(2), and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 x 10(7) c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l(-1)) to SC521 at 30 degrees C with 200 g glucose l(-1), and was better than the parent strain at 37 degrees C (72.5 g ethanol l(-1)), with 300 (111 g ethanol l(-1)) or with 400 (85 g ethanol l(-1)) g glucose l(-1).

  6. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance

    PubMed Central

    Wei, Rongrong; Liu, Yang

    2015-01-01

    that helps to compensate for the absence of CaS in Arabidopsis and increases the drought stress tolerance of transgenic plants. PMID:26098425

  7. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Song, Xixi; Fang, Jie; Han, Xiaojiao; He, Xuelian; Liu, Mingying; Hu, Jianjun; Zhuo, Renying

    2016-01-15

    Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.

  8. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    • It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions.

  9. Incorporation of ( sup 14 C)-palmitate into lipids of Brassica cells during the induction of freezing tolerance

    SciTech Connect

    Lynch, D.V.; Joseph, R.A. )

    1989-04-01

    Changes in plasma membrane lipid composition have been causally related to increased freezing tolerance. Studies of lipid metabolism during ABA induction of freezing tolerance in Brassica napus suspension cultures were undertaken. Cells were labeled with ({sup 14}C)-palmitate four days after transfer to fresh medium (control) or medium containing ABA (which increases freezing tolerance). At times between one and 20 hrs after labeling, ABA-treated cells incorporated almost twice the amount of label as controls cells. Approximately 80% of the radioactivity was associated with neutral lipids in ABA-treated cells and controls. Incorporation of label into total cellular polar lipids was 4.9 {times} 10{sup 5} dpm/mg protein for control cells and 1 {times} 10{sup 6} dpm/mg protein for cells transferred to medium containing ABA. Analysis of lipids following alkaline hydrolysis indicated that incorporation of ({sup 14}C)-palmitate into glucosylceramide of ABA-treated cells was less than 60% of control values when expressed relative to that of the total polar lipids. Incorporation into ceramides was also depressed in ABA-treated cells.

  10. Temperature-Stress Resistance and Tolerance along a Latitudinal Cline in North American Arabidopsis lyrata

    PubMed Central

    Wos, Guillaume; Willi, Yvonne

    2015-01-01

    The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but—unexpectedly—they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches. PMID:26110428

  11. A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana.

    PubMed

    Liu, Z B; Zhang, W J; Gong, X D; Zhang, Q; Zhou, L R

    2015-01-01

    Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To characterize the function of this gene with respect to salt tolerance, the construct p35S:JcCu/Zn-SOD was developed and transformed into Arabidopsis using Agrobacterium-mediated transformation. Compared with wild-type, transgenic plants over-expressing JcCu/Zn-SOD showed enhanced tolerance to salt stress during germination, seedling establishment, and growth in terms of longer root, larger rosette area, and a larger number of leaves in addition to higher SOD activity levels under NaCl stress. In addition, over-expression of JcCu/Zn-SOD resulted in lower monodialdehyde content in transgenic Arabidopsis compared to wild-type plants under the same NaCl stress. Therefore, JcCu/Zn-SOD can increase a plant salt stress tolerance potentially by reducing oxidant injury. PMID:25867355

  12. Expression of plant ferredoxin-like protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana.

    PubMed

    Lin, Yi-Hsien; Huang, Li-Fen; Hase, Tashiharu; Huang, Hsiang-En; Feng, Teng-Yung

    2015-03-25

    Under adverse environments, plants produce reactive oxygen species (ROS), which can trigger cell death when their accumulation surpasses the antioxidant capacity of ROS scavenging systems. These systems function in chloroplasts mainly through the ascorbate-mediated water-water cycle, in which ascorbate is photoreduced by ferredoxin in the photosynthetic system. Our previous study showed that the fraction of the reduced form of ascorbate was increased in ferredoxin-transgenic Arabidopsis (CPF) plants which overexpressed plant ferredoxin-like protein (PFLP) in their chloroplasts. Thus, we hypothesized that expression of PFLP could alter the tolerance of plants to abiotic stresses through increasing reduced form of ascorbate. In this study, we found that two CPF lines exhibited lower mortality rates at five days, following two days of heat treatment. Compared to non-transgenic wild type (Col-0) plants, CPF plants exhibited decreased H2O2 content, MDA accumulation, and ion leakage after heat treatment. To confirm the efficacy of ferredoxin against heat stress in chloroplasts, we evaluated two RNA interference (RNAi) lines on two endogenous ferredoxin isoforms, Atfd1 or Atfd2, of Arabidopsis plants. Both lines not only decreased their amounts of ascorbate, but also exhibited adverse reactions following heat treatment. Based on these results, we conclude that expression of PFLP in chloroplasts can confer tolerance to heat stress. This tolerance might be associated with the increasing of ascorbate in plants.

  13. Assessing Tolerance to Heavy-Metal Stress in Arabidopsis thaliana Seedlings.

    PubMed

    Remy, Estelle; Duque, Paula

    2016-01-01

    Heavy-metal soil contamination is one of the major abiotic stress factors that, by negatively affecting plant growth and development, severely limit agricultural productivity worldwide. Plants have evolved various tolerance and detoxification strategies in order to cope with heavy-metal toxicity while ensuring adequate supply of essential micronutrients at the whole-plant as well as cellular levels. Genetic studies in the model plant Arabidopsis thaliana have been instrumental in elucidating such mechanisms. The root assay constitutes a very powerful and simple method to assess heavy-metal stress tolerance in Arabidopsis seedlings. It allows the simultaneous determination of all the standard growth parameters affected by heavy-metal stress (primary root elongation, lateral root development, shoot biomass, and chlorophyll content) in a single experiment. Additionally, this protocol emphasizes the tips and tricks that become particularly useful when quantifying subtle alterations in tolerance to a given heavy-metal stress, when simultaneously pursuing a large number of plant lines, or when testing sensitivity to a wide range of heavy metals for a single line. PMID:26867625

  14. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M

    2014-07-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination.

  15. Assessing Tolerance to Heavy-Metal Stress in Arabidopsis thaliana Seedlings.

    PubMed

    Remy, Estelle; Duque, Paula

    2016-01-01

    Heavy-metal soil contamination is one of the major abiotic stress factors that, by negatively affecting plant growth and development, severely limit agricultural productivity worldwide. Plants have evolved various tolerance and detoxification strategies in order to cope with heavy-metal toxicity while ensuring adequate supply of essential micronutrients at the whole-plant as well as cellular levels. Genetic studies in the model plant Arabidopsis thaliana have been instrumental in elucidating such mechanisms. The root assay constitutes a very powerful and simple method to assess heavy-metal stress tolerance in Arabidopsis seedlings. It allows the simultaneous determination of all the standard growth parameters affected by heavy-metal stress (primary root elongation, lateral root development, shoot biomass, and chlorophyll content) in a single experiment. Additionally, this protocol emphasizes the tips and tricks that become particularly useful when quantifying subtle alterations in tolerance to a given heavy-metal stress, when simultaneously pursuing a large number of plant lines, or when testing sensitivity to a wide range of heavy metals for a single line.

  16. Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato.

    PubMed

    Sivankalyani, Velu; Geetha, Mahalingam; Subramanyam, Kondeti; Girija, Shanmugam

    2015-04-01

    Cold is a major stress that limits the quality and productivity of economically important crops such as tomato (Solanum lycopersicum L.). Generating a cold-stress-tolerant tomato by expressing cold-inducible genes would increase agricultural strategies. Rare cold-inducible 2a (RCI2A) is expressed in Arabidopsis, but its molecular function during cold stress is not fully understood. Here we ectopically expressed Arabidopsis RCI2A in transgenic tomato to evaluate tolerance to cold stress without altering agronomic traits. Biochemical and physiological study demonstrated that expression of RCI2A in transgenic tomato enhanced the activity of peroxidase and ascorbate peroxidase (APX) and reduced the accumulation of H2O2, alleviated lipid peroxidation, increased the accumulation of chlorophyll, reduced chilling-induced membrane damage, retained relative water content and enhanced cold tolerance. A motif search revealed that the motifs of photosystem II (PSII) phosphoproteins PsbJ and PsbH and reaction-center proteins PsbL and PsbK were common to cold-inducible RCI2A and peroxidase proteins RCI3A, tomato peroxidase (TPX1), TPX2, tomato ascorbate peroxidase (APX1), and horseradish peroxidase (HRP-c). In addition to membrane protection, RCI2A may cross talk with PSII-associated proteins or peroxidase family enzymes in response to cold stress. Our findings may strengthen the understanding of the molecular function of RCI2A in cold-stress tolerance. RCI2A could be used to improve abiotic stress tolerance in agronomic crops.

  17. Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato.

    PubMed

    Sivankalyani, Velu; Geetha, Mahalingam; Subramanyam, Kondeti; Girija, Shanmugam

    2015-04-01

    Cold is a major stress that limits the quality and productivity of economically important crops such as tomato (Solanum lycopersicum L.). Generating a cold-stress-tolerant tomato by expressing cold-inducible genes would increase agricultural strategies. Rare cold-inducible 2a (RCI2A) is expressed in Arabidopsis, but its molecular function during cold stress is not fully understood. Here we ectopically expressed Arabidopsis RCI2A in transgenic tomato to evaluate tolerance to cold stress without altering agronomic traits. Biochemical and physiological study demonstrated that expression of RCI2A in transgenic tomato enhanced the activity of peroxidase and ascorbate peroxidase (APX) and reduced the accumulation of H2O2, alleviated lipid peroxidation, increased the accumulation of chlorophyll, reduced chilling-induced membrane damage, retained relative water content and enhanced cold tolerance. A motif search revealed that the motifs of photosystem II (PSII) phosphoproteins PsbJ and PsbH and reaction-center proteins PsbL and PsbK were common to cold-inducible RCI2A and peroxidase proteins RCI3A, tomato peroxidase (TPX1), TPX2, tomato ascorbate peroxidase (APX1), and horseradish peroxidase (HRP-c). In addition to membrane protection, RCI2A may cross talk with PSII-associated proteins or peroxidase family enzymes in response to cold stress. Our findings may strengthen the understanding of the molecular function of RCI2A in cold-stress tolerance. RCI2A could be used to improve abiotic stress tolerance in agronomic crops. PMID:25260337

  18. Growth characteristics of freeze-tolerant baker's yeast Saccharomyces cerevisiae AFY in aerobic batch culture.

    PubMed

    Ji, Meng; Miao, Yelian; Chen, Jie Yu; You, Yebing; Liu, Feilong; Xu, Lin

    2016-01-01

    Saccharomyces cerevisiae AFY is a novel baker's yeast strain with strong freeze-tolerance, and can be used for frozen-dough processing. The present study armed to clarify the growth characteristics of the yeast AFY. Aerobic batch culture experiments of yeast AFY were carried out using media with various initial glucose concentrations, and the culture process was analyzed kinetically. The growth of the yeast AFY exhibited a diauxic pattern with the first growth stage consuming glucose and the second growth stage consuming ethanol. The cell yield decreased with increasing initial glucose concentration in the first growth stage, and also decreased with increasing initial ethanol concentration in the second growth stage. In the initial glucose concentration range of 5.0-40.0 g/L, the simultaneous equations of Monod equation, Luedeking-Piret equation and pseudo-Luedeking-Piret equation could be used to describe the concentrations of cell, ethanol and glucose in either of the two exponential growth phases. At the initial glucose concentrations of 5.0, 10.0 and 40.0 g/L, the first exponential growth phase had a maximal specific cell growth rate of 0.52, 0.98 and 0.99 h(-1), while the second exponential growth phase had a maximal specific cell growth rate of 0.11, 0.06 and 0.07 h(-1), respectively. It was indicated that the efficiency of the yeast production could be improved by reducing the ethanol production in the first growth stage. PMID:27186467

  19. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis.

    PubMed

    Dai, Jin-Ran; Liu, Bing; Feng, Dong-Ru; Liu, Hai-yan; He, Yan-ming; Qi, Kang-biao; Wang, Hong-Bin; Wang, Jin-Fa

    2011-07-01

    Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect L: -lactate dehydrogenase (L: -LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress. PMID:21327389

  20. The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Provart, Nicholas J; Ligterink, Wilco; Hilhorst, Henk W M

    2011-01-01

    The combination of robust physiological models with "omics" studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004

  1. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance.

    PubMed

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-11-28

    Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis. PMID:25450686

  2. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana.

    PubMed

    Sánchez-Bermejo, Eduardo; Castrillo, Gabriel; del Llano, Bárbara; Navarro, Cristina; Zarco-Fernández, Sonia; Martinez-Herrera, Dannys Jorge; Leo-del Puerto, Yolanda; Muñoz, Riansares; Cámara, Carmen; Paz-Ares, Javier; Alonso-Blanco, Carlos; Leyva, Antonio

    2014-01-01

    The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance. PMID:25099865

  3. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.

    PubMed

    Baxter-Burrell, Airica; Yang, Zhenbiao; Springer, Patricia S; Bailey-Serres, Julia

    2002-06-14

    Transient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plants) guanosine triphosphatase (GTPase) activating protein 4 (ROPGAP4), a Rop deactivator, elevates ADH expression in response to oxygen deprivation but decreases tolerance to stress. Rop-dependent production of hydrogen peroxide via a diphenylene iodonium chloride-sensitive calcium-dependent reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is necessary for induction of both ADH and RopGAP4 expression. Tolerance to oxygen deprivation requires Rop activation and RopGAP4-dependent negative feedback regulation. This Rop signal transduction rheostat balances the ability to increase ethanolic fermentation with survival.

  4. The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance

    PubMed Central

    Eom, Seung Hee; Großkinsky, Dominik K.; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty. PMID:25396746

  5. Freezing tolerance and low molecular weight cryoprotectants in an invasive parasitic fly, the deer ked (Lipoptena cervi).

    PubMed

    Nieminen, Petteri; Paakkonen, Tommi; Eerilä, Harri; Puukka, Katri; Riikonen, Joakim; Lehto, Vesa-Pekka; Mustonen, Anne-Mari

    2012-01-01

    Insect cold hardiness is often mediated by low molecular weight cryoprotectants, such as sugars, polyols, and amino acids (AA). While many free-living northern insects must cope with extended periods of freezing ambient temperatures (Ta), the ectoparasitic deer ked Lipoptena cervi imago can encounter subfreezing Ta only during a short autumnal period between hatching and host location. Subsequently, it benefits from the body temperature of the cervid host for survival in winter. This study investigated the cold tolerance of the species by determining its lower lethal temperature (100% mortality, LLT100) during faster and slower cold acclimation, by determining the supercooling point (SCP) and by measuring the concentrations of potential low molecular weight cryoprotectants. The LLT100 of the deer ked was approximately -16 ° C, which would enable it to survive freezing nighttime Ta not only in its current area of distribution but also further north. The SCP was -7.8 ° C, clearly higher than the LLT100 , indicating that the deer ked displays freezing tolerance. The concentrations of free AA, especially nonessential AA, were higher in the cold-acclimated deer keds similar to several other insects. The concentrations of proline increased together with γ-aminobutyrate, arginine, asparagine, cystine, glutamate, glutamine, hydroxylysine, sarcosine, serine, and taurine. AA could be hypothesized to act as cryoprotectants by, e.g., protecting enzymes and lipid membranes from damage caused by cold. PMID:22076947

  6. Freezing tolerance and low molecular weight cryoprotectants in an invasive parasitic fly, the deer ked (Lipoptena cervi).

