Science.gov

Sample records for arabidopsis leaf cells

  1. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis

    PubMed Central

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-01-01

    N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. PMID:28475148

  2. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    PubMed

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  3. Intercalating Arabidopsis leaf cells: a jigsaw puzzle of lobes, necks, ROPs, and RICs.

    PubMed

    Settleman, Jeffrey

    2005-03-11

    Intercalation of cells is an evolutionarily conserved strategy used for a variety of developmental processes in animals. In this issue of Cell, Fu et al. have uncovered an elaborate Rho GTPase-mediated mechanism by which cytoskeletal-dependent intercalation of Arabidopsis leaf cells is achieved, suggesting that conserved Rho GTPase signaling pathways may similarly regulate tissue morphogenesis in animals and plants.

  4. Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication?

    PubMed

    Cookson, Sarah Jane; Radziejwoski, Amandine; Granier, Christine

    2006-07-01

    Leaf area expansion is affected by environmental conditions because of differences in cell number and/or cell size. Increases in the DNA content (ploidy) of a cell by endoreduplication are related to its size. The aim of this work was to determine how cell ploidy interacts with the regulation of cell size and with leaf area expansion. The approach used was to grow Arabidopsis thaliana plants performing increased or decreased rounds of endoreduplication under shading and water deficit. The shading and water deficit treatments reduced final leaf area and cell number; however, cell area was increased and decreased, respectively. These differences in cell size were unrelated to alterations of the endocycle, which was reduced by these treatments. The genetic modification of the extent of endoreduplication altered leaf growth responses to shading and water deficit. An increase in the extent of endoreduplication in a leaf rendered it more sensitive to the shade treatment but less sensitive to water deficit conditions. The link between the control of whole organ and individual cell expansion under different environmental conditions was demonstrated by the correlation between the plasticity of cell size and the changes in the duration of leaf expansion.

  5. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    PubMed

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  6. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion

    PubMed Central

    Yang, Yongil; Karlson, Dale

    2012-01-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development. PMID:22888122

  7. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.

  8. CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells

    PubMed Central

    Wu, Yan

    2013-01-01

    The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis. PMID:23846874

  9. Overexpression of the downward leaf curling (DLC) gene from melon changes leaf morphology by controlling cell size and shape in Arabidopsis leaves.

    PubMed

    Kee, Jae-Jun; Jun, Sang Eun; Baek, Seung-A; Lee, Tae-Soo; Cho, Myung Rae; Hwang, Hyun-Sik; Lee, Suk-Chan; Kim, Jongkee; Kim, Gyung-Tae; Im, Kyung-Hoan

    2009-08-31

    A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

  10. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    PubMed Central

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  11. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  12. High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll

    PubMed Central

    2010-01-01

    Background Despite the wide spread application of confocal and multiphoton laser scanning microscopy in plant biology, leaf phenotype assessment still relies on two-dimensional imaging with a limited appreciation of the cells' structural context and an inherent inaccuracy of cell measurements. Here, a successful procedure for the three-dimensional imaging and analysis of plant leaves is presented. Results The procedure was developed based on a range of developmental stages, from leaf initiation to senescence, of soil-grown Arabidopsis thaliana (L.) Heynh. Rigorous clearing of tissues, made possible by enhanced leaf permeability to clearing agents, allowed the optical sectioning of the entire leaf thickness by both confocal and multiphoton microscopy. The superior image quality, in resolution and contrast, obtained by the latter technique enabled the three-dimensional visualisation of leaf morphology at the individual cell level, cell segmentation and the construction of structural models. Image analysis macros were developed to measure leaf thickness and tissue proportions, as well as to determine for the epidermis and all layers of mesophyll tissue, cell density, volume, length and width. For mesophyll tissue, the proportion of intercellular spaces and the surface areas of cells were also estimated. The performance of the procedure was demonstrated for the expanding 6th leaf of the Arabidopsis rosette. Furthermore, it was proven to be effective for leaves of another dicotyledon, apple (Malus domestica Borkh.), which has a very different cellular organisation. Conclusions The pipeline for the three-dimensional imaging and analysis of plant leaves provides the means to include variables on internal tissues in leaf growth studies and the assessment of leaf phenotypes. It also allows the visualisation and quantification of alterations in leaf structure alongside changes in leaf functioning observed under environmental constraints. Data obtained using this procedure

  13. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.

    PubMed

    Paves, H; Truve, E

    2007-01-01

    Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of myosins in chloroplast photorelocation in Arabidopsis thaliana mesophyll cells. None of these agents had an effect on the chloroplast high-fluence-rate avoidance movement but all of the three myosin inhibitors blocked the accumulation movement of chloroplasts after a high-fluence-rate irradiation of the leaves. The results suggest that myosins have a role in A. thaliana chloroplast photorelocation.

  14. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication.

    PubMed

    Hur, Yoon-Sun; Um, Ji-Hyun; Kim, Sunghan; Kim, Kyunga; Park, Hee-Jung; Lim, Jong-Seok; Kim, Woo-Young; Jun, Sang Eun; Yoon, Eun Kyung; Lim, Jun; Ohme-Takagi, Masaru; Kim, Donggiun; Park, Jongbum; Kim, Gyung-Tae; Cheon, Choong-Ill

    2015-01-01

    Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.

  15. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions

    PubMed Central

    Zhang, Chunhua; Mallery, Eileen L.; Szymanski, Daniel B.

    2013-01-01

    In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool. PMID:23874346

  16. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  17. A shift toward smaller cell size via manipulation of cell cycle gene expression acts to smoothen Arabidopsis leaf shape.

    PubMed

    Kuwabara, Asuka; Backhaus, Andreas; Malinowski, Robert; Bauch, Marion; Hunt, Lee; Nagata, Toshiyuki; Monk, Nick; Sanguinetti, Guido; Fleming, Andrew

    2011-08-01

    Understanding the relationship of the size and shape of an organism to the size, shape, and number of its constituent cells is a basic problem in biology; however, numerous studies indicate that the relationship is complex and often nonintuitive. To investigate this problem, we used a system for the inducible expression of genes involved in the G1/S transition of the plant cell cycle and analyzed the outcome on leaf shape. By combining a careful developmental staging with a quantitative analysis of the temporal and spatial response of cell division pattern and leaf shape to these manipulations, we found that changes in cell division frequency occurred much later than the observed changes in leaf shape. These data indicate that altered cell division frequency cannot be causally involved in the observed change of shape. Rather, a shift to a smaller cell size as a result of the genetic manipulations performed correlated with the formation of a smoother leaf perimeter, i.e. appeared to be the primary cellular driver influencing form. These data are discussed in the context of the relationship of cell division, growth, and leaf size and shape.

  18. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation

    PubMed Central

    Kim, Gyung-Tae; Shoda, Keiko; Tsuge, Tomohiko; Cho, Kiu-Hyung; Uchimiya, Hirofumi; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Tsukaya, Hirokazu

    2002-01-01

    We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map-based strategy and identified it as the first member of the CtBP family to be found in plants. Wild-type AN cDNA reversed the narrow-leaved phenotype and the abnormal arrangement of cortical MTs of the an-1 mutation. In the animal kingdom, CtBPs self-associate and act as co-repressors of transcription. The AN protein can also self-associate in the yeast two-hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations. PMID:11889033

  19. A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana

    PubMed Central

    Vanhaeren, Hannes; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth. PMID:26217168

  20. Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants.

    PubMed

    Elsner, Joanna; Michalski, Marek; Kwiatkowska, Dorota

    2012-04-01

    The epidermis of an expanding dicot leaf is a mosaic of cells differing in identity, size and differentiation stage. Here hypotheses are tested that in such a cell mosaic growth is heterogeneous and changes with time, and that this heterogeneity is not dependent on the cell cycle regulation per se. Shape, size and growth of individual cells were followed with the aid of sequential replicas in expanding leaves of wild-type Arabidopsis thaliana and triple cyclinD3 mutant plants, and combined with ploidy estimation using epi-fluorescence microscopy. Relative growth rates in area of individual epidermal cells or small cell groups differ several fold from those of adjacent cells, and change in time. This spatial and temporal variation is not related to the size of either the cell or the nucleus. Shape changes and growth within an individual cell are also heterogeneous: anticlinal wall waviness appears at different times in different wall portions; portions of the cell periphery in contact with different neighbours grow with different rates. This variation is not related to cell growth anisotropy. The heterogeneity is typical for both the wild type and cycD3. Growth of leaf epidermis exhibits spatiotemporal variability.

  1. The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth[W][OA

    PubMed Central

    Fleury, Delphine; Himanen, Kristiina; Cnops, Gerda; Nelissen, Hilde; Boccardi, Tommaso Matteo; Maere, Steven; Beemster, Gerrit T.S.; Neyt, Pia; Anami, Sylvester; Robles, Pedro; Micol, José Luis; Inzé, Dirk; Van Lijsebettens, Mieke

    2007-01-01

    Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications. PMID:17329565

  2. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion.

    PubMed

    Seguí-Simarro, José M; Coronado, María José; Staehelin, L Andrew

    2008-11-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells.

  3. The Mitochondrial Cycle of Arabidopsis Shoot Apical Meristem and Leaf Primordium Meristematic Cells Is Defined by a Perinuclear Tentaculate/Cage-Like Mitochondrion1[W][OA

    PubMed Central

    Seguí-Simarro, José M.; Coronado, María José; Staehelin, L. Andrew

    2008-01-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells. PMID:18799659

  4. Functional overlap of the Arabidopsis leaf and root microbiota.

    PubMed

    Bai, Yang; Müller, Daniel B; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias; Dombrowski, Nina; Münch, Philipp C; Spaepen, Stijn; Remus-Emsermann, Mitja; Hüttel, Bruno; McHardy, Alice C; Vorholt, Julia A; Schulze-Lefert, Paul

    2015-12-17

    Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.

  5. Cell Polarity Signaling in Arabidopsis

    PubMed Central

    Yang, Zhenbiao

    2009-01-01

    Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems. PMID:18837672

  6. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity.

    PubMed

    Vercruyssen, Liesbeth; Tognetti, Vanesa B; Gonzalez, Nathalie; Van Dingenen, Judith; De Milde, Liesbeth; Bielach, Agnieszka; De Rycke, Riet; Van Breusegem, Frank; Inzé, Dirk

    2015-03-01

    Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.

  7. GROWTH REGULATING FACTOR5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity1[OPEN

    PubMed Central

    Vercruyssen, Liesbeth; Tognetti, Vanesa B.; Gonzalez, Nathalie; Van Dingenen, Judith; De Milde, Liesbeth; Bielach, Agnieszka; De Rycke, Riet; Van Breusegem, Frank; Inzé, Dirk

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity. PMID:25604530

  8. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf.

  9. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis

    PubMed Central

    Na, Jong-Kuk; Kim, Jae-Kwang; Kim, Dool-Yi; Assmann, Sarah M.

    2015-01-01

    The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest. PMID:25944928

  10. Shade avoidance and the regulation of leaf inclination in Arabidopsis.

    PubMed

    Mullen, Jack L; Weinig, Cynthia; Hangarter, Roger P

    2006-06-01

    As a rosette plant, Arabidopsis thaliana forms leaves near to the ground, which causes the plant to be vulnerable to shading by neighbours. One mechanism to avoid such shading is the regulation of leaf inclination, such that leaves can be raised to more vertical orientations to prevent neighbouring leaves from overtopping them. Throughout Arabidopsis rosette development, rosette leaves move to more vertical orientations when shaded by neighbouring leaves, exposed to low light levels or placed in the dark. After dark-induced reorientation of leaves, returning them to white light causes the leaves to reorient to more horizontal inclinations. These light-dependent leaf movements are more robust than, and distinct from, the diurnal movements of rosette leaves. However, the movements are gated by the circadian clock. The light-dependent leaf orientation response is mediated primarily through phytochromes A, B and E, with the orientation varying with the ratio of red light to far-red light, consistent with other shade-avoidance responses. However, even plants lacking these phytochromes were able to alter leaf inclination in response to white light, suggesting a role for other photoreceptors. In particular, we found significant changes in leaf inclination for plants exposed to green light. This green light response may be caused, in part, by light-dependent regulation of abscisic acid (ABA) biosynthesis.

  11. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  12. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis.

    PubMed

    Nguyen, Suong T T; McCurdy, David W

    2015-04-23

    Transfer cells (TCs) are trans-differentiated versions of existing cell types designed to facilitate enhanced membrane transport of nutrients at symplasmic/apoplasmic interfaces. This transport capacity is conferred by intricate wall ingrowths deposited secondarily on the inner face of the primary cell wall, hence promoting the potential trans-membrane flux of solutes and consequently assigning TCs as having key roles in plant growth and productivity. However, TCs are typically positioned deep within tissues and have been studied mostly by electron microscopy. Recent advances in fluorophore labelling of plant cell walls using a modified pseudo-Schiff-propidium iodide (mPS-PI) staining procedure in combination with high-resolution confocal microscopy have allowed visualization of cellular details of individual tissue layers in whole mounts, hence enabling study of tissue and cellular architecture without the need for tissue sectioning. Here we apply a simplified version of the mPS-PI procedure for confocal imaging of cellulose-enriched wall ingrowths in vascular TCs at the whole tissue level. The simplified mPS-PI staining procedure produced high-resolution three-dimensional images of individual cell types in vascular bundles and, importantly, wall ingrowths in phloem parenchyma (PP) TCs in minor veins of Arabidopsis leaves and companion cell TCs in pea. More efficient staining of tissues was obtained by replacing complex clearing procedures with a simple post-fixation bleaching step. We used this modified procedure to survey the presence of PP TCs in other tissues of Arabidopsis including cotyledons, cauline leaves and sepals. This high-resolution imaging enabled us to classify different stages of wall ingrowth development in Arabidopsis leaves, hence enabling semi-quantitative assessment of the extent of wall ingrowth deposition in PP TCs at the whole leaf level. Finally, we conducted a defoliation experiment as an example of using this approach to statistically

  13. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana.

    PubMed

    Jin, Biao; Wang, Li; Wang, Jing; Jiang, Ke-Zhen; Wang, Yang; Jiang, Xiao-Xue; Ni, Cheng-Yang; Wang, Yu-Long; Teng, Nian-Jun

    2011-02-18

    The leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on the structural and biochemical responses to warming. However, such information is very important to better understand the plant responses to global warming. Therefore, we grew Arabidopsis thaliana at the three day/night temperatures of 23/18°C (ambient temperature), 25.5/20.5°C (elevated by 2.5°C) and 28/23°C (elevated by 5°C) to simulate the middle and the upper projected warming expected within the 21st century for this purpose. The 28/23°C treatment significantly reduced the life span, total biomass and total weight of seeds compared with the other two temperatures. Among the three temperature regimes, the concentrations of starch, chlorophyll, and proline were the lowest at 28/23°C, whereas the total weight of seeds, concentrations of chlorophyll and proline, stomatal density (SD), stomatal conductance (gs), net CO2 assimilation rate (A) and transpiration rate (E) were the highest at 25.5/20.5°C. Furthermore, the number of chloroplasts per cell and mitochondrial size were highest at 25.5/20.5°C and lowest at 28/23°C. The conditions whereby the temperature was increased by 2.5°C were advantageous for Arabidopsis. However, a rise of 5°C produced negative effects, suggesting that lower levels of warming may benefit plants, especially those which belong to the same functional group as Arabidopsis, whereas higher levels of warming may produce negative affects. In addition, the increase in A under moderately warm conditions may be attributed to the increase in SD, chlorophyll content, and number of chloroplasts. Furthermore, starch accumulation in chloroplasts may be the main factor influencing chloroplast ultrastructure, and elevated temperature regulates plant respiration

  14. NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis[W

    PubMed Central

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-01-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall–loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. PMID:24363315

  15. LEAFDATA: a literature-curated database for Arabidopsis leaf development.

    PubMed

    Szakonyi, Dóra

    2016-01-01

    In the post-genomic era, biological databases provide an easy access to a wide variety of scientific data. The vast quantity of literature calls for curated databases where existing knowledge is carefully organized in order to aid novel discoveries. Leaves, the main photosynthetic organs are not only vital for plant growth but also essential for maintaining the global ecosystem by producing oxygen and food. Therefore, studying and understanding leaf formation and growth are key objectives in biology. Arabidopsis thaliana to this date remains the prime experimental model organism in plant science. LEAFDATA was created as an easily accessible and searchable web tool to assemble a relevant collection of Arabidopsis leaf literature. LEAFDATA currently contains 13,553 categorized statements from 380 processed publications. LEAFDATA can be searched for genes of interest using Arabidopsis Genome Initiative identifiers, for selected papers by means of PubMed IDs, authors and specific keywords. The results page contains details of the original publications, text fragments from the curated literature grouped according to information types and direct links to PubMed pages of the original papers. The LEAFDATA database offers access to searchable entries curated from a large number of scientific publications. Due to the unprecedented details of annotations and the fact that LEAFDATA already provides records about approximately 1600 individual loci, this database is useful for the entire plant research community.

  16. Stomatal Density Influences Leaf Water and Leaf Wax D/H Values in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Lee, H.; Feakins, S. J.; Sternberg, L. O.

    2014-12-01

    The hydrogen isotopic composition (δD) of plant leaf wax is a powerful tool to study the hydrology of past and present environments. The δD value of leaf waxes is known to primarily reflect the δD value of source water, modified by biological fractionations commonly summarized as the 'net or apparent' fractionation. It remains a challenge, however, to quantitatively relate the isotopic composition of the end product (wax) back to that of the precursor (water) because multiple isotope effects contributing to the net fractionation are not yet well understood. Transgenic variants have heretofore unexplored potential to isolate individual isotope effects. Here we report the first hydrogen isotopic measurements from transgenic Arabidopsis thaliana plants with calculations of leaf water enrichment, net and biosynthetic fractionation values from measured δD of plant waters and leaf wax n-alkanes. We employed transgenic Arabidopsis leaves, engineered to have different stomatal density, by differential expression of the stomatal growth hormone stomagen. Comparison of variants and wild types allow us to isolate the effects of stomatal density on leaf water and the net fractionation expressed by leaf wax biomarkers. Results show that transgenic leaves with denser pores have more enriched leaf water and leaf wax δD values than wild type and even more so than transgenic leaves with sparse stomata (difference of 10 ‰). Our findings that stomatal density controls leaf water and leaf wax δD values adds insights into the cause of variations in net fractionations between species, as well as suggesting that geological variations in stomatal density may modulate the sedimentary leaf wax δD record. In nature, stomatal density varies between species and environments, and all other factors being equal, this will contribute to variations in fractionations observed. Over geological history, lower stomatal densities occur at times of elevated pCO2; our findings predict reduced leaf

  17. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    PubMed

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  18. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.

    PubMed Central

    Berná, G; Robles, P; Micol, J L

    1999-01-01

    As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants. PMID:10353913

  19. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis.

    PubMed

    Wang, Xiaomin; Xie, Bo; Zhu, Maosheng; Zhang, Zhongming; Hong, Zonglie

    2012-01-01

    Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+ plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.

  20. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis.

    PubMed

    Huang, Tengbo; Kerstetter, Randall A; Irish, Vivian F

    2014-03-01

    The normal biological function of leaves, such as intercepting light and exchanging gases, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development.

  1. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis

    PubMed Central

    Huang, Tengbo

    2014-01-01

    The normal biological function of leaves, such as intercepting light and exchanging gasses, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development. PMID:24449383

  2. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.

    PubMed

    Takahashi, Hiro; Iwakawa, Hidekazu; Ishibashi, Nanako; Kojima, Shoko; Matsumura, Yoko; Prananingrum, Pratiwi; Iwasaki, Mayumi; Takahashi, Anna; Ikezaki, Masaya; Luo, Lilan; Kobayashi, Takeshi; Machida, Yasunori; Machida, Chiyoko

    2013-03-01

    It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.

  3. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis.

    PubMed

    Shimada, Takashi L; Takano, Yoshitaka; Shimada, Tomoo; Fujiwara, Masayuki; Fukao, Yoichiro; Mori, Masashi; Okazaki, Yozo; Saito, Kazuki; Sasaki, Ryosuke; Aoki, Koh; Hara-Nishimura, Ikuko

    2014-01-01

    Oil bodies are intracellular structures present in the seed and leaf cells of many land plants. Seed oil bodies are known to function as storage compartments for lipids. However, the physiological function of leaf oil bodies is unknown. Here, we show that leaf oil bodies function as subcellular factories for the production of a stable phytoalexin in response to fungal infection and senescence. Proteomic analysis of oil bodies prepared from Arabidopsis (Arabidopsis thaliana) leaves identified caleosin (CLO3) and α-dioxygenase (α-DOX1). Both CLO3 and α-DOX1 were localized on the surface of oil bodies. Infection with the pathogenic fungus Colletotrichum higginsianum promoted the formation of CLO3- and α-DOX1-positive oil bodies in perilesional areas surrounding the site of infection. α-DOX1 catalyzes the reaction from α-linolenic acid (a major fatty acid component of oil bodies) to an unstable compound, 2-hydroperoxy-octadecatrienoic acid (2-HPOT). Intriguingly, a combination of α-DOX1 and CLO3 produced a stable compound, 2-hydroxy-octadecatrienoic acid (2-HOT), from α-linolenic acid. This suggests that the colocalization of α-DOX1 and CLO3 on oil bodies might prevent the degradation of unstable 2-HPOT by efficiently converting 2-HPOT into the stable compound 2-HOT. We found that 2-HOT had antifungal activity against members of the genus Colletotrichum and that infection with C. higginsianum induced 2-HOT production. These results defined 2-HOT as an Arabidopsis phytoalexin. This study provides, to our knowledge, the first evidence that leaf oil bodies produce a phytoalexin under a pathological condition, which suggests a new mechanism of plant defense.

  4. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana

    PubMed Central

    Blonder, Benjamin; Vasseur, François; Violle, Cyrille; Shipley, Bill; Enquist, Brian J.; Vile, Denis

    2015-01-01

    The leaf economics spectrum (LES) describes strong relationships between multiple functional leaf traits that determine resource fluxes in vascular plants. Five models have been proposed to explain these patterns: two based on patterns of structural allocation, two on venation networks and one on resource allocation to cell walls and cell contents. Here we test these models using data for leaf and whole-plant functional traits. We use structural equation modelling applied to multiple ecotypes, recombinant inbred lines, near isogenic lines and vascular patterning mutants of Arabidopsis thaliana that express LES trait variation. We show that a wide variation in multiple functional traits recapitulates the LES at the whole-plant scale. The Wright et al. (2004) model and the Blonder et al. (2013) venation network model cannot be rejected by data, while two simple models and the Shipley et al. (2006) allocation model are rejected. Venation networks remain a key hypothesis for the origin of the LES, but simpler explanations also cannot be ruled out. PMID:25957316

  5. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana.

    PubMed

    Blonder, Benjamin; Vasseur, François; Violle, Cyrille; Shipley, Bill; Enquist, Brian J; Vile, Denis

    2015-05-08

    The leaf economics spectrum (LES) describes strong relationships between multiple functional leaf traits that determine resource fluxes in vascular plants. Five models have been proposed to explain these patterns: two based on patterns of structural allocation, two on venation networks and one on resource allocation to cell walls and cell contents. Here we test these models using data for leaf and whole-plant functional traits. We use structural equation modelling applied to multiple ecotypes, recombinant inbred lines, near isogenic lines and vascular patterning mutants of Arabidopsis thaliana that express LES trait variation. We show that a wide variation in multiple functional traits recapitulates the LES at the whole-plant scale. The Wright et al. (2004) model and the Blonder et al. (2013) venation network model cannot be rejected by data, while two simple models and the Shipley et al. (2006) allocation model are rejected. Venation networks remain a key hypothesis for the origin of the LES, but simpler explanations also cannot be ruled out. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.

    PubMed

    Li, Lei; Nelson, Clark J; Trösch, Josua; Castleden, Ian; Huang, Shaobai; Millar, A Harvey

    2017-02-01

    We applied (15)N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with (15)N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. © 2017 American Society of Plant Biologists. All rights reserved.

  7. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  8. Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis.

    PubMed

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M; Gardeström, Per

    2010-12-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.

  9. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  10. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.

    PubMed

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-06-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.

  11. In Vivo Packaging of Triacylglycerols Enhances Arabidopsis Leaf Biomass and Energy Density1[W][OA

    PubMed Central

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-01-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism. PMID:23616604

  12. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  13. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.

    PubMed

    Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine

    2012-09-01

    Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively.

  14. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis

    PubMed Central

    Gonzalez, Nathalie; Pauwels, Laurens; Baekelandt, Alexandra; De Milde, Liesbeth; Van Leene, Jelle; Besbrugge, Nienke; Heyndrickx, Ken S.; Pérez, Amparo Cuéllar; Durand, Astrid Nagels; De Clercq, Rebecca; Van De Slijke, Eveline; Vanden Bossche, Robin; Eeckhout, Dominique; Gevaert, Kris; Vandepoele, Klaas; De Jaeger, Geert; Goossens, Alain; Inzé, Dirk

    2015-01-01

    Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls. PMID:26232487

  15. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  16. The conserved mobility of mitochondria during leaf senescence reflects differential regulation of the cytoskeletal components in Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Leaf senescence is an organized process, which requires fine tuning between nuclear gene expression, activity of proteases and the maintenance of primary metabolism. Recently, we reported that leaf senescence was accompanied by an early degradation of the microtubule cytoskeleton in Arabidopsis thaliana. As the cytoskeleton is essential for cell stability, vesicle shuttling and organelle mobility, it might be asked how the regulation of these cell functions occurs with such drastic modifications of the cytoskeleton. Based on confocal laser microscopy observations and a micro-array analysis, the following addendum shows that mitochondrial mobility is conserved until the late stages of leaf senescence and provides evidences that the actin-cytoskeleton is maintained longer than the microtubule network. This conservation of actin-filaments is discussed with regards to energy metabolism as well as calcium signaling during programmed cell death. PMID:21270537

  17. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    PubMed

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana.

  18. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.

    PubMed

    Cosio, Claudia; Martinoia, Enrico; Keller, Catherine

    2004-02-01

    Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thlaspi caerulescens "Ganges" and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens "Prayon," accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the Michaelis-Menten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of "Ganges," whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens "Prayon," Cd could be transported by a Zn and Ca pathway, whereas in "Ganges," Cd could be transported mainly by other pathways.

