Science.gov

Sample records for arabidopsis leaf cells

  1. Intercalating Arabidopsis leaf cells: a jigsaw puzzle of lobes, necks, ROPs, and RICs.

    PubMed

    Settleman, Jeffrey

    2005-03-11

    Intercalation of cells is an evolutionarily conserved strategy used for a variety of developmental processes in animals. In this issue of Cell, Fu et al. have uncovered an elaborate Rho GTPase-mediated mechanism by which cytoskeletal-dependent intercalation of Arabidopsis leaf cells is achieved, suggesting that conserved Rho GTPase signaling pathways may similarly regulate tissue morphogenesis in animals and plants.

  2. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    PubMed

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  3. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    PubMed Central

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  4. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  5. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.

    PubMed

    Paves, H; Truve, E

    2007-01-01

    Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of myosins in chloroplast photorelocation in Arabidopsis thaliana mesophyll cells. None of these agents had an effect on the chloroplast high-fluence-rate avoidance movement but all of the three myosin inhibitors blocked the accumulation movement of chloroplasts after a high-fluence-rate irradiation of the leaves. The results suggest that myosins have a role in A. thaliana chloroplast photorelocation.

  6. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication.

    PubMed

    Hur, Yoon-Sun; Um, Ji-Hyun; Kim, Sunghan; Kim, Kyunga; Park, Hee-Jung; Lim, Jong-Seok; Kim, Woo-Young; Jun, Sang Eun; Yoon, Eun Kyung; Lim, Jun; Ohme-Takagi, Masaru; Kim, Donggiun; Park, Jongbum; Kim, Gyung-Tae; Cheon, Choong-Ill

    2015-01-01

    Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.

  7. A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana

    PubMed Central

    Vanhaeren, Hannes; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth. PMID:26217168

  8. The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth[W][OA

    PubMed Central

    Fleury, Delphine; Himanen, Kristiina; Cnops, Gerda; Nelissen, Hilde; Boccardi, Tommaso Matteo; Maere, Steven; Beemster, Gerrit T.S.; Neyt, Pia; Anami, Sylvester; Robles, Pedro; Micol, José Luis; Inzé, Dirk; Van Lijsebettens, Mieke

    2007-01-01

    Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications. PMID:17329565

  9. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion.

    PubMed

    Seguí-Simarro, José M; Coronado, María José; Staehelin, L Andrew

    2008-11-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells.

  10. The Mitochondrial Cycle of Arabidopsis Shoot Apical Meristem and Leaf Primordium Meristematic Cells Is Defined by a Perinuclear Tentaculate/Cage-Like Mitochondrion1[W][OA

    PubMed Central

    Seguí-Simarro, José M.; Coronado, María José; Staehelin, L. Andrew

    2008-01-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells. PMID:18799659

  11. Cell Polarity Signaling in Arabidopsis

    PubMed Central

    Yang, Zhenbiao

    2009-01-01

    Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems. PMID:18837672

  12. Functional overlap of the Arabidopsis leaf and root microbiota.

    PubMed

    Bai, Yang; Müller, Daniel B; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias; Dombrowski, Nina; Münch, Philipp C; Spaepen, Stijn; Remus-Emsermann, Mitja; Hüttel, Bruno; McHardy, Alice C; Vorholt, Julia A; Schulze-Lefert, Paul

    2015-12-17

    Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.

  13. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity.

    PubMed

    Vercruyssen, Liesbeth; Tognetti, Vanesa B; Gonzalez, Nathalie; Van Dingenen, Judith; De Milde, Liesbeth; Bielach, Agnieszka; De Rycke, Riet; Van Breusegem, Frank; Inzé, Dirk

    2015-03-01

    Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.

  14. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis

    PubMed Central

    Na, Jong-Kuk; Kim, Jae-Kwang; Kim, Dool-Yi; Assmann, Sarah M.

    2015-01-01

    The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest. PMID:25944928

  15. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf.

  16. Shade avoidance and the regulation of leaf inclination in Arabidopsis.

    PubMed

    Mullen, Jack L; Weinig, Cynthia; Hangarter, Roger P

    2006-06-01

    As a rosette plant, Arabidopsis thaliana forms leaves near to the ground, which causes the plant to be vulnerable to shading by neighbours. One mechanism to avoid such shading is the regulation of leaf inclination, such that leaves can be raised to more vertical orientations to prevent neighbouring leaves from overtopping them. Throughout Arabidopsis rosette development, rosette leaves move to more vertical orientations when shaded by neighbouring leaves, exposed to low light levels or placed in the dark. After dark-induced reorientation of leaves, returning them to white light causes the leaves to reorient to more horizontal inclinations. These light-dependent leaf movements are more robust than, and distinct from, the diurnal movements of rosette leaves. However, the movements are gated by the circadian clock. The light-dependent leaf orientation response is mediated primarily through phytochromes A, B and E, with the orientation varying with the ratio of red light to far-red light, consistent with other shade-avoidance responses. However, even plants lacking these phytochromes were able to alter leaf inclination in response to white light, suggesting a role for other photoreceptors. In particular, we found significant changes in leaf inclination for plants exposed to green light. This green light response may be caused, in part, by light-dependent regulation of abscisic acid (ABA) biosynthesis.