    PubMed

    Nieminen, Petteri; Paakkonen, Tommi; Eerilä, Harri; Puukka, Katri; Riikonen, Joakim; Lehto, Vesa-Pekka; Mustonen, Anne-Mari

    2012-01-01

    Insect cold hardiness is often mediated by low molecular weight cryoprotectants, such as sugars, polyols, and amino acids (AA). While many free-living northern insects must cope with extended periods of freezing ambient temperatures (Ta), the ectoparasitic deer ked Lipoptena cervi imago can encounter subfreezing Ta only during a short autumnal period between hatching and host location. Subsequently, it benefits from the body temperature of the cervid host for survival in winter. This study investigated the cold tolerance of the species by determining its lower lethal temperature (100% mortality, LLT100) during faster and slower cold acclimation, by determining the supercooling point (SCP) and by measuring the concentrations of potential low molecular weight cryoprotectants. The LLT100 of the deer ked was approximately -16 ° C, which would enable it to survive freezing nighttime Ta not only in its current area of distribution but also further north. The SCP was -7.8 ° C, clearly higher than the LLT100 , indicating that the deer ked displays freezing tolerance. The concentrations of free AA, especially nonessential AA, were higher in the cold-acclimated deer keds similar to several other insects. The concentrations of proline increased together with γ-aminobutyrate, arginine, asparagine, cystine, glutamate, glutamine, hydroxylysine, sarcosine, serine, and taurine. AA could be hypothesized to act as cryoprotectants by, e.g., protecting enzymes and lipid membranes from damage caused by cold.

  7. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    PubMed

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  8. Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis.

    PubMed

    Liu, Bing; Feng, Dongru; Zhang, Bipei; Mu, Peiqiang; Zhang, Yang; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hongbin

    2012-03-01

    The mechanisms involved in Na⁺/K⁺ uptake and extrusion are important in plant salt tolerance. In this study, we investigated the physiological role of a plasma membrane (PM)-localized protein, MpRCI, from plantain in transgenic Arabidopsis under NaCl and KCl stress and determined its effect on PM fluidity and H⁺-ATPase activity. The MpRCI gene exhibited high homology to the AtRCI2 gene family in Arabidopsis and was therefore able to complement for loss of the yeast AtRCI2-related PMP3 gene. Results of phenotypic espial and atomic emission spectrophotometer (AES) assays indicated that MpRCI overexpression in the AtRCI2A knockout mutant with reduced shoot Na⁺ and increased K⁺ exhibited increased Na⁺-tolerance and K⁺-sensitivity under NaCl or KCl treatments, respectively. Furthermore, comparisons of PM fluidity and H⁺-ATPase activity in shoots, with expression or absence of MpRCI/AtRCI2A expression under NaCl or KCl stress, showed MpRCI maintained PM fluidity and H⁺-ATPase activity under stress conditions. Results suggest that MpRCI plays an essential role in Na⁺/K⁺ flux in plant cells. PMID:22284714

  9. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    PubMed

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  10. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    PubMed Central

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  11. Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis.

    PubMed

    Liu, Bing; Feng, Dongru; Zhang, Bipei; Mu, Peiqiang; Zhang, Yang; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hongbin

    2012-03-01

    The mechanisms involved in Na⁺/K⁺ uptake and extrusion are important in plant salt tolerance. In this study, we investigated the physiological role of a plasma membrane (PM)-localized protein, MpRCI, from plantain in transgenic Arabidopsis under NaCl and KCl stress and determined its effect on PM fluidity and H⁺-ATPase activity. The MpRCI gene exhibited high homology to the AtRCI2 gene family in Arabidopsis and was therefore able to complement for loss of the yeast AtRCI2-related PMP3 gene. Results of phenotypic espial and atomic emission spectrophotometer (AES) assays indicated that MpRCI overexpression in the AtRCI2A knockout mutant with reduced shoot Na⁺ and increased K⁺ exhibited increased Na⁺-tolerance and K⁺-sensitivity under NaCl or KCl treatments, respectively. Furthermore, comparisons of PM fluidity and H⁺-ATPase activity in shoots, with expression or absence of MpRCI/AtRCI2A expression under NaCl or KCl stress, showed MpRCI maintained PM fluidity and H⁺-ATPase activity under stress conditions. Results suggest that MpRCI plays an essential role in Na⁺/K⁺ flux in plant cells.

  12. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.

  13. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance. PMID:26899912

  14. Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Song, Xueqing; Yu, Xiang; Hori, Chiaki; Demura, Taku; Ohtani, Misato; Zhuge, Qiang

    2016-01-01

    Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. PMID:27242819

  15. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.

    PubMed

    Craciun, Adrian Radu; Courbot, Mikael; Bourgis, Fabienne; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2006-01-01

    Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed. PMID:16916885

  16. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms.

    PubMed

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-10-01

    A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed. PMID:27209521

  17. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    PubMed Central

    Zhu, Jianhua; Lee, Byeong-Ha; Dellinger, Mike; Cui, Xinping; Zhang, Changqing; Wu, Shang; Nothnagel, Eugene A.; Zhu, Jian-Kang

    2011-01-01

    SUMMARY Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. PMID:20409003

  18. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  19. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  20. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis

    PubMed Central

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J.; Xiang, Cheng-Bin

    2010-01-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a ‘sulphur-free’ solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance. PMID:20547563

  1. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.

    PubMed

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J; Xiang, Cheng-Bin

    2010-07-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a 'sulphur-free' solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance.

  2. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    PubMed Central

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  3. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions

    PubMed Central

    Sarasketa, Asier; González-Moro, María Begoña; González-Murua, Carmen; Marino, Daniel

    2014-01-01

    Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH4 +), together with nitrate (NO3 –), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 + assimilation requires less energy than that of NO3 –, many plants display toxicity symptoms when grown with NH4 + as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO3 – or NH4 + as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO3 –. Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 +-fed plants. In contrast, GDH deaminating activity was higher in NO3 –-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 + accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH4 + assimilation capacity. PMID:25205573

  4. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1)in peanut to improve salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...

  5. Seasonal changes in phospholipid class and class-specific fatty acid composition associated with the onset of freeze tolerance in third-instar larvae of Eurosta solidaginis.

    PubMed

    Pruitt, Nancy L; Lu, Changrui

    2008-01-01

    Abstract Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) are freeze tolerant in winter. During freezing, cell membranes must compensate for both low temperature and partial dehydration. Documented adaptations to low temperature include increased fatty acid unsaturation and enrichment of cone-shaped phosphatides, both of which inhibit formation of gel phase lipid domains. These changes appear inconsistent with adaptations known to prevent formation of the hexagonal II phospholipid phase at low water activities, namely, increased fatty acid saturation and increased proportions of cylindrical phosphatides. To address these inconsistencies, changes in E. solidaginis phospholipid composition and class-specific fatty acid composition were studied from August to November 2002. Cylindrical phosphatides, mostly phosphatidylcholine (PC), increased transiently and significantly, from 35% of the total to nearly 50%, during the transition from freeze susceptible to freeze tolerant. Monoenes in both PC and phosphatidylethanolamine (PE) represented 35% of total fatty acids in freeze-susceptible larvae but accumulated in PC to 48% and in PE to 42% in freeze-tolerant larvae. Moreover, PC accumulated the most unsaturated acid in this species, 18:3(n-3), to a significantly greater degree than PE. This combination of changes may represent a finely tailored response to both low temperatures and freeze-induced dehydration.

  6. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.

    PubMed

    Levis, Nicholas A; Yi, Shu-Xia; Lee, Richard E

    2012-11-01

    Overwintering insects may experience extreme cold and desiccation stress. Both freezing and desiccation require cells to tolerate osmotic challenge as solutes become concentrated in the hemolymph. Not surprisingly, physiological responses to low temperature and desiccation share common features and may confer cross-tolerance against these stresses. Freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae), experience extremely dry and cold conditions in winter. To determine whether mild desiccation can improve freeze tolerance at organismal and cellular levels, we assessed survival, hemolymph osmolality and glycerol levels of control and desiccated larvae. Larvae that lost only 6-10% of their body mass, in as little as 6 h, had markedly higher levels of freeze tolerance. Mild, rapid desiccation increased freezing tolerance at -15°C in September-collected larvae (33.3±6.7 to 73.3±12%) and at -20°C in October-collected larvae (16.7±6.7 to 46.7±3.3%). Similarly, 6 h of desiccation improved in vivo survival by 17-43% in fat body, Malpighian tubule, salivary gland and tracheal cells at -20°C. Desiccation also enhanced intrinsic levels of cold tolerance in midgut cells frozen ex vivo (38.7±4.6 to 89.2±5.5%). Whereas hemolymph osmolality increased significantly with desiccation treatment from 544±16 to 720±26 mOsm, glycerol levels did not differ between control and desiccated groups. The rapidity with which a mild desiccation stress increased freeze tolerance closely resembles the rapid cold-hardening response, which occurs during brief sub-lethal chilling, and suggests that drought stress can induce rapid cold-hardening.

  7. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of

  8. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    PubMed

    Ando, Akira; Nakamura, Toshihide; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun

    2007-03-01

    Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly. PMID:16989656

  9. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.

    PubMed

    O'Leary, Brendan; Preston, Gail M; Sweetlove, Lee J

    2014-01-01

    Plants naturally produce cyanide (CN) which is maintained at low levels in their cells by a process of rapid assimilation. However, high concentrations of environmental CN associated with activities such as industrial pollution are toxic to plants. There is thus an interest in increasing the CN detoxification capacity of plants as a potential route to phytoremediation. Here, Arabidopsis seedlings overexpressing the Pseudomonas fluorescens β-cyanoalanine nitrilase pinA were compared with wild-type and a β-cyanoalanine nitrilase knockout line (ΔAtnit4) for growth in the presence of exogenous CN. After incubation with CN, +PfpinA seedlings had increased root length, increased fresh weight, and decreased leaf bleaching compared with wild-type, indicating increased CN tolerance. The increased tolerance was achieved without an increase in β-cyanoalanine synthase activity, the other enzyme in the cyanide assimilation pathway, suggesting that nitrilase activity is the limiting factor for cyanide detoxification. Labeling experiments with [¹³C]KCN demonstrated that the altered CN tolerance could be explained by differences in flux from CN to Asn caused by altered β-cyanoalanine nitrilase activity. Metabolite profiling after CN treatment provided new insight into downstream metabolism, revealing onward metabolism of Asn by the photorespiratory nitrogen cycle and accumulation of aromatic amino acids.

  10. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance.

  11. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. PMID:26904981

  12. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    PubMed

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-01-01

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions. PMID:25966262

  13. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    SciTech Connect

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  14. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    PubMed

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-05-11

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.

  15. New insights into the role of Arabidopsis RABA1 GTPases in salinity stress tolerance.

    PubMed

    Asaoka, Rin; Uemura, Tomohiro; Nishida, Sho; Fujiwara, Toru; Ueda, Takashi; Nakano, Akihiko

    2013-09-01

    RAB11 GTPases, widely conserved members of RAB small GTPases, have evolved in a unique way in plants; plant RAB11 has notable diversity compared with animals and yeast. Recently, we have shown that members of RABA1, a subgroup in Arabidopsis RAB11 group, are required for salinity stress tolerance. To obtain a clue to understand its underlying mechanism, here we investigate whether RABA1 regulates sodium transport across the plasma membrane and accumulation in the vacuole. The results indicate that the raba1 quadruple mutant is not defective in the import and intracellular distribution of sodium, implying that RABA1 members are involved in a more indirect way in the responses to salinity stress.

  16. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    PubMed

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  17. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    PubMed Central

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  18. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate.

    PubMed

    Lindsay, Emma R; Maathuis, Frans J M

    2016-03-01

    The Arabidopsis aquaglyceroporin NIP7;1 is involved in uptake and tolerance to the trivalent arsenic species arsenite. Here, we show that NIP7;1 is also involved in the response to pentavalent arsenate. Loss of function of NIP7;1 improved tolerance to arsenate and reduced arsenic levels in both the phloem and xylem, resulting in altered arsenic distribution between tissues. There was no clear correlation between growth and shoot arsenic concentration. This is the first report detailing the involvement of a NIP transporter in response to arsenate. The data suggest that these proteins are relevant targets for breeding and engineering arsenic tolerance in crops.

  19. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate.

    PubMed

    Lindsay, Emma R; Maathuis, Frans J M

    2016-03-01

    The Arabidopsis aquaglyceroporin NIP7;1 is involved in uptake and tolerance to the trivalent arsenic species arsenite. Here, we show that NIP7;1 is also involved in the response to pentavalent arsenate. Loss of function of NIP7;1 improved tolerance to arsenate and reduced arsenic levels in both the phloem and xylem, resulting in altered arsenic distribution between tissues. There was no clear correlation between growth and shoot arsenic concentration. This is the first report detailing the involvement of a NIP transporter in response to arsenate. The data suggest that these proteins are relevant targets for breeding and engineering arsenic tolerance in crops. PMID:26898223

  20. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    PubMed

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  1. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica)

    PubMed Central

    Gerber, Victoria E.M.; Wijenayake, Sanoji

    2016-01-01

    The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog. PMID:27042393

  2. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica).

    PubMed

    Gerber, Victoria E M; Wijenayake, Sanoji; Storey, Kenneth B

    2016-01-01

    The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65-70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog. PMID:27042393

  3. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  4. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  5. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    PubMed

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants.

  6. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    PubMed

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. PMID:27052474

  7. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci.

    PubMed

    Willems, Glenda; Dräger, Dörthe B; Courbot, Mikael; Godé, Cécile; Verbruggen, Nathalie; Saumitou-Laprade, Pierre

    2007-05-01

    The species Arabidopsis halleri, an emerging model for the study of heavy metal tolerance and accumulation in plants, has evolved a high level of constitutive zinc tolerance. Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of zinc tolerance in this species. A first-generation backcross progeny of A. halleri ssp. halleri from a highly contaminated industrial site and its nontolerant relative A. lyrata ssp. petraea was produced and used for QTL mapping of zinc tolerance. A genetic map covering most of the A. halleri genome was constructed using 85 markers. Among these markers, 65 were anchored in A. thaliana and revealed high synteny with other Arabidopsis genomes. Three QTL of comparable magnitude on three different linkage groups were identified. At all QTL positions zinc tolerance was enhanced by A. halleri alleles, indicating directional selection for higher zinc tolerance in this species. The two-LOD support intervals associated with these QTL cover 24, 4, and 13 cM. The importance of each of these three regions is emphasized by their colocalization with HMA4, MTP1-A, and MTP1-B, respectively, three genes well known to be involved in metal homeostasis and tolerance in plants.