  19. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  20. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  1. Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis

    PubMed Central

    Ding, Shunhua; Wang, Liang; Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    2015-01-01

    Abstract Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) and participates in the ascorbate‐glutathione cycle, which scavenges H2O2. Here, we report that chloroplastic/mitochondrial GR2 is an important regulator of leaf senescence. Seed development of the homozygous gr2 knockout mutant was blocked at the globular stage. Therefore, to investigate the function of GR2 in leaf senescence, we generated transgenic Arabidopsis plants with decreased GR2 using RNAi. The GR2 RNAi plants displayed early onset of age‐dependent and dark‐ and H2O2‐induced leaf senescence, which was accompanied by the induction of the senescence‐related marker genes SAG12 and SAG13. Furthermore, transcriptome analysis revealed that genes related to leaf senescence, oxidative stress, and phytohormone pathways were upregulated directly before senescence in RNAi plants. In addition, H2O2 accumulated to higher levels in RNAi plants than in wild‐type plants and the levels of H2O2 peaked in RNAi plants directly before the early onset of leaf senescence. RNAi plants showed a greater decrease in GSH/GSSG levels than wild‐type plants during leaf development. Our results suggest that GR2 plays an important role in leaf senescence by modulating H2O2 and glutathione signaling in Arabidopsis. PMID:26031939

  2. Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis1[W

    PubMed Central

    Shimada, Takashi L.; Takano, Yoshitaka; Shimada, Tomoo; Fujiwara, Masayuki; Fukao, Yoichiro; Mori, Masashi; Okazaki, Yozo; Saito, Kazuki; Sasaki, Ryosuke; Aoki, Koh; Hara-Nishimura, Ikuko

    2014-01-01

    Oil bodies are intracellular structures present in the seed and leaf cells of many land plants. Seed oil bodies are known to function as storage compartments for lipids. However, the physiological function of leaf oil bodies is unknown. Here, we show that leaf oil bodies function as subcellular factories for the production of a stable phytoalexin in response to fungal infection and senescence. Proteomic analysis of oil bodies prepared from Arabidopsis (Arabidopsis thaliana) leaves identified caleosin (CLO3) and α-dioxygenase (α-DOX1). Both CLO3 and α-DOX1 were localized on the surface of oil bodies. Infection with the pathogenic fungus Colletotrichum higginsianum promoted the formation of CLO3- and α-DOX1-positive oil bodies in perilesional areas surrounding the site of infection. α-DOX1 catalyzes the reaction from α-linolenic acid (a major fatty acid component of oil bodies) to an unstable compound, 2-hydroperoxy-octadecatrienoic acid (2-HPOT). Intriguingly, a combination of α-DOX1 and CLO3 produced a stable compound, 2-hydroxy-octadecatrienoic acid (2-HOT), from α-linolenic acid. This suggests that the colocalization of α-DOX1 and CLO3 on oil bodies might prevent the degradation of unstable 2-HPOT by efficiently converting 2-HPOT into the stable compound 2-HOT. We found that 2-HOT had antifungal activity against members of the genus Colletotrichum and that infection with C. higginsianum induced 2-HOT production. These results defined 2-HOT as an Arabidopsis phytoalexin. This study provides, to our knowledge, the first evidence that leaf oil bodies produce a phytoalexin under a pathological condition, which suggests a new mechanism of plant defense. PMID:24214535

  3. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

    PubMed

    Woo, Hye Ryun; Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Nam, Hong Gil; Lim, Pyung Ok

    2016-05-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.

  4. Differentiation of programmed Arabidopsis cells

    PubMed Central

    Xie, De-Yu; Shi, Ming-Zhu

    2012-01-01

    Plants express genes that encode enzymes that catalyse reactions to form plant secondary metabolites in specific cell types. However, the mechanisms of how plants decide their cellular metabolic fate and how cells diversify and specialise their specific secondary metabolites remains largely unknown. Additionally, whether and how an established metabolic program impacts genome-wide reprogramming of plant gene expression is unclear. We recently isolated PAP1-programmed anthocyanin-producing (red) and -free (white) cells from Arabidopsis thaliana; our previous studies have indicated that the PAP1 expression level is similar between these two different cell types. Transcriptional analysis showed that the red cells contain the TTG1-GL3/TT8-PAP1 regulatory complex, which controls anthocyanin biosynthesis; in contrast, the white cells and the wild-type cells lack this entire complex. These data indicate that different regulatory programming underlies the different metabolic states of these cells. In addition, our previous transcriptomic comparison indicated that there is a clear difference in the gene expression profiles of the red and wild-type cells, which is probably a consequence of cell-specific reprogramming. Based on these observations, in this report we discuss the potential mechanisms that underlie the programming and reprogramming of gene expression involved in anthocyanin biosynthesis. PMID:22126737

  5. Auxin-induced leaf blade expansion in Arabidopsis requires both wounding and detachment

    PubMed Central

    Keller, Christopher P.; Grundstad, Morgan L.; Evanoff, Michael A.; Keith, Jeremy D.; Lentz, Derek S.; Wagner, Samuel L.; Culler, Angela H.; Cohen, Jerry D.

    2011-01-01

    Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition. PMID:22101347

  6. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically.

    PubMed

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt D J; Muino, Jose M; Cutri, Lucas; Dornelas, Marcelo C; Angenent, Gerco C; Immink, Richard G H

    2012-08-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.

  7. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.

    PubMed

    Ling, Qihua; Huang, Weihua; Jarvis, Paul

    2011-02-01

    The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm(2); R(2) = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R(2) = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.

  8. Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis1[C][W

    PubMed Central

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M.; Gardeström, Per

    2010-01-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca2+-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence. PMID:20966154

  9. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  10. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  11. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    PubMed

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  12. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  13. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation.

    PubMed

    Wargent, Jason J; Gegas, Vasilis C; Jenkins, Gareth I; Doonan, John H; Paul, Nigel D

    2009-01-01

    Responses specific to ultraviolet B (UV-B) wavelengths are still poorly understood, both in terms of initial signalling and effects on morphogenesis. Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is the only known UV-B specific signalling component, but the role of UVR8 in leaf morphogenesis is unknown. The regulatory effects of UVR8 on leaf morphogenesis at a range of supplementary UV-B doses were characterized, revealing both UVR8-dependent and independent responses to UV irradiation. Inhibition of epidermal cell division in response to UV-B is largely independent of UVR8. However, overall leaf growth under UV-B irradiation in wild-type plants is enhanced compared with a uvr8 mutant because of a UVR8-dependent compensatory increase of cell area in wild-type plants. UVR8 was also required for the regulation of endopolyploidy in response to UV-B, and the uvr8 mutant also has a lower density of stomata than the wild type in the presence of UV-B, indicating that UVR8 has a regulatory role in other developmental events. Our findings show that, in addition to regulating UV-protective gene expression responses, UVR8 is involved in controlling aspects of leaf growth and morphogenesis. This work extends our understanding of how UV-B response is orchestrated at the whole-plant level.

  14. Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-06-01

    Cyclic leaf ascent and descent occur in synchrony and phase congruence with the lunisolar tidal force under a broad range of conditions. Digitized records of the vertical leaf movements of Arabidopsis thaliana were collected under space flight conditions in the International Space Station (ISS). Oscillations of leaf movements with periods of 45 and 90 min were found under light-adapted conditions, whereas in darkness, the periods were 45, 90, and 135 min. To demonstrate the close relationship between these oscillations and cyclical variations of the lunisolar gravitational force, we estimated the oscillations of the in-orbit lunisolar tide as they apply to the ISS, with the aid of the Etide software application. In general, in-orbit lunisolar gravitational profiles exhibited a periodicity of 45 min. Alignment of these in-orbit oscillations with the oscillations of Arabidopsis leaf movement revealed high degrees of synchrony and a congruence of phase. These data corroborate previous results which suggested a correlative relationship and a possible causal link between leaf movement rhythms obtained on ground and the rhythmic variation of the lunisolar tidal force.

  15. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  16. Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia

    PubMed Central

    Marcos, Danielle; Berleth, Thomas

    2014-01-01

    Self-regulatory patterning mechanisms capable of generating biologically meaningful, yet unpredictable cellular patterns offer unique opportunities for obtaining mathematical descriptions of underlying patterning systems properties. The networks of higher-order veins in leaf primordia constitute such a self-regulatory system. During the formation of higher-order veins, vascular precursors are selected from a homogenous field of subepidermal cells in unpredictable positions to eventually connect in complex cellular networks. Auxin transport routes have been implicated in this selection process, but understanding of their role in vascular patterning has been limited by our inability to monitor early auxin transport dynamics in vivo. Here we describe a live-imaging system in emerging Arabidopsis thaliana leaves that uses a PIN1:GFP reporter to visualize auxin transport routes and an Athb8:YFP reporter as a marker for vascular commitment. Live-imaging revealed common features initiating the formation of all higher-order veins. The formation of broad PIN1 expression domains is followed by their restriction, leading to sustained, elevated PIN1 expression in incipient procambial cells files, which then express Athb8. Higher-order PIN1 expression domains (hPEDs) are initiated as freely ending domains that extend toward each other and sometimes fuse with them, creating connected domains. During the restriction and specification phase, cells in wider hPEDs are partitioned into vascular and non-vascular fates: Central cells acquire a coordinated cell axis and express elevated PIN1 levels as well as the pre-procambial marker Athb8, while edge cells downregulate PIN1 and remain isodiametric. The dynamic nature of the early selection process is underscored by the instability of early hPEDs, which can result in dramatic changes in vascular network architecture prior to Athb8 expression, which is correlated with the promotion onto vascular cell fate. PMID:24966861

  17. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B.

    PubMed

    Gegas, Vasilis C; Wargent, Jason J; Pesquet, Edouard; Granqvist, Emma; Paul, Nigel D; Doonan, John H

    2014-06-01

    The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.

  18. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection

    PubMed Central

    Babu, Mohan; Griffiths, Jonathan S; Huang, Tyng-Shyan; Wang, Aiming

    2008-01-01

    Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05) up- (≥ 2.5 fold) and downregulated (≤ -2.5 fold), respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes. These identified genes

  19. Auxin Depletion from the Leaf Axil Conditions Competence for Axillary Meristem Formation in Arabidopsis and Tomato[W][OPEN

    PubMed Central

    Wang, Quan; Kohlen, Wouter; Rossmann, Susanne; Vernoux, Teva; Theres, Klaus

    2014-01-01

    The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development. PMID:24850851

  20. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development.

    PubMed

    Hasson, Alice; Plessis, Anne; Blein, Thomas; Adroher, Bernard; Grigg, Stephen; Tsiantis, Miltos; Boudaoud, Arezki; Damerval, Catherine; Laufs, Patrick

    2011-01-01

    CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.

  1. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species.

    PubMed

    Ballester, Patricia; Navarrete-Gómez, Marisa; Carbonero, Pilar; Oñate-Sánchez, Luis; Ferrándiz, Cristina

    2015-09-01

    The NGATHA (NGA) clade of transcription factors (TFs) forms a small subfamily of four members in Arabidopsis thaliana. NGA genes act redundantly to direct the development of apical tissues in the gynoecium, where they have been shown to be essential for style and stigma specification. In addition, NGA genes have a more general role in controlling lateral organ growth. The four NGA genes in Arabidopsis are expressed in very similar domains, although little is known about the nature of their putative regulators. Here, we have identified a conserved region within the four NGA promoters that we have used as a bait to screen a yeast library, aiming to identify such NGA regulators. Three members of the TCP family of TFs, named after the founding factors TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR 1 AND 2), were recovered from this screening, of which two [TCP2 and TCP3, members of the CINCINNATA (CIN) family of TCP genes (CIN-TCP) subclade] were shown to activate the NGA3 promoter in planta. We provide evidence that support that CIN-TCP genes are true regulators of NGA gene expression, and that part of the CIN-TCP role in leaf development is mediated by NGA upregulation. Moreover, we have found that this TCP-NGA regulatory interaction is likely conserved in angiosperms, including important crop species, for which the regulation of leaf development is a target for biotechnological improvement.

  2. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development

    PubMed Central

    Sacharowski, Sebastian P.; Gratkowska, Dominika M.; Sarnowska, Elzbieta A.; Kondrak, Paulina; Jancewicz, Iga; Porri, Aimone; Bucior, Ernest; Rolicka, Anna T.; Franzen, Rainer; Kowalczyk, Justyna; Pawlikowska, Katarzyna; Huettel, Bruno; Torti, Stefano; Schmelzer, Elmon; Coupland, George; Jerzmanowski, Andrzej; Koncz, Csaba; Sarnowski, Tomasz J.

    2015-01-01

    Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control. PMID:26106148

  3. Quantitative phenotyping of leaf margins in three dimensions, demonstrated on KNOTTED and TCP trangenics in Arabidopsis

    PubMed Central

    Sharon, Eran

    2014-01-01

    The geometry of leaf margins is an important shape characteristic that distinguishes among different leaf phenotypes. Current definitions of leaf shape are qualitative and do not allow quantification of differences in shape between phenotypes. This is especially true for leaves with some non-trivial three-dimensional (3D) configurations. Here we present a novel geometrical method novel geometrical methods to define, measure, and quantify waviness and lobiness of leaves. The method is based on obtaining the curve of the leaf rim from a 3D surface measurement and decomposing its local curvature vector into the normal and geodesic components. We suggest that leaf waviness is associated with oscillating normal curvature along the margins, while lobiness is associated with oscillating geodesic curvature. We provide a way to integrate these local measures into global waviness and lobiness quantities. Using these novel definitions, we analysed the changes in leaf shape of two Arabidopsis genotypes, either as a function of gene mis-expression induction level or as a function of time. These definitions and experimental methods open the way for a more quantitative study of the shape of leaves and other growing slender organs. PMID:24706720

  4. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    PubMed

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  5. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  6. The impact of water deficiency on leaf cuticle lipids of Arabidopsis.

    PubMed

    Kosma, Dylan K; Bourdenx, Brice; Bernard, Amélie; Parsons, Eugene P; Lü, Shiyou; Joubès, Jérôme; Jenks, Matthew A

    2009-12-01

    Arabidopsis (Arabidopsis thaliana) plants subjected to water deficit, sodium chloride (NaCl), or abscisic acid treatments were shown to exhibit a significant increase in the amount of leaf cuticular lipids. These stress treatments led to increases in cuticular wax amount per unit area of 32% to 80%, due primarily to 29% to 98% increases in wax alkanes. Of these treatments, only water deficit increased the total cutin monomer amount (by 65%), whereas both water deficit and NaCl altered the proportional amounts of cutin monomers. Abscisic acid had little effect on cutin composition. Water deficit, but not NaCl, increased leaf cuticle thickness (by 49%). Electron micrographs revealed that both water-deprived and NaCl-treated plants had elevated osmium accumulation in their cuticles. The abundance of cuticle-associated gene transcripts in leaves was altered by all treatments, including those performed in both pot-grown and in vitro conditions. Notably, the abundance of the ECERIFERUM1 gene transcript, predicted to function in alkane synthesis, was highly induced by all treatments, results consistent with the elevated alkane amounts observed in all treatments. Further, this induction of cuticle lipids was associated with reduced cuticle permeability and may be important for plant acclimation to subsequent water-limited conditions. Taken together, these results show that Arabidopsis provides an excellent model system to study the role of the cuticle in plant response to drought and related stresses, and its associated genetic and cellular regulation.

  7. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence.

    PubMed

    Jiang, Yanjuan; Liang, Gang; Yang, Shizhuo; Yu, Diqiu

    2014-01-01

    Leaf senescence is regulated by diverse developmental and environmental factors. Exogenous jasmonic acid (JA) can induce leaf senescence, whereas auxin suppresses this physiological process. Crosstalk between JA and auxin signaling has been well studied, but not during JA-induced leaf senescence. Here, we found that upon methyl jasmonate treatment, Arabidopsis thaliana wrky57 mutants produced typical leaf senescence symptoms, such as yellowing leaves, low chlorophyll content, and high cell death rates. Further investigation suggested that senescence-associated genes were upregulated in the wrky57 mutants. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of SENESCENCE4 and SENESCENCE-ASSOCIATED GENE12 and represses their transcription. In vivo and in vitro experiments suggested that WRKY57 interacts with JASMONATE ZIM-DOMAIN4/8 (JAZ4/8) and the AUX/IAA protein IAA29, repressors of the JA and auxin signaling pathways, respectively. Consistent with the opposing functions of JA and auxin in JA-induced leaf senescence, JAZ4/8 and IAA29 also displayed opposite functions in JA-induced leaf senescence and competitively interacted with WRKY57. Our results suggested that the JA-induced leaf senescence process can be antagonized by auxin via WRKY57. Moreover, WRKY57 protein levels were downregulated by JA but upregulated by auxin. Therefore, as a repressor in JA-induced leaf senescence, WRKY57 is a common component of the JA- and auxin-mediated signaling pathways.

  8. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  9. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    PubMed Central

    Uchiyama, Asako; Shimada-Beltran, Harumi; Levy, Amit; Zheng, Judy Y.; Javia, Parth A.; Lazarowitz, Sondra G.

    2014-01-01

    Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread. PMID:25414709

  10. REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis

    PubMed Central

    Xie, Yakun; Huhn, Kerstin; Brandt, Ronny; Potschin, Maren; Bieker, Stefan; Straub, Daniel; Doll, Jasmin; Drechsler, Thomas; Zentgraf, Ulrike; Wenkel, Stephan

    2014-01-01

    As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf senescence is a means with which to increase reproductive success and is therefore tightly coupled to the developmental age of the plant. However, senescence can also be induced in response to sub-optimal growth conditions as an exit strategy, which is accompanied by severely reduced yield. Here, we show that class III homeodomain leucine zipper (HD-ZIPIII) transcription factors, which are known to be involved in basic pattern formation, have an additional role in controlling the onset of leaf senescence in Arabidopsis. Several potential direct downstream genes of the HD-ZIPIII protein REVOLUTA (REV) have known roles in environment-controlled physiological processes. We report that REV acts as a redox-sensitive transcription factor, and directly and positively regulates the expression of WRKY53, a master regulator of age-induced leaf senescence. HD-ZIPIII proteins are required for the full induction of WRKY53 in response to oxidative stress, and mutations in HD-ZIPIII genes strongly delay the onset of senescence. Thus, a crosstalk between early and late stages of leaf development appears to contribute to reproductive success. PMID:25395454

  11. REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis.

    PubMed

    Xie, Yakun; Huhn, Kerstin; Brandt, Ronny; Potschin, Maren; Bieker, Stefan; Straub, Daniel; Doll, Jasmin; Drechsler, Thomas; Zentgraf, Ulrike; Wenkel, Stephan

    2014-12-01

    As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf senescence is a means with which to increase reproductive success and is therefore tightly coupled to the developmental age of the plant. However, senescence can also be induced in response to sub-optimal growth conditions as an exit strategy, which is accompanied by severely reduced yield. Here, we show that class III homeodomain leucine zipper (HD-ZIPIII) transcription factors, which are known to be involved in basic pattern formation, have an additional role in controlling the onset of leaf senescence in Arabidopsis. Several potential direct downstream genes of the HD-ZIPIII protein REVOLUTA (REV) have known roles in environment-controlled physiological processes. We report that REV acts as a redox-sensitive transcription factor, and directly and positively regulates the expression of WRKY53, a master regulator of age-induced leaf senescence. HD-ZIPIII proteins are required for the full induction of WRKY53 in response to oxidative stress, and mutations in HD-ZIPIII genes strongly delay the onset of senescence. Thus, a crosstalk between early and late stages of leaf development appears to contribute to reproductive success. © 2014. Published by The Company of Biologists Ltd.

  12. Nitric oxide regulates dark-induced leaf senescence through EIN2 in Arabidopsis.

    PubMed

    Niu, Yun-Han; Guo, Fang-Qing

    2012-08-01

    The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHYLENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling. © 2012 Institute of Botany, Chinese Academy of Sciences.

  13. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.

    PubMed

    Tanaka, Yu; Sugano, Shigeo S; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2013-05-01

    Photosynthetic rate is determined by CO2 fixation and CO2 entry into the plant through pores in the leaf epidermis called stomata. However, the effect of increased stomatal density on photosynthetic rate remains unclear. This work investigated the effect of alteration of stomatal density on leaf photosynthetic capacity in Arabidopsis thaliana. Stomatal density was modulated by overexpressing or silencing STOMAGEN, a positive regulator of stomatal development. Leaf photosynthetic capacity and plant growth were examined in transgenic plants. Increased stomatal density in STOMAGEN-overexpressing plants enhanced the photosynthetic rate by 30% compared to wild-type plants. Transgenic plants showed increased stomatal conductance under ambient CO2 conditions and did not show alterations in the maximum rate of carboxylation, indicating that the enhancement of photosynthetic rate was caused by gas diffusion changes. A leaf photosynthesis-intercellular CO2 concentration response curve showed that photosynthetic rate was increased under high CO2 conditions in association with increased stomatal density. STOMAGEN overexpression did not alter whole plant biomass, whereas its silencing caused biomass reduction. Our results indicate that increased stomatal density enhanced leaf photosynthetic capacity by modulating gas diffusion. Stomatal density may be a target trait for plant engineering to improve photosynthetic capacity.

  14. NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis.

    PubMed

    Lee, Il Hwan; Lee, In Chul; Kim, Jeongsik; Kim, Jin Hee; Chung, Eui-Hwan; Kim, Hyo Jung; Park, Su Jin; Kim, Yong Min; Kang, Sin Kyu; Nam, Hong Gil; Woo, Hye Ryun; Lim, Pyung Ok

    2016-10-01

    Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program. © 2016 Scandinavian Plant Physiology Society.

  15. The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana[W

    PubMed Central

    Cnops, Gerda; Neyt, Pia; Raes, Jeroen; Petrarulo, Marica; Nelissen, Hilde; Malenica, Nenad; Luschnig, Christian; Tietz, Olaf; Ditengou, Franck; Palme, Klaus; Azmi, Abdelkrim; Prinsen, Els; Van Lijsebettens, Mieke

    2006-01-01

    In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins, and vascular islands. The leaf laminas were asymmetric and narrow because of a severely reduced cell number. We postulate that the imbalance between cell proliferation and cell differentiation and the altered auxin distribution in both trn mutants cause asymmetric leaf growth and aberrant venation patterning. TRN1 and TRN2 were epistatic to ASYMMETRIC LEAVES1 with respect to leaf asymmetry, consistent with their expression in the shoot apical meristem and leaf primordia. TRN1 codes for a large plant-specific protein with conserved domains also found in a variety of signaling proteins, whereas TRN2 encodes a transmembrane protein of the tetraspanin family whose phylogenetic tree is presented. Double mutant analysis showed that TRN1 and TRN2 act in the same pathway. PMID:16531491

  16. Leaf Age-Dependent Photoprotective and Antioxidative Response Mechanisms to Paraquat-Induced Oxidative Stress in Arabidopsis thaliana

    PubMed Central

    Moustaka, Julietta; Tanou, Georgia; Adamakis, Ioannis-Dimosthenis; Eleftheriou, Eleftherios P.; Moustakas, Michael

    2015-01-01

    Exposure of Arabidopsis thaliana young and mature leaves to the herbicide paraquat (Pq) resulted in a localized increase of hydrogen peroxide (H2O2) in the leaf veins and the neighboring mesophyll cells, but this increase was not similar in the two leaf types. Increased H2O2 production was concomitant with closed reaction centers (qP). Thirty min after Pq exposure despite the induction of the photoprotective mechanism of non-photochemical quenching (NPQ) in mature leaves, H2O2 production was lower in young leaves mainly due to the higher increase activity of ascorbate peroxidase (APX). Later, 60 min after Pq exposure, the total antioxidant capacity of young leaves was not sufficient to scavenge the excess reactive oxygen species (ROS) that were formed, and thus, a higher H2O2 accumulation in young leaves occurred. The energy allocation of absorbed light in photosystem II (PSII) suggests the existence of a differential photoprotective regulatory mechanism in the two leaf types to the time-course Pq exposure accompanied by differential antioxidant protection mechanisms. It is concluded that tolerance to Pq-induced oxidative stress is related to the redox state of quinone A (QA). PMID:26096005

  17. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach.

    PubMed

    Diaz, Céline; Purdy, Sarah; Christ, Aurélie; Morot-Gaudry, Jean-Francois; Wingler, Astrid; Masclaux-Daubresse, Céline

    2005-06-01

    Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.

  18. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division

    PubMed Central

    Karidas, Premananda; Challa, Krishna Reddy; Nath, Utpal

    2015-01-01

    The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs. PMID:25711708

  19. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division.

    PubMed

    Karidas, Premananda; Challa, Krishna Reddy; Nath, Utpal

    2015-04-01

    The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2001-01-01

    Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.

  1. Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the Leaf Cellular Level1

    PubMed Central

    Cosio, Claudia; Martinoia, Enrico; Keller, Catherine

    2004-01-01

    Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term 109Cd and 65Zn uptake in mesophyll protoplasts of Thlaspi caerulescens “Ganges” and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens “Prayon,” accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the Michaelis-Menten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of “Ganges,” whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens “Prayon,” Cd could be transported by a Zn and Ca pathway, whereas in “Ganges,” Cd could be transported mainly by other pathways. PMID:14730081

  2. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.

    PubMed

    Schelbert, Silvia; Aubry, Sylvain; Burla, Bo; Agne, Birgit; Kessler, Felix; Krupinska, Karin; Hörtensteiner, Stefan

    2009-03-01

    During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.

  3. Comparative transcriptomics of Arabidopsis sperm cells.

    PubMed

    Borges, Filipe; Gomes, Gabriela; Gardner, Rui; Moreno, Nuno; McCormick, Sheila; Feijó, José A; Becker, Jörg D

    2008-10-01

    In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.

  4. The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    Ethylene regulates a variety of physiological processes, such as flowering, senescence, abscission, and fruit ripening. In particular, leaf expansion is also controlled by ethylene in Arabidopsis. Exogenous treatment with ethylene inhibits leaf expansion, and consistently, ethylene insensitive mutants show increased leaf area. Here, we report that the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) regulates leaf expansion in an ethylene signaling pathway. The HOS1-deficient mutant showed reduced leaf area and was insensitive to ethylene perception inhibitor, silver thiosulfate (STS). Accordingly, genes encoding ethylene signaling components were significantly up-regulated in hos1-3. This study demonstrates that the HOS1 protein is involved in ethylene signal transduction for the proper regulation of leaf expansion possibly under environmentally stressful conditions.

  5. The extracellular EXO protein mediates cell expansion in Arabidopsis leaves.

    PubMed

    Schröder, Florian; Lisso, Janina; Lange, Peggy; Müssig, Carsten

    2009-02-13

    The EXO (EXORDIUM) gene was identified as a potential mediator of brassinosteroid (BR)-promoted growth. It is part of a gene family with eight members in Arabidopsis. EXO gene expression is under control of BR, and EXO overexpression promotes shoot and root growth. In this study, the consequences of loss of EXO function are described. The exo loss of function mutant showed diminished leaf and root growth and reduced biomass production. Light and scanning electron microscopy analyses revealed that impaired leaf growth is due to reduced cell expansion. Epidermis, palisade, and spongy parenchyma cells were smaller in comparison to the wild-type. The exo mutant showed reduced brassinolide-induced cotyledon and hypocotyl growth. In contrast, exo roots were significantly more sensitive to the inhibitory effect of synthetic brassinolide. Apart from reduced growth, exo did not show severe morphological abnormalities. Gene expression analyses of leaf material identified genes that showed robust EXO-dependent expression. Growth-related genes such as WAK1, EXP5, and KCS1, and genes involved in primary and secondary metabolism showed weaker expression in exo than in wild-type plants. However, the vast majority of BR-regulated genes were normally expressed in exo. HA- and GFP-tagged EXO proteins were targeted to the apoplast. The EXO gene is essential for cell expansion in leaves. Gene expression patterns and growth assays suggest that EXO mediates BR-induced leaf growth. However, EXO does not control BR-levels or BR-sensitivity in the shoot. EXO presumably is involved in a signalling process which coordinates BR-responses with environmental or developmental signals. The hypersensitivity of exo roots to BR suggests that EXO plays a diverse role in the control of BR responses in the root.

  6. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Background Stromules are dynamic tubular structures emerging from the surface of plastids that are filled with stroma. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the plant cell is still unknown. It has been suggested that stromules facilitate the exchange of metabolites and/or signals between plastids and other cell compartments by increasing the cytosolically exposed plastid surface area but experimental evidence for the involvement of stromules in metabolic processes is not available. The frequent occurrence of stromules in both sink tissues and heterotrophic cell cultures suggests that the presence of carbohydrates in the extracellular space is a possible trigger of stromule formation. We have examined this hypothesis with induction experiments using the upper epidermis from rosette leaves of Arabidopsis thaliana as a model system. Results We found that the stromule frequency rises significantly if either sucrose or glucose is applied to the apoplast by vacuum infiltration. In contrast, neither fructose nor sorbitol or mannitol are capable of inducing stromule formation which rules out the hypothesis that stromule induction is merely the result of changes in the osmotic conditions. Stromule formation depends on translational activity in the cytosol, whereas protein synthesis within the plastids is not required. Lastly, stromule induction is not restricted to the plastids of the upper epidermis but is similarly observed also with chloroplasts of the palisade parenchyma. Conclusions The establishment of an experimental system allowing the reproducible induction of stromules by vacuum infiltration of leaf tissue provides a suitable tool for the systematic analysis of conditions and requirements leading to the formation of these dynamic organelle structures. The applicability of the approach is demonstrated here by analyzing the influence of

  7. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning1[W][OA

    PubMed Central

    de Carbonnel, Matthieu; Davis, Phillip; Roelfsema, M. Rob G.; Inoue, Shin-ichiro; Schepens, Isabelle; Lariguet, Patricia; Geisler, Markus; Shimazaki, Ken-ichiro; Hangarter, Roger; Fankhauser, Christian

    2010-01-01

    In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1–PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins. PMID:20071603

  8. Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid1[W

    PubMed Central

    Pegadaraju, Venkatramana; Knepper, Caleb; Reese, John; Shah, Jyoti

    2005-01-01

    Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA. PMID:16299172

  9. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid.