  8. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Maeta, Kazuhiro; Inoue, Yoshiharu

    2004-12-01

    Intracellular glycerol content affects the freeze-thaw stress tolerance of Saccharomyces cerevisiae. We have recently reported that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability even in dough after frozen storage [Izawa et al. (2004) Appl Microbiol Biotechnol http://dx.doi.org/10.1007/s00253-004-1624-4]. A deletion mutant of the FPS1 gene, which encodes a glycerol channel, accumulates glycerol inside the cell without an exogenous supply of glycerol into the medium. We found that the fps1delta cells acquired tolerance to freeze stress and retained high leavening ability in dough after frozen storage for 7 days. These results suggest that the fps1delta mutant is a useful strain for developing better frozen-dough with a commercial advantage.

  9. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    PubMed

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.

  10. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Maeta, Kazuhiro; Inoue, Yoshiharu

    2004-12-01

    Intracellular glycerol content affects the freeze-thaw stress tolerance of Saccharomyces cerevisiae. We have recently reported that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability even in dough after frozen storage [Izawa et al. (2004) Appl Microbiol Biotechnol http://dx.doi.org/10.1007/s00253-004-1624-4]. A deletion mutant of the FPS1 gene, which encodes a glycerol channel, accumulates glycerol inside the cell without an exogenous supply of glycerol into the medium. We found that the fps1delta cells acquired tolerance to freeze stress and retained high leavening ability in dough after frozen storage for 7 days. These results suggest that the fps1delta mutant is a useful strain for developing better frozen-dough with a commercial advantage. PMID:15278313

  11. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    PubMed

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway.

  12. Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress.

    PubMed

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-10-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.

  13. Changes in abundance of aquaporin-like proteins occurs concomitantly with seasonal acquisition of freeze tolerance in the goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Philip, Benjamin N; Lee, Richard E

    2010-07-01

    The accumulation of cryoprotectants and the redistribution of water between body compartments play central roles in the capacity of insects to survive freezing. Aquaporins (AQPs) allow for rapid redistribution of water and small solutes (e.g. glycerol) across the cell membrane and were recently implicated in promoting freeze tolerance. Here, we examined whether aquaporin-like protein abundance correlated with the seasonal acquisition of freezing tolerance in the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Through the autumn, larvae became tolerant of freezing at progressively lower temperatures and accumulated the cryoprotectant glycerol. Furthermore, larvae significantly increased the abundance of membrane-bound aquaporin and aquaglyceroporin-like proteins from July through January. Acute exposure of larvae to cold and desiccation resulted in upregulation of the AQP3-like proteins in October, suggesting that their abundance is regulated by environmental cues. The seasonal increase in abundance of both putative aquaporins and aquaglyceroporins supports the hypothesis that these proteins are closely tied to the seasonal acquisition of freeze tolerance, functioning to permit cells to quickly lose water and take-up glycerol during extracellular ice formation, as well as reestablish water and glycerol concentrations upon thawing.

  14. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    PubMed Central

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  15. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed Central

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M.; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839

  16. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.

  17. Freezing tolerance and the histology of recovering nodes in St. Augustinegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    St. Augustinegrass [Stenataphrum secundatum (Walt.) Kuntze] is a coarse-textured turfgrass commonly utilized for its excellent shade tolerance. However, inferior cold tolerance in comparison to other warm-season grasses limits its range primarily to the southeastern U. S., The objectives of this stu...

  18. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  19. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors. PMID:25329496

  20. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  1. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport. PMID:25416933

  2. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.

  3. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    PubMed

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  4. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    PubMed Central

    Cho, Song-Mi; Kang, Beom Ryong; Kim, Young Cheol

    2013-01-01

    Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes. PMID:25288948

  5. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana

    PubMed Central

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A.; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y.; de Folter, Stefan; Herrera-Estrella, Luis

    2016-01-01

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  6. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis.

    PubMed

    Davison, P A; Hunter, C N; Horton, P

    2002-07-11

    Plant stress caused by extreme environmental conditions is already a principal reason for yield reduction in crops. The threat of global environment change makes it increasingly important to generate crop plants that will withstand such conditions. Stress, particularly stress caused by increased sunlight, leads to the production of reactive oxygen species that cause photo-oxidative cell damage. Carotenoids, which are present in the membranes of all photosynthetic organisms, help protect against such light-dependent oxidative damage. In plants, the xanthophyll cycle (the reversible interconversion of two carotenoids, violaxanthin and zeaxanthin) has a key photoprotective role and is therefore a promising target for genetic engineering to enhance stress tolerance. Here we show that in Arabidopsis thaliana overexpression of the chyB gene that encodes beta-carotene hydroxylase--an enzyme in the zeaxanthin biosynthetic pathway--causes a specific twofold increase in the size of the xanthophyll cycle pool. The plants are more tolerant to conditions of high light and high temperature, as shown by reduced leaf necrosis, reduced production of the stress indicator anthocyanin and reduced lipid peroxidation. Stress protection is probably due to the function of zeaxanthin in preventing oxidative damage of membranes. PMID:12110893

  7. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase.

    PubMed

    Pilon, Marinus; Owen, Jennifer D; Garifullina, Gulnara F; Kurihara, Tatsuo; Mihara, Hisaaki; Esaki, Nobuyoshi; Pilon-Smits, Elizabeth A H

    2003-03-01

    Selenium (Se) toxicity is thought to be due to nonspecific incorporation of selenocysteine (Se-Cys) into proteins, replacing Cys. In an attempt to direct Se flow away from incorporation into proteins, a mouse (Mus musculus) Se-Cys lyase (SL) was expressed in the cytosol or chloroplasts of Arabidopsis. This enzyme specifically catalyzes the decomposition of Se-Cys into elemental Se and alanine. The resulting SL transgenics were shown to express the mouse enzyme in the expected intracellular location, and to have SL activities up to 2-fold (cytosolic lines) or 6-fold (chloroplastic lines) higher than wild-type plants. Se incorporation into proteins was reduced 2-fold in both types of SL transgenics, indicating that the approach successfully redirected Se flow in the plant. Both the cytosolic and chloroplastic SL plants showed enhanced shoot Se concentrations, up to 1.5-fold compared with wild type. The cytosolic SL plants showed enhanced tolerance to Se, presumably because of their reduced protein Se levels. Surprisingly, the chloroplastic SL transgenics were less tolerant to Se, indicating that (over) production of elemental Se in the chloroplast is toxic. Expression of SL in the cytosol may be a useful approach for the creation of plants with enhanced Se phytoremediation capacity. PMID:12644675

  8. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  9. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.

    PubMed

    Taji, Teruaki; Ohsumi, Chieko; Iuchi, Satoshi; Seki, Motoaki; Kasuga, Mie; Kobayashi, Masatomo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2002-02-01

    Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.

  10. Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 Confers Drought Tolerance in Transgenic Rice without Yield Penalty1[W][OA

    PubMed Central

    Yu, Linhui; Chen, Xi; Wang, Zhen; Wang, Shimei; Wang, Yuping; Zhu, Qisheng; Li, Shigui; Xiang, Chengbin

    2013-01-01

    Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought tolerance was associated with a more extensive root system, reduced stomatal density, and higher water use efficiency. The transgenic rice plants also had higher levels of abscisic acid, proline, soluble sugar, and reactive oxygen species-scavenging enzyme activities during stress treatments. The increased grain yield of the transgenic rice was contributed by improved seed setting, larger panicle, and more tillers as well as increased photosynthetic capacity. Digital gene expression analysis indicated that AtEDT1/HDG11 had a significant influence on gene expression profile in rice, which was consistent with the observed phenotypes of transgenic rice plants. Our study shows that AtEDT1/HDG11 can improve both stress tolerance and grain yield in rice, demonstrating the efficacy of AtEDT1/HDG11 in crop improvement. PMID:23735506

  11. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs.

    PubMed

    Teunissen, Aloys; Dumortier, Françoise; Gorwa, Marie-Françoise; Bauer, Jürgen; Tanghe, An; Loïez, Annie; Smet, Peter; Van Dijck, Patrick; Thevelein, Johan M

    2002-10-01

    The routine production and storage of frozen doughs are still problematic. Although commercial baker's yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial baker's yeast production and usage. PMID:12324320

  12. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    PubMed

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast. PMID:24951963

  13. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Wi, Soo Jin; Kim, Soo Jin; Kim, Woo Taek; Park, Ky Young

    2014-05-01

    Using subtractive hybridization analysis, the S-adenosylmethionine decarboxylase (SAMDC) gene from Capsicum annuum was isolated and renamed CaSAMDC. We generated independent transgenic Arabidopsis (Arabidopsis thaliana) lines constitutively expressing a 35S::CaSAMDC construct. Drought tolerance was significantly enhanced in Arabidopsis T4 transgenic homozygous lines as compared to wild-type (WT) plants. The levels of main polyamines (PAs) were more significantly increased in CaSAMDC-overexpressing transgenic plants after 6 h of drought stress as compared to stressed WT plants. Basal transcription of polyamine oxidase (PAO) showed at a much higher level in unstressed-transgenic plants as compared to unstressed WT plants. However, the difference in PAO transcription level between WT and transgenic plants was reduced after drought stress. Cellular accumulation of reactive oxygen species (ROS) was significantly reduced following drought stress in transgenic Arabidopsis plants as compared to WT plants. These results were in agreement with additional observations that stress-induced ROS generation, as determined by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), was significantly suppressed while transcription of ROS-detoxifying enzymes was notably elevated in transgenic lines in response to drought stress. Further, ROS-induced transcription of the metacaspase II gene was remarkably inhibited in transgenic plants. Collectively, these results suggest that drought stress tolerance due to reduction of ROS production and enhancement of ROS detoxification can be attributed to elevation of PAs.

  14. A Methyl Viologen-Resistant Mutant of Arabidopsis, Which Is Allelic to Ozone-Sensitive rcd1, Is Tolerant to Supplemental Ultraviolet-B Irradiation1

    PubMed Central

    Fujibe, Takahiro; Saji, Hikaru; Arakawa, Keita; Yabe, Naoto; Takeuchi, Yuichi; Yamamoto, Kotaro T.

    2004-01-01

    To better understand the role of active oxygen species (AOS) in acquired resistance to increased levels of ultraviolet (UV)-B irradiation in plants, we isolated an Arabidopsis mutant that is resistant to methyl viologen, and its sensitivity to UV-B was investigated. A complementation test revealed that the obtained mutant was allelic to the ozone-sensitive radical-induced cell death1-1 (rcd1-1). Therefore, this mutant was named rcd1-2. rcd1-2 was recessive and nearly 4-fold more resistant to methyl viologen than wild type. It exhibited a higher tolerance to short-term UV-B supplementation treatments than the wild type: UV-B-induced formation of cyclobutane pyrimidine dimers was reduced by one-half after 24 h of exposure; the decrease in quantum yield of photosystem II was also diminished by 40% after 12 h of treatment. Furthermore, rcd1-2 was tolerant to freezing. Steady-state mRNA levels of plastidic Cu/Zn superoxide dismutase and stromal ascorbate peroxidase were higher in rcd1-2 than in wild type, and the mRNA level of the latter enzyme was enhanced by UV-B exposure more effectively in rcd1-2. UV-B-absorbing compounds were more accumulated in rcd1-2 than in wild type after UV-B exposure for 24 h. These findings suggest that rcd1-2 methyl viologen resistance is due to the enhanced activities of the AOS-scavenging enzymes in chloroplasts and that the acquired tolerance to the short-term UV-B exposure results from a higher accumulation of sunscreen pigments. rcd1 appears to be a mutant that constitutively shows stress responses, leading to accumulation of more pigments and AOS-scavenging enzymes without any stresses. PMID:14657410

  15. A DEAD Box RNA Helicase Is Critical for Pre-mRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in Arabidopsis[C][W

    PubMed Central

    Guan, Qingmei; Wu, Jianmin; Zhang, Yanyan; Jiang, Changhua; Liu, Renyi; Chai, Chenglin; Zhu, Jianhua

    2013-01-01

    Cold stress resulting from chilling and freezing temperatures substantially reduces crop production worldwide. To identify genes critical for cold tolerance in plants, we screened Arabidopsis thaliana mutants for deregulated expression of a firefly luciferase reporter gene under the control of the C-REPEAT BINDING FACTOR2 (CBF2) promoter (CBF2:LUC). A regulator of CBF gene expression1 (rcf1-1) mutant that is hypersensitive to cold stress was chosen for in-depth characterization. RCF1 encodes a cold-inducible DEAD (Asp-Glu-Ala-Asp) box RNA helicase. Unlike a previously reported DEAD box RNA helicase (LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENES4 [LOS4]) that regulates mRNA export, RCF1 does not play a role in mRNA export. Instead, RCF1 functions to maintain proper splicing of pre-mRNAs; many cold-responsive genes are mis-spliced in rcf1-1 mutant plants under cold stress. Functional characterization of four genes (PSEUDO-RESPONSE REGULATOR5 [PRR5], SHAGGY-LIKE SERINE/THREONINE KINASE12 [SK12], MYB FAMILY TRANSCRIPTION FACTOR CIRCADIAN1 [CIR1], and SPFH/PHB DOMAIN-CONTAINING MEMBRANE-ASSOCIATED PROTEIN [SPFH]) that are mis-spliced in rcf1-1 revealed that these genes are cold-inducible positive (CIR1 and SPFH) and negative (PRR5 and SK12) regulators of cold-responsive genes and cold tolerance. Together, our results suggest that the cold-inducible RNA helicase RCF1 is essential for pre-mRNA splicing and is important for cold-responsive gene regulation and cold tolerance in plants. PMID:23371945

  16. Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    PubMed

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin; Blicher, Martin E; Sejr, Mikael K

    2015-11-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb) exposure for 7 days would influence survival in intertidal blue mussels (Mytilus edulis) after exposure to realistic sub-zero air temperatures. A full factorial experiment with five tissue Pb concentrations between 0 and 3500 μg Pb/g and six sub-zero temperatures from 0 to -17 °C were used to test the hypothesis that sub-lethal effects of Pb may increase the lethality caused by freezing in blue mussels exposed to temperatures simulating Greenland winter conditions. We found a significant effect of temperature on mortality. However, the short-term exposure to Pb did not result in any effects of Pb, nor did we find interactions between Pb and temperature. We analysed the relative abundance of major phospholipid fatty acids (PLFAs) in the gill tissue, but we found no significant effect of Pb tissue concentration on PLFA composition. Results suggest that Pb accumulation has limited effects on freeze tolerance and does not induce membrane damage in terms of persistent lipid peroxidation.

  17. Low-Temperature Effects on Photosynthesis and Correlation with Freezing Tolerance in Spring and Winter Cultivars of Wheat and Rye.

    PubMed

    Oquist, G.; Hurry, V. M.; Huner, NPA.

    1993-01-01

    Winter cultivars of rye (Secale cereale L., cv Musketeer) and wheat (Triticum aestivum L. cvs Kharkov and Monopol), but not a spring cultivar of wheat (Glenlea), grown at cold-hardening temperatures showed, at high irradiances, a higher proportion of oxidized to reduced primary, stable quinone receptor (QA) than did the same cultivars grown under nonhardening conditions. In addition, there was a positive correlation between the effects of low-growth temperature on this increased proportion of oxidized QA, and a concomitant increase in the capacity for photosynthesis, and LT50, the temperature at which 50% of the seedlings are killed, in cultivars showing different freezing tolerances. This suggests that low-temperature modulation of the photosynthetic apparatus may be an important factor during the induction of freezing resistance in cereals. Finally, the control of photosystem II photochemistry by nonphotochemical quenching of excitation energy was identical for nonhardened and cold-hardened winter rye. However, examination of measuring temperature effects per se revealed that, irrespective of growth temperature, nonphotochemical quenching exerted a stronger control on photosystem II photochemistry at 10[deg] C rather than at 20[deg] C. PMID:12231680

  18. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    SciTech Connect

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  19. Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    PubMed Central

    Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis. PMID:22279586

  20. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  1. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  2. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance.

    PubMed

    Bipfubusa, Marie; Rocher, Solen; Bertrand, Annick; Castonguay, Yves; Renaut, Jenny

    2016-09-01

    The data provide an overview of proteomic changes in red clover (Trifolium pratense L.) in response to cold acclimation and recurrent selection for superior freezing tolerance. Proteins were extracted from crowns of two red clover cultivars grown under non-acclimated or cold-acclimated conditions, and plants obtained from the initial genetic background (TF0) and from populations obtained after three (TF3) and four cycles (TF4) of recurrent selection for superior freezing tolerance. Proteins were analyzed using a two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled to mass spectroscopy (MS and MS/MS). Differentially regulated proteins were subsequently identified using MALDI TOF/TOF analysis. The data are related to a recently published research article describing proteome composition changes associated with freezing tolerance in red clover, "A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.)" (Bertrand et al., 2016 [1]). They are available in the ProteomeXchange Consortium database via the PRIDE partner repository under the dataset identifier PRIDE: PXD003689. PMID:27408927

  3. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.

    PubMed

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A; Rentsch, Doris; Schroeder, Julian I; Lee, Youngsook; Martinoia, Enrico

    2010-12-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.

  4. The role of glutathione in mercury tolerance resembles its function under cadmium stress in Arabidopsis.

    PubMed

    Sobrino-Plata, Juan; Carrasco-Gil, Sandra; Abadía, Javier; Escobar, Carolina; Álvarez-Fernández, Ana; Hernández, Luis E

    2014-02-01

    Recent research efforts have highlighted the importance of glutathione (GSH) as a key antioxidant metabolite for metal tolerance in plants. Little is known about the mechanisms involved in stress due to mercury (Hg), one of the most hazardous metals to the environment and human health. To understand the implication of GSH metabolism for Hg tolerance, we used two γ-glutamylcysteine synthetase (γECS) Arabidopsis thaliana allele mutants (rax1-1 and cad2-1) and a phytochelatin synthase (PCS) mutant (cad1-3). The leaves of these mutants and of wild type (Col-0) were infiltrated with a solution containing Cd or Hg (0, 3 and 30 μM) and incubated for 24 and 48 h. The formation of phytochelatins (PCs) in the leaf extracts was followed by two different HPLC-based methods and occurred in Col-0, cad2-1 and rax1-1 plants exposed to Cd, whereas in the Hg treatments, PCs accumulated mainly in Col-0 and rax1-1, where Hg-PC complexes were also detected. ASA and GSH/GSSG levels increased under moderate metal stress conditions, accompanied by increased GSH reductase (GR) activity and expression. However, higher metal doses led to a decrease in the analysed parameters, and stronger toxic effects appeared with 30 μM Hg. The GSH concentration was significantly higher in rax1-1 (70% of Col-0) than in cad2-1 (40% of Col-0). The leaves of rax1-1 were less sensitive than cad2-1, in accordance with the greater expression of γECS in rax1-1. Our results underline the existence of a minimal GSH concentration threshold needed to minimise the toxic effects exerted by Hg. PMID:24452078

  5. The role of glutathione in mercury tolerance resembles its function under cadmium stress in Arabidopsis.

    PubMed

    Sobrino-Plata, Juan; Carrasco-Gil, Sandra; Abadía, Javier; Escobar, Carolina; Álvarez-Fernández, Ana; Hernández, Luis E

    2014-02-01

    Recent research efforts have highlighted the importance of glutathione (GSH) as a key antioxidant metabolite for metal tolerance in plants. Little is known about the mechanisms involved in stress due to mercury (Hg), one of the most hazardous metals to the environment and human health. To understand the implication of GSH metabolism for Hg tolerance, we used two γ-glutamylcysteine synthetase (γECS) Arabidopsis thaliana allele mutants (rax1-1 and cad2-1) and a phytochelatin synthase (PCS) mutant (cad1-3). The leaves of these mutants and of wild type (Col-0) were infiltrated with a solution containing Cd or Hg (0, 3 and 30 μM) and incubated for 24 and 48 h. The formation of phytochelatins (PCs) in the leaf extracts was followed by two different HPLC-based methods and occurred in Col-0, cad2-1 and rax1-1 plants exposed to Cd, whereas in the Hg treatments, PCs accumulated mainly in Col-0 and rax1-1, where Hg-PC complexes were also detected. ASA and GSH/GSSG levels increased under moderate metal stress conditions, accompanied by increased GSH reductase (GR) activity and expression. However, higher metal doses led to a decrease in the analysed parameters, and stronger toxic effects appeared with 30 μM Hg. The GSH concentration was significantly higher in rax1-1 (70% of Col-0) than in cad2-1 (40% of Col-0). The leaves of rax1-1 were less sensitive than cad2-1, in accordance with the greater expression of γECS in rax1-1. Our results underline the existence of a minimal GSH concentration threshold needed to minimise the toxic effects exerted by Hg.

  6. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters

    PubMed Central

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G.; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A.; Rentsch, Doris; Schroeder, Julian I.; Lee, Youngsook; Martinoia, Enrico

    2010-01-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC–metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]–PC2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)–PC2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs. PMID:21078981

  7. Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-09-01

    A mutant of Arabidopsis thaliana, deficient in the activity of a chloroplast {omega}9 fatty acid desaturase, accumulates high amounts of palmitic acid (16:0), and exhibits an overall reduction in the level of unsaturation of chloroplast lipids. Under standard conditions the altered membrane lipid composition had only minor effects on growth rate of the mutant, net photosynthetic CO{sub 2} fixation, photosynthetic electron transport, or chloroplast ultrastructure. Similarly, fluorescence polarization measurements indicated that the fluidity of the membranes was not significantly different in the mutant and the wild type. However, at temperatures above 28{degree}C, the mutant grew more rapidly than the wild type suggesting that the altered fatty acid composition enhanced the thermal tolerance of the mutant. Similarly, the chloroplast membranes of the mutant were more resistant than wild type to thermal inactivation of photosynthetic electron transport. These observations lend support to previous suggestions that chloroplast membrane lipid composition may be an important component of the thermal acclimation response observed in many plant species which are photosynthetically active during periods of seasonally variable temperature extremes.

  8. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis.

    PubMed

    Dong, Hui; Zhen, Zhiqin; Peng, Jinying; Chang, Li; Gong, Qingqiu; Wang, Ning Ning

    2011-10-01

    The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA.

  9. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  10. Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Ganguly, Moumita; Krishnan, Sellapan; Yamaguchi Shinozaki, Kazuko; Datta, Swapan K

    2012-06-01

    Rice yield is greatly affected by environmental stresses such as drought and salinity. In response to the challenge of producing rice plants tolerant to these stresses, we introduced cDNA encoding the transcription factors DREB1A and DREB1B under the control of the stress inducible rd29 promoter. Two different indica rice cultivars were used, BR29, an improved commercially cultivated variety from Bangladesh and IR68899B, an IRRI bred maintainer line for hybrid rice. Agrobacterium mediated transformation of BR29 was done independently with DREB1A isolated from rice and Arabidopsis and DREB1B isolated from rice, whereas biolistic transformation was done with rice- DREB1B in the case of IR68899B. Initial genetic integration was confirmed by PCR and Southern blot analysis. Salinity tolerance was assayed in very young seedlings. Drought stress tests were found to be more reliable when they were carried out at the pre-flowering booting stage. RNA gel blot analysis as well as quantitative PCR analysis was performed to estimate the transcription level under stressed and unstressed conditions. Agronomic performance studies were done with stressed and unstressed plants to compare the yield losses due to dehydration and salt loading stresses. Noticeably enhanced tolerance to dehydration was observed in the plants transformed with DREB1A isolated from Arabidopsis while DREB1B was found to be more effective for salt tolerance.

  11. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.

  12. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis.

    PubMed

    Yang, Chenglong; Zhou, Yang; Fan, Jie; Fu, Yuhua; Shen, Longbin; Yao, Yuan; Li, Ruimei; Fu, Shaoping; Duan, Ruijun; Hu, Xinwen; Guo, Jianchun

    2015-11-01

    Glycine betaine (GB) accumulation is involved in abiotic stress. However, it is not known whether BADH, the key enzyme of GB synthesis, utilizes the antioxidant system to confer drought stress tolerance. In this study, a novel member of the ALDH10 gene family, SpBADH, was isolated from Sesuvium portulacastrum. The expression of this gene was up-regulated by NaCl, PEG6000, H2O2, ABA and high temperature in S. portulacastrum. SpBADH overexpression in Arabidopsis resulted in higher BADH activity and GB content and might increase tolerance to drought/osmotic stresses, specifically strong tolerance to drought stress. Transgenic lines exhibited lower MDA and H2O2 contents but higher proline, POD, SOD and CAT contents than the wild type under drought and osmotic stresses. SpBADH overexpression in Arabidopsis also enhanced the expression of ROS-related genes including AtSOD, AtPOD, AtCAT, AtAPX and Atpsb under drought and osmotic stresses. Thus, SpBADH increases plant tolerance to drought or osmotic stresses by reducing H2O2, increasing proline, and activating antioxidative enzymes to improve ROS scavenging.

  13. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  14. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis.

    PubMed

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-09-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.

  15. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis.

    PubMed

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-09-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features. PMID:23023171

  16. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth.

    PubMed

    Li, N G

    2016-10-01

    Yakutia is a part of eastern Siberia, located in north-eastern Russia. The climate of this area is very harsh even by Siberian standards, and is characterized by the absolute temperature minimum, which is below -64.4 °C, and a long period of low temperatures reaching to a range between -47 and -55 °C. Despite such a severe climate, the fauna and flora of Yakutia present a considerably rich biodiversity, suggesting a high adaptation potential of the organisms in this area. In this study, 30 local species of insects belonging to Coleoptera, Diptera and Lepidoptera were selected to investigate cold adaptation. The identification of the cold adaptation strategy was based on the measurement of the insect body supercooling point (SCP) and hemolymph ice-nucleating activity. According to the data collected, there is a high incidence of freeze tolerant species among the insects found in Yakutsk area (Yakutsk, 62° latitude, 130° longitude): 93.3% of them were freeze tolerant, and only 6.7% were freeze avoiding. It is suggested that the evolution of cold hardiness in this region preferably develops for the selection of the strong freeze tolerance that allow the insects to survive extreme cold conditions.

  17. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth.

    PubMed

    Li, N G

    2016-10-01

    Yakutia is a part of eastern Siberia, located in north-eastern Russia. The climate of this area is very harsh even by Siberian standards, and is characterized by the absolute temperature minimum, which is below -64.4 °C, and a long period of low temperatures reaching to a range between -47 and -55 °C. Despite such a severe climate, the fauna and flora of Yakutia present a considerably rich biodiversity, suggesting a high adaptation potential of the organisms in this area. In this study, 30 local species of insects belonging to Coleoptera, Diptera and Lepidoptera were selected to investigate cold adaptation. The identification of the cold adaptation strategy was based on the measurement of the insect body supercooling point (SCP) and hemolymph ice-nucleating activity. According to the data collected, there is a high incidence of freeze tolerant species among the insects found in Yakutsk area (Yakutsk, 62° latitude, 130° longitude): 93.3% of them were freeze tolerant, and only 6.7% were freeze avoiding. It is suggested that the evolution of cold hardiness in this region preferably develops for the selection of the strong freeze tolerance that allow the insects to survive extreme cold conditions. PMID:27424094

  18. Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

    PubMed Central

    Zhang, Xiaolian; Wang, Ning; Chen, Pei; Gao, Mengmeng; Liu, Juge; Wang, Yufeng; Zhao, Tuanjie; Li, Yan; Gai, Junyi

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress. PMID:25364908

  19. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance.

  20. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  1. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance

    PubMed Central

    2010-01-01

    Background GABA (γ-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress. Results We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content. Conclusions GABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots. PMID:20122158

  2. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    PubMed

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  3. Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance.

    PubMed

    Wu, X X; Li, J; Wu, X D; Liu, Q; Wang, Z K; Liu, S S; Li, S N; Ma, Y L; Sun, J; Zhao, L; Li, H Y; Li, D M; Li, W B; Su, A Y

    2016-01-01

    Drought and salt stresses are the two major factors influencing the yield and quality of crops worldwide. Na(+)(K(+))/H(+) antiporters (NHXs) are ubiquitous membrane proteins that play important roles in maintaining the cellular pH and Na(+)(K(+)) homeostasis. The model plant Arabidopsis potentially encodes six NHX genes, namely AtNHX1 to 6. In the present study, AtNHX5, a comparatively less well-studied NHX, was cloned and transferred into a soybean variety, Dongnong-50, via Agrobacterium-mediated cotyledonary node transformation to assess its role in improving salt tolerance of the transgenic plants. The transgenic soybean plants were tolerant to the presence of 300 mM NaCl whereas the non-transgenic plants were not. Furthermore, after NaCl treatment, the transgenic plants had a higher content of free proline but lower content of malondialdehyde compared to the non-transgenic plants. Our results revealed that that AtNHX5 possibly functioned by efficiently transporting Na(+) and K(+) ions from the roots to the leaves. Overall, the results obtained in this study suggest that soybean salt tolerance could be improved through the over expression of Arabidopsis AtNHX5. PMID:27323012

  4. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    PubMed

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants.

  5. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants1[OPEN

    PubMed Central

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-01-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg2+ as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  6. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana.

    PubMed

    Wang, Junbin; Ding, Bo; Guo, Yaolin; Li, Ming; Chen, Shuaijun; Huang, Guozhong; Xie, Xiaodong

    2014-07-01

    Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.

  7. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants.