    PubMed

    Pegadaraju, Venkatramana; Knepper, Caleb; Reese, John; Shah, Jyoti

    2005-12-01

    Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.

  10. Cell cycle regulates cell type in the Arabidopsis sepal.

    PubMed

    Roeder, Adrienne H K; Cunha, Alexandre; Ohno, Carolyn K; Meyerowitz, Elliot M

    2012-12-01

    The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type.

  11. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis

    PubMed Central

    Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667

  12. Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins[C][W

    PubMed Central

    Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R.; Hem, Sonia; Santoni, Véronique; Maurel, Christophe

    2013-01-01

    The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics. PMID:23532070

  13. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis1[OPEN

    PubMed Central

    Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Lim, Pyung Ok

    2016-01-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  14. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  15. Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis.

    PubMed

    Nguyen, Ngoc Quy; Lee, Ok Ran

    2017-07-01

    Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

  16. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  17. Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana

    PubMed Central

    Brossa, Ricard; Pintó-Marijuan, Marta; Jiang, Keni; Alegre, Leonor; Feldman, Lewis J.

    2013-01-01

    Using Arabidopsis plants Col-0 and vtc2 transformed with a redox sensitive green fluorescent protein, (c-roGFP) and (m-roGFP), we investigated the effects of a progressive water stress and re-watering on the redox status of the cytosol and the mitochondria. Our results establish that water stress affects redox status differently in these two compartments, depending on phenotype and leaf age, furthermore we conclude that ascorbate plays a pivotal role in mediating redox status homeostasis and that Col-0 Arabidopsis subjected to water stress increase the synthesis of ascorbate suggesting that ascorbate may play a role in buffering changes in redox status in the mitochondria and the cytosol, with the presumed buffering capacity of ascorbate being more noticeable in young compared with mature leaves. Re-watering of water-stressed plants was paralleled by a return of both the redox status and ascorbate to the levels of well-watered plants. In contrast to the effects of water stress on ascorbate levels, there were no significant changes in the levels of glutathione, thereby suggesting that the regeneration and increase in ascorbate in water-stressed plants may occur by other processes in addition to the regeneration of ascorbate via the glutathione. Under water stress in vtc2 lines it was observed stronger differences in redox status in relation to leaf age, than due to water stress conditions compared with Col-0 plants. In the vtc2 an increase in DHA was observed in water-stressed plants. Furthermore, this work confirms the accuracy and sensitivity of the roGFP1 biosensor as a reporter for variations in water stress-associated changes in redox potentials. PMID:23656871

  18. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    PubMed

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  19. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development[OPEN

    PubMed Central

    Nelson, Clark J.; Castleden, Ian

    2017-01-01

    We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. PMID:28138016

  20. Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis.

    PubMed

    Han, In-Seob; Cho, Hae-Young; Moni, Akhi; Lee, Ah-Young; Briggs, Winslow R

    2013-01-01

    We recently investigated the roles of the phototropin 1 (PHOT1) LOV (light, oxygen or voltage) domains in mediating phototropic curvature in transgenic Arabidopsis seedlings expressing either wild-type PHOT1 or PHOT1 with one or both LOV domains inactivated by a single amino acid replacement. We have now investigated the role of the PHOT1 LOV domains in chloroplast movement and in leaf positioning in response to blue light. Low fluence rate blue light is known to mediate a chloroplast accumulation response and high fluence rate blue light an avoidance response in Arabidopsis leaves. As was the case for phototropism, LOV2 of PHOT1 is essential for chloroplast accumulation and LOV1 is dispensable. PHOT1 LOV2 is also essential to maintain developing primary leaves in a horizontal position under white light from above and LOV1 is again dispensable. A red light pulse given to dark-adapted light-grown plants followed by 2 h of darkness enhances both the chloroplast accumulation response under dim blue light and the chloroplast avoidance response under strong blue light. The effect is far-red reversible. This photoreversible response is normal in a phyB null mutant but does not appear in a phyA null mutant. These results suggest that phyA mediates the enhancement, induced by a red light pulse, of blue light-induced chloroplast movements.

  1. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana.

    PubMed

    Diaz, Céline; Saliba-Colombani, Vera; Loudet, Olivier; Belluomo, Pierre; Moreau, Laurence; Daniel-Vedele, Françoise; Morot-Gaudry, Jean-François; Masclaux-Daubresse, Céline

    2006-01-01

    For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.

  3. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue.

    PubMed

    Taylor, Kerry L; Brackenridge, Anika E; Vivier, Melané A; Oberholster, Anita

    2006-07-14

    Carotenoids are extremely sensitive to a variety of physico-chemical attacks which may have a profound effect on their characteristic properties, thereby influencing the accurate identification and quantification of individual compounds. In this light, a comprehensive summary of the pitfalls encountered and precautions to be administered during handling and storage of authentic standards and samples was found to be incomplete. Furthermore, acceptable baseline separation of trans-lutein from trans-zeaxanthin and between the cis- and trans-forms of neoxanthin and violaxanthin has not been satisfactorily demonstrated. Hence the most optimal sample preparation and analytical steps were determined and a sensitive and reproducible method for the quantitative HPLC profiling of the principal carotenoids found in plant leaf tissue was developed. A reverse-phase C(30) column with a binary mobile solvent system was used for the baseline separation of eight of the major carotenoids and the two chlorophylls (a and b) within 18min. These compounds were identified via the use of authentic standards, their spectral characteristics and HPLC-atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) confirmation. This method has been successfully applied for the quantification of plant pigments in Arabidopsis thaliana wild-type (WT) leaf tissue and in two A. thaliana non-photochemical mutants, namely npq1 and npq2. These mutants have previously been well-characterised and provided valuable reference data as well as acting as internal controls for the assessment of our new method.

  4. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit

    PubMed Central

    Baerenfaller, Katja; Massonnet, Catherine; Walsh, Sean; Baginsky, Sacha; Bühlmann, Peter; Hennig, Lars; Hirsch-Hoffmann, Matthias; Howell, Katharine A; Kahlau, Sabine; Radziejwoski, Amandine; Russenberger, Doris; Rutishauser, Dorothea; Small, Ian; Stekhoven, Daniel; Sulpice, Ronan; Svozil, Julia; Wuyts, Nathalie; Stitt, Mark; Hilson, Pierre; Granier, Christine; Gruissem, Wilhelm

    2012-01-01

    Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level. PMID:22929616

  5. IDA: a peptide ligand regulating cell separation processes in Arabidopsis.

    PubMed

    Aalen, Reidunn B; Wildhagen, Mari; Stø, Ida M; Butenko, Melinka A

    2013-12-01

    In contrast to animals, plants continuously produce new organs, such as leaves, flowers, and lateral roots (LRs), and may shed organs that have served their purpose. In the model plant Arabidopsis thaliana the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) signals through the leucine-rich repeat-receptor-like kinases (LRR-RLKs) HAESA (HAE), and HAESA-LIKE2 (HSL2) to control the abscission of floral organs after pollination. Recent work from other plant species indicates that this signalling system is conserved and could regulate leaf abscission in soybean and tomato. Abscission is a cell separation process involving the breakdown of cell walls between adjacent files of abscission zone (AZ) cells at the base of organs to be shed. The emergence of new lateral root primordia (LRP), initiated deep inside the root under the influence of the phytohormone auxin, is similarly dependent on cell wall dissolution to separate cells in the overlying tissues. It has been shown that this process also requires IDA, HAE, and HSL2. The receptors are redundant in function during floral organ abscission, but during lateral root emergence (LRE) they are differentially involved in regulating cell wall remodelling (CWR) genes. An overview is given here of the similarities and differences of IDA signalling during floral organ abscission and LRE.

  6. FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis.

    PubMed

    Larson-Rabin, Zachary; Li, Ziyu; Masson, Patrick H; Day, Christopher D

    2009-02-01

    Endoreduplication, a modified cell cycle that allows cells to increase ploidy without subsequent cell division, is a key component of plant growth and development. In this work, we show that some, but not all, of the endoreduplication of Arabidopsis (Arabidopsis thaliana) is mediated by the expression of a WD40 gene, FIZZY-RELATED2 (FZR2). Loss-of-function alleles show reduced endoreduplication and reduced expansion in trichomes and other leaf cells. Misexpression of FZR2 is sufficient to drive ectopic or extra endoreduplication in leaves, roots, and flowers, leading to alteration of cell sizes and, sometimes, organ size and shape. Our data, which suggest that reduced cell size can be compensated by increased cell proliferation to allow normal leaf morphology, are discussed with respect to the so-called compensation mechanism of plant development.

  7. Rewatering plants after a long water-deficit treatment reveals that leaf epidermal cells retain their ability to expand after the leaf has apparently reached its final size.

    PubMed

    Lechner, Leandra; Pereyra-Irujo, Gustavo A; Granier, Christine; Aguirrezábal, Luis A N

    2008-05-01

    Leaves expand during a given period of time until they reach their final size and form, which is called determinate growth. Duration of leaf expansion is stable when expressed in thermal-time and in the absence of stress, and consequently it is often proposed that it is controlled by a robust programme at the plant scale. The usual hypothesis is that growth cessation occurs when cell expansion becomes limited by an irreversible tightening of cell wall, and that leaf size is fixed once cell expansion ceases. The objective of this paper was to test whether leaf expansion could be restored by rewatering plants after a long soil water-deficit period. Four experiments were performed on two different species (Arabidopsis thaliana and Helianthus annuus) in which the area of leaves that had apparently reached their final size was measured upon reversal of water stresses of different intensities and durations. Re-growth of leaves that had apparently reached their final size occurred in both species, and its magnitude depended only on the time elapsed from growth cessation to rewatering. Leaf area increased up to 186% in A. thaliana and up to 88% in H. annuus after rewatering, with respect to the leaves of plants that remained under water deficit. Re-growth was accounted for by cell expansion. Increase in leaf area represented actual growth and not only a reversible change due to increased turgor. After the leaf has ceased to grow, leaf cells retain their ability to expand for several days before leaf size becomes fixed. A response window was identified in both species, during which the extent of leaf area recovery decreased with time after the 'initial' leaf growth cessation. These results suggest that re-growth after rewatering of leaves having apparently attained their final size could be a generalized phenomenon, at least in dicotyledonous plants.

  8. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  9. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Brown, C. S.; Matthews, S. W.

    1998-01-01

    Leaf structure and function under spaceflight conditions have received little study despite their important implications for biological life support systems using plants. Previous reports described disruption of the membrane apparatus for photosynthesis and a general decrease in carbohydrate content in foliage. During a series of three short-duration experiments (Chromex-03, -04, -05) on the US space shuttle (STS-54, STS-51, STS-68), we examined Arabidopsis thaliana leaves. The plants were at the rosette stage at the time of loading onto the space shuttle, and received the same light, temperature, carbon dioxide and humidity regimes in the orbiter as in ground controls. The experiments differed according to the regime provided in the headspace around the plants: this was either sealed (on mission STS-54); sealed with high levels of carbon dioxide (on mission STS-51) or vented to the cabin air through a filtration system (on mission STS-68). Immediately post-flight, leaf materials were fixed for microscopy or frozen in liquid nitrogen for subsequent analyses of chlorophyll and foliar carbohydrates. At the ultrastructural level, no aberrations in membrane structure were observed in any of the experiments. When air-flow was provided, plastids developed large starch grains in both spaceflight and ground controls. In the experiments with sealed chambers, spaceflight plants differed from ground controls with regard to measured concentrations of carbohydrate and chlorophyll, but the addition of airflow eliminated these differences. The results point to the crucial importance of consideration of the foliage microenvironment when spaceflight effects on leaf structure and metabolism are studied.

  10. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Brown, C. S.; Matthews, S. W.

    1998-01-01

    Leaf structure and function under spaceflight conditions have received little study despite their important implications for biological life support systems using plants. Previous reports described disruption of the membrane apparatus for photosynthesis and a general decrease in carbohydrate content in foliage. During a series of three short-duration experiments (Chromex-03, -04, -05) on the US space shuttle (STS-54, STS-51, STS-68), we examined Arabidopsis thaliana leaves. The plants were at the rosette stage at the time of loading onto the space shuttle, and received the same light, temperature, carbon dioxide and humidity regimes in the orbiter as in ground controls. The experiments differed according to the regime provided in the headspace around the plants: this was either sealed (on mission STS-54); sealed with high levels of carbon dioxide (on mission STS-51) or vented to the cabin air through a filtration system (on mission STS-68). Immediately post-flight, leaf materials were fixed for microscopy or frozen in liquid nitrogen for subsequent analyses of chlorophyll and foliar carbohydrates. At the ultrastructural level, no aberrations in membrane structure were observed in any of the experiments. When air-flow was provided, plastids developed large starch grains in both spaceflight and ground controls. In the experiments with sealed chambers, spaceflight plants differed from ground controls with regard to measured concentrations of carbohydrate and chlorophyll, but the addition of airflow eliminated these differences. The results point to the crucial importance of consideration of the foliage microenvironment when spaceflight effects on leaf structure and metabolism are studied.

  11. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.

    PubMed

    Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane

    2016-01-01

    The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.

  12. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.

    PubMed

    Hectors, Kathleen; Jacques, Eveline; Prinsen, Els; Guisez, Yves; Verbelen, Jean-Pierre; Jansen, Marcel A K; Vissenberg, Kris

    2010-10-01

    Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.

  13. Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using Fluorescence Activated Cell Sorting

    PubMed Central

    Coker, Timothy L. R.; Cevik, Volkan; Beynon, Jim L.; Gifford, Miriam L.

    2015-01-01

    Changes in gene expression form a crucial part of the plant response to infection. In the last decade, whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, with some pathogens such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response encompassing responses of non-infected as well as infected cells within the leaf. Highly localized expression changes that occur in infected cells may be diluted by the comparative abundance of non-infected cells. Furthermore, local and systemic Hpa responses of a differing nature may become conflated. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. We isolated haustoriated (Hpa-proximal) and non-haustoriated (Hpa-distal) cells from infected seedling samples using FACS, and measured global gene expression. When compared with an uninfected control, 278 transcripts were identified as significantly differentially expressed, the vast majority of which were differentially expressed specifically in Hpa-proximal cells. By comparing our data to previous, whole organ studies, we discovered many highly locally regulated genes that can be implicated as novel in the Hpa response, and that were uncovered for the first time using our sensitive FACS technique. PMID:26217372

  14. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei.

    PubMed

    Park, Kyunghyuk; Frost, Jennifer M; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2016-10-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

  15. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

    PubMed Central

    Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2016-01-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573

  16. Metabolism of Separated Leaf Cells

    PubMed Central

    Jensen, R. G.; Francki, R. I. B.; Zaitlin, M.

    1971-01-01

    Suspensions of mesophyll cells, prepared from tobacco leaves by treatment with pectinase, fixed CO2 by photosynthesis. The products of carbon assimilation were similar for both cells and intact tissue. The cells sustained a constant fixation rate for 20 to 25 hours. For optimal CO2 fixation, enzymatic maceration of the tissue was accomplished in 0.8 m sorbitol, but photosynthesis was optimal in 0.6 m sorbitol at pH 7 to 7.5. A hypertonic environment during maceration, which results in cell plasmolysis, is essential to maintain intact plasmalemmas and hence photosynthetically active cells. For sustained CO2 fixation, light intensities below 500 foot-candles were required. Higher light intensities (to 1000 foot-candles) gave high initial rates of CO2 fixation, but the cells bleached and were inactive on prolonged incubation. At pH 7.0 the bicarbonate concentration at maximal velocity of CO2 fixation was about 1.5 mm and the apparent Km for bicarbonate was 0.2 mm. Images PMID:16657742

  17. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    PubMed Central

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  18. The peri-cell-cycle in Arabidopsis.

    PubMed

    Beeckman, T; Burssens, S; Inzé, D

    2001-03-01

    The root systems of plants proliferate via de novo formed meristems originating from differentiated pericycle cells. The identity of putative signals responsible for triggering some of the pericycle cells to re-enter the cell cycle remains unknown. Here, the cell cycle regulation in the pericycle of seedling roots of Arabidopsis thaliana (L.) HEYNH: is studied shortly after germination using various strategies. Based on the detailed analysis of the promoter-beta-glucuronidase activity of four key cell cycle regulatory genes, combined with cell length measurements, microdensitometry of DNA content, and experiments with a cell cycle-blocking agent, a model is proposed for cell cycle regulation in the pericycle at the onset of lateral root initiation. The results clearly show that before the first lateral root is initiated, the pericycle consists of dissimilar cell files in respect of their cell division history. Depending on the distance behind the root tip and on position in relation to the vascular tissue, particular pericycle cells remain in the G(2) phase of the cell cycle and are apparently more susceptible to lateral root initiation than others.

  19. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization.

    PubMed

    Robinson, Whitney D; Carson, Ira; Ying, Sheng; Ellis, Kaya; Plaxton, William C

    2012-12-01

    Limitation of crop productivity by suboptimal phosphorus (P) nutrition is a widespread concern. Enhanced crop P-use efficiency could be achieved by improving P remobilization from senescing leaves to developing tissues and seeds. Transcriptomic studies indicate that hundreds of Arabidopsis thaliana genes are up-regulated during leaf senescence, including that encoding the purple acid phosphatase (PAP) AtPAP26 (At5g34850). In this study, biochemical and functional genomic tools were integrated to test the hypothesis that AtPAP26 participates in P remobilization during leaf senescence. An eightfold increase in acid phosphatase activity of senescing leaves was correlated with the accumulation of AtPAP26 transcripts and immunoreactive AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a > 90% decrease in acid phosphatase activity, markedly impaired P remobilization efficiency and delayed senescence. This was paralleled by reduced seed total P concentrations and germination rates. These results demonstrate that AtPAP26 loss of function causes dramatic effects that cannot be compensated for by any other PAP isozyme, even though Arabidopsis contains 29 different PAP genes. Our current and earlier studies establish that AtPAP26 not only helps to scavenge P from organic P sources when Arabidopsis is cultivated in inorganic orthophosphate (Pi)-deficient soils, but also has an important P remobilization function during leaf senescence. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for

  1. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    PubMed Central

    Kim, Jeong Im; Murphy, Angus S.; Baek, Dongwon; Lee, Shin-Woo; Yun, Dae-Jin; Bressan, Ray A.; Narasimhan, Meena L.

    2011-01-01

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. PMID:21511905

  2. incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness.

    PubMed

    Esteve-Bruna, David; Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis

    2013-03-01

    Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness.

  3. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  4. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure.

    PubMed

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-11-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period.

  5. Stomatal and pavement cell density linked to leaf internal CO2 concentration

    PubMed Central

    Šantrůček, Jiří; Vráblová, Martina; Šimková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-01-01

    Background and Aims Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Methods Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. Key Results SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. Conclusions It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. PMID:24825295

  6. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.

    PubMed

    Voss, Ingo; Koelmann, Meike; Wojtera, Joanna; Holtgrefe, Simone; Kitzmann, Camillo; Backhausen, Jan E; Scheibe, Renate

    2008-07-01

    Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds-T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions.

  7. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    PubMed

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.

  8. Evolution and Diverse Roles of the CUP-SHAPED COTYLEDON Genes in Arabidopsis Leaf Development[C][W

    PubMed Central

    Hasson, Alice; Plessis, Anne; Blein, Thomas; Adroher, Bernard; Grigg, Stephen; Tsiantis, Miltos; Boudaoud, Arezki; Damerval, Catherine; Laufs, Patrick

    2011-01-01

    CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes. PMID:21258003

  9. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis.

    PubMed

    Amanda, Dhika; Doblin, Monika S; Galletti, Roberta; Bacic, Antony; Ingram, Gwyneth C; Johnson, Kim L

    2016-12-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.

  10. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  11. The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis.

    PubMed

    Wang, Mo; Rui, Lu; Yan, Haojie; Shi, Hua; Zhao, Wanying; Lin, Jinshan Ella; Zhang, Kai; Blakeslee, Joshua J; Mackey, David; Tang, Dingzhong; Wei, Zhongmin; Wang, Guo-Liang

    2017-10-04

    Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defense in plants. However, their function in plant immunity has not been fully understood. In this study, we show that expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv tomato (Pst) DC3000 infection, and that knock out of Fd2 (Fd2-KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. Upon Pst DC3000 infection, the Fd2-KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid-related immune responses. Fd2-KO also shows defects in accumulation of reactive oxygen species induced by pathogen-associated molecular pattern-triggered immunity. However, Fd2-KO shows enhanced R-protein-mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector-triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin-binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 play an important role in plant immunity. This article is protected by copyright. All rights reserved. © 2017 BSPP and John Wiley & Sons Ltd.

  12. A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast {omega}9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast {omega}9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.

  13. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.

    PubMed

    Boex-Fontvieille, Edouard; Daventure, Marlène; Jossier, Mathieu; Zivy, Michel; Hodges, Michael; Tcherkez, Guillaume

    2013-01-01

    Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.

  14. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress.

    PubMed

    Semane, Brahim; Dupae, Joke; Cuypers, Ann; Noben, Jean-Paul; Tuomainen, Marjo; Tervahauta, Arja; Kärenlampi, Sirpa; Van Belleghem, Frank; Smeets, Karen; Vangronsveld, Jaco

    2010-03-01

    The leaf proteome of 3-week-old Arabidopsis thaliana seedlings exposed for 1 week to low, environmentally realistic Cd concentrations was investigated. The data indicated that at 1muMCd, A. thaliana plants adapted their metabolism to cope with the Cd exposure. As a result, only moderate protein changes were observed. However, at 10muMCd, severe stress was indicated by growth reduction and chlorosis of rosette leaves at the macroscopic level and by lipid peroxidation and enhanced peroxidase activity at the cellular level. Of the 730 reproducible proteins among all gels, 21 were statistically upregulated in response to Cd. These proteins can be functionally grouped into 5 classes: proteins involved in (1) oxidative stress response, (2) photosynthesis and energy production, (3) protein metabolism, (4) gene expression and finally, (5) proteins with various or unknown function. In order to provide greater insight into the mechanisms induced on Cd exposure, a working model is proposed. Copyright 2009 Elsevier GmbH. All rights reserved.

  15. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.

    PubMed

    Adamchuk, N I

    2004-07-01

    Properties of mesophyll cells and photosynthetic membranes of Arabidopsis thaliana (L.) Heynh. and Pisum sativum (L.) plants grown in a horizontal clinostat and in control conditions were compared. Obtained data have show that under clinorotation conditions seedlings have experienced the following cell morphology changes structural chloroplast rearrangement in palisade cells, pigment content alteration, and cell aging acceleration.

  16. Cell-specific vacuolar calcium storage mediated by "CAX1" regulates apoplastic calcium concentration, gas exchange, and plant productivity in "Arabidopsis"

    USDA-ARS?s Scientific Manuscript database

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from "Arabidopsis thaliana" leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen...

  17. Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis1

    PubMed Central

    Zhang, Xiaoli; Myers, Alan M.; James, Martha G.

    2005-01-01

    The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis. PMID:15908598

  18. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.

  19. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation.

    PubMed

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-04-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function.SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.

  20. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    PubMed Central

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  1. Cell growth and differentiation in Arabidopsis epidermal cells.

    PubMed

    Guimil, Sonia; Dunand, Christophe

    2007-01-01

    Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to each.

  2. Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis.

    PubMed

    Takahashi, Misa; Furuhashi, Takamasa; Ishikawa, Naoko; Horiguchi, Gorou; Sakamoto, Atsushi; Tsukaya, Hirokazu; Morikawa, Hiromichi

    2014-03-01

    • To gain more insight into the physiological function of nitrogen dioxide (NO₂), we investigated the effects of exogenous NO₂ on growth in Arabidopsis thaliana. • Plants were grown in air without NO₂ for 1 wk after sowing and then grown for 1-4 wk in air with (designated treated plants) or without (control plants) NO₂. Plants were irrigated semiweekly with a nutrient solution containing 19.7 mM nitrate and 10.3 mM ammonium. • Five-week-old plants treated with 50 ppb NO₂ showed a ≤ 2.8-fold increase in biomass relative to controls. Treated plants also showed early flowering. The magnitude of the effects of NO₂ on leaf expansion, cell proliferation and enlargement was greater in developing than in maturing leaves. Leaf areas were 1.3-8.4 times larger on treated plants than corresponding leaves on control plants. The NO₂-induced increase in leaf size was largely attributable to cell proliferation in developing leaves, but was attributable to both cell proliferation and enlargement in maturing leaves. The expression of different sets of genes for cell proliferation and/or enlargement was induced by NO₂, but depended on the leaf developmental stage. • Collectively, these results indicated that NO₂ regulates organ growth by controlling cell proliferation and enlargement. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Ethylene response pathway is essential for ARABIDOPSIS A-FIFTEEN function in floral induction and leaf senescence.

    PubMed

    Chen, Guan-Hong; Chan, Yuan-Li; Liu, Chia-Ping; Wang, Long-Chi

    2012-04-01

    ARABIDOPSIS A-FIFTEEN (AAF) encodes a plastid protein and was originally identified as a SENESCENCE-ASSOCIATED GENE. Previously, we found that overexpression of AAF (AAF-OX) in Arabidopsis led to accumulated reactive oxygen species and promoted leaf senescence induced by oxidative stress, which was suppressed by a null mutant, ein2-5, in ethylene response pathway. Whether AAF function is involved in ethylene biosynthesis and/or the response pathway remained unknown. Here we show that neither overexpression (AAF-OX) nor a null mutant (aaf-KO) of AAF generates a higher level of ethylene than the wild type and display a typical triple-response phenotype in etiolated seedlings treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Nevertheless, ein2-5 suppresses the phenotypes of early flowering and age-dependent leaf senescence in AAF-OX plants. We reveal that a functional ethylene response is essential for AAF function in leaf senescence and floral induction, but AAF is unlikely a regulatory component integral to the ethylene pathway.

  4. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition.

    PubMed

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-07-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.

  6. QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds

    PubMed Central

    Chardon, Fabien; Jasinski, Sophie; Durandet, Monique; Lécureuil, Alain; Soulay, Fabienne; Bedu, Magali; Guerche, Philippe; Masclaux-Daubresse, Céline

    2014-01-01

    Sequential and monocarpic senescence are observed at vegetative and reproductive stages, respectively. Both facilitate nitrogen (N) remobilization and control the duration of carbon (C) fixation. Genetic and environmental factors control N and C resource allocation to seeds. Studies of natural variation in Arabidopsis thaliana revealed differences between accessions for leaf senescence phenotypes, seed N and C contents, and N remobilization efficiency-related traits. Here, a quantitative genetics approach was used to gain a better understanding of seed filling regulation in relation to leaf senescence and resource allocation. For that purpose, three Arabidopsis recombinant inbred line populations (Ct-1×Col-0, Cvi-0×Col-0, Bur-0×Col-0) were used to map QTL (quantitative trait loci) for ten traits related to senescence, resource allocation, and seed filling. The use of common markers across the three different maps allowed direct comparisons of the positions of the detected QTL in a single consensus map. QTL meta-analysis was then used to identify interesting regions (metaQTL) where QTL for several traits co-localized. MetaQTL were compared with positions of candidate genes known to be involved in senescence processes and flowering time. Finally, investigation of the correlation between yield and seed N concentration in the three populations suggests that leaf senescence disrupts the negative correlation generally observed between these two traits. PMID:24692652

  7. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition1

    PubMed Central

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-01-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 × Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of 15N between sink and source leaves during the vegetative stage of development using 15N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of 15N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs. PMID:18467460

  8. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development.