    PubMed

    Zuo, Bixiao; Zheng, Xiaodong; He, Pingli; Wang, Lin; Lei, Qiong; Feng, Chao; Zhou, Jingzhe; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2014-11-01

    Melatonin is a potent naturally occurring reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenger in plants. Melatonin protects plants from oxidative stress and, therefore, it improves their tolerance against a variety of environmental abiotic stressors. N-acetylserotonin-O-methyltransferase (ASMT) is a specific enzyme required for melatonin synthesis. In this report, an ASMT gene was cloned from apple rootstock (Malus zumi Mats) and designated as MzASMT1 (KJ123721). The MzASMT1 expression was induced by drought stress in apple leaves. The upregulation of MzASMT1 in the apple leaf positively relates to melatonin production over a 24-hr dark/light cycle. Purified MzASMT1 protein expressed in E. coli converted its substrates to melatonin with an activity of approximately 5.5 pmol/min/mg protein. The transient transformation in tobacco identified that MzASMT1 is located in cytoplasm of the cell. When MzASMT1 gene driven by 35S promoter was transferred to Arabidopsis, melatonin levels in transgenic Arabidopsis plants were 2-4 times higher than those in the wild type. The transgenic Arabidopsis plants had significantly lower intrinsic ROS than the wild type and therefore these plants exhibited greater tolerance to drought stress than that of wild type. This is, at least partially, attributed to the elevated melatonin levels resulting from the overexpression of MzASMT1. The results elucidated the important role that membrane-located melatonin synthase plays in drought tolerance. These findings have significant implications in agriculture.

  8. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. PMID:26603028

  9. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance

    PubMed Central

    Pinedo, Ignacio; Ledger, Thomas; Greve, Macarena; Poupin, María J.

    2015-01-01

    Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K+ Transporter 1, High-Affinity K+ Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to

  10. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  11. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    PubMed

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts. PMID:7986027

  12. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture.

    PubMed

    Lee, S P; Chen, T H

    1993-03-01

    Abscisic acid (ABA) increases the freezing tolerance of bromegrass (Bromus inermis Leyss) cell-suspension cultures at 23 degrees C and elicits many metabolic changes similar to those observed during cold acclimation. Induction and maintenance of freezing tolerance by ABA is accompanied by the expression of novel polypeptides and translatable RNAs. The objective of this study was to isolate and characterize ABA-responsive cDNAs associated with ABA-induced freezing tolerance in bromegrass cell cultures. Among the 16 ABA-responsive cDNA clones isolated, 9 were expressed only with ABA treatment, 7 showed increased transcript level, and 1 was transiently expressed. Cold responsiveness was determined in three clones with increased transcript levels and in the transiently expressed clone. Deacclimation of ABA-hardened cells was a relatively slow process, because all of the novel transcripts persisted for at least 7 d after cells were cultured in ABA-free medium. Preliminary sequencing of cDNAs has identified several clones that share high sequence homology with genes associated with sugar metabolism, osmotic stress, and protease activity. Clone pBGA61 was fully sequenced and tentatively identified as an NADPH-dependent aldose reductase. The predicted amino acid sequence of the coding region shared 92% similarity with that predicted for barley aldose reductase cDNA. It is proposed that expression of genes related to sugar metabolism and osmotic stress may be required for ABA-induced hardening. PMID:8310047

  13. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice.

    PubMed

    Sato, Hikaru; Todaka, Daisuke; Kudo, Madoka; Mizoi, Junya; Kidokoro, Satoshi; Zhao, Yu; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-08-01

    The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth. PMID:26841113

  14. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice.

    PubMed

    Sato, Hikaru; Todaka, Daisuke; Kudo, Madoka; Mizoi, Junya; Kidokoro, Satoshi; Zhao, Yu; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-08-01

    The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth.

  15. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  16. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  17. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration.

  18. Heterologous expression of the halophyte Zoysia matrella H⁺-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana.

    PubMed

    Chen, Yu; Li, Lanlan; Zong, Junqin; Chen, Jingbo; Guo, Hailin; Guo, Aigui; Liu, Jianxiu

    2015-06-01

    A number of vacuolar H(+)-pyrophosphatase (VP) family genes play important roles in plant growth under salt stress condition. Despite their biological importance in plant salt-stress regulation, there is no report about VP in the halophytic turfgrass Zoysia matrella. Here, we isolated ZmVP1, a type I VP homologues gene encoding 768 amino acids by using the degenerated PCR and RACE PCR methods from Zoysia matrella. The expression level of ZmVP1 was significantly induced by salinity, drought and cold, but not by heat. ZmVP1 can restore the salt-tolerant ability of a salt-sensitive yeast strain. Overexpression of ZmVP1 in Arabidopsis thaliana resulted in more vigorous growth under salt stress. Moreover, the transgenic Arabidopsis accumulated more Na(+) and K(+) in the leaves compared to that of wild type plants under salt stress, had higher activities of V-ATPase and V-PPase, and showed higher relative gene expression levels of 5 stress-related genes (AtNHX1, AtLEA, AtP5CS, AtMn-SOD, AtAPX1). These results demonstrated that ZmVP1 from Z. matrella was a functional tonoplast H(+)-pyrophosphatase contributing to salt tolerance potentially through regulating the Na(+) compartment in vacuole, K(+) assimilation, osmotic regulation and antioxidant response. PMID:25874657

  19. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.

    PubMed

    Yang, Minggui; Yang, Qingyong; Fu, Tingdong; Zhou, Yongming

    2011-03-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high levels of BnLAS were observed in roots, shoot tips, lateral meristems and flower organs based on the analysis of the transcripts by quantitative RT-PCR and promoter-reporter assays. Constitutive overexpression of BnLAS in Arabidopsis resulted in inhibition of growth, and delays in leaf senescence and flowering time. A large portion of transgenic lines had darker leaf color and higher chlorophyll content than in wild type plants. Interestingly, water lose rates in transgenic leaves were reduced, and transgenic plants exhibited enhanced drought tolerance and increased recovery after exposed to dehydration treatment. The stomatal density on leaves of the transgenic plants increased significantly due to the smaller cell size. However, the stomatal aperture on the leaves of the transgenic plants reduced significantly compared with wild type plants. More epidermal wax deposition on transgenic leaves was observed. Furthermore, several genes involved in wax synthesis and regulation, including CER1, CER2, KCS1 and KCS2, were upregulated in the transgenic plants. Our results indicate a potential to utilize BnLAS in the improvement of drought tolerance in plants.

  20. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.

  1. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    PubMed Central

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  2. Arabidopsis NRT1.5 Is Another Essential Component in the Regulation of Nitrate Reallocation and Stress Tolerance1[W

    PubMed Central

    Chen, Chun-Zhu; Lv, Xin-Fang; Li, Jian-Yong; Yi, Hong-Ying; Gong, Ji-Ming

    2012-01-01

    Nitrate reallocation to plant roots occurs frequently under adverse conditions and was recently characterized to be actively regulated by Nitrate Transporter1.8 (NRT1.8) in Arabidopsis (Arabidopsis thaliana) and implicated as a common response to stresses. However, the underlying mechanisms remain largely to be determined. In this study, characterization of NRT1.5, a xylem nitrate-loading transporter, showed that the mRNA level of NRT1.5 is down-regulated by salt, drought, and cadmium treatments. Functional disruption of NRT1.5 enhanced tolerance to salt, drought, and cadmium stresses. Further analyses showed that nitrate, as well as Na+ and Cd2+ levels, were significantly increased in nrt1.5 roots. Important genes including Na+/H+ exchanger1, Salt overly sensitive1, Pyrroline-5-carboxylate synthase1, Responsive to desiccation29A, Phytochelatin synthase1, and NRT1.8 in stress response pathways are steadily up-regulated in nrt1.5 mutant plants. Interestingly, altered accumulation of metabolites, including proline and malondialdehyde, was also observed in nrt1.5 plants. These data suggest that NRT1.5 is involved in nitrate allocation to roots and the consequent tolerance to several stresses, in a mechanism probably shared with NRT1.8. PMID:22685171

  3. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  4. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    PubMed

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  5. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  6. Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples

    NASA Technical Reports Server (NTRS)

    Staehelin, L. A.; Giddings, T. H. Jr; Kiss, J. Z.; Sack, F. D.

    1990-01-01

    The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to "young" and "old", polysaccharide-slime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips of Arabidopsis and Nicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types. Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (approximately 30 nm) and are the least stained. Medial cisternae are narrower (approximately 20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4-6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network. Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans

  7. Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions

    PubMed Central

    Zuther, Ellen; Juszczak, Ilona; Ping Lee, Yang; Baier, Margarete; Hincha, Dirk K.

    2015-01-01

    During low temperature exposure, Arabidopsis thaliana and many other plants from temperate climates increase in freezing tolerance in a process termed cold acclimation. However, the correct timing and rate of deacclimation, resulting in loss of freezing tolerance and initiation of growth is equally important for plant fitness and survival. While the molecular basis of cold acclimation has been investigated in detail, much less information is available about deacclimation. We have characterized the responses of 10 natural accessions of Arabidopsis thaliana that vary widely in their freezing tolerance, to deacclimation conditions. Sugar, proline and transcript levels declined sharply over three days in all accessions after transfer of cold acclimated plants to ambient temperatures, while freezing tolerance only declined in tolerant accessions. Correlations between freezing tolerance and the expression levels of COR genes and the content of glucose, fructose and sucrose, as well as many correlations among transcript and solute levels, that were highly significant in cold acclimated plants, were lost during deacclimation. Other correlations persisted, indicating that after three days of deacclimation, plant metabolism had not completely reverted back to the non-acclimated state. These data provide the basis for further molecular and genetic studies to unravel the regulation of deacclimation. PMID:26174584

  8. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  9. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus.

    PubMed

    Lee, J M; Hartman, G L; Domier, L L; Bent, A F

    1996-11-01

    The interaction between Arabidopsis and the nepovirus tobacco ringspot virus (TRSV) was characterized. Of 97 Arabidopsis lines tested, all were susceptible when inoculated with TRSV grape strain. Even though there was systemic spread of the virs, there was a large degree of variation in symptoms as the most sensitive lines died 10 days after inoculation, while the most tolerant lines either were symptomless or developed only mild symptoms. Four lines were selected for further study based on their differential reactions to TRSV. Infected plants of line Col-0 and Col-0 gl1 flowered and produced seeds like noninfected plants, while those of lines Estland and H55 died before producing seeds. Symptoms appeared on sensitive plants approximately 5 to 6 days after inoculation. Serological studies indicated that in mechanically inoculated seedlings, the virus, as measured by coat protein accumulation, developed at essentially the same rates and to the same levels in each of the four lines, demonstrating that differences in symptom development were not due to a suppression of virus accumulation. Two additional TRSV strains gave similar results when inoculated on the four lines. Genetic studies with these four Arabidopsis lines revealed segregation of a single incompletely dominant locus controlling tolerance to TRSV grape strain. We have designated this locus TTR1. By using SSLP and CAPS markers, TTR1 was mapped to chromosome V near the nga129 marker. Seed transmission frequency of TRSV for Col-0 and Col-0 gl1 was over 95% and their progeny from crosses all had seed transmission frequencies of over 83%, which made it possible to evaluate the segregation of TTR1 in F2 progeny from infected F1 plants without inoculating F2 plants. Seed transmission of TRSV will be further exploited to streamline selection of individuals for fine mapping the TTR1 gene. The identification of tolerant and sensitive interactions between TRSV and A. thaliana lines provides a model system for

  10. The Effects of Cold Acclimation on Photosynthetic Apparatus and the Expression of COR14b in Four Genotypes of Barley (Hordeum vulgare) Contrasting in their Tolerance to Freezing and High-light Treatment in Cold Conditions

    PubMed Central

    Rapacz, Marcin; Wolanin, Barbara; Hura, Katarzyna; Tyrka, MirosŁaw

    2008-01-01

    Background and Aims Cold acclimation modifies the balance of the energy absorbed and metabolized in the dark processes of photosynthesis, which may affect the expression of cold-regulated (COR) genes. At the same time, a gradual acclimation to the relatively high light conditions is observed, thereby minimizing the potential for photo-oxidative damage. As a result, the resistance to photoinhibition in the cold has often been identified as a trait closely related to freezing tolerance. Using four barley genotypes that differentially express both traits, the effect of cold acclimation on freezing tolerance and high-light tolerance was studied together with the expression of COR14b, one of the best-characterized barley COR genes. Methods Plants were cold acclimated for 2 weeks at 2 °C. Freezing tolerance was studied by means of electrolyte leakage. Changes in photosynthetic apparatus and high-light tolerance were monitored by means of chlorophyll fluorescence. Accumulation of COR14b and some proteins important in photosynthetic acclimation to cold were studied with western analysis. COR14b transcript accumulation during cold acclimation was assessed with real-time PCR. Key Results Cold acclimation increased both freezing tolerance and high-light tolerance, especially when plants were treated with high light after non-lethal freezing. In all plants, cold acclimation triggered the increase in photosynthetic capacity during high-light treatment. In two plants that were characterized by higher high-light tolerance but lower freezing tolerance, higher accumulation of COR14b transcript and protein was observed after 7 d and 14 d of cold acclimation, while a higher transient induction of COR14b expression was observed in freezing-tolerant plants during the first day of cold acclimation. High-light tolerant plants were also characterized with a higher level of PsbS accumulation and more efficient dissipation of excess light energy. Conclusions Accumulation of COR14b in

  11. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-07-01

    Mitochondrial F(1)F(0)-ATPase is a key enzyme in plant metabolism, providing cells with ATP that uses the transmembrane electrochemical proton gradient to drive synthesis of ATP. A 6 kDa protein (At3g46430) has been previously purified from Arabidopsis thaliana mitochondrial F(1)F(0)-ATPase. In this study, the gene (AtMtATP6; GenBank accession no. AK117680) encoding this protein was isolated from Arabidopsis and characterized. Northern blot analyses showed that the expression of AtMtATP6 gene in Arabidopsis suspension-cultured cells was induced by several abiotic stresses from salts, drought, and cold. Over-expression of AtMtATP6 gene in transgenic yeast and Arabidopsis plants increased the resistance to salts, drought, oxidative and cold stresses. Taken together, our data raise the possibility that induction of the F(1)F(0)-ATPase plays a role in stress tolerance.

  12. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development. PMID:26711633

  13. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  14. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  15. Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana

    PubMed Central

    Migocka, Magdalena; Papierniak, Anna; Maciaszczyk-Dziubińska, Ewa; Poździk, Piotr; Posyniak, Ewelina; Garbiec, Arnold; Filleur, Sophie

    2014-01-01

    Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells. PMID:25039075

  16. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance.

  17. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance. PMID:25545423

  18. Tolerance to Excess-Boron Conditions Acquired by Stabilization of a BOR1 Variant with Weak Polarity in Arabidopsis

    PubMed Central

    Wakuta, Shinji; Fujikawa, Teppei; Naito, Satoshi; Takano, Junpei

    2016-01-01

    Boron (B) is a metalloid that is essential for plant growth but is toxic when present in excess. Arabidopsis BOR1 is a borate exporter, facilitating B translocation from root to shoot under limited-B conditions. BOR1 shows stele side polar localization in the plasma membrane of various root cells, presumably to support B translocation toward the stele. BOR1 is degraded under high-B supply through vacuolar sorting via ubiquitination at the K590 residue to prevent the accumulation of B to a toxic level in shoots. A previous study showed that overexpression of BOR1 under control of the cauliflower mosaic virus 35S RNA promoter improved the growth of Arabidopsis under limited-B conditions without affecting the growth under sufficient-to-excess-B conditions. In this study, we unexpectedly found that ubiquitous expression of a stabilized BOR1 variant improved tolerance to excess-B in Arabidopsis. We established transgenic plants expressing BOR1-GFP fused with hygromycin phosphotransferase (HPT) and BOR1(K590A)-GFP-HPT under control of the ubiquitin 10 promoter. BOR1-GFP-HPT and BOR1(K590A)-GFP-HPT were expressed in various cell types in leaves and roots and showed weak polar localization in root tip cells. BOR1-GFP-HPT, but not BOR1(K590A)-GFP-HPT, was degraded through an endocytic pathway under high-B conditions. Transgenic plants with the stabilized variant BOR1(K590A)-GFP-HPT showed improved root and shoot growth under excess-B conditions. The concentration of B was greater in the shoots of plants with BOR1(K590A)-GFP-HPT or BOR1-GFP-HPT than in those of untransformed wild-type plants. These results suggest that BOR1(K590A)-GFP-HPT confers tolerance to excess-B by excluding B from the cytosol of shoot cells. Results from this study indicate the potential for engineering the trafficking properties of a transporter to produce plants that are tolerant to mineral stress. PMID:26870730

  19. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species.

  20. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    PubMed Central

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  1. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  2. A Contrast of the Plasma Membrane Lipid Composition of Oat and Rye Leaves in Relation to Freezing Tolerance.

    PubMed Central

    Uemura, M.; Steponkus, P. L.

    1994-01-01

    there was only a small decrease in oat (from 27.2 to 24.2 mol%). In both oat and rye, there were only small changes in the proportions of free sterols and sterol derivatives during cold acclimation. Consequently, the proportions of both acylated sterylglucosides and cerebrosides remained substantially higher in oat than in rye after cold acclimation. The relationship between these differences in the plasma membrane lipid composition of oat and rye and their freezing tolerance is presented. PMID:12232097

  3. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

    PubMed Central

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S. M.; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J.; Bressan, Ray A.; Pardo, Jose M.; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  4. Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in Arabidopsis[W

    PubMed Central

    Peters, Carlotta; Li, Maoyin; Narasimhan, Rama; Roth, Mary; Welti, Ruth; Wang, Xuemin

    2010-01-01

    Diacyglycerol (DAG) is an important class of cellular lipid messengers, but its function in plants remains elusive. Here, we show that knockout of the Arabidopsis thaliana nonspecific phospholipase C (NPC4) results in a decrease in DAG levels and compromises plant response to abscisic acid (ABA) and hyperosmotic stresses. NPC4 hydrolyzes various phospholipids in a calcium-independent manner, producing DAG and a phosphorylated head group. NPC4 knockout (KO) plants display decreased ABA sensitivity in seed germination, root elongation, and stomatal movement and had decreased tolerance to high salinity and water deficiency. Overexpression of NPC4 renders plants more sensitive to ABA and more tolerant to hyperosmotic stress than wild-type plants. Addition of a short-chain DAG or a short-chain phosphatidic acid (PA) restores the ABA response of NPC4-KO to that of the wild type, but the addition of DAG together with a DAG kinase inhibitor does not result in a wild-type phenotype. These data suggest that NPC4-produced DAG is converted to PA and that NPC4 and its derived lipids positively modulate ABA response and promote plant tolerance to drought and salt stresses. PMID:20699393

  5. A New Vertical Mesh Transfer Technique for Metal-Tolerance Studies in Arabidopsis (Ecotypic Variation and Copper-Sensitive Mutants).

    PubMed Central

    Murphy, A.; Taiz, L.

    1995-01-01

    A new vertical mesh transfer (VMT) technique has been developed to facilitate the rapid isolation of plant metal-tolerance mutants. The technique is quantitative, allowing comparisons of the growth responses of different strains or ecotypes. Using the VMT technique, we have characterized the dose responses of 10 ecotypes of Arabidopsis thaliana to Cu2+, Zn2+, Ni2+, Cr3+, Cd2+, and Al3+. Ecotypic variations in the highest concentration causing no inhibition and the lowest concentration causing complete inhibition for the six metals were observed. Two ecotypes, Ws and Enkheim, exhibited an inducible tolerance mechanism in response to copper. Pretreatment of Ws with the highest concentration causing no inhibition for copper resulted in a shifting of the lowest concentration causing complete inhibition to a higher value. Partial cross-induction and cross-tolerance between Cu2+ and Zn2+ were demonstrated. In addition, ethyl methanesulfonate-mutagenized Columbia seeds were screened for copper-sensitive (cus) mutants using the VMT procedure. Thus far, 59 putative cus mutants have survived retesting to the M4 or M5 generation. When grown on gellan gum supplemented with 30 [mu]M CuCl2, cus mutants develop marked toxicity symptoms. A copper dose-response curve of the cus1 mutant showed that the metal-sensitive phenotype is specific for the lower concentration range. PMID:12228451

  6. A Soybean C2H2-Type Zinc Finger Gene GmZF1 Enhanced Cold Tolerance in Transgenic Arabidopsis

    PubMed Central

    Ma, Xue-Feng; Xu, Zhao-Shi; Liu, Meng-Meng; Shan, Shu-Guang; Cheng, Xian-Guo

    2014-01-01

    Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis. PMID:25286048

  7. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis.

    PubMed

    Yu, Guo-Hong; Jiang, Lin-Lin; Ma, Xue-Feng; Xu, Zhao-Shi; Liu, Meng-Meng; Shan, Shu-Guang; Cheng, Xian-Guo

    2014-01-01

    Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis.

  8. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance.

    PubMed

    Tiwari, Manish; Sharma, Deepika; Dwivedi, Sanjay; Singh, Munna; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar

    2014-01-01

    Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance-Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals. PMID:23700971

  9. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance.

    PubMed

    Tiwari, Manish; Sharma, Deepika; Dwivedi, Sanjay; Singh, Munna; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar

    2014-01-01

    Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance-Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.

  10. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress.

    PubMed

    Ke, Qingbo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Kwak, Sang-Soo

    2015-09-01

    YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar. PMID:25980973

  11. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing temperatures during winter generally do not injure floral buds of horticulturally important crops. Entry into dormancy coupled with cold acclimation provides adequate protection unless the temperatures are exceptionally low. This measure of protection is lost in spring when the floral bud...

  12. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  13. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.

    PubMed

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-04-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis. PMID:25614660

  14. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Li, Hui-Yong; Liu, Ying-Hui; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2011-09-01

    SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn(2+) to Mg(2+) as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.

  15. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  16. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions.

    PubMed

    Jansen, Marcel A K; Martret, Bénedicte Le; Koornneef, Maarten

    2010-01-01

    The rise in ultraviolet-B (UV-B) (280-315 nm) radiation levels, that is a consequence of stratospheric ozone layer depletion, has triggered extensive research on the effects of UV-B on plants. Plants raised under natural sunlight conditions are generally well protected from the potentially harmful effects of UV-B radiation. However, it is mostly unknown to which extent UV protection is constitutive and/or induced. In this study, we have analysed the role of constitutive and inducible protection responses in avoiding UV-B damage to photosystem II of photosynthesis. We have assayed the UV susceptibility of photosystem II in 224 Arabidopsis thaliana accessions from across the Northern hemisphere, and found a continuum of constitutive UV-protection levels, with some accessions being UV sensitive and others UV tolerant. Statistical analysis showed only very weak associations between constitutive UV tolerance and the geographic origin of accessions. Instead, most of the variance in constitutive UV-B protection of photosynthesis is present at the level of local Arabidopsis populations originating in the same geographic and climatic area. The variance in constitutive UV protection is, however, small compared to the amplitude of environmentally induced changes in UV protection. Thus, our data emphasise the importance of inducible responses for the protection of photosystem II against UV-B. Remarkably, the conditions that induce UV-protective responses vary; accessions from lower latitudes were found to switch-on UV defences more readily than those of higher latitudes. Such altered regulation of induction may comprise a suitable adaptation response when levels of a stressor are fluctuating in the short term, but predictable over longer periods.

  17. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis

    PubMed Central

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-01-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na+ entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis. PMID:25614660

  18. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.

    PubMed

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-04-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis.

  19. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress1[OPEN

    PubMed Central

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. PMID:25783413

  20. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    PubMed Central

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  1. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.

    PubMed

    Yi, Shu-Xia; Lee, Richard E

    2016-01-01

    The banded woolly bear caterpillar, Pyrrharctia isabella (Lepidoptera: Erebidae), overwinters in leaf litter and survives freezing under natural conditions. Following 18 weeks of cold acclimation at 5°C, all caterpillars could survive 1 week of continuous freezing at -20°C or seven cycles of freezing-thawing at -20°C, but none survived freezing at -80°C. Field-collected caterpillars had a temperature of crystallization of -7.7±0.5°C that decreased significantly to -9.5±0.6°C after 12 weeks of acclimation at 5°C. Hemolymph levels of free proline, total amino acids and proteins reached a peak during the first 4 weeks of acclimation; concomitantly, hemolymph osmolality increased markedly during this interval (from 364 to 1282 mosmol kg(-1)). In contrast, hemolymph pH decreased during the first 4 weeks of acclimation before this trend reversed and pH values gradually returned to initial values. However, pH reached its peak value following 1 week at -20°C, but decreased after longer periods of freezing. During cold acclimation, cholesterol levels decreased in the hemolymph and the membrane fraction of fat body but not in other tissues. Lethal freezing at -80°C reduced cell survival in foregut tissue and caused leakage of free proline, total amino acids and proteins from tissues into the hemolymph. The addition of glycerol to the bathing medium reduced freezing injury in fat body cells, as evidenced by reduced leakage of amino acids and proteins. PMID:26643089

  2. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.

    PubMed

    Yi, Shu-Xia; Lee, Richard E

    2016-01-01

    The banded woolly bear caterpillar, Pyrrharctia isabella (Lepidoptera: Erebidae), overwinters in leaf litter and survives freezing under natural conditions. Following 18 weeks of cold acclimation at 5°C, all caterpillars could survive 1 week of continuous freezing at -20°C or seven cycles of freezing-thawing at -20°C, but none survived freezing at -80°C. Field-collected caterpillars had a temperature of crystallization of -7.7±0.5°C that decreased significantly to -9.5±0.6°C after 12 weeks of acclimation at 5°C. Hemolymph levels of free proline, total amino acids and proteins reached a peak during the first 4 weeks of acclimation; concomitantly, hemolymph osmolality increased markedly during this interval (from 364 to 1282 mosmol kg(-1)). In contrast, hemolymph pH decreased during the first 4 weeks of acclimation before this trend reversed and pH values gradually returned to initial values. However, pH reached its peak value following 1 week at -20°C, but decreased after longer periods of freezing. During cold acclimation, cholesterol levels decreased in the hemolymph and the membrane fraction of fat body but not in other tissues. Lethal freezing at -80°C reduced cell survival in foregut tissue and caused leakage of free proline, total amino acids and proteins from tissues into the hemolymph. The addition of glycerol to the bathing medium reduced freezing injury in fat body cells, as evidenced by reduced leakage of amino acids and proteins.

  3. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  4. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.

    PubMed

    Fang, Huihui; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Liu, Danmei; Pei, Yanxi

    2016-06-01

    Increasing attention has been focused on the health of vegetables and grains grown in the contaminated agricultural soil, it is thus meaningful to find ways to reduce the heavy metals (HMs) accumulation in plants. As sulfur is considered to be an essential macronutrient for plant stress defenses, the important role of sulfur assimilation in plants responding to HMs stress has been followed. However, the potential mechanism of the only sulfur-containing gasotransmitter hydrogen sulfide (H2S) and its main endogenously generated substrate, cysteine (Cys), in plant defense is poorly understood. The physiological and biochemical methods together with qRT-PCR were used to explore the response pattern of H2S-Cys cycle in plants resisting to chromium (Cr(6+)) stress. Our results suggested that Cr(6+) stress inhibited Arabidopsis root elongation, increased the H2S and Cys contents time-dependently, and H2S production was activated earlier than Cys. Furthermore, H2S increased Cys accumulation more quickly than Cr(6+) stress. The qRT-PCR results revealed that H2S up-regulated the Cys generation-related genes OASTLa, SAT1 and SAT5 expression levels, and that SAT1 and SAT5 expression was elevated for a longer duration. Data suggested that H2S might regulate Cys metabolism-related genes expression to participate in Cr(6+)-mediated Cys accumulation. H2S and Cys relieved the root elongation inhibition caused by Cr(6+) in Arabidopsis. Both H2S and Cys enhanced glutathione generation and activated phytochelatins (PCs) synthesis by up-regulating PCS1 and PCS2 expression levels to fight against Cr(6+) stress. Besides regulating the expression of PCs synthase encoding genes, H2S might promote metallothioneins accumulation by significantly increasing the MT2A gene expression. Overall, H2S and H2S-induced Cys accumulation (H2S-Cys system) was critical in imparting Cr(6+) tolerance in Arabidopsis. This paper is the first to indicate that gasotransmitter H2S induced Cys accumulation in

  5. Hydrogen Sulfide Improves Drought Tolerance in Arabidopsis thaliana by MicroRNA Expressions

    PubMed Central

    Yuan, Huihong; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Pei, Yanxi

    2013-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT) Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000) to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT) were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD) activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis. PMID:24194857

  6. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  7. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot.

    PubMed

    Pomponi, Mirella; Censi, Vincenzo; Di Girolamo, Valentina; De Paolis, Angelo; di Toppi, Luigi Sanità; Aromolo, Rita; Costantino, Paolo; Cardarelli, Maura

    2006-01-01

    Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd(2+) tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd(2+) accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd(2+) accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd(2+) translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd(2+) tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd(2+) transport. PMID:16133212

  8. Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis

    PubMed Central

    Wen, Xing; Li, Wenyang; Shi, Hui; Yang, Longshu; Zhu, Huaiqiu; Guo, Hongwei

    2014-01-01

    Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3) and EIL1 (EIN3-LIKE 1), two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent) genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS) scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270), which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD) activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response. PMID:25330213

  9. Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.).

    PubMed

    Hale, Anna L; Viator, Ryan P; Eggleston, Gillian; Hodnett, George; Stelly, David M; Boykin, Debbie; Miller, Donnie K

    2016-03-01

    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources. PMID:26885566

  10. Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.).

    PubMed

    Hale, Anna L; Viator, Ryan P; Eggleston, Gillian; Hodnett, George; Stelly, David M; Boykin, Debbie; Miller, Donnie K

    2016-03-01

    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources.