    PubMed

    Quesada, Víctor; Sarmiento-Mañús, Raquel; González-Bayón, Rebeca; Hricová, Andrea; Pérez-Marcos, Rubén; Graciá-Martínez, Eva; Medina-Ruiz, Laura; Leyva-Díaz, Eduardo; Ponce, María Rosa; Micol, José Luis

    2011-11-01

    Little is known about the mechanisms that control transcription of the mitochondrial and chloroplastic genomes, and their interplay within plant cells. Here, we describe the positional cloning of the Arabidopsis RUG2 gene, which encodes a protein that is dual-targeted to mitochondria and chloroplasts, and is homologous with the metazoan mitochondrial transcription termination factors (mTERFs). In the loss-of-function rug2 mutants, most organs were pale and showed reduced growth, and the leaves exhibited both green and pale sectors, with the latter containing sparsely packed mesophyll cells. Chloroplast and mitochondrion development were strongly perturbed in the rug2-1 mutant, particularly in pale leaf sectors, in which chloroplasts were abnormally shaped and reduced in number, thereby impairing photoautotrophic growth. As expected from the pleiotropic phenotypes caused by its loss-of-function alleles, the RUG2 gene was ubiquitously expressed. In a microarray analysis of the mitochondrial and chloroplastic genomes, 56 genes were differentially expressed between rug2-1 and the wild type: most mitochondrial genes were downregulated, whereas the majority of the chloroplastic genes were upregulated. Quantitative RT-PCR analyses showed that the rug2-1 mutation specifically increases expression of the RpoTp nuclear gene, which encodes chloroplastic RNA polymerase. Therefore, the RUG2 nuclear gene seems to be crucial for the maintenance of the correct levels of transcripts in the mitochondria and chloroplasts, which is essential for optimized functions of these organelles and proper plant development. Our results highlight the complexity of the functional interaction between these two organelles and the nucleus. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  9. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  10. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis.

    PubMed

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-10-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.

  11. Overexpression of a LAM Domain Containing RNA-Binding Protein LARP1c Induces Precocious Leaf Senescence in Arabidopsis

    PubMed Central

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-01-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence. PMID:22965746

  12. Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Arabidopsis thaliana Leaf Development

    PubMed Central

    Tameshige, Toshiaki; Fujita, Hironori; Watanabe, Keiro; Toyokura, Koichi; Kondo, Maki; Tatematsu, Kiyoshi; Matsumoto, Noritaka; Tsugeki, Ryuji; Kawaguchi, Masayoshi; Nishimura, Mikio; Okada, Kiyotaka

    2013-01-01

    The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes. PMID:23935517

  13. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana.

    PubMed

    Widemann, Emilie; Smirnova, Ekaterina; Aubert, Yann; Miesch, Laurence; Heitz, Thierry

    2016-01-06

    The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an

  14. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana

    PubMed Central

    Widemann, Emilie; Smirnova, Ekaterina; Aubert, Yann; Miesch, Laurence; Heitz, Thierry

    2016-01-01

    The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an

  15. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.

    PubMed Central

    Melaragno, JE; Mehrotra, B; Coleman, AW

    1993-01-01

    Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050

  16. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming.

    PubMed

    Ma, Wei; Smigel, Andries; Walker, Robin K; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A

    2010-10-01

    Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal

  17. Leaf Senescence Signaling: The Ca2+-Conducting Arabidopsis Cyclic Nucleotide Gated Channel2 Acts through Nitric Oxide to Repress Senescence Programming1[W][OA

    PubMed Central

    Ma, Wei; Smigel, Andries; Walker, Robin K.; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A.

    2010-01-01

    Ca2+ and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca2+. The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca2+ modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca2+ and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca2+ uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca2+ accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H2O2 generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca2+ channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca2+ signaling provides evidence consistent with genetic studies of the relationship between Ca2+ signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca2+ uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition

  18. Leaf Segmentation and Tracking in Arabidopsis thaliana Combined to an Organ-Scale Plant Model for Genotypic Differentiation

    PubMed Central

    Viaud, Gautier; Loudet, Olivier; Cournède, Paul-Henry

    2017-01-01

    A promising method for characterizing the phenotype of a plant as an interaction between its genotype and its environment is to use refined organ-scale plant growth models that use the observation of architectural traits, such as leaf area, containing a lot of information on the whole history of the functioning of the plant. The Phenoscope, a high-throughput automated platform, allowed the acquisition of zenithal images of Arabidopsis thaliana over twenty one days for 4 different genotypes. A novel image processing algorithm involving both segmentation and tracking of the plant leaves allows to extract areas of the latter. First, all the images in the series are segmented independently using a watershed-based approach. A second step based on ellipsoid-shaped leaves is then applied on the segments found to refine the segmentation. Taking into account all the segments at every time, the whole history of each leaf is reconstructed by choosing recursively through time the most probable segment achieving the best score, computed using some characteristics of the segment such as its orientation, its distance to the plant mass center and its area. These results are compared to manually extracted segments, showing a very good accordance in leaf rank and that they therefore provide low-biased data in large quantity for leaf areas. Such data can therefore be exploited to design an organ-scale plant model adapted from the existing GreenLab model for A. thaliana and subsequently parameterize it. This calibration of the model parameters should pave the way for differentiation between the Arabidopsis genotypes. PMID:28123392

  19. FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis[W

    PubMed Central

    Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko

    2014-01-01

    Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202

  20. Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions.

    PubMed

    Jauregui, Ivan; Aparicio-Tejo, Pedro M; Avila, Concepción; Cañas, Rafael; Sakalauskiene, Sandra; Aranjuelo, Iker

    2016-09-01

    Although shoot N depletion in plants exposed to elevated [CO2 ] has already been reported on several occasions, some uncertainty remains about the mechanisms involved. This study illustrates (1) the importance of characterizing root-shoot interactions and (2) the physiological, biochemical and gene expression mechanisms adopted by nitrate-fed Arabidopsis thaliana plants grown under elevated [CO2 ]. Elevated [CO2 ] increases biomass and photosynthetic rates; nevertheless, the decline in total soluble protein, Rubisco and leaf N concentrations revealed a general decrease in leaf N availability. A transcriptomic approach (conducted at the root and shoot level) revealed that exposure to 800 ppm [CO2 ] induced the expression of genes involved in the transport of nitrate and mineral elements. Leaf N and mineral status revealed that N assimilation into proteins was constrained under elevated [CO2 ]. Moreover, this study also highlights how elevated [CO2 ] induced the reorganization of nitrate assimilation between tissues; root nitrogen assimilation was favored over leaf assimilation to offset the decline in nitrogen metabolism in the leaves of plants exposed to elevated [CO2 ]. © 2016 Scandinavian Plant Physiology Society.

  1. Magnitude and timing of leaf damage affect seed production in a natural population of Arabidopsis thaliana (Brassicaceae).

    PubMed

    Akiyama, Reiko; Ågren, Jon

    2012-01-01

    The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size. In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected. The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels.

  2. Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence1[W

    PubMed Central

    van der Graaff, Eric; Schwacke, Rainer; Schneider, Anja; Desimone, Marcelo; Flügge, Ulf-Ingo; Kunze, Reinhard

    2006-01-01

    A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network. PMID:16603661

  3. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.

    PubMed

    Luttgeharm, Kyle D; Kimberlin, Athen N; Cahoon, Rebecca E; Cerny, Ronald L; Napier, Johnathan A; Markham, Jonathan E; Cahoon, Edgar B

    2015-07-01

    Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.

  4. Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis[W][OA

    PubMed Central

    Schelbert, Silvia; Aubry, Sylvain; Burla, Bo; Agne, Birgit; Kessler, Felix; Krupinska, Karin; Hörtensteiner, Stefan

    2009-01-01

    During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll → pheophytin → pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated. PMID:19304936

  5. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  6. Tissue-wide Mechanical Forces Influence the Polarity of Stomatal Stem Cells in Arabidopsis.

    PubMed

    Bringmann, Martin; Bergmann, Dominique C

    2017-03-20

    Mechanical information is an important contributor to cell polarity in uni- and multicellular systems [1-3]. In planar tissues like the Drosophila wing, cell polarity reorients during growth as cells divide and reorganize [4]. In another planar tissue, the Arabidopsis leaf epidermis [5], polarized, asymmetric divisions of stomatal stem cells (meristemoid mother cells [MMCs]) are fundamental for the generation and patterning of multiple cell types, including stomata. The activity of key transcription factors, polarizing factors [6], and peptide signals [7] explains some local stomatal patterns emerging from the behavior of a few lineally related cells [6, 8-11]. Here we demonstrate that, in addition to locally acting signals, tissue-wide mechanical forces can act as organizing cues, and that they do so by influencing the polarity of individual MMCs. If the mechanical stress environment in the tissue is altered through stretching or cell ablations, cellular polarity changes in response. In turn, polarity predicts the orientation of cellular and tissue outgrowth, leading to increased mechanical conflicts between neighboring cells. This interplay among growth, oriented divisions, and cell specification could contribute to the characteristic patterning of stomatal guard cells in the context of a growing leaf.

  7. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf1[OPEN

    PubMed Central

    Cheung, C.Y. Maurice; Ratcliffe, R. George; Sweetlove, Lee J.

    2015-01-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture. PMID:26265776

  8. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf.

    PubMed

    Cheung, C Y Maurice; Ratcliffe, R George; Sweetlove, Lee J

    2015-11-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.

  9. Re-evaluating the role of phenolic glycosides and ascorbic acid in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    USDA-ARS?s Scientific Manuscript database

    To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...

  10. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Liu, Fang; Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation in the leaves of Arabidopsis NO-deficient mutant nos1/noa1 that exhibited an early-senescence phenotype. The activity of pheide a oxygenase (PAO) was higher in the dark-induced senescent leaves of nos1/noa1 compared with wild type. Furthermore, the knockout of PAO in nos1/noa1 background led to pheide a accumulation in the double mutant pao1 nos1/noa1, which retained the level of Chl during dark-induced leaf senescence. The accumulated pheide a in darkened leaves of pao1 nos1/noa1 was likely to inhibit the senescence-activated transcriptional levels of Chl catabolic genes as a feed-back inhibitory effect. We also found that NO deficiency led to decrease in the stability of photosynthetic complexes in thylakoid membranes. Importantly, the accumulation of pheide a caused by PAO mutations in combination with NO deficiency had a synergistic effect on the stability loss of thylakoid membrane complexes in the double mutant pao1 nos1/noa1 during dark-induced leaf senescence. Taken together, our findings have demonstrated that NO is a novel negative regulator of Chl catabolic pathway and positively functions in maintaining the stability of thylakoid membranes during leaf senescence. PMID:23418559

  11. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  12. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    PubMed

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  13. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    PubMed Central

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  14. Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography.

    PubMed

    Kaminuma, Eli; Yoshizumi, Takeshi; Wada, Takuji; Matsui, Minami; Toyoda, Tetsuro

    2008-11-01

    Quantitative morphological traits may be defined based on the 3D anatomy reconstructed from micro X-ray computed tomography (microCT) images. In this study, the heterogeneous spatial distribution of trichomes (hairs) on the adaxial leaf blade surface in Arabidopsis was evaluated in terms of 3D quantitative traits, including trichome number, average nearest-neighbour distance between trichomes, and proportion of large trichomes. The data reflect spatial heterogeneity in the radial direction, in that a greater number of trichomes were observed on the leaf blade margins relative to the non-margins, a distribution effect caused by the CAPRICE (CPC) and GLABRA3 (GL3) genes, which have previously been shown to affect trichome density. We further determined that the proportion of large trichomes on the blade mid-rib increases from the proximal end to the distal leaf tip in both wild-type plants and GL3 mutants. Our results indicate that the CPC [corrected] gene affects trichome distribution, rather than trichome growth, causing trichome initiation at the proximal base rather than the distal tip. On the other hand, CPC does affect trichome growth and developmental progression. Hence, quantitative phenotyping based on microCT enables precise phenotypic description for elucidation of gene control in morphological mutants.

  15. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit.

    PubMed

    Sperdouli, Ilektra; Moustakas, Michael

    2014-07-01

    We examined whether young and mature leaves of Arabidopsis thaliana in their response to mild water deficit (MiWD) and moderate water deficit (MoWD), behave differentially, and whether photosynthetic acclimation to water deficit correlates with increased proline and sugar accumulation. We observed that with increasing water deficit, leaf relative water content decreased, while proline and sugar accumulation increased in both leaf-developmental stages. Under both MiWD and MoWD, young leaves showed less water loss and accumulated higher level of metabolites compared to mature leaves. This, leaf age-related increase in metabolite accumulation that was significantly higher under MoWD, allowed young leaves to cope with oxidative damage by maintaining their base levels of lipid peroxidation. Thus, acclimation of young leaves to MoWD, involves a better homeostasis of reactive oxygen species (ROS), that was achieved among others by (1) increased sugar accumulation and (2) either increased proline synthesis and/or decreased proline catabolism, that decrease the NADPH/NADP(+) ratio, resulting in a higher level of oxidized state of quinone A and thus in a reduced excitation pressure, and by (3) stimulation of the photoprotective mechanism of non-photochemical quenching, that reflects the dissipation of excess excitation energy in the form of harmless heat, thus protecting the plant from the damaging effects of ROS.

  16. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis

    PubMed Central

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-01-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  17. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    PubMed

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals.

  18. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana.

    PubMed

    Kozuka, Toshiaki; Suetsugu, Noriyuki; Wada, Masamitsu; Nagatani, Akira

    2013-01-01

    Light is one of the most important environmental factors regulating the growth and development of leaves. As the primary photosynthetic organs, leaves have a laminar structure in many dicotyledonous plants. The regulation of leaf flatness is a key mechanism for the efficient absorption of light under low light conditions. In the present study, we demonstrated that phytochrome B (phyB) promoted the development of curled leaves. Wild-type leaves gently curled downwards under white light, whereas the phyB-deficient mutant (phyB) constitutively exhibited flatter leaves. In the wild type, leaf flattening was promoted by end-of-day far-red light (EODFR) treatment, which rapidly eliminates the active Pfr phytochrome. Interestingly, the curled-leaf phenotype in a phototropin-deficient mutant was almost completely suppressed by the phyB mutation as well as by EODFR. Thus, phototropin promotes leaf flattening by suppressing the leaf-curling activity of phyB. We examined the downstream components of phyB and phototropin to assess their antagonistic regulation of leaf flatness further. Consequently, we found that a phototropin signaling transducer, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), was required to promote leaf flattening in phyB. The present study provides new insights into a mechanism in which leaf flatness is regulated in response to different light environmental cues.

  19. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves.

    PubMed

    Parlitz, Steffi; Kunze, Reinhard; Mueller-Roeber, Bernd; Balazadeh, Salma

    2011-08-15

    Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.

  20. Mitochondrial Malate Dehydrogenase Lowers Leaf Respiration and Alters Photorespiration and Plant Growth in Arabidopsis[W][OA

    PubMed Central

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J.; Ströher, Elke; Smith, Steven M.; Gardeström, Per; Millar, A. Harvey

    2010-01-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD+-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO2 assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO2 assimilation/intercellular CO2 curves at low CO2, and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms linking

  1. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress.

    PubMed

    Orendi, G; Zimmermann, P; Baar, C; Zentgraf, U

    2001-07-01

    Different stress conditions can induce changes in the activity of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6). The enzyme activities of all SOD and APX isoforms detected in young Arabidopsis leaves remained unaffected or slightly decreased after moderate paraquat treatment. While CAT2 activity also remained unaffected under these conditions, CAT3 enzyme activity was enhanced. In contrast to the enzyme activities, mRNA levels of both cat2 and cat3 were enhanced under oxidative stress induced by either paraquat or the fungal toxin cercosporin. This indicates that, with respect to enzyme activity level, CAT3 is the enzyme which is most sensitive to oxidative stress in this developmental stage and that the enzyme activity of CAT2 is possibly regulated at the post-transcriptional level. Interestingly, cat3 mRNA level and CAT3 activity are not elevated by paraquat treatment in senescing leaves. In contrast, the response to other stress conditions, such as water stress induced by flooding of detached leaves and heat stress, is maintained in senescing leaves. Since changes in stress response are not a general phenomenon in leaf senescence but appear to be restricted to oxidative stress, this might be a specific mechanism to promote senescence in Arabidopsis thaliana.

  2. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis

    PubMed Central

    2010-01-01

    Background Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol) lyase (OAS-TL) catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified. Results The seedling lethal phenotype of the Arabidopsis onset of leaf death3-1 (old3-1) mutant is due to a point mutation in the OAS-A1 gene, encoding the cytosolic OAS-TL. The mutation causes a single amino acid substitution from Gly162 to Glu162, abolishing old3-1 OAS-TL activity in vitro. The old3-1 mutation segregates as a monogenic semi-dominant trait when backcrossed to its wild type accession Landsberg erecta (Ler-0) and the Di-2 accession. Consistent with its semi-dominant behaviour, wild type Ler-0 plants transformed with the mutated old3-1 gene, displayed the early leaf death phenotype. However, the old3-1 mutation segregates in an 11:4:1 (wild type: semi-dominant: mutant) ratio when backcrossed to the Colombia-0 and Wassilewskija accessions. Thus, the early leaf death phenotype depends on two semi-dominant loci. The second locus that determines the old3-1 early leaf death phenotype is referred to as odd-ler (for old3 determinant in the Ler accession) and is located on chromosome 3. The early leaf death phenotype is temperature dependent and is associated with increased expression of defence-response and oxidative-stress marker genes. Independent of the presence of the odd-ler gene, OAS-A1 is involved in maintaining sulphur and thiol levels and is required for resistance against cadmium stress. Conclusions The cytosolic OAS-TL is involved in maintaining organic sulphur levels. The old3-1 mutation causes genome-dependent and independent phenotypes and uncovers a novel function for the mutated OAS-TL in cell death regulation. PMID

  3. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.

  5. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.

    PubMed

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-02-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. © 2014 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  6. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

    PubMed Central

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-01-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717

  7. Spatio-temporal orientation of microtubules controls conical cell shape in Arabidopsis thaliana petals.

    PubMed

    Ren, Huibo; Dang, Xie; Cai, Xianzhi; Yu, Peihang; Li, Yajun; Zhang, Shanshan; Liu, Menghong; Chen, Binqing; Lin, Deshu

    2017-06-01

    The physiological functions of epidermal cells are largely determined by their diverse morphologies. Most flowering plants have special conical-shaped petal epidermal cells that are thought to influence light capture and reflectance, and provide pollinator grips, but the molecular mechanisms controlling conical cell shape remain largely unknown. Here, we developed a live-confocal imaging approach to quantify geometric parameters of conical cells in Arabidopsis thaliana (A. thaliana). Through genetic screens, we identified katanin (KTN1) mutants showing a phenotype of decreased tip sharpening of conical cells. Furthermore, we demonstrated that SPIKE1 and Rho of Plants (ROP) GTPases were required for the final shape formation of conical cells, as KTN1 does. Live-cell imaging showed that wild-type cells exhibited random orientation of cortical microtubule arrays at early developmental stages but displayed a well-ordered circumferential orientation of microtubule arrays at later stages. By contrast, loss of KTN1 prevented random microtubule networks from shifting into well-ordered arrays. We further showed that the filamentous actin cap, which is a typical feature of several plant epidermal cell types including root hairs and leaf trichomes, was not observed in the growth apexes of conical cells during cell development. Moreover, our genetic and pharmacological data suggested that microtubules but not actin are required for conical cell shaping. Together, our results provide a novel imaging approach for studying petal conical cell morphogenesis and suggest that the spatio-temporal organization of microtubule arrays plays crucial roles in controlling conical cell shape.

  8. A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene.

    PubMed

    Xu, Fan; Meng, Tao; Li, Pengli; Yu, Yunqing; Cui, Yanjiao; Wang, Yaxin; Gong, Qingqiu; Wang, Ning Ning

    2011-12-01

    As the last stage of leaf development, senescence is a fine-tuned process regulated by interplays of multiple signaling pathways. We have previously identified soybean (Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), a leucine-rich repeat-receptor-like protein kinase from soybean, as a positive regulator of leaf senescence. Here, we report the elucidation of the molecular mechanism of GmSARK-mediated leaf senescence, especially its specific roles in senescence-inducing hormonal pathways. A glucocorticoid-inducible transcription system was used to produce transgenic Arabidopsis (Arabidopsis thaliana) plants for inducible overexpression of GmSARK, which led to early leaf senescence, chloroplast destruction, and abnormal flower morphology in Arabidopsis. Transcript analyses of the GmSARK-overexpressing seedlings revealed a multitude of changes in phytohormone synthesis and signaling, specifically the repression of cytokinin functions and the induction of auxin and ethylene pathways. Inhibition of either auxin action or ethylene biosynthesis alleviated the senescence induced by GmSARK. Consistently, mutation of either AUXIN RESISTANT1 or ETHYLENE INSENSITIVE2 completely reversed the GmSARK-induced senescence. We further identified a homolog of GmSARK with a similar expression pattern in Arabidopsis and named it AtSARK. Inducible overexpression of AtSARK caused precocious senescence and abnormal floral organ development nearly identical to the GmSARK-overexpressing plants, whereas a T-DNA insertion mutant of AtSARK showed significantly delayed senescence. A kinase assay on recombinant catalytic domains of GmSARK and AtSARK revealed that these two leucine-rich repeat-receptor-like protein kinases autophosphorylate on both serine/threonine and tyrosine residues. We inferred that the SARK-mediated pathway may be a widespread mechanism in regulating leaf senescence.

  9. Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Van Daele, Twiggy; Maleux, Katrien

    2016-01-01

    Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations. PMID:27729396

  10. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana.

    PubMed

    Pan, Wen-Juan; Xiong, Can; Wua, Qiu-Ping; Liu, Jin-Xia; Liao, Hong-Mei; Chen, Wei; Liu, Yong-Sheng; Zheng, Lei

    2013-11-01

    Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 µM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 µM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.

  11. The POLARIS Gene of Arabidopsis Encodes a Predicted Peptide Required for Correct Root Growth and Leaf Vascular Patterning

    PubMed Central

    Casson, Stuart A.; Chilley, Paul M.; Topping, Jennifer F.; Evans, I. Marta; Souter, Martin A.; Lindsey, Keith

    2002-01-01

    The POLARIS (PLS) gene of Arabidopsis was identified as a promoter trap transgenic line, showing β-glucuronidase fusion gene expression predominantly in the embryonic and seedling root, with low expression in aerial parts. Cloning of the PLS locus revealed that the promoter trap T-DNA had inserted into a short open reading frame (ORF). Rapid amplification of cDNA ends PCR, RNA gel blot analysis, and RNase protection assays showed that the PLS ORF is located within a short (∼500 nucleotides) auxin-inducible transcript and encodes a predicted polypeptide of 36 amino acid residues. pls mutants exhibit a short-root phenotype and reduced vascularization of leaves. pls roots are hyperresponsive to exogenous cytokinins and show increased expression of the cytokinin-inducible gene ARR5/IBC6 compared with the wild type. pls seedlings also are less responsive to the growth-inhibitory effects of exogenous auxin and show reduced expression of the auxin-inducible gene IAA1 compared with the wild type. The PLS peptide-encoding region of the cDNA partially complements the pls mutation and requires the PLS ORF ATG for activity, demonstrating the functionality of the peptide-encoding ORF. Ectopic expression of the PLS ORF reduces root growth inhibition by exogenous cytokinins and increases leaf vascularization. We propose that PLS is required for correct auxin-cytokinin homeostasis to modulate root growth and leaf vascular patterning. PMID:12172017

  12. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem.

    PubMed

    Knauer, Steffen; Holt, Anna L; Rubio-Somoza, Ignacio; Tucker, Elise J; Hinze, Annika; Pisch, Melanie; Javelle, Marie; Timmermans, Marja C; Tucker, Matthew R; Laux, Thomas

    2013-01-28

    A long-standing question in plants and animals is how spatial patterns are maintained within stem cell niches despite ongoing cell divisions. Here we address how, during shoot meristem formation in Arabidopsis thaliana, the three apical cell layers acquire stem cell identity. Using a sensitized mutant screen, we identified miR394 as a mobile signal produced by the surface cell layer (the protoderm) that confers stem cell competence to the distal meristem by repressing the F box protein LEAF CURLING RESPONSIVENESS. This repression is required to potentiate signaling from underneath the stem cells by the transcription factor WUSCHEL, maintaining stem cell pluripotency. The interaction of two opposing signaling centers provides a mechanistic framework of how stem cells are localized at the tip of the meristem. Although the constituent cells change, the surface layer provides a stable point of reference in the self-organizing meristem. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition.

    PubMed

    Kulich, Ivan; Vojtíková, Zdeňka; Glanc, Matouš; Ortmannová, Jitka; Rasmann, Sergio; Žárský, Viktor

    2015-05-01

    Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.

  14. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.

    PubMed

    Ay, Nicole; Irmler, Kristina; Fischer, Andreas; Uhlemann, Ria; Reuter, Gunter; Humbeck, Klaus

    2009-04-01

    Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.

  15. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes.

    PubMed

    Verkest, Aurine; Manes, Carmem-Lara de O; Vercruysse, Steven; Maes, Sara; Van Der Schueren, Els; Beeckman, Tom; Genschik, Pascal; Kuiper, Martin; Inzé, Dirk; De Veylder, Lieven

    2005-06-01

    Exit from the mitotic cell cycle and initiation of cell differentiation frequently coincides with the onset of endoreduplication, a modified cell cycle during which DNA continues to be duplicated in the absence of mitosis. Although the mitotic cell cycle and the endoreduplication cycle share much of the same machinery, the regulatory mechanisms controlling the transition between both cycles remain poorly understood. We show that the A-type cyclin-dependent kinase CDKA;1 and its specific inhibitor, the Kip-related protein, KRP2 regulate the mitosis-to-endocycle transition during Arabidopsis thaliana leaf development. Constitutive overexpression of KRP2 slightly above its endogenous level only inhibited the mitotic cell cycle-specific CDKA;1 kinase complexes, whereas the endoreduplication cycle-specific CDKA;1 complexes were unaffected, resulting in an increase in the DNA ploidy level. An identical effect on the endoreduplication cycle could be observed by overexpressing KRP2 exclusively in mitotically dividing cells. In agreement with a role for KRP2 as activator of the mitosis-to-endocycle transition, KRP2 protein levels were more abundant in endoreduplicating than in mitotically dividing tissues. We illustrate that KRP2 protein abundance is regulated posttranscriptionally through CDK phosphorylation and proteasomal degradation. KRP2 phosphorylation by the mitotic cell cycle-specific CDKB1;1 kinase suggests a mechanism in which CDKB1;1 controls the level of CDKA;1 activity through regulating KRP2 protein abundance. In accordance with this model, KRP2 protein levels increased in plants with reduced CDKB1;1 activity. Moreover, the proposed model allowed a dynamical simulation of the in vivo observations, validating the sufficiency of the regulatory interactions between CDKA;1, KRP2, and CDKB1;1 in fine-tuning the mitosis-to-endocycle transition.

  16. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors

    USDA-ARS?s Scientific Manuscript database

    The patterning of initiating organs along specific axes of polarity is critical for the proper development of all higher organisms. Plant lateral organs, such as leaves, are derived from the shoot apical meristems located at the growing tips. After initiation, the leaf primordia of species such as A...