  11. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana.

    PubMed

    Su, Lian-Tai; Li, Jing-Wen; Liu, De-Quan; Zhai, Ying; Zhang, Hai-Jun; Li, Xiao-Wei; Zhang, Qing-Lin; Wang, Ying; Wang, Qing-Yu

    2014-03-15

    MYB transcription factors play important roles in the regulation of plant growth, developmental metabolism and stress responses. In this study, a new MYB transcription factor gene, GmMYBJ1, was isolated from soybean [Glycine max (L.)]. The GmMYBJ1 cDNA is 1296bp in length with an open reading frame (ORF) of 816 bp encoding for 271 amino acids. The amino acid sequence displays similarities to the typical R2R3 MYB proteins reported in other plants. Transient expression analysis using the GmMYBJ1-GFP fusion gene in onion epidermal cells revealed that the GmMYBJ1 protein is targeted to the nucleus. Quantitative RT-PCR analysis demonstrated that GmMYBJ1 expression was induced by abiotic stresses, such as drought, cold, salt and exogenous abscisic acid (ABA). Compared to wild-type (WT) plants, transgenic Arabidopsis overexpressing GmMYBJ1 exhibited an enhanced tolerance to drought and cold stresses. These results indicate that GmMYBJ1 has the potential to be utilized in transgenic breeding lines to improve abiotic stress tolerance.

  12. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana.

    PubMed

    Aubert, Yann; Vile, Denis; Pervent, Marjorie; Aldon, Didier; Ranty, Benoit; Simonneau, Thierry; Vavasseur, Alain; Galaud, Jean-Philippe

    2010-12-01

    Plants overcome water deficit conditions by combining molecular, biochemical and morphological changes. At the molecular level, many stress-responsive genes have been isolated, but knowledge of their physiological functions remains fragmentary. Here, we report data for RD20, a stress-inducible Arabidopsis gene that belongs to the caleosin family. As for other caleosins, we showed that RD20 localized to oil bodies. Although caleosins are thought to play a role in the degradation of lipids during seed germination, induction of RD20 by dehydration, salt stress and ABA suggests that RD20 might be involved in processes other than germination. Using plants carrying the promoter RD20::uidA construct, we show that RD20 is expressed in leaves, guard cells and flowers, but not in root or in mature seeds. Water deficit triggers a transient increase in RD20 expression in leaves that appeared predominantly dependent on ABA signaling. To assess the biological significance of these data, a functional analysis using rd20 knock-out and overexpressing complemented lines cultivated either in standard or in water deficit conditions was performed. The rd20 knock-out plants present a higher transpiration rate that correlates with enhanced stomatal opening and a reduced tolerance to drought as compared with the wild type. These results support a role for RD20 in drought tolerance through stomatal control under water deficit conditions. PMID:20952421

  13. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  14. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    PubMed

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation. PMID:25874349

  15. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    PubMed

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-09-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants.

  16. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    PubMed

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.

  17. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed. PMID:15653797

  18. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis1[OPEN

    PubMed Central

    Chen, Jian; Yan, Xingxing; Liu, Yunlei; Wang, Ren; Fan, Tingting; Ren, Yongbing; Tang, Xiaofeng; Xiao, Fangming

    2016-01-01

    Cadmium (Cd) is an environmental pollutant with high toxicity to animals and plants. It has been established that the glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is one of the most important mechanisms contributing to Cd accumulation and tolerance in plants. However, the transcription factors involved in regulating GSH-dependent PC synthesis pathway remain largely unknown. Here, we identified an Arabidopsis (Arabidopsis thaliana) Cd-resistant mutant xcd2-D (XVE system-induced cadmium-tolerance2) using a forward genetics approach. The mutant gene underlying xcd2-D mutation was revealed to encode a known zinc-finger transcription factor, ZAT6. Transgenic plants overexpressing ZAT6 showed significant increase of Cd tolerance, whereas loss of function of ZAT6 led to decreased Cd tolerance. Increased Cd accumulation and tolerance in ZAT6-overexpressing lines was GSH dependent and associated with Cd-activated synthesis of PC, which was correlated with coordinated activation of PC-synthesis related gene expression. By contrast, loss of function of ZAT6 reduced Cd accumulation and tolerance, which was accompanied by abolished PC synthesis and gene expression. Further analysis revealed that ZAT6 positively regulates the transcription of GSH1, GSH2, PCS1, and PCS2, but ZAT6 is capable of specifically binding to GSH1 promoter in vivo. Consistently, overexpression of GSH1 has been shown to restore Cd sensitivity in the zat6-1 mutant, suggesting that GSH1 is a key target of ZAT6. Taken together, our data provide evidence that ZAT6 coordinately activates PC synthesis-related gene expression and directly targets GSH1 to positively regulate Cd accumulation and tolerance in Arabidopsis. PMID:26983992

  19. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress.

  20. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene.

    PubMed

    Bueso, Eduardo; Alejandro, Santiago; Carbonell, Pablo; Perez-Amador, Miguel A; Fayos, Joaquín; Bellés, Jose M; Rodriguez, Pedro L; Serrano, Ramón

    2007-12-01

    In order to investigate the effects of a permanent increase in cellular H(2)O(2) on cation homeostasis we have studied a T-DNA insertion mutant of the Arabidopsis CATALASE 2 gene. This mutant (cat2-1) exhibits 20% of wild-type leaf catalase activity and accumulates more H(2)O(2) than the wild type under normal growth conditions. In addition to reduced size, a pale green color and great reduction in secondary roots, the cat2-1 mutant exhibited increased sensitivity to H(2)O(2), NaCl, norspermidine, high light and cold stress. On the other hand, the germination of the cat2-1 mutant is more tolerant to lithium than the wild type. This novel phenotype cannot be explained by changes in lithium transport. Actually, the uptake of lithium (and of other toxic cations such as sodium and norspermidine) is increased in the cat2-1 mutant while K(+) levels were decreased. The lithium tolerance of this mutant seems to result both from insensitivity to the inhibitory ethylene induced by this cation and a reduced capability for ethylene production. Accordingly, induction by ethylene of responsive genes such as PR4 and EBP/ERF72 is decreased in cat2-1. Mutants insensitive to ethylene such as etr1-1 and ein3-3 are lithium tolerant, and inhibition of ethylene biosynthesis with 2-aminoisobutyrate protects against lithium toxicity. Microarray analysis of gene expression indicates that the expression of genes related to cation transport and ethylene synthesis and perception was not altered in the cat2-1 mutant, suggesting that H(2)O(2) modulates these processes at the protein level. These results uncover a cross-talk between oxidative stress, cation homeostasis and ethylene.

  1. Overexpression of AtMYB44 Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis1[C][W][OA

    PubMed Central

    Jung, Choonkyun; Seo, Jun Sung; Han, Sang Won; Koo, Yeon Jong; Kim, Chung Ho; Song, Sang Ik; Nahm, Baek Hie; Choi, Yang Do; Cheong, Jong-Joo

    2008-01-01

    AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 transcript accumulation within 30 min. The gene was also activated under various abiotic stresses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an AtMYB44 promoter-driven β-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more sensitive to ABA and has a more rapid ABA-induced stomatal closure response than wild-type and atmyb44 knockout plants. Transgenic plants exhibited a reduced rate of water loss, as measured by the fresh-weight loss of detached shoots, and remarkably enhanced tolerance to drought and salt stress compared to wild-type plants. Microarray analysis and northern blots revealed that salt-induced activation of the genes that encode a group of serine/threonine protein phosphatases 2C (PP2Cs), such as ABI1, ABI2, AtPP2CA, HAB1, and HAB2, was diminished in transgenic plants overexpressing AtMYB44. By contrast, the atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Therefore, enhanced abiotic stress tolerance of transgenic Arabidopsis overexpressing AtMYB44 was conferred by reduced expression of genes encoding PP2Cs, which have been described as negative regulators of ABA signaling. PMID:18162593

  2. Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins.

    PubMed

    Xin, Shichao; Yu, Guohong; Sun, Linlin; Qiang, Xiaojing; Xu, Na; Cheng, Xianguo

    2014-11-01

    Three independent transgenic Arabidopsis lines expressing SlTIP2;2 from Solanum lycopersicum L. cv. Lichun under the control of its endogenous promoter were used to analyze the expression of SlTIP2;2 and the salt stress tolerance under NaCl concentration gradient treatment. The expression patterns of SlTIP2;2 were shown to be tissue-specific and NaCl dose-dependent under salt stress. SlTIP2;2-transformed Arabidopsis plants exhibited enhanced salt stress tolerance, and the physiological parameters suggested that SlTIP2;2 has close links with the ion homeostasis and antioxidant enzymes activities in salt-stressed transgenic Arabidopsis. Moreover, SlTIP2;2 expression significantly affected the Na(+) and K(+) fluxes from the root meristematic zones and resulted in remarkable changes in the morphology of the pith ray cells in the inflorescence stems of transgenic Arabidopsis. Based on the yeast growth assay, β-galactosidase activity testing and bimolecular fluorescence complementation, SlTIP1;1, SlTIP2;1 and an UDP-galactose transporter were confirmed to interact with SlTIP2;2, which may greatly broaden our understanding of the physiological functions of aquaporins. PMID:25186161

  3. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    PubMed

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  4. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress.

    PubMed

    Lai, Shu-Jung; Lai, Mei-Chin; Lee, Ren-Jye; Chen, Yu-Hsuan; Yen, Hungchen Emilie

    2014-07-01

    Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments. PMID:24803410

  5. Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly)phenols and Tolerance to Ultraviolet Radiation1[OPEN

    PubMed Central

    Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun

    2015-01-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress. PMID:25502410

  6. Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation.

    PubMed

    Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun

    2015-02-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL's ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant's tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant's resistance to environmental stress.

  7. H+-pyrophosphatase from Salicornia europaea enhances tolerance to low phosphate under salinity in Arabidopsis

    PubMed Central

    Lv, Sulian; Jiang, Ping; Wang, Duoliya; Li, Yinxin

    2016-01-01

    ABSTRACT Increasing soil salinity threatens crop productivity worldwide. High soil salinity is usually accompanied by the low availability of many mineral nutrients. Here, we investigated the potential role that the H+- PPase could play in optimizing P use efficiency under salinity in plants. Transgenic Arabidopsis plants overexpressing either SeVP1 or SeVP2 from Salicornia europaea outperformed the wild-types under low phosphate (Pi) as well as low Pi plus salt conditions. Our results suggested that H+-PPase could increase external Pi acquisition through promoting root development and upregulating phosphate transporters, thus to protect plants from Pi limiting stress. This study provides a potential strategy for improving crop yields challenged by the co-occurrence of abiotic stresses. PMID:26669625

  8. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  9. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  10. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.

    PubMed

    Picault, N; Cazalé, A C; Beyly, A; Cuiné, S; Carrier, P; Luu, D T; Forestier, C; Peltier, G

    2006-11-01

    The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.

  11. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana.

    PubMed

    Wang, Tian-Zuo; Xia, Xiu-Zhi; Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2013-02-01

    To understand the role of small GTPases in response to abiotic stress, we isolated a gene encoding a small GTPase, designated MfARL1, from a subtracted cDNA library in Medicago falcata, a native legume species in semi-arid grassland in northern China. The function of MfARL1 in response to salt stress was studied by expressing MfARL1 in Arabidopsis. Wild-type (WT) and transgenic plants constitutively expressing MfARL1 showed comparable phenotype when grown under control conditions. Germination of seeds expressing MfARL1 was less suppressed by salt stress than that of WT seeds. Transgenic seedlings had higher survival rate than WT seedlings under salt stress, suggesting that expression of MfARL1 confers tolerance to salt stress. The physiological and molecular mechanisms underlying these phenomena were elucidated. Salt stress led to a significant decrease in chlorophyll contents in WT plants, but not in transgenic plants. Transgenic plants accumulated less amounts of H(2)O(2) and malondialdehyde than their WT counterparts under salt stress, which can be accounted for by the higher catalase activities, lower activities of superoxide dismutase, and peroxidase in transgenic plants than in WT plants. Transgenic plants displayed lower Na(+)/K(+) ratio due to less accumulation of Na(+) than wild-type under salt stress conditions. The lower Na(+)/K(+) ratio may result from less accumulation of Na(+) due to reduced expression of AtHKT1 that encodes Na(+) transporter in transgenic plants under salt stress. These findings demonstrate that MfARL1 encodes a novel stress-responsive small GTPase that is involved in tolerance to salt stress.

  12. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    PubMed Central

    Awlia, Mariam; Nigro, Arianna; Fajkus, Jiří; Schmoeckel, Sandra M.; Negrão, Sónia; Santelia, Diana; Trtílek, Martin; Tester, Mark; Julkowska, Magdalena M.; Panzarová, Klára

    2016-01-01

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions. PMID:27733855

  13. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana.

    PubMed

    Li, Wenbin; Wang, Tao; Zhang, Yuhang; Li, Yongguang

    2016-01-01

    MiRNAs play crucial roles in many aspects of plant development and the response to the environment. The miR172 family has been shown to participate in the control of flowering time and the response to abiotic stress. This family regulates the expression of APETALA2 (AP2)-like transcription factors in Arabidopsis. In the present study, soybean (Glycine max L. Merr.) miR172c, a member of the miR172 family, and its target gene were investigated for abiotic stress responses in transgenic Arabidopsis. gma-miR172c was induced by abscisic acid (ABA) treatments and abiotic stresses, including salt and water deficit. 5'-RACE (5'-rapid amplification of cDNA ends) assays indicated that miR172c directed Glyma01g39520 mRNA cleavage in soybeans. Overexpression of gma-miR172c in Arabidopsis resulted in reduced leaf water loss and increased survival rate under stress conditions. Meanwhile, the root length, germination rate, and cotyledon greening of transgenic plants were improved during both high salt and water deficit conditions. In addition, transgenic plants exhibited hypersensitivity to ABA during both the seed germination and post-germination seedling growth stages. Stress-related physiological indicators and the expression of stress/ABA-responsive genes were affected by abiotic treatments. The overexpression of gma-miR172c in Arabidopsis promoted earlier flowering compared with the wild type through modulation of the expression of flowering genes, such as FT and LFY during long days, especially under drought conditions. Glyma01g39520 weakened ABA sensitivity and reduced the tolerance to drought stress in the snz mutant of Arabidopsis by reducing the expression of ABI3 and ABI5. Overall, the present results demonstrate that gma-miR172c confers water deficit and salt tolerance but increased ABA sensitivity by regulating Glyma01g39520, which also accelerates flowering under abiotic stresses.

  14. Expression of Pyrococcus furiosus Superoxide Reductase in Arabidopsis Enhances Heat Tolerance1[C][W][OA

    PubMed Central

    Im, Yang Ju; Ji, Mikyoung; Lee, Alice; Killens, Rushyannah; Grunden, Amy M.; Boss, Wendy F.