  17. incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness1[W][OA

    PubMed Central

    Esteve-Bruna, David; Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis

    2013-01-01

    Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness. PMID:23319550

  18. Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana

    PubMed Central

    Song, Yuwei; Xiang, Fuyou; Zhang, Guozeng; Miao, Yuchen; Miao, Chen; Song, Chun-Peng

    2016-01-01

    Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling. PMID:26925086

  19. WRKY22 Transcription Factor Mediates Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Zhou, Xiang; Jiang, Zhou; Yu, Diqiu

    2011-01-01

    Arabidopsis WRKY proteins are plant-specific transcrip-tion factors, encoded by a large gene family, which contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs, Cys2His2 or Cys2HisCys. They can recognize and bind the TTGAC(C/T) W-box cis-elements found in the promoters of target genes, and are involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. Here we investigated the physiological function of the Arabidopsis WRKY22 transcription factor during dark-induced senescence. WRKY22 transcription was suppressed by light and promoted by darkness. In addi-tion, AtWRKY22 expression was markedly induced by H2O2. These results indicated that AtWRKY22 was involved in signal pathways in response to abiotic stress. Dark-treated AtWRKY22 over-expression and knockout lines showed accelerated and delayed senescence phenotypes, respectively, and senescence-associated genes exhibited increased and decreased expression levels. Mutual regulation existed between AtWRKY22 and AtWRKY6, AtWR-KY53, and AtWRKY70, respectively. Moreover, AtWRKY22 could influence their relative expression levels by feedback regulation or by other, as yet unknown mechanisms in response to dark. These results prove that AtWRKY22 participates in the dark-induced senescence signal transduction pathway. PMID:21359674

  20. Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway.

    PubMed

    Lee, Youngmi; Park, Jongbum; Im, Kyunghoan; Kim, Kiyoon; Lee, Jungwoo; Lee, Kyungyeoll; Park, Jung-An; Lee, Taek-Kyun; Park, Dae-Sup; Yang, Joo-Sung; Kim, Donggiun; Lee, Sukchan

    2006-01-01

    Arabidopsis leaves treated with simulated acid rain (SiAR) showed phenotypes similar to necrotic lesions caused by biotic stresses like Pseudomonad infiltration. Exposure of Arabidopsis to SiAR resulted in the up-regulation of genes known to be induced by the salicylic acid (SA)-mediated pathogen resistance response. The expression of enhanced disease susceptibility (EDS), nonexpressor of PR (NPR) and pathogen-related 1 (PR1), all of which are involved in the salicylic acid signaling pathway, were increased after SiAR exposure. However, vegetative storage protein (VSP), a member of the jasmonic acid pathway did not show a significant change in transcript level. SiAR treatment of transgenic plants expressing salicylate hydroxylase (Nah-G), which prevents the accumulation of salicylic acid, underwent more extensive necrosis than wild-type plants, indicating that the signaling pathway activated by SiAR may overlap with the SA-dependent, systemic acquired resistance pathway. Both Col-0 and Nah-G plants showed sensitivity to SiAR and sulfuric SiAR (S-SiAR) by developing necrotic lesions. Neither Col-0 plants nor Nah-G plants showed sensitivity to nitric SiAR (N-SiAR). These results suggest that SiAR activates at least the salicylic acid pathway and activation of this pathway is sensitive to sulfuric acid.

  1. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures.

    PubMed

    Cedzich, Anna; Stransky, Harald; Schulz, Burkhard; Frommer, Wolf B

    2008-12-01

    Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.

  2. Vascular development in Arabidopsis.

    PubMed

    Ye, Zheng-Hua; Freshour, Glenn; Hahn, Michael G; Burk, David H; Zhong, Ruiqin

    2002-01-01

    Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.

  3. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  4. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes.

    PubMed

    Shen, Cong-Xiang; Zhang, Quan-Fang; Li, Jian; Bi, Fang-Cheng; Yao, Nan

    2010-10-01

    Single-walled carbon nanotubes (SWCNTs) have many unique structural and mechanical properties. Their potential applications, especially in biomedical engineering and medical chemistry, have been increasing in recent years, but the toxicological impact of nanoparticles has rarely been studied in plants. • We exposed Arabidopsis and rice leaf protoplasts to SWCNTs and examined cell viability, DNA damage, reactive oxygen species generation, and related gene expression. We also tested the effects of nanoparticles on Arabidopsis leaves after injecting a SWCNT solution. EM-TUNEL (electron-microscopic terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling) and a cerium chloride staining method were used. • SWCNTs caused adverse cellular responses including cell aggregation, chromatin condensation along with a TUNEL-positive reaction, plasma membrane deposition, and H(2)O(2) accumulation. The effect of SWCNTs on the survival of cells was dose dependent, with 25 μg/mL inducing 25% cell death in 6 h. In contrast, activated carbon, which is not a nano-sized carbon particle, did not induce cell death even 24 h after treatments. The data indicated that the nano-size of the particle is a critical factor for toxicity. Moreover, endocytosis-like structures with cerium chloride deposits formed after SWCNT treatment, suggesting a possible pathway for nanoparticles to traverse the cell membrane. • Consequently, SWCNTs have an adverse effect on protoplasts and leaves through oxidative stress, leading to a certain amount of programmed cell death. Although nanomaterials have great advantages in many respects, the benefits and side effects still need to be assessed carefully.

  5. Unified changes in cell size permit coordinated leaf evolution.

    PubMed

    Brodribb, Tim J; Jordan, Greg J; Carpenter, Raymond J

    2013-07-01

    The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats.

  6. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  7. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-03

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  8. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    PubMed

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Classification and quantification of leaf curvature

    PubMed Central

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-01-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533

  10. Classification and quantification of leaf curvature.

    PubMed

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-06-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields.

  11. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  12. Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor.

    PubMed

    Gudesblat, Gustavo E; Torres, Pablo S; Vojnov, Adrián A

    2009-02-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3.

  13. Behavior of Leaf Meristems and Their Modification

    PubMed Central

    Ichihashi, Yasunori; Tsukaya, Hirokazu

    2015-01-01

    A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution. PMID:26648955

  14. Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from Arabidopsis callus cultures.

    PubMed

    Murota, Katsunori; Hagiwara-Komoda, Yuka; Komoda, Keisuke; Onouchi, Hitoshi; Ishikawa, Masayuki; Naito, Satoshi

    2011-08-01

    The analysis of post-transcriptional regulatory mechanisms in plants has benefited greatly from the use of cell-free extract systems. Arabidopsis as a model system provides extensive genetic resources; however, to date a suitable cell-free translation system from Arabidopsis has not been available. In this study, we devised an Arabidopsis cell-free extract (ACE) to be used for in vitro translation studies. Protoplasts were prepared from callus cultures derived from Arabidopsis seedlings, and cell-free extracts were prepared after evacuolation of the protoplasts by Percoll gradient centrifugation. The new ACE system exhibits translation activity comparable with that of the wheat germ extract system. We demonstrated that ACE prepared from the 5'-3' exoribonuclease-deficient mutant of Arabidopsis, xrn4-5, exhibited increased stability of an uncapped mRNA as compared with that from wild-type Arabidopsis. We applied the ACE system to study post-transcriptional regulation of AtCGS1. AtCGS1 codes for cystathionine γ-synthase (CGS) that catalyzes the first committed step of methionine and S-adenosyl-l-methionine (AdoMet) biosynthesis in plants, and is feedback regulated by mRNA degradation coupled with translation elongation arrest. The ACE system was capable of reproducing translation elongation arrest and subsequent AtCGS1 mRNA degradation that are induced by AdoMet. The ACE system described here can be prepared in a month after seed sowing and will make it possible to study post-transcriptional regulation of plant genes while taking advantage of the genetics of Arabidopsis.

  15. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy.

    PubMed

    Castro-Camus, E; Palomar, M; Covarrubias, A A

    2013-10-09

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.

  16. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy

    PubMed Central

    Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.

    2013-01-01

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration. PMID:24105302

  17. Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis.

    PubMed

    Maldonado, Ana M; Echevarría-Zomeño, Sira; Jean-Baptiste, Sylvia; Hernández, Martha; Jorrín-Novo, Jesús V

    2008-10-07

    This work was performed to compare three precipitation protocols of protein extraction for 2-DE proteomic analysis using Arabidopsis leaf tissue: TCA-acetone, phenol, and TCA-acetone-phenol. There were no statistically significant differences in protein yield between the three methods. Samples were subjected to 2-DE in the 5 to 8 pH and 14-80 kDa ranges. The TCA-acetone-phenol protocol provided the best results in terms of spot focusing, resolved spots, spot intensity, unique spots detected, and reproducibility. In all, 93 qualitative or quantitative statistically significant differential spots were found between the three protocols. The 2-DE map of TCA-acetone-phenol extracts presented more resolved spots above 40 kDa, with no pI-dependent differences observed between the three protocols. 54 spots were selected for trypsin digestion, and the peptides were analyzed by MALDI-TOF-TOF MS. After database search using peptide mass fingerprinting, and MS/MS combined search, 30 proteins were identified, the proteins from chloroplastic photosynthetic and carbohydrate metabolism being those most highly represented. From these data, we were able to conclude that each extraction protocol had its main features. Considering this, the workflow of any standard comparative proteomic experiment should include the optimization and adaptation of the protein extraction protocol to the plant tissue and to the particular objective pursued.

  18. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.

    PubMed

    Mishra, Yogesh; Jänkänpää, Hanna Johansson; Kiss, Anett Z; Funk, Christiane; Schröder, Wolfgang P; Jansson, Stefan

    2012-01-11

    Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation. © 2011 Mishra et al; licensee BioMed Central Ltd.

  19. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components

    PubMed Central

    2012-01-01

    Background Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. Results Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. Conclusion Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation. PMID:22236032

  20. Proteome Analysis of Arabidopsis Leaf Peroxisomes Reveals Novel Targeting Peptides, Metabolic Pathways, and Defense Mechanisms[W

    PubMed Central

    Reumann, Sigrun; Babujee, Lavanya; Ma, Changle; Wienkoop, Stephanie; Siemsen, Tanja; Antonicelli, Gerardo E.; Rasche, Nicolas; Lüder, Franziska; Weckwerth, Wolfram; Jahn, Olaf

    2007-01-01

    We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including β-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences. PMID:17951448

  1. Leaf development: a cellular perspective

    PubMed Central

    Kalve, Shweta; De Vos, Dirk; Beemster, Gerrit T. S.

    2014-01-01

    Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana. PMID:25132838

  2. Specific localization and measurement of hydrogen peroxide in Arabidopsis thaliana cell suspensions and protoplasts elicited by COS-OGA.

    PubMed

    Ledoux, Quentin; Van Cutsem, Pierre; Markό, Istvan E; Veys, Pascal

    2014-01-01

    H2O2 acts as an important signaling molecule during plant/pathogen interactions but its study remains a challenge due to the current shortcomings in H2O2-responsive probes. In this work, ContPY1, a new molecular probe developed to specifically detect H2O2 was used to study the elicitation of Arabidopsis thaliana cells by a complex of chitosan oligomers (COS) and oligogalacturonides (OGA). The comparison of cell suspensions, protoplasts of cell suspensions and leaf protoplasts treated with different inhibitors gave indications on the potential sources of hydrogen peroxide in plant cells. The relative contribution of the cell wall, of membrane dehydrogenases and of peroxidases depended on cell type and treatment and proved to be variable. Our present protocol can be used to study hydrogen peroxide production in a large variety of plant species by simple protocol adaptation.

  3. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  4. Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis1[C][W

    PubMed Central

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-01-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth. PMID:23979970

  5. Additive and non-additive effects of simulated leaf and inflorescence damage on survival, growth and reproduction of the perennial herb Arabidopsis lyrata.

    PubMed

    Puentes, Adriana; Ågren, Jon

    2012-08-01

    Herbivores may damage both leaves and reproductive structures, and although such combined damage may affect plant fitness non-additively, this has received little attention. We conducted a 2-year field experiment with a factorial design to examine the effects of simulated leaf (0, 12.5, 25, or 50% of leaf area removed) and inflorescence damage (0 vs. 50% of inflorescences removed) on survival, growth and reproduction in the perennial herb Arabidopsis lyrata. Leaf and inflorescence damage negatively and independently reduced flower, fruit and seed production in the year of damage; leaf damage also reduced rosette size by the end of the first season and flower production in the second year. Leaf damage alone reduced the proportion of flowers forming a fruit and fruit production per plant the second year, but when combined with inflorescence damage no such effect was observed (significant leaf × inflorescence damage interaction). Damage to leaves (sources) caused a greater reduction in future reproduction than did simultaneous damage to leaves and inflorescences (sinks). This demonstrates that a full understanding of the effects of herbivore damage on plant fitness requires that consequences of damage to vegetative and reproductive structures are evaluated over more than 1 year and that non-additive effects are considered.

  6. ELONGATA3 is required for shoot meristem cell cycle progression in Arabidopsis thaliana seedlings.

    PubMed

    Skylar, Anna; Matsuwaka, Sean; Wu, Xuelin

    2013-10-15

    A key feature of the development of a higher plant is the continuous formation of new organs from the meristems. Originally patterned during embryogenesis, the meristems must activate cell division de novo at the time of germination, in order to initiate post-embryonic development. In a mutagenesis screen aimed at finding new players in early seedling cell division control, we identified ELONGATA3 (ELO3) as a key regulator of meristem cell cycle activation in Arabidopsis. Our results show that plants carrying a hypomorphic allele of ELO3 fail to activate cell division in the meristems following germination, which leads to seedling growth arrest and lethality. Further analyses suggest that this is due to a failure in DNA replication, followed by cell cycle arrest, in the meristematic tissue. Interestingly, the meristem cell cycle arrest in elo3 mutants, but not the later leaf developmental defects that have been linked to the loss of ELO3 activities, can be relieved by the addition of metabolic sugars in the growth medium. This finding points to a new role by which carbohydrate availability promotes meristem growth. Furthermore, growth arrested elo3 mutants suffer a partial loss of shoot meristem identity, which provides further evidence that cell cycle activities can influence the control of tissue identity. © 2013 Elsevier Inc. All rights reserved.

  7. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    PubMed

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  8. A molecular switch for initiating cell differentiation in Arabidopsis.

    PubMed

    Sanmartín, Maite; Sauer, Michael; Muñoz, Alfonso; Zouhar, Jan; Ordóñez, Angel; van de Ven, Wilhelmina T G; Caro, Elena; de la Paz Sánchez, María; Raikhel, Natasha V; Gutiérrez, Crisanto; Sánchez-Serrano, José J; Rojo, Enrique

    2011-06-21

    The onset of differentiation entails modifying the gene expression state of cells, to allow activation of developmental programs that are maintained repressed in the undifferentiated precursor cells [1, 2]. This requires a mechanism to change gene expression on a genome-scale. Recent evidence suggests that in mammalian stem cells, derepression of developmental regulators during differentiation involves a shift from stalled to productive elongation of their transcripts [3-5], but factors mediating this shift have not been identified and the evidence remains correlative. We report the identification of the MINIYO (IYO) gene, a positive regulator of transcriptional elongation that is essential for cells to initiate differentiation in Arabidopsis. IYO interacts with RNA polymerase II and the Elongator complex and is required to sustain global levels of transcriptional elongation activity, specifically in differentiating tissues. Accordingly, IYO is expressed in embryos, meristems, and organ primordia and not in mature tissues. Moreover, differential subcellular protein distribution further refines the domain of IYO function by directing nuclear accumulation, and thus its transcriptional activity, to cells initiating differentiation. Importantly, IYO overexpression induces premature cell differentiation and leads to meristem termination phenotypes. These findings identify IYO as a necessary and sufficient factor for initiating differentiation in Arabidopsis and suggest that the targeted nuclear accumulation of IYO functions as a transcriptional switch for this fate transition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    PubMed Central

    Liang, Chao; Zhang, Youjun; Cheng, Shifeng; Osorio, Sonia; Sun, Yuzhe; Fernie, Alisdair R.; Cheung, C. Y. M.; Lim, Boon L.

    2015-01-01

    Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and

  10. Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells.

    PubMed

    Islam, Md Sayeedul; Niwa, Yasuo; Takagi, Shingo

    2009-06-01

    Mitochondria, the power house of the cell, are one of the most dynamic cell organelles. Although there are several reports on actin- or microtubule-dependent movement of mitochondria in plant cells, intracellular positioning and motility of mitochondria under different light conditions remain open questions. Mitochondria were visualized in living Arabidopsis thaliana leaf cells using green fluorescent protein fused to a mitochondrion-targeting signal. In darkness, mitochondria were distributed randomly in palisade cells. In contrast, mitochondria accumulated along the periclinal walls, similar to the accumulation response of chloroplasts, when treated with weak blue light (470 nm, 4 micromol m(-2) s(-1)). Under strong blue light (100 micromol m(-2) s(-1)), mitochondria occupied the anticlinal positions similar to the avoidance response of chloroplasts and nuclei. While strong red light (660 nm, 100 micromol m(-2) s(-1)) induced the accumulation of mitochondria along the inner periclinal walls, green light exhibited little effect on the distribution of mitochondria. In addition, the mode of movement of individual mitochondria along the outer periclinal walls under different light conditions was precisely analyzed by time-lapse fluorescence microscopy. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts with a time period of blue light illumination clearly demonstrated the accumulation response of mitochondria. Light-induced co-localization of mitochondria with chloroplasts strongly suggested their mutual metabolic interactions. This is the first characterization of the light-dependent redistribution of mitochondria in plant cells.

  11. Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference.

    PubMed

    Hanke, Guy Thomas; Hase, Toshiharu

    2008-01-01

    Ferredoxin (Fd) is the soluble protein that accepts electrons from photosystem I (PSI) and makes them available to stromal enzymes in higher plant chloroplasts. In linear electron flow, Fd mainly donates electrons to Fd:NADPH reductase (FNR) which generates NADPH for use in the Calvin cycle, but Fd may also return electrons to the thylakoid plastoquinone pool, forming a cyclic electron flow. Many higher plants contain two different photosynthetic Fd proteins, but there are no conserved sequence differences that allow their division into evolutionary groups. In the model C3 photosynthesizing dicot, Arabidopsis thaliana, there are two such photosynthetic Fds, and we have exploited RNA interference (RNAi) techniques to specifically decrease transcript abundance of different Fds in this plant. Surprisingly, the perturbation of photosynthesis, as measured by cholorophyll fluorescence, in RNAi lines of the two different photosynthetic Fds shows opposite trends. Linear electron flow is retarded in lines with lower Fd2 (the most abundant Fd species) levels and under certain circumstances enhanced in lines with lower Fd1 (the minor isoprotein) levels. These data are evidences for at least partially differentiated roles of Fd1 and Fd2 in photosynthetic electron transfer, possibly in the partition of electrons into linear and cyclic electron flow.

  12. Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode1[W][OA

    PubMed Central

    Noir, Sandra; Bömer, Moritz; Takahashi, Naoki; Ishida, Takashi; Tsui, Tjir-Li; Balbi, Virginia; Shanahan, Hugh; Sugimoto, Keiko; Devoto, Alessandra

    2013-01-01

    Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular “stand-by mode” by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition. PMID:23439917

  13. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode.

    PubMed

    Noir, Sandra; Bömer, Moritz; Takahashi, Naoki; Ishida, Takashi; Tsui, Tjir-Li; Balbi, Virginia; Shanahan, Hugh; Sugimoto, Keiko; Devoto, Alessandra

    2013-04-01

    Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular "stand-by mode" by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition.

  14. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  15. Spatio-temporal orientation of microtubules controls conical cell shape in Arabidopsis thaliana petals

    PubMed Central

    Cai, Xianzhi; Yu, Peihang; Li, Yajun; Zhang, Shanshan; Liu, Menghong; Chen, Binqing

    2017-01-01

    The physiological functions of epidermal cells are largely determined by their diverse morphologies. Most flowering plants have special conical-shaped petal epidermal cells that are thought to influence light capture and reflectance, and provide pollinator grips, but the molecular mechanisms controlling conical cell shape remain largely unknown. Here, we developed a live-confocal imaging approach to quantify geometric parameters of conical cells in Arabidopsis thaliana (A. thaliana). Through genetic screens, we identified katanin (KTN1) mutants showing a phenotype of decreased tip sharpening of conical cells. Furthermore, we demonstrated that SPIKE1 and Rho of Plants (ROP) GTPases were required for the final shape formation of conical cells, as KTN1 does. Live-cell imaging showed that wild-type cells exhibited random orientation of cortical microtubule arrays at early developmental stages but displayed a well-ordered circumferential orientation of microtubule arrays at later stages. By contrast, loss of KTN1 prevented random microtubule networks from shifting into well-ordered arrays. We further showed that the filamentous actin cap, which is a typical feature of several plant epidermal cell types including root hairs and leaf trichomes, was not observed in the growth apexes of conical cells during cell development. Moreover, our genetic and pharmacological data suggested that microtubules but not actin are required for conical cell shaping. Together, our results provide a novel imaging approach for studying petal conical cell morphogenesis and suggest that the spatio-temporal organization of microtubule arrays plays crucial roles in controlling conical cell shape. PMID:28644898

  16. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.

    PubMed

    Zhang, Guang-Heng; Xu, Qian; Zhu, Xu-Dong; Qian, Qian; Xue, Hong-Wei

    2009-03-01

    As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling.

  17. Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis.

    PubMed

    Chary, S Narasimha; Hicks, Glenn R; Choi, Yoon Gi; Carter, David; Raikhel, Natasha V

    2008-01-01

    The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker delta-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.

  18. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana.

    PubMed

    Rowan, Daryl D; Cao, Mingshu; Lin-Wang, Kui; Cooney, Janine M; Jensen, Dwayne J; Austin, Paul T; Hunt, Martin B; Norling, Cara; Hellens, Roger P; Schaffer, Robert J; Allan, Andrew C

    2009-01-01

    * High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyanin regulators. High-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LCMS) and Affimetrix-based microarrays were used to measure changes in anthocyanin, flavonoids, and gene expression in response to HTLL. * HTLL treatment of control and 35S:PAP1 A. thaliana resulted in a reversible reduction in the concentrations of major anthocyanins despite ongoing over-expression of the PAP1 MYB transcription factor. Twenty-one anthocyanins including eight cis-coumaryl esters were identified by LCMS. The concentrations of nine anthocyanins were reduced and those of three were increased, consistent with a sequential process of anthocyanin degradation. Analysis of gene expression showed down-regulation of flavonol and anthocyanin biosynthesis and of transport-related genes within 24 h of HTLL treatment. No catabolic genes up-regulated by HTLL were found. * Reductions in the concentrations of anthocyanins and down-regulation of the genes of anthocyanin biosynthesis were achieved by environmental manipulation, despite ongoing over-expression of PAP1. Quantitative PCR showed reduced expression of three genes (TT8, TTG1 and EGL3) of the PAP1 transcriptional complex, and increased expression of the potential transcriptional repressors AtMYB3, AtMYB6 and AtMYBL2 coincided with HTLL-induced down-regulation of anthocyanin biosynthesis. * HTLL treatment offers a model system with which to explore anthocyanin catabolism and to discover novel genes involved in the environmental control of anthocyanins.

  19. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  20. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  1. Multimodal nonlinear imaging of arabidopsis thaliana root cell

    NASA Astrophysics Data System (ADS)

    Jang, Bumjoon; Lee, Sung-Ho; Woo, Sooah; Park, Jong-Hyun; Lee, Myeong Min; Park, Seung-Han

    2017-07-01

    Nonlinear optical microscopy has enabled the possibility to explore inside the living organisms. It utilizes ultrashort laser pulse with long wavelength (greater than 800nm). Ultrashort pulse produces high peak power to induce nonlinear optical phenomenon such as two-photon excitation fluorescence (TPEF) and harmonic generations in the medium while maintaining relatively low average energy pre area. In plant developmental biology, confocal microscopy is widely used in plant cell imaging after the development of biological fluorescence labels in mid-1990s. However, fluorescence labeling itself affects the sample and the sample deviates from intact condition especially when labelling the entire cell. In this work, we report the dynamic images of Arabidopsis thaliana root cells. This demonstrates the multimodal nonlinear optical microscopy is an effective tool for long-term plant cell imaging.

  2. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    DOE PAGES

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; ...

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leafmore » photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.« less

  3. Looking Deep Inside: Detection of Low-Abundance Proteins in Leaf Extracts of Arabidopsis and Phloem Exudates of Pumpkin1[W

    PubMed Central

    Fröhlich, Andreas; Gaupels, Frank; Sarioglu, Hakan; Holzmeister, Christian; Spannagl, Manuel; Durner, Jörg; Lindermayr, Christian

    2012-01-01

    The field of proteomics suffers from the immense complexity of even small proteomes and the enormous dynamic range of protein concentrations within a given sample. Most protein samples contain a few major proteins, which hamper in-depth proteomic analysis. In the human field, combinatorial hexapeptide ligand libraries (CPLL; such as ProteoMiner) have been used for reduction of the dynamic range of protein concentrations; however, this technique is not established in plant research. In this work, we present the application of CPLL to Arabidopsis (Arabidopsis thaliana) leaf proteins. One- and two-dimensional gel electrophoresis showed a decrease in high-abundance proteins and an enrichment of less abundant proteins in CPLL-treated samples. After optimization of the CPLL protocol, mass spectrometric analyses of leaf extracts led to the identification of 1,192 proteins in control samples and an additional 512 proteins after the application of CPLL. Upon leaf infection with virulent Pseudomonas syringae DC3000, CPLL beads were also used for investigating the bacterial infectome. In total, 312 bacterial proteins could be identified in infected Arabidopsis leaves. Furthermore, phloem exudates of pumpkin (Cucurbita maxima) were analyzed. CPLL prefractionation caused depletion of the major phloem proteins 1 and 2 and improved phloem proteomics, because 67 of 320 identified proteins were detectable only after CPLL treatment. In sum, our results demonstrate that CPLL beads are a time- and cost-effective tool for reducing major proteins, which often interfere with downstream analyses. The concomitant enrichment of less abundant proteins may facilitate a deeper insight into the plant proteome. PMID:22555880

  4. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  5. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions.

    PubMed

    Brugière, Sabine; Kowalski, Solène; Ferro, Myriam; Seigneurin-Berny, Daphné; Miras, Stéphane; Salvi, Daniel; Ravanel, Stéphane; d'Hérin, Pierre; Garin, Jérôme; Bourguignon, Jacques; Joyard, Jacques; Rolland, Norbert

    2004-06-01

    The development of mitochondria and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting membranes. The aim of the present work was: (1) to enhance our understanding of the biochemical machinery of mitochondrial membranes and (2) to test the versatility of the procedure developed for the identification of the hydrophobic proteome of the chloroplast envelope [Molecular and Cellular Proteomics 2 (2003) 325-345]. A proteomic analysis was performed, to provide the most exhaustive view of the protein repertoire of these membranes. For this purpose, highly purified mitochondria were prepared from Arabidopsis cultured cells and membrane proteins were extracted. To get a more exhaustive array of membrane proteins from Arabidopsis mitochondria, from the most to the less hydrophobic ones, various extraction procedures (chloroform/methanol extraction, alkaline or saline treatments) were applied. LC-MS/MS analyses were then performed on each membrane subfraction, leading to the identification of more than 110 proteins. The identification of these proteins is discussed with respect to their mitochondrial localization, their physicochemical properties and their implications in the metabolism of mitochondria. In order to provide a new overview of the biochemical machinery of the plant mitochondria, proteins identified during this work were compared to the lists of proteins identified during previous proteomic analyses performed on plant and algae mitochondria (Arabidopsis, pea, Chlamydomonas, rice, etc.). A total of 502 proteins are listed. About 40% of the 114 proteins identified during this work were not identified during previous proteomic studies performed on mitochondria.

  6. Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells

    USDA-ARS?s Scientific Manuscript database

    In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...

  7. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  8. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana.

    PubMed

    Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin

    2017-01-01

    The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

  9. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.

    PubMed

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses.

  10. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  11. Ion distribution in leaf cells of Egeria densa.

    PubMed

    Linsel, G; Zglinicki, T

    1990-01-01

    The lement concentrations of intracellular compartments of leaf cells of Egeria densa are estimated by X-ray microanalysis. Ultrathin frozen-dried sections are used in TEM mode. The concentrations of Na, Mg, P, Cl, K, and Ca are determined in the cell wall, cytoplasm and chloroplasts. The cell wall represents a Donnan free space with a negative fixed charge concentration of 360 mval/l water. The water fraction of the cytoplasm is between 85 and 90% and strikes the bounds of possibility of that method.