    2009-01-01

    Plants produce reactive oxygen species (ROS) in response to environmental stresses sending signaling cues, which, if uncontrolled, result in cell death. Like other aerobic organisms, plants have ROS-scavenging enzymes, such as superoxide dismutase (SOD), which removes superoxide anion radical (O2−) and prevents the production and buildup of toxic free radicals. However, increasing the expression of cytosolic SODs is complex, and increasing their production in vivo has proven to be challenging. To avoid problems with endogenous regulation of gene expression, we expressed a gene from the archaeal hyperthermophile Pyrococcus furiosus that reduces O2−. P. furiosus uses superoxide reductase (SOR) rather than SOD to remove superoxide. SOR is a thermostable enzyme that reduces O2− in a one-electron reduction without producing oxygen. We show that P. furiosus SOR can be produced as a functional enzyme in planta and that plants producing SOR have enhanced tolerance to heat, light, and chemically induced ROS. Stress tolerance in the SOR-producing plants correlates positively with a delayed increase in ROS-sensitive transcripts and a decrease in ascorbate peroxidase activity. The SOR plants provide a good model system to study the impact of cytosolic ROS on downstream signaling in plant growth and development. Furthermore, this work demonstrates that this synthetic approach for reducing cytosolic ROS holds promise as a means for improving stress tolerance in crop plants. PMID:19684226

  15. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough.

    PubMed

    Panadero, Joaquin; Randez-Gil, Francisca; Prieto, Jose Antonio

    2005-12-28

    The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions. PMID:16366681

  16. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Liu, Degao; Patil, Gunvant B.; Zhai, Hong; Wang, Feibing; Stephenson, Troy J.; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T.; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  17. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis

    PubMed Central

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M.; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-01-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  18. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress.

    PubMed

    Dou, Haiou; Xv, Kunpeng; Meng, Qingwei; Li, Gang; Yang, Xinghong

    2015-01-01

    CBF3, a known cold-inducible gene that encodes a transcription factor, was isolated from Arabidopsis thaliana and introduced into the potato (Solanum tuberosum cv. 'luyin NO.1') under the control of the CaMV35S promoter or the rd29A promoter. Our results revealed that temperature of 40 °C or higher can significantly induce AtCBF3 expression. After heat stress, the net photosynthetic rate (Pn ), the maximal photochemical efficiency of photosystem II (PSII) (Fv /Fm ) and the accumulation of the D1 protein were higher in the transgenic lines than in the wild-type (WT) line. Moreover, compared with the WT line, O2 (●-) and H2 O2 accumulation in the transgenic lines were reduced. A Q-PCR assay of a subset of the genes involved in photosynthesis and antioxidant defence further verified the above results. Interestingly, under heat stress conditions, the accumulation of heat-shock protein 70 (HSP70) increased in the WT line but decreased in the transgenic lines. These results suggest that potato plants ectopically expressing AtCBF3 exhibited enhanced tolerance to high temperature, which is associated with improved photosynthesis and antioxidant defence via induction of the expression of many stress-inducible genes. However, this mechanism may not depend upon the regulatory pathways in which HSP70 is involved. PMID:24811248

  19. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant.

    PubMed

    Nie, Wang-Xing; Xu, Lin; Yu, Bing-Jun

    2015-01-01

    The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant.

  20. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Chen, Wei; He, Shaozhen; Liu, Degao; Patil, Gunvant B; Zhai, Hong; Wang, Feibing; Stephenson, Troy J; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  1. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    PubMed

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water.

  2. Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance.

    PubMed

    Müller, Maria; Kunz, Hans-Henning; Schroeder, Julian I; Kemp, Grant; Young, Howard S; Neuhaus, H Ekkehard

    2014-05-01

    Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.

  3. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed. PMID:16117113

  4. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed.

  5. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    PubMed

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water. PMID:26940489

  6. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.

    PubMed

    Zhao, Chunzhao; Zhang, Zhengjing; Xie, Shaojun; Si, Tong; Li, Yuanya; Zhu, Jian-Kang

    2016-08-01

    The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305

  7. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  8. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential.

    PubMed

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K(+) loss, decreased Na(+) accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na(+) and K(+) homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  9. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana.

    PubMed

    Guo, Jiangbo; Dai, Xiaojing; Xu, Wenzhong; Ma, Mi

    2008-07-01

    The goal of this study was to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by simultaneous overexpression of AsPCS1 and GSH1 (derived from garlic and baker's yeast) in Arabidopsis thaliana. Phytochelatins (PCs) and glutathione (GSH) are the main binding peptides involved in chelating heavy metal ions in plants and other living organisms. Single-gene transgenic lines had higher tolerance to and accumulated more Cd and As than wild-type. Compared to single-gene transgenic lines, dual-gene transformants exhibited significantly higher tolerance to and accumulated more Cd and As. One of the dual-gene transgenic lines, PG1, accumulated twice the amount of Cd as single-gene transgenic lines. Simultaneous overexpression of AsPCS1 and GSH1 led to elevated total PC production in transgenic Arabidopsis. These results indicate that such a stacking of modified genes is capable of increasing Cd and As tolerance and accumulation in transgenic lines, and represents a highly promising new tool for use in phytoremediation efforts.

  10. A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

    PubMed Central

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade. PMID:25635681

  11. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis.

    PubMed

    Li, Chunguang; Chen, Qijun; Gao, Xinqi; Qi, Bishu; Chen, Naizhi; Xu, Shouming; Chen, Jia; Wang, Xuechen

    2005-12-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H202 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  12. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  13. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential.

  14. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    DOE PAGESBeta

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting thatmore » KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.« less

  15. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    SciTech Connect

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.

  16. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis[W

    PubMed Central

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-01-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant–fungus pathosystem has conditionally mutualistic features. PMID:23023171

  17. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis1[OPEN

    PubMed Central

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-01-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  18. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE Gene Family Is Required for Osmotic Stress Tolerance and Male Sporogenesis1[C][W][OA

    PubMed Central

    Lakhssassi, Naoufal; Doblas, Verónica G.; Rosado, Abel; del Valle, Alicia Esteban; Posé, David; Jimenez, Antonio J.; Castillo, Araceli G.; Valpuesta, Victoriano; Borsani, Omar; Botella, Miguel A.

    2012-01-01

    TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter β-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission. PMID:22232384

  19. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm.

    PubMed

    Waterhouse, K E; Hofmo, P O; Tverdal, A; Miller, R R

    2006-05-01

    The response of sperm to cryopreservation and the fertility of frozen-thawed semen varies between species. Besides species differences in sperm physiology, structure and biochemistry, factors such as sperm transport and female reproductive tract anatomy will affect fertility of frozen-thawed semen. Therefore, studying differences in sperm cryotolerance between breeds and individuals instead of between species may reveal sources of variability in sperm cryotolerance. In the present study, the effect of cooling, re-warming and freezing and thawing on plasma membrane and acrosome integrity of sperm within and between Norwegian Landrace and Duroc breeds was studied. Furthermore, the relation between post-thaw survival rate and fatty acid composition of the sperm plasma membranes was investigated. Flow cytometry assessments of plasma membrane and acrosome integrity revealed no significant differences between breeds; however there were significant male-to-male variations within breeds in post-thaw percentages of live sperm (plasma membrane intact). The most abundant fatty acids in the plasma membranes from both breeds were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1, n-9), docosapentaenoic acid (22:5, n-6) and docosahexaenoic acid (22:6, n-3). The ratio of sigma operator 22:5, n-6 and 22:6, n-3/ sigma operator all other membrane fatty acids was significantly related to survival rate (plasma membrane integrity) of sperm for both Norwegian Landrace (correlation coefficient (r(s)) = 0.64, P < 0.05) and Duroc (r(s) = 0.67, P < 0.05) boars. In conclusion, male-to-male differences in sperm survival rate after freezing and thawing may be partly related to the amount of long-chain polyunsaturated fatty acids in the sperm plasma membranes. PMID:16672353

  20. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato.

    PubMed

    Pino, María-Teresa; Skinner, Jeffrey S; Jeknić, Zoran; Hayes, Patrick M; Soeldner, Alfred H; Thomashow, Michael F; Chen, Tony H H

    2008-04-01

    We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii. Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 degrees C in S. tuberosum and up to 4 degrees C in S. commersonii. Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii, AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBFpathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species.

  1. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    PubMed

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  2. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.

    PubMed

    Seo, Yean Joo; Park, Jong-Beum; Cho, Yeon-Jeong; Jung, Choonkyun; Seo, Hak Soo; Park, Soon-Ki; Nahm, Baek Hie; Song, Jong Tae

    2010-09-01

    Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought.

  3. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.

    PubMed

    Seo, Yean Joo; Park, Jong-Beum; Cho, Yeon-Jeong; Jung, Choonkyun; Seo, Hak Soo; Park, Soon-Ki; Nahm, Baek Hie; Song, Jong Tae

    2010-09-01

    Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought. PMID:20803085

  4. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis.

    PubMed

    Noshi, Masahiro; Hatanaka, Risa; Tanabe, Noriaki; Terai, Yusuke; Maruta, Takanori; Shigeoka, Shigeru

    2016-05-01

    Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.

  5. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis.

    PubMed

    Xia, Tongmei; Xiao, Dong; Liu, Dong; Chai, Wenting; Gong, Qingqiu; Wang, Ning Ning

    2012-01-01

    Nitrogen is an essential element for plant growth and yield. Improving Nitrogen Use Efficiency (NUE) of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. To identify new NUE genes is therefore an important task in molecular breeding. Macroautophagy (autophagy) is an intracellular process in which damaged or obsolete cytoplasmic components are encapsulated in double membraned vesicles termed autophagosomes, then delivered to the vacuole for degradation and nutrient recycling. One of the core components of autophagosome formation, ATG8, has been shown to directly mediate autophagosome expansion, and the transcript of which is highly inducible upon starvation. Therefore, we postulated that certain homologs of Saccharomyces cerevisiae ATG8 (ScATG8) from crop species could have potential for NUE crop breeding. A soybean (Glycine max, cv. Zhonghuang-13) ATG8, GmATG8c, was selected from the 11 family members based on transcript analysis upon nitrogen deprivation. GmATG8c could partially complement the yeast atg8 mutant. Constitutive expression of GmATG8c in soybean callus cells not only enhanced nitrogen starvation tolerance of the cells but accelerated the growth of the calli. Transgenic Arabidopsis over-expressing GmATG8c performed better under extended nitrogen and carbon starvation conditions. Meanwhile, under optimum growth conditions, the transgenic plants grew faster, bolted earlier, produced larger primary and axillary inflorescences, eventually produced more seeds than the wild-type. In average, the yield was improved by 12.9%. We conclude that GmATG8c may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:22629371

  6. Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance.

    PubMed

    Shi, Hai-Tao; Li, Rong-Jun; Cai, Wei; Liu, Wen; Wang, Chao-Lun; Lu, Ying-Tang

    2012-02-01

    Nitric oxide (NO) plays essential roles in many physiological and developmental processes in plants, including biotic and abiotic stresses, which have adverse effects on agricultural production. However, due to the lack of findings regarding nitric oxide synthase (NOS), many difficulties arise in investigating the physiological roles of NO in vivo and thus its utilization for genetic engineering. Here, to explore the possibility of manipulating the endogenous NO level, rat neuronal NOS (nNOS) was expressed in Arabidopsis thaliana. The 35S::nNOS plants showed higher NOS activity and accumulation of NO using the fluorescent probe 3-amino, 4-aminomethyl-2', 7'-difluorescein, diacetate (DAF-FM DA) assay and the hemoglobin assay. Compared with the wild type, the 35S::nNOS plants displayed improved salt and drought tolerance, which was further confirmed by changes in physiological parameters including reduced water loss rate, reduced stomatal aperture, and altered proline and malondialdehyde content. Quantitative real-time PCR analyses revealed that the expression of several stress-regulated genes was up-regulated in the transgenic lines. Furthermore, the transgenic lines also showed enhanced disease resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 by activating the expression of defense-related genes. In addition, we found that the 35S::nNOS lines flowered late by regulating the expression of CO, FLC and LFY genes. Together, these results demonstrated that it is a useful strategy to exploit the roles of plant NO in various processes by the expression of rat nNOS. The approach may also be useful for genetic engineering of crops with increased environmental adaptations. PMID:22186181

  7. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis.

    PubMed

    Yao, Luming; Jiang, Yina; Lu, Xinxin; Wang, Biao; Zhou, Pei; Wu, Tianlong

    2016-10-01

    Few regulators for drought tolerance have been identified in Lablab purpureus which is a multipurpose leguminous crop. The transcription factor MYB is involved in regulatory networks in response to abiotic and biotic stresses in plants. A novel R2R3-MYB factor in L. purpureus has been identified. An suppression subtraction hybridization (SSH) library was constructed using root tissues of L. purpureus MEIDOU 2012 from well-watered and water-stress treatments that were subjected to drought stress for 10 days. In addition, the cDNA of LpMYB1 was identified based on the SSH library. The cDNA of LpMYB1 is 858 bp and encodes a 285-amino acid protein with a calculated mass of 33.4 kDa. The LpMYB1 protein localizes to the nucleus and has transactivation activity with the activation domain in the C terminal region of the protein. In LpMYB1 overexpressed Arabidopsis, the tolerance of transgenic seedlings to drought and salt was improved, and the germination potential of transgenic seeds increase in the presence of NaCl or ABA. LpMYB1 is a drought-responsive R2R3-MYB factor that can increase the drought and salt tolerance of LpMYB1-overexpressed Arabidopsis. PMID:27565983

  8. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants.

    PubMed

    Brini, Faïçal; Hanin, Moez; Mezghani, Imed; Berkowitz, Gerald A; Masmoudi, Khaled

    2007-01-01

    Transgenic Arabidopsis plants overexpressing the wheat vacuolar Na(+)/H(+) antiporter TNHX1 and H(+)-PPase TVP1 are much more resistant to high concentrations of NaCl and to water deprivation than the wild-type strains. These transgenic plants grow well in the presence of 200 mM NaCl and also under a water-deprivation regime, while wild-type plants exhibit chlorosis and growth inhibition. Leaf area decreased much more in wild-type than in transgenic plants subjected to salt or drought stress. The leaf water potential was less negative for wild-type than for transgenic plants. This could be due to an enhanced osmotic adjustment in the transgenic plants. Moreover, these transgenic plants accumulate more Na(+) and K(+) in their leaf tissue than the wild-type plants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The rate of water loss under drought or salt stress was higher in wild-type than transgenic plants. Increased vacuolar solute accumulation and water retention could confer the phenotype of salt and drought tolerance of the transgenic plants. Overexpression of the isolated genes from wheat in Arabidopsis thaliana plants is worthwhile to elucidate the contribution of these proteins to the tolerance mechanism to salt and drought. Adopting a similar strategy could be one way of developing transgenic staple crops with improved tolerance to these important abiotic stresses.

  9. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158

  10. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Pr