  12. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots.

    PubMed

    Takada, Shinobu; Takada, Nozomi; Yoshida, Ayaka

    2013-05-01

    Molecular mechanisms that generate distinct tissue layers in plant shoots are not well understood. ATML1, an Arabidopsis homeobox gene, is expressed in the outermost cell layer, beginning at an early stage of development. The promoters of many epidermis-specific genes, including ATML1, contain an ATML1-binding site called an L1 box, suggesting that ATML1 regulates epidermal cell fate. Here, we show that overexpression of ATML1 was sufficient to activate the expression of epidermal genes and to induce epidermis-related traits such as the formation of stomatal guard cells and trichome-like cells in non-epidermal seedling tissues. Detailed observation of the division planes of these ectopic stomatal cells suggested that a near-surface position, as well as epidermal cell identity, were required for regular anticlinal cell division, as seen in wild-type epidermis. Moreover, analyses of a loss-of-function mutant and overexpressors implied that differentiation of epidermal cells was associated with repression of mesophyll cell fate. Collectively, our studies contribute new information about the molecular basis of cell fate determination in different layers of plant aerial organs.

  14. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis.

    PubMed

    Izumi, Masanori; Wada, Shinya; Makino, Amane; Ishida, Hiroyuki

    2010-11-01

    Autophagy is an intracellular process facilitating the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. We previously demonstrated that chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for new growth, the relationship between leaf nutrient status and RCB production remains unclear. We examined the effects of nutrient factors on the appearance of RCBs in leaves of transgenic Arabidopsis (Arabidopsis thaliana) expressing stroma-targeted fluorescent proteins. In excised leaves, the appearance of RCBs was suppressed by the presence of metabolic sugars, which were added externally or were produced during photosynthesis in the light. The light-mediated suppression was relieved by the inhibition of photosynthesis. During a diurnal cycle, RCB production was suppressed in leaves excised at the end of the day with high starch content. Starchless mutants phosphoglucomutase and ADP-Glc pyrophosphorylase1 produced a large number of RCBs, while starch-excess mutants starch-excess1 and maltose-excess1 produced fewer RCBs. In nitrogen-limited plants, as leaf carbohydrates were accumulated, RCB production was suppressed. We propose that there exists a close relationship between the degradation of chloroplast proteins via RCBs and leaf carbon but not nitrogen status in autophagy. We also found that the appearance of non-RCB-type autophagic bodies was not suppressed in the light and somewhat responded to nitrogen in excised leaves, unlike RCBs. These results imply that the degradation of chloroplast proteins via RCBs is specifically controlled in autophagy.

  15. Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories1[W

    PubMed Central

    Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A.; Caldana, Camila; Lisec, Jan; Beemster, Gerrit T.S.; Meyer, Rhonda C.; Messerli, Gaëlle; Gronlund, Jesper T.; Perkovic, Josip; Wigmore, Emma; May, Sean; Bevan, Michael W.; Meyer, Christian; Rubio-Díaz, Silvia; Weigel, Detlef; Micol, José Luis; Buchanan-Wollaston, Vicky; Fiorani, Fabio; Walsh, Sean; Rinn, Bernd; Gruissem, Wilhelm; Hilson, Pierre; Hennig, Lars; Willmitzer, Lothar; Granier, Christine

    2010-01-01

    A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories. PMID:20200072

  16. Pericycle cell proliferation and lateral root initiation in Arabidopsis.

    PubMed

    Dubrovsky, J G; Doerner, P W; Colón-Carmona, A; Rost, T L

    2000-12-01

    In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.

  17. Molecule mechanism of stem cells in Arabidopsis thaliana.

    PubMed

    Zhang, Wenjin; Yu, Rongming

    2014-07-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  18. WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis[W

    PubMed Central

    Liu, Jingchun; Sheng, Lihong; Xu, Yingqiang; Li, Jiqin; Yang, Zhongnan; Huang, Hai; Xu, Lin

    2014-01-01

    De novo organogenesis is a process through which wounded or detached plant tissues or organs regenerate adventitious roots and shoots. Plant hormones play key roles in de novo organogenesis, whereas the mechanism by which hormonal actions result in the first-step cell fate transition in the whole process is unknown. Using leaf explants of Arabidopsis thaliana, we show that the homeobox genes WUSCHEL RELATED HOMEOBOX11 (WOX11) and WOX12 are involved in de novo root organogenesis. WOX11 directly responds to a wounding-induced auxin maximum in and surrounding the procambium and acts redundantly with its homolog WOX12 to upregulate LATERAL ORGAN BOUNDARIES DOMAIN16 (LBD16) and LBD29, resulting in the first-step cell fate transition from a leaf procambium or its nearby parenchyma cell to a root founder cell. In addition, our results suggest that de novo root organogenesis and callus formation share a similar mechanism at initiation. PMID:24642937

  19. Arabidopsis cell expansion is controlled by a photothermal switch

    PubMed Central

    Johansson, Henrik; Jones, Harriet J.; Foreman, Julia; Hemsted, Joseph R.; Stewart, Kelly; Grima, Ramon; Halliday, Karen J.

    2014-01-01

    In Arabidopsis, the seedling hypocotyl has emerged as an exemplar model system to study light and temperature control of cell expansion. Light sensitivity of this organ is epitomized in the fluence rate response where suppression of hypocotyl elongation increases incrementally with light intensity. This finely calibrated response is controlled by the photoreceptor, phytochrome B, through the deactivation and proteolytic destruction of phytochrome-interacting factors (PIFs). Here we show that this classical light response is strictly temperature dependent: a shift in temperature induces a dramatic reversal of response from inhibition to promotion of hypocotyl elongation by light. Applying an integrated experimental and mathematical modelling approach, we show how light and temperature coaction in the circuitry drives a molecular switch in PIF activity and control of cell expansion. This work provides a paradigm to understand the importance of signal convergence in evoking different or non-intuitive alterations in molecular signalling. PMID:25258215

  20. Induction of epidermal cell fate in Arabidopsis shoots.

    PubMed

    Takada, Shinobu; Takada, Nozomi; Yoshida, Ayaka

    2013-11-01

    Land plants have evolved a cuticle-bearing epidermis to protect themselves from environmental stress and pathogen attack. Despite its important role, little is known about the molecular mechanisms regulating shoot epidermal cell identity. In a recent study, we found that the Arabidopsis thaliana ATML1 gene is possibly a master regulator of shoot epidermal cell fate. We revealed that ATML1 has the ability to confer shoot epidermis-related traits to non-epidermal cells of the seedlings. These data are consistent with the previous loss-of-function mutant analyses, which implied a positive role of ATML1 in epidermal cell differentiation. Importantly, ectopic epidermal cells induced in ATML1-overexpressing lines provide a novel tool to assess the intrinsic properties of epidermal cells and to study epistatic interactions among genes involved in epidermal/mesophyll differentiation. Using this system, we obtained data revealing that ATML1 negatively influenced mesophyll cell fate. In addition, we provided a working model of how division planes in epidermal cells are determined.

  1. Histochemical staining of Arabidopsis thaliana secondary cell wall elements.

    PubMed

    Pradhan Mitra, Prajakta; Loqué, Dominique

    2014-05-13

    Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40-50%), hemicellulose (25-30%), and lignin (20-30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.

  2. Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis.

    PubMed

    Van Houtte, Hilde; López-Galvis, Lorena; Vandesteene, Lies; Beeckman, Tom; Van Dijck, Patrick

    2013-03-01

    The Arabidopsis trehalose-6-phosphate phosphatase (TPP) gene family arose mainly from whole genome duplication events and consists of 10 genes (TPPA-J). All the members encode active TPP enzymes, possibly regulating the levels of trehalose-6-phosphate, an established signaling metabolite in plants. GUS activity studies revealed tissue-, cell- and stage-specific expression patterns for the different members of the TPP gene family. Here we list additional examples of the remarkable features of the TPP gene family. TPPA-J expression levels seem, in most of the cases, differently regulated in response to light, darkness and externally supplied sucrose. Disruption of the TPPB gene leads to Arabidopsis plants with larger leaves, which is the result of an increased cell number in the leaves. Arabidopsis TPPA and TPPG are preferentially expressed in atrichoblast cells. TPPA and TPPG might fulfill redundant roles during the differentiation process of root epidermal cells, since the tppa tppg double mutant displays a hairy root phenotype, while the respective single knockouts have a distribution of trichoblast and atrichoblast cells similar to the wild type. These new data portray redundant and non-redundant functions of the TPP proteins in regulatory pathways of Arabidopsis.

  3. In-Depth Proteome Analysis of Arabidopsis Leaf Peroxisomes Combined with in Vivo Subcellular Targeting Verification Indicates Novel Metabolic and Regulatory Functions of Peroxisomes1[W][OA

    PubMed Central

    Reumann, Sigrun; Quan, Sheng; Aung, Kyaw; Yang, Pingfang; Manandhar-Shrestha, Kalpana; Holbrook, Danielle; Linka, Nicole; Switzenberg, Robert; Wilkerson, Curtis G.; Weber, Andreas P.M.; Olsen, Laura J.; Hu, Jianping

    2009-01-01

    Peroxisomes are metabolically diverse organelles with essential roles in plant development. The major protein constituents of plant peroxisomes are well characterized, whereas only a few low-abundance and regulatory proteins have been reported to date. We performed an in-depth proteome analysis of Arabidopsis (Arabidopsis thaliana) leaf peroxisomes using one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry. We detected 65 established plant peroxisomal proteins, 30 proteins whose association with Arabidopsis peroxisomes had been previously demonstrated only by proteomic data, and 55 putative novel proteins of peroxisomes. We subsequently tested the subcellular targeting of yellow fluorescent protein fusions for selected proteins and confirmed the peroxisomal localization for 12 proteins containing predicted peroxisome targeting signals type 1 or 2 (PTS1/2), three proteins carrying PTS-related peptides, and four proteins that lack conventional targeting signals. We thereby established the tripeptides SLM> and SKV> (where > indicates the stop codon) as new PTS1s and the nonapeptide RVx5HF as a putative new PTS2. The 19 peroxisomal proteins conclusively identified from this study potentially carry out novel metabolic and regulatory functions of peroxisomes. Thus, this study represents an important step toward defining the complete plant peroxisomal proteome. PMID:19329564

  4. TYPE-ONE PROTEIN PHOSPHATASE4 Regulates Pavement Cell Interdigitation by Modulating PIN-FORMED1 Polarity and Trafficking in Arabidopsis1

    PubMed Central

    Guo, Xiaola; Qin, Qianqian; Yan, Jia; Niu, Yali; Huang, Bingyao; Guan, Liping; Li, Yuan; Ren, Dongtao; Li, Jia; Hou, Suiwen

    2015-01-01

    In plants, cell morphogenesis is dependent on intercellular auxin accumulation. The polar subcellular localization of the PIN-FORMED (PIN) protein is crucial for this process. Previous studies have shown that the protein kinase PINOID (PID) and protein phosphatase6-type phosphatase holoenzyme regulate the phosphorylation status of PIN1 in root tips and shoot apices. Here, we show that a type-one protein phosphatase, TOPP4, is essential for the formation of interdigitated pavement cell (PC) pattern in Arabidopsis (Arabidopsis thaliana) leaf. The dominant-negative mutant topp4-1 showed severely inhibited interdigitated PC growth. Expression of topp4-1 gene in wild-type plants recapitulated the PC defects in the mutant. Genetic analyses suggested that TOPP4 and PIN1 likely function in the same pathway to regulate PC morphogenesis. Furthermore, colocalization, in vitro and in vivo protein interaction studies, and dephosphorylation assays revealed that TOPP4 mediated PIN1 polar localization and endocytic trafficking in PCs by acting antagonistically with PID to modulate the phosphorylation status of PIN1. In addition, TOPP4 affects the cytoskeleton pattern through the Rho of Plant GTPase-dependent auxin-signaling pathway. Therefore, we conclude that TOPP4-regulated PIN1 polar targeting through direct dephosphorylation is crucial for PC morphogenesis in the Arabidopsis leaf. PMID:25560878

  5. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    PubMed

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed (14)C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Auxin regulates distal stem cell differentiation in Arabidopsis roots.

    PubMed

    Ding, Zhaojun; Friml, Jirí

    2010-06-29

    The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Genetic analysis shows that auxin acts upstream of the major regulators of the stem cell activity, the homeodomain transcription factor WOX5, and the AP-2 transcription factor PLETHORA. Auxin signaling for differentiation of distal stem cells requires the transcriptional repressor IAA17/AXR3 as well as the ARF10 and ARF16 auxin response factors. ARF10 and ARF16 activities repress the WOX5 transcription and restrict it to the quiescent center, where WOX5, in turn, is needed for the activity of PLETHORA. Our investigations reveal that long-distance auxin signals act upstream of the short-range network of transcriptional factors to mediate the differentiation of distal stem cells in roots.

  7. Isolation of Arabidopsis Pollen, Sperm Cells, and Vegetative Nuclei by Fluorescence-Activated Cell Sorting (FACS).

    PubMed

    Santos, Mário R; Bispo, Cláudia; Becker, Jörg D

    2017-01-01

    Efficient methods to isolate highly purified Arabidopsis thaliana pollen and the subcellular components of the male gametophyte (the vegetative nucleus and two sperm cells) have enabled genome-scale studies revealing a highly dynamic reprogramming of the transcriptome and epigenome during pollen development. Here, we describe the isolation of uninucleate microspores, mature pollen, as well as sperm cells and vegetative nuclei by Fluorescence-Activated Cell Sorting.

  8. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases.

    PubMed

    Sasidharan, Rashmi; Chinnappa, C C; Staal, Marten; Elzenga, J Theo M; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Voesenek, Laurentius A C J; Pierik, Ronald

    2010-10-01

    Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance.

  9. Immobilized Subpopulations of Leaf Epidermal Mitochondria Mediate PENETRATION2-Dependent Pathogen Entry Control in Arabidopsis

    PubMed Central

    Klapprodt, Christine; Hause, Gerd; Lipka, Volker

    2016-01-01

    The atypical myrosinase PENETRATION2 (PEN2) is required for broad-spectrum invasion resistance to filamentous plant pathogens. Previous localization studies suggested PEN2-GFP association with peroxisomes. Here, we show that PEN2 is a tail-anchored protein with dual-membrane targeting to peroxisomes and mitochondria and that PEN2 has the capacity to form homo-oligomer complexes. We demonstrate pathogen-induced recruitment and immobilization of mitochondrial subpopulations at sites of attempted fungal invasion and show that mitochondrial arrest is accompanied by peripheral accumulation of GFP-tagged PEN2. PEN2 substrate production by the cytochrome P450 monooxygenase CYP81F2 is localized to the surface of the endoplasmic reticulum, which focally reorganizes close to the immobilized mitochondria. Exclusive targeting of PEN2 to the outer membrane of mitochondria complements the pen2 mutant phenotype, corroborating the functional importance of the mitochondrial PEN2 protein subpool for controlled local production of PEN2 hydrolysis products at subcellular plant-microbe interaction domains. Moreover, live-cell imaging shows that mitochondria arrested at these domains exhibit a pathogen-induced redox imbalance, which may lead to the production of intracellular signals. PMID:26721862

  10. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  12. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  13. Reporter Gene-Facilitated Detection of Compounds in Arabidopsis Leaf Extracts that Activate the Karrikin Signaling Pathway

    PubMed Central

    Sun, Yueming K.; Flematti, Gavin R.; Smith, Steven M.; Waters, Mark T.

    2016-01-01

    Karrikins are potent germination stimulants generated by the combustion of plant matter. Treatment of Arabidopsis with karrikins triggers a signaling process that is dependent upon a putative receptor protein KARRIKIN INSENSITIVE 2 (KAI2). KAI2 is a homolog of DWARF 14 (D14), the receptor for endogenous strigolactone hormones. Genetic analyses suggest that KAI2 also perceives endogenous signal(s) that are not strigolactones. Activation of KAI2 by addition of karrikins to Arabidopsis plants induces expression of transcripts including D14-LIKE 2 (DLK2). We constructed the synthetic reporter gene DLK2:LUC in Arabidopsis, which comprises the firefly luciferase gene (LUC) driven by the DLK2 promoter. Here we describe a luminescence-based reporter assay with Arabidopsis seeds to detect chemical signals that can activate the KAI2 signaling pathway. We demonstrate that the DLK2:LUC assay can selectively and sensitively detect karrikins and a functionally similar synthetic strigolactone analog. Crucially we show that crude extracts from Arabidopsis leaves can also activate DLK2:LUC in a KAI2-dependent manner. Our work provides the first direct evidence for the existence of endogenous chemical signals that can activate the KAI2-mediated signaling pathway in Arabidopsis. This sensitive reporter system can now be used for the bioassay-guided purification and identification of putative endogenous KAI2 ligands or their precursors, and endogenous compounds that might modulate the KAI2 signaling pathway. PMID:27994609

  14. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves.

    PubMed

    Casadevall, Romina; Rodriguez, Ramiro E; Debernardi, Juan M; Palatnik, Javier F; Casati, Paula

    2013-09-01

    Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of Growth-Regulating Factors (GRFs) and of microRNA miR396 in UV-B-mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3-related and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs.

  15. Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in Arabidopsis Leaves[C][W

    PubMed Central

    Casadevall, Romina; Rodriguez, Ramiro E.; Debernardi, Juan M.; Palatnik, Javier F.; Casati, Paula

    2013-01-01

    Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of GROWTH-REGULATING FACTORs (GRFs) and of microRNA miR396 in UV-B–mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3–RELATED and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs. PMID:24076976

  16. Class XI Myosins Are Required for Development, Cell Expansion, and F-Actin Organization in Arabidopsis[W][OA

    PubMed Central

    Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Dolja, Valerian V.

    2010-01-01

    The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced ∼10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development. PMID:20581304

  17. Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana.

    PubMed

    Fujikura, Ushio; Horiguchi, Gorou; Ponce, María Rosa; Micol, José Luis; Tsukaya, Hirokazu

    2009-08-01

    Co-ordination of cell proliferation and cell expansion is a key regulatory process in leaf-size determination, but its molecular details are unknown. In Arabidopsis thaliana, mutations in a positive regulator of cell proliferation often trigger excessive cell enlargement post-mitotically in leaves. This phenomenon, called compensation syndrome, is seen in the mutant angustifolia3 (an3), which is defective in a transcription co-activator. Such compensation, however, does not occur in response to a decrease in cell number in oligocellula (oli). oli2, oli5 and oli7 did not exhibit compensation and the reduction in cell number in these mutants was moderate. However, when an oli mutation was combined with a different oli mutation to create a double mutant, cell number was further reduced and compensation was induced. Similarly, weak suppression of AN3 expression reduced cell number moderately but did not induce compensation compared with an an3 null mutant. Furthermore, double mutants of either oli2, oli5 or oli7 and an3 showed markedly enhanced compensation. These results suggest that compensation is triggered when cell proliferation regulated by OLI2/OLI5/OLI7 and AN3 is compromised in a threshold-dependent manner. OLI2 encodes a Nop2 homolog in Saccharomyces cerevisiae that is involved in ribosome biogenesis, whereas OLI5 and OLI7 encode ribosome proteins RPL5A and RPL5B, respectively. This suggests that a factor involved in the induction of compensation may be under the dual control of AN3 and a ribosome-related process.

  18. The genetic architecture of constitutive and induced trichome density in two new recombinant inbred line populations of Arabidopsis thaliana: phenotypic plasticity, epistasis, and bidirectional leaf damage response

    PubMed Central

    2014-01-01

    Background Herbivory imposes an important selective pressure on plants. In Arabidopsis thaliana leaf trichomes provide a key defense against insect herbivory; however, trichome production incurs a fitness cost in the absence of herbivory. Previous work on A. thaliana has shown an increase in trichome density in response to leaf damage, suggesting a mechanism by which the cost associated with constitutively high trichome density might be mitigated; however, the genetic basis of trichome density induction has not been studied. Results Here, we describe the mapping of quantitative trait loci (QTL) for constitutive and damage induced trichome density in two new recombinant inbred line populations of A. thaliana; mapping for constitutive and induced trichome density also allowed for the investigation of damage response (plasticity) QTL. Both novel and previously identified QTL for constitutive trichome density and the first QTL for induced trichome density and response are identified. Interestingly, two of the four parental accessions and multiple RILs in each population exhibited lower trichome density following leaf damage, a response not previously described in A. thaliana. Importantly, a single QTL was mapped for the response phenotype and allelic variation at this locus appears to determine response trajectory in RILs. The data also show that epistatic interactions are a significant component of the genetic architecture of trichome density. Conclusions Together, our results provide further insights into the genetic architecture of constitutive trichome density and new insights into induced trichome density in A. thaliana specifically and to our understanding of the genetic underpinnings of natural variation generally. PMID:24885520

  19. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells.

    PubMed

    Miao, Yansong; Li, Hong-Ye; Shen, Jinbo; Wang, Junqi; Jiang, Liwen

    2011-10-01

    Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures.

  20. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells

    PubMed Central

    Miao, Yansong; Li, Hong-Ye; Shen, Jinbo; Wang, Junqi; Jiang, Liwen

    2011-01-01

    Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures. PMID:21725030

  1. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    PubMed Central

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  2. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE PAGES

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  3. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    SciTech Connect

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.

  4. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  5. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    SciTech Connect

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  6. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DOE PAGES

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; ...

    2015-07-22

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of themore » leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. In conclusion, these results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.« less

  7. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    SciTech Connect

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; Atwell, Susanna; Martens, Helle J.; Pedas, Pai R.; Hansen, Sara F.; Nawrath, Christiane; Scheller, Henrik V.; Kliebenstein, Daniel J.; Sakuragi, Yumiko

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

  8. Lacking chloroplasts in guard cells of crumpled leaf attenuates stomatal opening: both guard cell chloroplasts and mesophyll contribute to guard cell ATP levels.

    PubMed

    Wang, Shu-Wei; Li, Ying; Zhang, Xiao-Lu; Yang, Hai-Qiang; Han, Xue-Fei; Liu, Zhao-Hui; Shang, Zhong-Lin; Asano, Tomoya; Yoshioka, Yasushi; Zhang, Chun-Guang; Chen, Yu-Ling

    2014-09-01

    Controversies regarding the function of guard cell chloroplasts and the contribution of mesophyll in stomatal movements have persisted for several decades. Here, by comparing the stomatal opening of guard cells with (crl-ch) or without chloroplasts (crl-no ch) in one epidermis of crl (crumpled leaf) mutant in Arabidopsis, we showed that stomatal apertures of crl-no ch were approximately 65-70% those of crl-ch and approximately 50-60% those of wild type. The weakened stomatal opening in crl-no ch could be partially restored by imposing lower extracellular pH. Correspondingly, the external pH changes and K(+) accumulations following fusicoccin (FC) treatment were greatly reduced in the guard cells of crl-no ch compared with crl-ch and wild type. Determination of the relative ATP levels in individual cells showed that crl-no ch guard cells contained considerably lower levels of ATP than did crl-ch and wild type after 2 h of white light illumination. In addition, guard cell ATP levels were lower in the epidermis than in leaves, which is consistent with the observed weaker stomatal opening response to white light in the epidermis than in leaves. These results provide evidence that both guard cell chloroplasts and mesophyll contribute to the ATP source for H(+) extrusion by guard cells. © 2014 John Wiley & Sons Ltd.

  9. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  10. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    PubMed Central

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-01-01

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis. PMID:27110768

  11. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    PubMed

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  12. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    PubMed

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco[W

    PubMed Central

    Braun, Nils; Wyrzykowska, Joanna; Muller, Philippe; David, Karine; Couch, Daniel; Perrot-Rechenmann, Catherine; Fleming, Andrew J.

    2008-01-01

    AUXIN BINDING PROTEIN1 (ABP1) has long been characterized as a potentially important mediator of auxin action in plants. Analysis of the functional requirement for ABP1 during development was hampered because of embryo lethality of the null mutant in Arabidopsis thaliana. Here, we used conditional repression of ABP1 to investigate its function during vegetative shoot development. Using an inducible cellular immunization approach and an inducible antisense construct, we showed that decreased ABP1 activity leads to a severe retardation of leaf growth involving an alteration in cell division frequency, an altered pattern of endocycle induction, a decrease in cell expansion, and a change in expression of early auxin responsive genes. In addition, local repression of ABP1 activity in the shoot apical meristem revealed an additional role for ABP1 in cell plate formation and cell shape. Moreover, cells at the site of presumptive leaf initiation were more sensitive to ABP1 repression than other regions of the meristem. This spatial context-dependent response of the meristem to ABP1 inactivation and the other data presented here are consistent with a model in which ABP1 acts as a coordinator of cell division and expansion, with local auxin levels influencing ABP1 effectiveness. PMID:18952781

  14. DCL2 is highly expressed in the egg cell in both rice and Arabidopsis.

    PubMed

    Takanashi, Hideki; Ohnishi, Takayuki; Mogi, Mirai; Hirata, Yuto; Tsutsumi, Nobuhiro

    2011-04-01

    Small RNAs are riboregulators that play critical roles in eukaryotic cells. They repress gene expression by acting either on DNA to guide sequence elimination and chromatin remodeling, or on RNA to guide cleavage and translation repression. Arabidopsis thaliana and Oryza sativa contain four and six DICER-LIKE (DCL) genes with specialized functions in small RNA biogenesis for RNA interference-related processes. We recently profiled genome-wide gene expression in egg and synergid cells in rice. In this article, we show that OsDCL2, OsDCL4, and OsHEN1 are preferentially expressed in the egg cell. In addition, we revealed that AtDCL2 is also preferentially expressed in the Arabidopsis egg cell. These findings suggest that small RNA pathways are activated in the egg cell in both rice and Arabidopsis. The activation of these pathways in the egg cell might be essential for egg cell maturation, fertilization, or embryogenesis. 

  15. DCL2 is highly expressed in the egg cell in both rice and Arabidopsis

    PubMed Central

    Takanashi, Hideki; Ohnishi, Takayuki; Mogi, Mirai; Hirata, Yuto

    2011-01-01

    Small RNAs are riboregulators that play critical roles in eukaryotic cells. They repress gene expression by acting either on DNA to guide sequence elimination and chromatin remodeling, or on RNA to guide cleavage and translation repression. Arabidopsis thaliana and Oryza sativa contain four and six DICER-LIKE (DCL) genes with specialized functions in small RNA biogenesis for RNA interference- related processes. We recently profiled genome-wide gene expression in egg and synergid cells in rice. In this article, we show that OsDCL2, OsDCL4 and OsHEN1 are preferentially expressed in the egg cell. In addition, we revealed that AtDCL2 is also preferentially expressed in the Arabidopsis egg cell. These findings suggest that small RNA pathways are activated in the egg cell in both rice and Arabidopsis. The activation of these pathways in the egg cell might be essential for egg cell maturation, fertilization or embryogenesis. PMID:21673515

  16. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system.

    PubMed

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A

    2011-05-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.

  17. Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System ▿ †

    PubMed Central

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A.

    2011-01-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions. PMID:21421777

  18. Cytochrome P450 CYP89A9 Is Involved in the Formation of Major Chlorophyll Catabolites during Leaf Senescence in Arabidopsis[W][OA

    PubMed Central

    Christ, Bastien; Süssenbacher, Iris; Moser, Simone; Bichsel, Nicole; Egert, Aurelie; Müller, Thomas; Hörtensteiner, Stefan

    2013-01-01

    Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of senescing cells. Here, we identified a group of distinct dioxobilin-type chlorophyll catabolites (DCCs) as the major breakdown products in wild-type Arabidopsis, representing more than 90% of the chlorophyll of green leaves. The molecular constitution of the most abundant nonfluorescent DCC (NDCC), At-NDCC-1, was determined. We further identified cytochrome P450 monooxygenase CYP89A9 as being responsible for NDCC accumulation in wild-type Arabidopsis; cyp89a9 mutants that are deficient in CYP89A9 function were devoid of NDCCs but accumulated proportionally higher amounts of NCCs. CYP89A9 localized outside the chloroplasts, implying that FCCs occurring in the cytosol might be its natural substrate. Using recombinant CYP89A9, we confirm FCC specificity and show that fluorescent DCCs are the products of the CYP89A9 reaction. Fluorescent DCCs, formed by this enzyme, isomerize to the respective NDCCs in weakly acidic medium, as found in vacuoles. We conclude that CYP89A9 is involved in the formation of dioxobilin-type catabolites of chlorophyll in Arabidopsis. PMID:23723324

  19. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana.

    PubMed

    Dellero, Younès; Jossier, Mathieu; Glab, Nathalie; Oury, Céline; Tcherkez, Guillaume; Hodges, Michael

    2016-05-01

    Metabolic and physiological analyses of Arabidopsis thaliana glycolate oxidase (GOX) mutant leaves were performed to understand the development of the photorespiratory phenotype after transfer from high CO2 to air. We show that two Arabidopsis genes, GOX1 and GOX2, share a redundant photorespiratory role. Air-grown single gox1 and gox2 mutants grew normally and no significant differences in leaf metabolic levels and photosynthetic activities were found when compared with wild-type plants. To study the impact of a highly reduced GOX activity on plant metabolism, both GOX1 and GOX2 expression was knocked-down using an artificial miRNA strategy. Air-grown amiRgox1/2 plants with a residual 5% GOX activity exhibited a severe growth phenotype. When high-CO2-grown adult plants were transferred to air, the photosynthetic activity of amiRgox1/2 was rapidly reduced to 50% of control levels, and a high non-photochemical chlorophyll fluorescence quenching was maintained. (13)C-labeling revealed that daily assimilated carbon accumulated in glycolate, leading to reduced carbon allocation to sugars, organic acids, and amino acids. Such changes were not always mirrored in leaf total metabolite levels, since many soluble amino acids increased after transfer, while total soluble protein, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), and chlorophyll amounts decreased in amiRgox1/2 plants. The senescence marker, SAG12, was induced only in amiRgox1/2 rosettes after transfer to air. The expression of maize photorespiratory GOX in amiRgox1/2 abolished all observed phenotypes. The results indicate that the inhibition of the photorespiratory cycle negatively impacts photosynthesis, alters carbon allocation, and leads to early senescence in old rosette leaves. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    PubMed

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H2O2) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis.

    PubMed

    Qiu, Kai; Li, Zhongpeng; Yang, Zhen; Chen, Junyi; Wu, Shouxin; Zhu, Xiaoyu; Gao, Shan; Gao, Jiong; Ren, Guodong; Kuai, Benke; Zhou, Xin

    2015-07-01

    Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs). Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA) indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP) assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll degradation

  2. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis1[OPEN

    PubMed Central

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Churchman, Michelle; Larkin, John C.

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  3. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses.

  4. Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells.

    PubMed

    Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V

    2008-01-01

    Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.

  5. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects.

    PubMed

    Henriques, Rossana; Jásik, Ján; Klein, Markus; Martinoia, Enrico; Feller, Urs; Schell, Jeff; Pais, Maria S; Koncz, Csaba

    2002-11-01

    IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.

  6. The ULTRAPETALA1 trxG factor contributes to patterning the Arabidopsis adaxial-abaxial leaf polarity axis

    USDA-ARS?s Scientific Manuscript database

    The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcripti...

  7. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.

    PubMed

    Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori

    2006-05-01

    The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.

  8. Elucidating the Role of Transport Processes in Leaf Glucosinolate Distribution1[C][W][OPEN

    PubMed Central

    Madsen, Svend Roesen; Olsen, Carl Erik; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers. PMID:25209984

  9. New insights into the control of endoreduplication: endoreduplication could be driven by organ growth in Arabidopsis leaves.

    PubMed

    Massonnet, Catherine; Tisné, Sébastien; Radziejwoski, Amandine; Vile, Denis; De Veylder, Lieven; Dauzat, Myriam; Granier, Christine

    2011-12-01

    Enormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf. Correlative analyses, quantitative genetics, and structural equation modeling were applied to a large data set issued from the multiscale phenotyping of 200 genotypes, including both genetically modified lines and recombinant inbred lines. All results support the conclusion that endoreduplication in leaf cells could be controlled by leaf growth itself. More generally, leaf growth could act as a "hub" that drives cell division, cell expansion, and endoreduplication in parallel. In many cases, this strategy allows compensations that stabilize leaf area even when one of the underlying cellular processes is limiting.

  10. New Insights into the Control of Endoreduplication: Endoreduplication Could Be Driven by Organ Growth in Arabidopsis Leaves1[W

    PubMed Central

    Massonnet, Catherine; Tisné, Sébastien; Radziejwoski, Amandine; Vile, Denis; De Veylder, Lieven; Dauzat, Myriam; Granier, Christine

    2011-01-01

    Enormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf. Correlative analyses, quantitative genetics, and structural equation modeling were applied to a large data set issued from the multiscale phenotyping of 200 genotypes, including both genetically modified lines and recombinant inbred lines. All results support the conclusion that endoreduplication in leaf cells could be controlled by leaf growth itself. More generally, leaf growth could act as a “hub” that drives cell division, cell expansion, and endoreduplication in parallel. In many cases, this strategy allows compensations that stabilize leaf area even when one of the underlying cellular processes is limiting. PMID:22010109

  11. Endomembrane trafficking protein SEC24A regulates cell size patterning in Arabidopsis.

    PubMed

    Qu, Xian; Chatty, Prerana Rao; Roeder, Adrienne H K

    2014-12-01

    Size is a critical property of a cell, but how it is determined is still not well understood. The sepal epidermis of Arabidopsis (Arabidopsis thaliana) contains cells with a diversity of sizes ranging from giant cells to small cells. Giant cells have undergone endoreduplication, a specialized cell cycle in which cells replicate their DNA but fail to divide, becoming polyploid and enlarged. Through forward genetics, we have identified a new mutant with ectopic giant cells covering the sepal epidermis. Surprisingly, the mutated gene, SEC24A, encodes a coat protein complex II vesicle coat subunit involved in endoplasmic reticulum-to-Golgi trafficking in the early secretory pathway. We show that the ectopic giant cells of sec24a-2 are highly endoreduplicated and that their formation requires the activity of giant cell pathway genes LOSS OF GIANT CELLS FROM ORGANS, DEFECTIVE KERNEL1, and Arabidopsis CRINKLY4. In contrast to other trafficking mutants, cytokinesis appears to occur normally in sec24a-2. Our study reveals an unexpected yet specific role of SEC24A in endoreduplication and cell size patterning in the Arabidopsis sepal. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. Mechanical Behavior of Cells within a Cell-Based Model of Wheat Leaf Growth

    PubMed Central

    Zubairova, Ulyana; Nikolaev, Sergey; Penenko, Aleksey; Podkolodnyy, Nikolay; Golushko, Sergey; Afonnikov, Dmitry; Kolchanov, Nikolay

    2016-01-01

    Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth. PMID:28018409

  13. Screening for wound-induced oxylipins in Arabidopsis thaliana by differential HPLC-APCI/MS profiling of crude leaf extracts and subsequent characterisation by capillary-scale NMR.

    PubMed

    Thiocone, Aly; Farmer, Edward E; Wolfender, Jean-Luc

    2008-01-01

    A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest.

  14. Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].

    PubMed

    Markelz, R J Cody; Vosseller, Lauren N; Leakey, Andrew D B

    2014-11-01

    Plant respiration responses to elevated growth [CO(2)] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO(2)] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole plant photoassimilate availability and growth, elevated [CO(2)] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO(2)] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO(2)] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO(2) efflux. In mature leaves, elevated [CO(2)] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO(2) efflux. Therefore, growth at elevated [CO(2)] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO(2)] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO(2)] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.

  15. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts.

    PubMed

    Schumann, Uwe; Prestele, Jakob; O'Geen, Henriette; Brueggeman, Robert; Wanner, Gerhard; Gietl, Christine

    2007-01-16

    Plant peroxisomes perform multiple vital metabolic processes including lipid mobilization in oil-storing seeds, photorespiration, and hormone biosynthesis. Peroxisome biogenesis requires the function of peroxin (PEX) proteins, including PEX10, a C(3)HC(4) Zn RING finger peroxisomal membrane protein. Loss of function of PEX10 causes embryo lethality at the heart stage. We investigated the function of PEX10 with conditional sublethal mutants. Four T-DNA insertion lines expressing pex10 with a dysfunctional RING finger were created in an Arabidopsis WT background (DeltaZn plants). They could be normalized by growth in an atmosphere of high CO(2) partial pressure, indicating a defect in photorespiration. beta-Oxidation in mutant glyoxysomes was not affected. However, an abnormal accumulation of the photorespiratory metabolite glyoxylate, a lowered content of carotenoids and chlorophyll a and b, and a decreased quantum yield of photosystem II were detected under normal atmosphere, suggesting impaired leaf peroxisomes. Light and transmission electron microscopy demonstrated leaf peroxisomes of the DeltaZn plants to be more numerous, multilobed, clustered, and not appressed to the chloroplast envelope as in WT. We suggest that inactivation of the RING finger domain in PEX10 has eliminated protein interaction required for attachment of peroxisomes to chloroplasts and movement of metabolites between peroxisomes and chloroplasts.

  16. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    PubMed Central

    BOOKER, FITZGERALD L.; BURKEY, KENT O.; JONES, ALAN M.

    2016-01-01

    Phenolic glycosides are effective reactive oxygen scavengers and peroxidase substrates, suggesting that compounds in addition to ascorbate may have functional importance in defence responses against ozone (O3), especially in the leaf apoplast. The apoplastic concentrations of ascorbic acid (AA) and phenolic glycosides in Arabidopsis thaliana L. Col-0 wild-type plants were determined following exposure to a range of O3 concentrations (5, 125 or 175 nL L−1) in controlled environment chambers. AA in leaf apoplast extracts was almost entirely oxidized in all treatments, suggesting that O3 scavenging by direct reactions with reduced AA was very limited. In regard to phenolics, O3 stimulated transcription of numerous phenylpropanoid pathway genes and increased the apoplastic concentration of sinapoyl malate. However, modelling of O3 scavenging in the apoplast indicated that sinapoyl malate concentrations were too low to be effective protectants. Furthermore, null mutants for sinapoyl esters (fah1-7), kaempferol glycosides (tt4-1) and the double mutant (tt4-1/fah1-7) were equally sensitive to chronic O3 as Ler-0 wild-type plants. These results indicate that current understanding of O3 defence schemes deserves reassessment as mechanisms other than direct scavenging of O3 by extracellular AA and antioxidant activity of some phenolics may predominate in some plant species. PMID:22380512

  17. Xanthomonas campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor1[OA

    PubMed Central

    Gudesblat, Gustavo E.; Torres, Pablo S.; Vojnov, Adrián A.

    2009-01-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  18. Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips

    PubMed Central

    2011-01-01

    Background Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. NCS has inhibitory effects on a broad range of biological activities and thus has various potential practical applications. Here we examine how NCS represses plant root growth. Results Results showed that the inhibition of NCS on cell division in Arabidopsis root tips and its effects on cell differentiation are concentration-dependent; at low concentrations (0.5 and 1.0 μM) NCS preferentially targets mitotic cell cycle specific/cyclin complexes, whereas at high concentration (5.0 μM) the NCS-stimulated accumulation of Kip-related proteins (KRP1 and RP2) affects the CDK complexes with a role at both G1/S and G2/M phases. Conclusions Our findings suggest that NCS modulates the coordination between cell division and differentiation in Arabidopsis root tips and hence affects the postembryonic development of Arabidopsis seedlings. PMID:22204558

  19. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  20. Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level.

    PubMed

    Meng, Shuan; Peng, Jia-Shi; He, Ya-Ni; Zhang, Guo-Bin; Yi, Hong-Ying; Fu, Yan-Lei; Gong, Ji-Ming

    2016-03-07

    Nitrogen deficiency induces leaf senescence. However, whether or how nitrate might affect this process remains to be investigated. Here, we report an interesting finding that nitrate-instead of nitrogen-starvation induced early leaf senescence in nrt1.5 mutant, and present genetic and physiological data demonstrating that nitrate starvation-induced leaf senescence is suppressed by NRT1.5. NRT1.5 suppresses the senescence process dependent on its function from roots, but not the nitrate transport function. Further analyses using nrt1.5 single and nia1 nia2 nrt1.5-4 triple mutant showed a negative correlation between nitrate concentration and senescence rate in leaves. Moreover, when exposed to nitrate starvation, foliar potassium level decreased in nrt1.5, but adding potassium could essentially restore the early leaf senescence phenotype of nrt1.5 plants. Nitrate starvation also downregulated the expression of HAK5, RAP2.11, and ANN1 in nrt1.5 roots, and appeared to alter potassium level in xylem sap from nrt1.5. These data suggest that NRT1.5 likely perceives nitrate starvation-derived signals to prevent leaf senescence by facilitating foliar potassium accumulation.

  1. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis.

    PubMed

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

  2. RAD5a ubiquitin ligase is involved in ubiquitination of Arabidopsis thaliana proliferating cell nuclear antigen.

    PubMed

    Strzalka, Wojciech; Bartnicki, Filip; Pels, Katarzyna; Jakubowska, Agata; Tsurimoto, Toshiki; Tanaka, Katsunori

    2013-02-01

    The proliferating cell nuclear antigen (PCNA) is post-translationally modified by ubiquitin in yeast and mammalian cells. It is widely accepted that in yeast mono- and polyubiquitinated PCNA is involved in distinct pathways of DNA postreplication repair. This study showed an interaction between plant ubiquitin and PCNA in the plant cell. Using different approaches, it was demonstrated that Arabidopsis RAD5a ubiquitin ligase is involved in the post-translational modification of plant PCNA. A detailed analysis of the properties of selected Arabidopsis ubiquitin-conjugating enzymes (AtUBC) has shown that a plant homologue of yeast RAD6 (AtUBC2) is sufficient to monoubiquitinate AtPCNA in the absence of ubiquitin ligase. Using different combinations of selected AtUBC proteins together with AtRAD5a, it was demonstrated that plants have potential to use different pathways to ubiquitinate PCNA. The analysis of Arabidopsis PCNA1 and PCNA2 did not demonstrate substantial differences in the ubiquitination pattern between these two proteins. The major ubiquitination target of Arabidopsis PCNA, conserved in eukaryotes, is lysine 164. Taken together, the presented results clearly demonstrate the involvement of Arabidopsis UBC and RAD5a proteins in the ubiquitination of plant PCNA at lysine 164. The data show the complexity of the plant ubiquitination system and open new questions about its regulation in the plant cell.

  3. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    PubMed

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered.

  4. Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) Increases Leaf Surface Wax Content and Reduces Post-harvest Water Loss

    PubMed Central

    Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.

    2017-01-01

    Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085

  5. Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) Increases Leaf Surface Wax Content and Reduces Post-harvest Water Loss.

    PubMed

    Sajeevan, R S; Nataraja, Karaba N; Shivashankara, K S; Pallavi, N; Gurumurthy, D S; Shivanna, M B

    2017-01-01

    Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph-mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry.

  6. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    USDA-ARS?s Scientific Manuscript database

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  7. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  8. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis.

    PubMed

    Filardo, Fiona; Robertson, Masumi; Singh, Davinder Pal; Parish, Roger W; Swain, Stephen M

    2009-02-01

    SPINDLY (SPY) is an important regulator of plant development, and consists of an N-half tetratricopeptide repeat (TPR) domain containing 10 TPR motifs and a C-half catalytic domain, similar to O-GlcNAc transferase (OGT) of animals. The best characterised role of SPY is a negative regulator of GA signalling, and all known spy alleles have been isolated based on increased GA response. Of the eight alleles that directly affect the TPR domain, all alter TPRs 6, 8 and/or 9. To test the hypothesis that a subset of TPRs, including 6, 8 and 9, are both essential and sufficient for the regulation of GA response, we overexpressed the full-length barley (Hordeum vulgare L.) SPY protein (HvSPY) and several deletion mutants in barley aleurone cells and in Arabidopsis wild type (WT) and spy-4 plants. Transient assays in barley aleurone cells, that also express endogenous HvSPY, demonstrated that introduced HvSPY and HvTPR inhibited GA(3)-induced alpha-amylase expression. With the exception of HvSPYDelta1-5, the other deletion proteins were partially active in the barley assay, including HvSPYDelta6-9 which lacks TPRs 6, 8 and 9. In Arabidopsis, analysis of seed germination under a range of conditions revealed that 35S:HvSPY increased seed dormancy. Hvspy-2, which lacks parts of the eighth and ninth TPRs, was able to partially complement all aspects of the spy-4 phenotype. In the presence of AtSPY, 35S:HvTPR caused some phenotypes consistent with a decrease in GA signalling, including increased seed sensitivity to paclobutrazol and delayed flowering. These plants also possessed distorted leaf morphology and altered epidermal cell shape. Thus, despite genetic analysis demonstrating that TPRs 6, 8 and 9 are required for regulation of GA signalling, our results suggest that these TPRs are neither absolutely essential nor sufficient for SPY activity.

  9. Automatic Quantification of the Number of Intracellular Compartments in Arabidopsis thaliana Root Cells

    PubMed Central

    Bayle, Vincent; Platre, Matthieu Pierre; Jaillais, Yvon

    2017-01-01

    In the era of quantitative biology, it is increasingly required to quantify confocal microscopy images. If possible, quantification should be performed in an automatic way, in order to avoid bias from the experimenter, to allow the quantification of a large number of samples, and to increase reproducibility between laboratories. In this protocol, we describe procedures for automatic counting of the number of intracellular compartments in Arabidopsis root cells, which can be used for example to study endocytosis or secretory trafficking pathways and to compare membrane organization between different genotypes or treatments. While developed for Arabidopsis roots, this method can be used on other tissues, cell types and plant species. PMID:28255574

  10. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis.

    PubMed

    Higuchi-Takeuchi, Mieko; Ichikawa, Takanari; Kondou, Youichi; Matsui, Keiko; Hasegawa, Yukako; Kawashima, Mika; Sonoike, Kintake; Mori, Masaki; Hirochika, Hirohiko; Matsui, Minami

    2011-09-01

    Ferredoxin-NADP(+)-oxidoreductase (FNR) mediates electron transfer between ferredoxin (Fd) and NADP(+); therefore, it is a key enzyme that provides the reducing power used in the Calvin cycle. Other than FNR, nitrite reductase, sulfite reductase, glutamate synthase, and Fd-thioredoxin reductase also accept electrons from Fd, an electron carrier protein in the stroma. Therefore, the regulation of electron partitioning in the chloroplast is important for photosynthesis and other metabolic pathways. The regulatory mechanism of electron partitioning, however, remains to be elucidated. We found, by taking advantage of a gain-of-function approach, that expression of two rice (Oryza sativa) full-length cDNAs of leaf-type FNRs (OsLFNR1 and OsLFNR2) led to altered chlorophyll fluorescence and growth in Arabidopsis (Arabidopsis thaliana) and rice. We revealed that overexpression of the OsLFNR1 and OsLFNR2 full-length cDNAs resulted in distinct phenotypes despite the high sequence similarity between them. Expression of OsLFNR1 affected the nitrogen assimilation pathway without inhibition of photosynthesis under normal conditions. On the other hand, OsLFNR2 expression led to the impairment of photosynthetic linear electron transport as well as Fd-dependent cyclic electron flow around photosystem I. The endogenous protein level of OsLFNR was found to be suppressed in both OsLFNR1- and OsLFNR2-overexpressing rice plants, leading to changes in the stoichiometry of the two LFNR isoforms within the thylakoid and soluble fractions. Thus, we propose that the stoichiometry of two LFNR isoforms plays an important role in electron partitioning between carbon fixation and nitrogen assimilation.

  11. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening

    PubMed Central

    Han, Ye; Ban, Qiuyan; Li, Hua; Hou, Yali; Jin, Mijing; Han, Shoukun; Rao, Jingping

    2016-01-01

    Fruit softening is mainly associated with cell wall structural modifications, and members of the xyloglucan endotransglucosylase/hydrolase (XTH) family are key enzymes involved in cleaving and re-joining xyloglucan in the cell wall. In this work, we isolated a new XTH gene, DkXTH8, from persimmon fruit. Transcriptional profiling revealed that DkXTH8 peaked during dramatic fruit softening, and expression of DkXTH8 was stimulated by propylene and abscisic acid but suppressed by gibberellic acid and 1-MCP. Transient expression assays in onion epidermal cells indicated direct localization of DkXTH8 to the cell wall via its signal peptide. When expressed in vitro, the recombinant DkXTH8 protein exhibited strict xyloglucan endotransglycosylase activity, whereas no xyloglucan endohydrolase activity was observed. Furthermore, overexpression of DkXTH8 resulted in increased leaf senescence coupled with higher electrolyte leakage in Arabidopsis and faster fruit ripening and softening rates in tomato. Most importantly, transgenic plants overexpressing DkXTH8 displayed more irregular and twisted cells due to cell wall restructuring, resulting in wider interstitial spaces with less compact cells. We suggest that DkXTH8 expression causes cells to be easily destroyed, increases membrane permeability and cell peroxidation, and accelerates leaf senescence and fruit softening in transgenic plants. PMID:27966647

  12. Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection1[W][OA

    PubMed Central

    Ascencio-Ibáñez, José Trinidad; Sozzani, Rosangela; Lee, Tae-Jin; Chu, Tzu-Ming; Wolfinger, Russell D.; Cella, Rino; Hanley-Bowdoin, Linda

    2008-01-01

    Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle. PMID:18650403

  13. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  14. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant.

    PubMed Central

    Staswick, P E; Su, W; Howell, S H

    1992-01-01

    Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), are plant signaling molecules that affect plant growth and gene expression. Primary root growth of wild-type Arabidopsis thaliana seedlings was inhibited 50% when seedlings were grown on agar medium containing 0.1 M MeJA. An ethyl methanesulfonate mutant (jar1) with decreased sensitivity to MeJA inhibition of root elongation was isolated and characterized. Genetic data indicated the trait was recessive and controlled by a single Mendelian factor. MeJA-induced polypeptides were detected in Arabidopsis leaves by antiserum to a MeJA-inducible vegetative storage protein from soybean. The induction of these proteins by MeJA in the mutant was at least 4-fold less in jar1 compared to wild type. In contrast, seeds of jar1 plants were more sensitive than wild type to inhibition of germination by abscisic acid. These results suggest that the defect in jar1 affects a general jasmonate response pathway, which may regulate multiple genes in different plant organs. Images PMID:11607311

  15. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress.

    PubMed

    Sánchez-Corrionero, Álvaro; Sánchez-Vicente, Inmaculada; González-Pérez, Sergio; Corrales, Ascensión; Krieger-Liszkay, Anja; Lorenzo, Óscar; Arellano, Juan B

    2017-09-01

    The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen ((1)O2) and activating (1)O2-mediated cell death. Thylakoids of aba1 produced twice as much (1)O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. (1)O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of (1)O2 generation in aba1. Up-regulation of the (1)O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct (1)O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of (1)O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other (1)O2-overproducing mutants of Arabidopsis for investigating (1)O2-mediated cell death. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis thaliana Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil.

    PubMed

    Kühnlenz, Tanja; Hofmann, Christian; Uraguchi, Shimpei; Schmidt, Holger; Schempp, Stefanie; Weber, Michael; Lahner, Brett; Salt, David E; Clemens, Stephan

    2016-11-01

    Phytochelatin (PC) synthesis is essential for the detoxification of non-essential metals such as cadmium (Cd). In vitro experiments with Arabidopsis thaliana seedlings had indicated a contribution to zinc (Zn) tolerance as well. We addressed the physiological role of PC synthesis in Zn homeostasis of plants under more natural conditions. Growth responses, PC accumulation and leaf ionomes of wild-type and AtPCS1 mutant plants cultivated in different soils representing adequate Zn supply, Zn deficiency and Zn excess were analyzed. Growth on Zn-contaminated soil triggers PC synthesis and is strongly impaired in PC-deficient mutants. In fact, the contribution of AtPCS1 to tolerating Zn excess is comparable with that of the major Zn tolerance factor MTP1. For plants supplied with a normal level of Zn, a significant reduction in leaf Zn accumulation of AtPCS1 mutants was detected. In contrast, AtPCS1 mutants grown under Zn-limited conditions showed wild-type levels of Zn accumulation, suggesting the operation of distinct Zn translocation pathways. Contrasting phenotypes of the tested AtPCS1 mutant alleles upon growth in Zn- or Cd-contaminated soil indicated differential activation of PC synthesis by these metals. Experiments with truncated versions identified a part of the AtPCS1 protein required for the activation by Zn but not by Cd. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Ubiquitin Ligase ATL31 Functions in Leaf Senescence in Response to the Balance Between Atmospheric CO2 and Nitrogen Availability in Arabidopsis

    PubMed Central

    Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji

    2014-01-01

    Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysis using an atmospheric CO2 manipulation system. Under conditions of elevated CO2 and sufficient N, plant biomass and total sugar and starch dramatically increased. In contrast, elevated CO2 with limited N did not increase plant biomass but promoted leaf chlorosis, with anthocyanin accumulation and increased senescence-associated gene expression. Similar results were obtained with plants grown in medium containing excess sugar and limited N, suggesting that disruption of the C/N balance affects senescence progression. In ATL31-overexpressing plants, promotion of senescence under disrupted CO2/N conditions was repressed, whereas in the loss-of-function mutant it was enhanced. The ATL31 gene was transcriptionally up-regulated under N deficiency and in senescent leaves, and ATL31 expression was highly correlated with WRKY53 expression, a key regulator of senescence. Furthermore, transient protoplast analysis implicated the direct activation of ATL31 expression by WRKY53, which was in accordance with the results of WRKY53 overexpression experiments. Together, these results demonstrate the importance of C/N balance in leaf senescence and the involvement of ubiquitin ligase ATL31 in the process of senescence in Arabidopsis. PMID:24399238

  18. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    SciTech Connect

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; Allen, Doug K.

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.

  19. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  20. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    PubMed

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  1. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate

    PubMed Central

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C.; Chang, Caren; Tucker, Mark L.

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  2. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate.

    PubMed

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C; Chang, Caren; Tucker, Mark L

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  3. Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling.

    PubMed

    Jakobson, Liina; Vaahtera, Lauri; Tõldsepp, Kadri; Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M Rob G; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I; Kollist, Hannes; Brosché, Mikael

    2016-12-01

    Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.

  4. Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling

    PubMed Central

    Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T.; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M. Rob G.; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I.; Kollist, Hannes; Brosché, Mikael

    2016-01-01

    Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management. PMID:27923039

  5. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules.

    PubMed

    Wang, Xia; Zhu, Lei; Liu, Baoquan; Wang, Che; Jin, Lifeng; Zhao, Qian; Yuan, Ming

    2007-03-01

    Microtubule-associated proteins (MAPs) play important roles in the regulation of microtubule function in cells. We describe Arabidopsis thaliana MAP18, which binds to microtubules and inhibits tubulin polymerization in vitro and colocalizes along cortical microtubules as patches of dot-like structures. MAP18 is expressed mostly in the expanding cells. Cells overexpressing MAP18 in Arabidopsis exhibit various growth phenotypes with loss of polarity. Cortical microtubule arrays were significantly altered in cells either overexpressing MAP18 or where it had been downregulated by RNA interference (RNAi). The cortical microtubules were more sensitive to treatment with microtubule-disrupting drugs when MAP18 was overexpressed, but more resistant when MAP18 was eliminated in cells expressing MAP18 RNAi. Our study demonstrated that MAP18 may play a role in regulating directional cell growth and cortical microtubule organization by destabilizing microtubules.

  6. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  7. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  8. Routine sample preparation and HPLC analysis for ascorbic acid (vitamin C) determination in wheat plants and Arabidopsis leaf tissues.

    PubMed

    Szalai, Gabriella; Janda, T; Pál, Magda

    2014-06-01

    Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

  9. FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei.

    PubMed

    Borges, Filipe; Gardner, Rui; Lopes, Telma; Calarco, Joseph P; Boavida, Leonor C; Slotkin, R Keith; Martienssen, Robert A; Becker, Jörg D

    2012-10-17

    The male germline in flowering plants differentiates by asymmetric division of haploid uninucleated microspores, giving rise to a vegetative cell enclosing a smaller generative cell, which eventually undergoes a second mitosis to originate two sperm cells. The vegetative cell and the sperm cells activate distinct genetic and epigenetic mechanisms to control pollen tube growth and germ cell specification, respectively. Therefore, a comprehensive characterization of these processes relies on efficient methods to isolate each of the different cell types throughout male gametogenesis. We developed stable transgenic Arabidopsis lines and reliable purification tools based on Fluorescence-Activated Cell Sorting (FACS) in order to isolate highly pure and viable fractions of each cell/nuclei type before and after pollen mitosis. In the case of mature pollen, this was accomplished by expressing GFP and RFP in the sperm and vegetative nuclei, respectively, resulting in 99% pure sorted populations. Microspores were also purified by FACS taking advantage of their characteristic small size and autofluorescent properties, and were confirmed to be 98% pure. We provide simple and efficient FACS-based purification protocols for Arabidopsis microspores, vegetative nuclei and sperm cells. This paves the way for subsequent molecular analysis such as transcriptomics, DNA methylation analysis and chromatin immunoprecipitation, in the developmental context of microgametogenesis in Arabidopsis.

  10. Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence.

    PubMed

    Jiang, Jishan; Jia, Huili; Feng, Guangyan; Wang, Zan; Li, Jun; Gao, Hongwen; Wang, Xuemin

    2016-08-01

    Alfalfa (Medicago sativa L.) is a major forage legume for livestock and a target for improving their dietary quality. Vitamin E is an essential vitamin that animals must obtain from their diet for proper growth and development. γ-tocopherol methyltransferase (γ-TMT), which catalyzes the conversion of δ- and γ-tocopherols (or tocotrienols) to β- and α-tocopherols (or tocotrienols), respectively, is the final enzyme involved in the vitamin E biosynthetic pathway. The overexpression of M. sativa L.'s γ-TMT (MsTMT) increased the α-tocopherol content 10-15 fold above that of wild type Arabidopsis seeds without altering the total content of vitamin E. Additionally, in response to osmotic stress, the biomass and the expression levels of several osmotic marker genes were significantly higher in the transgenic lines compared with wild type. Overexpression of MsTMT in alfalfa led to a modest, albeit significant, increase in α-tocopherol in leaves and was also responsible for a delayed leaf senescence phenotype. Additionally, the crude protein content was increased, while the acid and neutral detergent fiber contents were unchanged in these transgenic lines. Thus, increased α-tocopherol content occurred in transgenic alfalfa without compromising the nutritional qualities. The targeted metabolic engineering of vitamin E biosynthesis through MsTMT overexpression provides a promising approach to improve the α-tocopherol content of forage crops.

  11. Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco[C][W][OA

    PubMed Central

    Werner, Tomáš; Nehnevajova, Erika; Köllmer, Ireen; Novák, Ondřej; Strnad, Miroslav; Krämer, Ute; Schmülling, Thomas

    2010-01-01

    Optimizing root system architecture can overcome yield limitations in crop plants caused by water or nutrient shortages. Classic breeding approaches are difficult because the trait is governed by many genes and is difficult to score. We generated transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants with enhanced root-specific degradation of the hormone cytokinin, a negative regulator of root growth. These transgenic plants form a larger root system, whereas growth and development of the shoot are similar. Elongation of the primary root, root branching, and root biomass formation were increased by up to 60% in transgenic lines, increasing the root-to-shoot ratio. We thus demonstrated that a single dominant gene could regulate a complex trait, root growth. Moreover, we showed that cytokinin regulates root growth in a largely organ-autonomous fashion that is consistent with its dual role as a hormone with both paracrine and long-distance activities. Transgenic plants had a higher survival rate after severe drought treatment. The accumulation of several elements, including S, P, Mn, Mg, Zn, as well as Cd from a contaminated soil, was significantly increased in shoots. Under conditions of sulfur or magnesium deficiency, leaf chlorophyll content was less affected in transgenic plants, demonstrating the physiological relevance of shoot element accumulation. Our approach might contribute to improve drought tolerance, nutrient efficiency, and nutrient content of crop plants. PMID:21148816

  12. LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis

    PubMed Central

    Yang, Chao; Lin, Hongwei; Wang, Lingling; He, Yi; Ding, Xiaomeng; Grabsztunowicz, Magda; Chen, Tao; Liu, Yu; Wu, Zhongchang; Wu, Yunrong; Wu, Ping; Mo, Xiaorong

    2016-01-01

    LIR1 (LIGHT-INDUCED RICE1) encodes a 13-kD, chloroplast-targeted protein containing two nearly identical motifs of unknown function. LIR1 is present in the genomes of vascular plants, mosses, liverworts, and algae, but not in cyanobacteria. Using coimmunoprecipitation assays, pull-down assays, and yeast two-hybrid analyses, we showed that LIR1 interacts with LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE (LFNR), an essential chloroplast enzyme functioning in the last step of photosynthetic linear electron transfer. LIR1 and LFNR formed high molecular weight thylakoid protein complexes with the TIC62 and TROL proteins, previously shown to anchor LFNR to the membrane. We further showed that LIR1 increases the affinity of LFNRs for TIC62 and that the rapid light-triggered degradation of the LIR1 coincides with the release of the LFNR from the thylakoid membrane. Loss of LIR1 resulted in a marked decrease in the accumulation of LFNR-containing thylakoid protein complexes without a concomitant decrease in total LFNR content. In rice (Oryza sativa), photosynthetic capacity of lir1 plants was slightly impaired, whereas no such effect was observed in Arabidopsis thaliana knockout mutants. The consequences of LIR1 deficiency in different species are discussed. PMID:26941088

  13. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  14. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  15. Cell-Specific Vacuolar Calcium Storage Mediated by CAX1 Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in Arabidopsis[W][OA

    PubMed Central

    Conn, Simon J.; Athman, Asmini; Schreiber, Andreas W.; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A.; Hirschi, Kendal D.; Webb, Alex A.R.; Burton, Rachel; Kaiser, Brent N.; Tyerman, Stephen D.; Leigh, Roger A.

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca2+ transporters, CAX1 (Ca2+/H+-antiporter), ACA4, and ACA11 (Ca2+-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO2 assimilation, and leaf growth rate; increased transcript abundance of other Ca2+ transporter genes; altered expression of cell wall–modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca2+], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca2+] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity. PMID:21258004

  16. Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana

    PubMed Central

    Méndez-Vigo, Belén; de Andrés, M. Teresa; Ramiro, Mercedes; Martínez-Zapater, José M.; Alonso-Blanco, Carlos

    2010-01-01

    Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 Ler×Fei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth. PMID:20190039

  17. Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis

    PubMed Central

    Tian, Caihuan; Wang, Jin; Xu, Tengfei; Xu, Yan; Ohno, Carolyn; Sablowski, Robert; Heisler, Marcus G.; Theres, Klaus; Wang, Ying

    2016-01-01

    Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation. PMID:27398935

  18. DNA demethylation is initiated in the central cells of Arabidopsis and rice

    PubMed Central

    Park, Kyunghyuk; Kim, M. Yvonne; Vickers, Martin; Park, Jin-Sup; Hyun, Youbong; Okamoto, Takashi; Zilberman, Daniel; Fischer, Robert L.; Feng, Xiaoqi; Choi, Yeonhee; Scholten, Stefan

    2016-01-01

    Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis. DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice—species that diverged 150 million years ago—as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis. However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm. PMID:27956642

  19. DNA demethylation is initiated in the central cells of Arabidopsis and rice.

    PubMed

    Park, Kyunghyuk; Kim, M Yvonne; Vickers, Martin; Park, Jin-Sup; Hyun, Youbong; Okamoto, Takashi; Zilberman, Daniel; Fischer, Robert L; Feng, Xiaoqi; Choi, Yeonhee; Scholten, Stefan

    2016-12-27

    Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice-species that diverged 150 million years ago-as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm.

  20. SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development[W][OA

    PubMed Central

    Zhang, Guang-Heng; Xu, Qian; Zhu, Xu-Dong; Qian, Qian; Xue, Hong-Wei

    2009-01-01

    As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling. PMID:19304938

  1. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity.

    PubMed

    Claeys, Hannes; Skirycz, Aleksandra; Maleux, Katrien; Inzé, Dirk

    2012-06-01

    Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.

  2. DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity1[W][OA

    PubMed Central

    Claeys, Hannes; Skirycz, Aleksandra; Maleux, Katrien; Inzé, Dirk

    2012-01-01

    Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation. PMID:22535421

  3. Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals.

    PubMed

    Schwarz, Erich M; Roeder, Adrienne H K

    2016-01-01

    Endoreduplication is a specialized cell cycle in which DNA replication occurs, but mitosis is skipped creating enlarged polyploid cells. Endoreduplication is associated with the differentiation of many specialized cell types. In the Arabidopsis thaliana sepal epidermis endoreduplicated giant cells form interspersed between smaller cells. Both the transcription factor Arabidopsis thaliana MERISTEM LAYER1 (ATML1) and the plant-specific cyclin dependent kinase inhibitor LOSS OF GIANT CELLS FROM ORGANS (LGO)/SIAMESE RELATED1 (SMR1) are required for the formation of giant cells. Overexpression of LGO is sufficient to produce sepals covered in highly endoreduplicated giant cells. Here we ask whether overexpression of LGO changes the transcriptome of these mature sepals. We show that overexpression of LGO in the epidermis (LGOoe) drives giant cell formation even in atml1 mutant sepals. Using RNA-seq we show that LGOoe has significant effects on the mature sepal transcriptome that are primarily ATML1-independent changes of gene activity. Genes activated by LGOoe, directly or indirectly, predominantly encode proteins involved in defense responses, including responses to wounding, insects (a predator of Arabidopsis), and fungus. They also encode components of the glucosinolate biosynthesis pathway, a key biochemical pathway in defense against herbivores. LGOoe-activated genes include previously known marker genes of systemic acquired resistance such as PR1 through PR5. The defensive functions promoted by LGOoe in sepals overlap with functions recently shown to be transcriptionally activated by hyperimmune cpr5 mutants in a LGO-dependent manner. Our findings show that the cell cycle regulator LGO can directly or indirectly drive specific states of gene expression; in particular, they are consistent with recent findings showing LGO to be necessary for transcriptional activation of many defense genes in Arabidopsis.

  4. Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals

    PubMed Central

    Schwarz, Erich M.; Roeder, Adrienne H. K.

    2016-01-01

    Endoreduplication is a specialized cell cycle in which DNA replication occurs, but mitosis is skipped creating enlarged polyploid cells. Endoreduplication is associated with the differentiation of many specialized cell types. In the Arabidopsis thaliana sepal epidermis endoreduplicated giant cells form interspersed between smaller cells. Both the transcription factor Arabidopsis thaliana MERISTEM LAYER1 (ATML1) and the plant-specific cyclin dependent kinase inhibitor LOSS OF GIANT CELLS FROM ORGANS (LGO)/SIAMESE RELATED1 (SMR1) are required for the formation of giant cells. Overexpression of LGO is sufficient to produce sepals covered in highly endoreduplicated giant cells. Here we ask whether overexpression of LGO changes the transcriptome of these mature sepals. We show that overexpression of LGO in the epidermis (LGOoe) drives giant cell formation even in atml1 mutant sepals. Using RNA-seq we show that LGOoe has significant effects on the mature sepal transcriptome that are primarily ATML1-independent changes of gene activity. Genes activated by LGOoe, directly or indirectly, predominantly encode proteins involved in defense responses, including responses to wounding, insects (a predator of Arabidopsis), and fungus. They also encode components of the glucosinolate biosynthesis pathway, a key biochemical pathway in defense against herbivores. LGOoe-activated genes include previously known marker genes of systemic acquired resistance such as PR1 through PR5. The defensive functions promoted by LGOoe in sepals overlap with functions recently shown to be transcriptionally activated by hyperimmune cpr5 mutants in a LGO-dependent manner. Our findings show that the cell cycle regulator LGO can directly or indirectly drive specific states of gene expression; in particular, they are consistent with recent findings showing LGO to be necessary for transcriptional activation of many defense genes in Arabidopsis. PMID:27920789

  5. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells

    PubMed Central

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-01-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  6. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    PubMed Central

    2011-01-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis. PMID:27502666

  7. A lysine-rich arabinogalactan protein in Arabidopsis is essential for plant growth and development, including cell division and expansion.

    PubMed

    Yang, Jie; Sardar, Harjinder S; McGovern, Kathleen R; Zhang, Yizhu; Showalter, Allan M

    2007-02-01

    Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.

  8. A rapid chemical method for lysing Arabidopsis cells for protein analysis.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2011-07-15

    Protein extraction is a frequent procedure in biological research. For preparation of plant cell extracts, plant materials usually have to be ground and homogenized to physically break the robust cell wall, but this step is laborious and time-consuming when a large number of samples are handled at once. We developed a chemical method for lysing Arabidopsis cells without grinding. In this method, plants are boiled for just 10 minutes in a solution containing a Ca2+ chelator and detergent. Cell extracts prepared by this method were suitable for SDS-PAGE and immunoblot analysis. This method was also applicable to genomic DNA extraction for PCR analysis. Our method was applied to many other plant species, and worked well for some of them. Our method is rapid and economical, and allows many samples to be prepared simultaneously for protein analysis. Our method is useful not only for Arabidopsis research but also research on certain other species.

  9. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  10. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    USDA-ARS?s Scientific Manuscript database

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  11. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Yang, Wenyu

    2017-08-23

    To gain more insight into the physiological function of shade and how shade affects leaf size, we investigated the growth, leaf anatomical structure, hormones and genes expressions in soybean. Soybean seeds were sown in plastic pots and were allowed to germinate and grow for 30 days under shade or full sunlight conditions. Shade treated plants showed significantly increase on stem length and petiole length, and decrease on stem diameters, shoot biomass and its partition to leaf also were significantly lower than that in full sunlight. Smaller and thinner on shade treated leaves than corresponding leaves on full sunlight plants. The decreased leaf size caused by shade was largely attributable to cell proliferation in young leaves and both cell proliferation and enlargement in old leaves. Shade induced the expression of a set of genes related to cell proliferation and/or enlargement, but depended on the developmental stage of leaf. Shade significantly increased the auxin and gibberellin content, and significantly decreased the cytokinin content in young, middle and old leaves. Taken together, these results indicated that shade inhibited leaf size by controlling cell proliferation and enlargement, auxin, gibberellin and cytokinin may play important roles in this process.

  12. A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Plant biomass consists primarily of carbohydrates derived from photosynthesis. Monitoring the assimilation of carbon via the Calvin-Benson cycle and its subsequent utilisation is fundamental to understanding plant growth. The use of stable and radioactive carbon isotopes, supplied to plants as CO2, allows the measurement of fluxes through the intermediates of primary photosynthetic metabolism, long-distance transport of sugars in the vasculature, and the synthesis of structural and storage components. Results Here we describe the design of a system for supplying isotopically labelled CO2 to single leaves of Arabidopsis thaliana. We demonstrate that the system works well using short pulses of 14CO2 and that it can be used to produce robust qualitative and quantitative data about carbon export from source leaves to the sink tissues, such as the developing leaves and the roots. Time course experiments show the dynamics of carbon partitioning between storage as starch, local production of biomass, and export of carbon to sink tissues. Conclusion This isotope labelling method is relatively simple to establish and inexpensive to perform. Our use of 14CO2 helps establish the temporal and spatial allocation of assimilated carbon during plant growth, delivering data complementary to those obtained in recent studies using 13CO2 and MS-based metabolomics techniques. However, we emphasise that this labelling device could also be used effectively in combination with 13CO2 and MS-based techniques. PMID:24252607

  13. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    PubMed Central

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  14. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.

    PubMed

    Li, Xiang; Mo, Xiaorong; Shou, Huixia; Wu, Ping

    2006-08-01

    In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.

  15. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis.

    PubMed

    Raffaele, Sylvain; Vailleau, Fabienne; Léger, Amandine; Joubès, Jérôme; Miersch, Otto; Huard, Carine; Blée, Elisabeth; Mongrand, Sébastien; Domergue, Frédéric; Roby, Dominique

    2008-03-01

    Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.

  16. Cell wall modifications in Arabidopsis plants with altered alpha-L-arabinofuranosidase activity.

    PubMed

    Chávez Montes, Ricardo A; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M; Cobbett, Christopher S; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-05-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis.

  17. Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W

    PubMed Central

    Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-01-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421

  18. Novel ABP1-TMK auxin sensing system controls ROP GTPase-mediated interdigitated cell expansion in Arabidopsis.

    PubMed

    Chen, Jisheng; Yang, Zhenbiao

    2014-06-30

    ROP GTPases (Rho-like GTPase from plants), plant counterparts of animal and fungal Rho-family GTPases, have recently been shown to be key components of a novel signaling pathway activated by the plant hormone auxin. Auxin (indole acetic acid) is a key regulator of virtually every aspect of plant growth and development, yet the molecular mechanisms of auxin responses remain largely unknown. AUXIN BINDING PROTEIN1 (ABP1) is an ancient protein that binds auxin and has been implied as a receptor for a number of auxin responses, but its precise mechanism remains unresolved. A paradox for ABP1's action is that it is predominantly found in the endoplasmic reticulum (ER) lumen, while it has been implicated as a cell surface auxin receptor, functionally distinct from the nuclear TIR1/AFB auxin receptor family that regulates transcriptional responses. Since our group reported that ABP1 is required for activating two antagonizing ROP signaling pathways involved in cytoskeletal reorganization and cell shape formation in Arabidopsis leaf pavement cells, we recently further showed that the plasma membrane-localized TMK receptor-like kinases functionally interact in a complex with ABP1 and are required for ABP1-dependent activation of ROP GTPases by auxin. The formation of this cell surface complex is induced by auxin and requires functional ABP1. These exciting findings provide convincing evidence for this novel auxin sensing system on the cell surface and suggest intriguing mechanisms for TMKs being functional partners of ABP1 to transmit extracellular auxin signal to intracellular ROP signaling module during polar cell expansion.

  19. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  20. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    PubMed Central

    Jafarain, Abbas; Asghari, Gholamreza; Ghassami, Erfaneh

    2014-01-01

    Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30) extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Results: Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. Conclusion: As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera. PMID:25337524

  1. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells.

    PubMed

    Jafarain, Abbas; Asghari, Gholamreza; Ghassami, Erfaneh

    2014-01-01

    There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Ethanol-water (70-30) extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera.

  2. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation.

    PubMed

    Boucher, Uriel; Balabane, May; Lamy, Isabelle; Cambier, Philippe

    2005-05-01

    More knowledge is needed concerning the disturbance of soil organic matter cycling due to heavy metal pollution. The present study deals with the impact of heavy metal pollution on litter breakdown. Our aim was to assess whether heavy metals initially present in the leaves of the metallophyte Arabidopsis halleri: (i) slow down the rate of C mineralization, in relation to metal toxicity towards microflora, and/or (ii) increase the amount of organic C resistant to biodegradation, in relation to an intrinsic resistance of metallophyte residues to biodegradation. We incubated uncontaminated soil samples with either metal-free or metal-rich plant material. Metal-free material was grown in a greenhouse, and metal-rich material was collected in situ. During the 2-month period of incubation, we measured evolved CO(2)-C and residual plant C in the coarse organic fraction. Our results of CO(2)-C evolution showed a similar mineralization from the microcosms amended with highly metal-rich leaves of A. halleri and the microcosms amended with the metal-free but otherwise similar plant material. Measuring residual plant C in its input size-fraction gave a more precise insight. Our results suggest that only the large pool of easily decomposable C mineralized similarly from metal-free and from metal-rich plant residues. The pool of less decomposable C seemed on the contrary to be preferentially preserved in the case of metal-rich material. These results support the hypothesis of an annual extra-accumulation in situ of such a slowly decomposable fraction of plant residues which could account to some extent for the observed accumulation of metallophyte litter on the surface of highly metal-polluted soils.

  3. Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis.

    PubMed

    Vu, Hieu Sy; Shiva, Sunitha; Roth, Mary R; Tamura, Pamela; Zheng, Lianqing; Li, Maoyin; Sarowar, Sujon; Honey, Samuel; McEllhiney, Dedan; Hinkes, Paul; Seib, Lawrence; Williams, Todd D; Gadbury, Gary; Wang, Xuemin; Shah, Jyoti; Welti, Ruth

    2014-11-01

    A direct-infusion electrospray ionization triple-quadrupole mass spectrometry method with multiple reaction monitoring (MRM) was employed to measure 264 lipid analytes extracted from leaves of Arabidopsis thaliana subjected to mechanical wounding. The method provided precise measurements with an average coefficient of variation of 6.1%. Lipid classes analyzed comprised galactolipids and phospholipids (including monoacyl molecular species, molecular species with oxidized acyl chains, phosphatidic acids (PAs)), tri- and tetra-galactosyldiacylglycerols (TrGDGs and TeGDGs), head-group-acylated galactolipids, and head-group-acylated phosphatidylglycerol (acPG), sulfoquinovosyldiacylglycerols (SQDGs), sphingolipids, di- and tri-acylglycerols (DAGs and TAGs), and sterol derivatives. Of the 264 lipid analytes, 254 changed significantly in response to wounding. In general, levels of structural lipids decreased, whereas monoacyl molecular species, galactolipids and phosphatidylglycerols (PGs) with oxidized fatty acyl chains, PAs, TrGDGs, TeGDGs, TAGs, head-group-acylated galactolipids, acPG, and some sterol derivatives increased, many transiently. The observed changes are consistent with activation of lipid oxidizing, hydrolyzing, glycosylating, and acylating activities in the wounding response. Correlation analysis of the levels of lipid analytes across individual control and treated plants was used to construct a lipid dendrogram and to define clusters and sub-clusters of lipid analytes, each composed of a group of lipids which occurred in a coordinated manner. Current knowledge of metabolism supports the notion that observed sub-clusters comprise lipids generated by a common enzyme and/or metabolically downstream of a common enzyme. This work demonstrates that co-occurrence analysis, based on correlation of lipid levels among plants, is a powerful approach to defining lipids generated in vivo by a common enzymatic pathway.

  4. Building a plant: cell fate specification in the early Arabidopsis embryo.

    PubMed

    ten Hove, Colette A; Lu, Kuan-Ju; Weijers, Dolf

    2015-02-01

    Embryogenesis is the beginning of plant development, yet the cell fate decisions and patterning steps that occur during this time are reiterated during development to build the post-embryonic architecture. In Arabidopsis, embryogenesis follows a simple and predictable pattern, making it an ideal model with which to understand how cellular and tissue developmental processes are controlled. Here, we review the early stages of Arabidopsis embryogenesis, focusing on the globular stage, during which time stem cells are first specified and all major tissues obtain their identities. We discuss four different aspects of development: the formation of outer versus inner layers; the specification of vascular and ground tissues; the determination of shoot and root domains; and the establishment of the first stem cells. © 2015. Published by The Company of Biologists Ltd.

  5. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem.

    PubMed

    Bhargava, Apurva; Mansfield, Shawn D; Hall, Hardy C; Douglas, Carl J; Ellis, Brian E

    2010-11-01

    Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways.

  6. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  8. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  9. The REIL1 and REIL2 Proteins of Arabidopsis thaliana Are Required for Leaf Growth in the Cold1[W][OPEN

    PubMed Central

    Schmidt, Stefanie; Dethloff, Frederik; Beine-Golovchuk, Olga; Kopka, Joachim

    2013-01-01

    The evolutionarily conserved proteins REI1-LIKE (REIL1) and REIL2 have four conserved zinc finger domains and are Arabidopsis thaliana homologs of the cytosolic 60S ribosomal maturation factor Rei1p (for Required for isotropic bud growth1 protein) from yeast (Saccharomyces cerevisiae) and its paralog Reh1p (for REI1 homologue1 protein). The yeast and A. thaliana paralogs result from independent gene duplications. The A. thaliana REIL paralogs are required specifically in the cold (10°C) but not for growth at optimal temperature (20°C). A reil1-1 reil2-1 double mutant is arrested at 10°C prior to the emergence of the first rosette leaf. Two allelic reil2 mutants, reil2-1 and reil2-2, form small spoon-shaped leaves at 10°C. This phenomenon reverts after emergence of the inflorescence in the cold or upon shift to 20°C. Except for a slightly delayed germination, a reil1-1 mutant shows no further growth phenotype under the currently investigated conditions. A comparative analysis demonstrates conserved coexpression of orthologous genes from yeast and A. thaliana that are coregulated with yeast rei1 or with A. thaliana REIL2, respectively. The conserved correlations point to a role of A. thaliana REIL proteins in the maturation of the eukaryotic ribosomal 60S subunit. We support this conclusion by heterologous complementation of the cold-induced growth defect of the yeast Δrei1 deletion. PMID:24038679

  10. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle

    PubMed Central

    Maatta, Sara; Scheu, Brad; Roth, Mary R.; Tamura, Pamela; Li, Maoyin; Williams, Todd D.; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark–light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing. PMID:22629276

  11. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells.

    PubMed

    Higaki, Takumi; Takigawa-Imamura, Hisako; Akita, Kae; Kutsuna, Natsumaro; Kobayashi, Ryo; Hasezawa, Seiichiro; Miura, Takashi

    2017-01-01

    Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress

    PubMed Central

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1–8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H2O2 or 600 mM NaCl. PMID:24217216

  13. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress.

    PubMed

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1-8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H 2O 2 or 600 mM NaCl.

  14. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death.

    PubMed

    Feng, Haizhong; Chen, Qingguo; Feng, Jian; Zhang, Jian; Yang, Xiaohui; Zuo, Jianru

    2007-07-01

    The eukaryotic translation initiation factor 5A (eIF-5A) is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies in mammalian and yeast (Saccharomyces cerevisiae) cells suggest that eIF-5A is mainly involved in RNA metabolism and trafficking, thereby regulating cell proliferation, cell growth, and programmed cell death. In higher plants, the physiological function of eIF-5A remains largely unknown. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) mutant fumonisin B(1)-resistant12 (fbr12). The fbr12 mutant shows an antiapoptotic phenotype and has reduced dark-induced leaf senescence. Moreover, fbr12 displays severe defects in plant growth and development. The fbr12 mutant plant is extreme dwarf with substantially reduced size and number of all adult organs. During reproductive development, fbr12 causes abnormal development of floral organs and defective sporogenesis, leading to the abortion of both female and male germline cells. Microscopic studies revealed that these developmental defects are associated with abnormal cell division and cell growth. Genetic and molecular analyses indicated that FBR12 encodes a putative eIF-5A-2 protein. When expressed in a yeast mutant strain carrying a mutation in the eIF-5A gene, FBR12 cDNA is able to rescue the lethal phenotype of the yeast mutant, indicating that FBR12 is a functional eIF-5A. We propose that FBR12/eIF-5A-2 is fundamental for plant growth and development by regulating cell division, cell growth, and cell death.

  15. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants.

    PubMed

    Bereterbide, A; Hernould, M; Castera, S; Mouras, A

    2001-11-01

    Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.

  16. Fluorescence-Activated Cell Sorting for Analysis of Cell Type-Specific Responses to Salinity Stress in Arabidopsis and Rice

    PubMed Central

    Evrard, Aurelie; Bargmann, Bastiaan O.R.; Birnbaum, Kenneth D.; Tester, Mark; Baumann, Ute; Johnson, Alexander A.T.

    2014-01-01

    Fluorescence-activated cell sorting (FACS) provides a rapid means of isolating large numbers of fluorescently tagged cells from a heterogeneous mixture of cells. Collections of transgenic plants with cell type-specific expression of fluorescent marker genes such as green fluoresc