  17. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  18. NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis[W

    PubMed Central

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-01-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall–loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. PMID:24363315

  19. Stomatal Density Influences Leaf Water and Leaf Wax D/H Values in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Lee, H.; Feakins, S. J.; Sternberg, L. O.

    2014-12-01

    The hydrogen isotopic composition (δD) of plant leaf wax is a powerful tool to study the hydrology of past and present environments. The δD value of leaf waxes is known to primarily reflect the δD value of source water, modified by biological fractionations commonly summarized as the 'net or apparent' fractionation. It remains a challenge, however, to quantitatively relate the isotopic composition of the end product (wax) back to that of the precursor (water) because multiple isotope effects contributing to the net fractionation are not yet well understood. Transgenic variants have heretofore unexplored potential to isolate individual isotope effects. Here we report the first hydrogen isotopic measurements from transgenic Arabidopsis thaliana plants with calculations of leaf water enrichment, net and biosynthetic fractionation values from measured δD of plant waters and leaf wax n-alkanes. We employed transgenic Arabidopsis leaves, engineered to have different stomatal density, by differential expression of the stomatal growth hormone stomagen. Comparison of variants and wild types allow us to isolate the effects of stomatal density on leaf water and the net fractionation expressed by leaf wax biomarkers. Results show that transgenic leaves with denser pores have more enriched leaf water and leaf wax δD values than wild type and even more so than transgenic leaves with sparse stomata (difference of 10 ‰). Our findings that stomatal density controls leaf water and leaf wax δD values adds insights into the cause of variations in net fractionations between species, as well as suggesting that geological variations in stomatal density may modulate the sedimentary leaf wax δD record. In nature, stomatal density varies between species and environments, and all other factors being equal, this will contribute to variations in fractionations observed. Over geological history, lower stomatal densities occur at times of elevated pCO2; our findings predict reduced leaf

  20. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.

    PubMed Central

    Berná, G; Robles, P; Micol, J L

    1999-01-01

    As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants. PMID:10353913

  1. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis.

    PubMed

    Wang, Xiaomin; Xie, Bo; Zhu, Maosheng; Zhang, Zhongming; Hong, Zonglie

    2012-01-01

    Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+ plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.

  2. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis

    PubMed Central

    Huang, Tengbo

    2014-01-01

    The normal biological function of leaves, such as intercepting light and exchanging gasses, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development. PMID:24449383

  3. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis.

    PubMed

    Huang, Tengbo; Kerstetter, Randall A; Irish, Vivian F

    2014-03-01

    The normal biological function of leaves, such as intercepting light and exchanging gases, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development.

  4. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.

    PubMed

    Takahashi, Hiro; Iwakawa, Hidekazu; Ishibashi, Nanako; Kojima, Shoko; Matsumura, Yoko; Prananingrum, Pratiwi; Iwasaki, Mayumi; Takahashi, Anna; Ikezaki, Masaya; Luo, Lilan; Kobayashi, Takeshi; Machida, Yasunori; Machida, Chiyoko

    2013-03-01

    It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.

  5. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis.

    PubMed

    Shimada, Takashi L; Takano, Yoshitaka; Shimada, Tomoo; Fujiwara, Masayuki; Fukao, Yoichiro; Mori, Masashi; Okazaki, Yozo; Saito, Kazuki; Sasaki, Ryosuke; Aoki, Koh; Hara-Nishimura, Ikuko

    2014-01-01

    Oil bodies are intracellular structures present in the seed and leaf cells of many land plants. Seed oil bodies are known to function as storage compartments for lipids. However, the physiological function of leaf oil bodies is unknown. Here, we show that leaf oil bodies function as subcellular factories for the production of a stable phytoalexin in response to fungal infection and senescence. Proteomic analysis of oil bodies prepared from Arabidopsis (Arabidopsis thaliana) leaves identified caleosin (CLO3) and α-dioxygenase (α-DOX1). Both CLO3 and α-DOX1 were localized on the surface of oil bodies. Infection with the pathogenic fungus Colletotrichum higginsianum promoted the formation of CLO3- and α-DOX1-positive oil bodies in perilesional areas surrounding the site of infection. α-DOX1 catalyzes the reaction from α-linolenic acid (a major fatty acid component of oil bodies) to an unstable compound, 2-hydroperoxy-octadecatrienoic acid (2-HPOT). Intriguingly, a combination of α-DOX1 and CLO3 produced a stable compound, 2-hydroxy-octadecatrienoic acid (2-HOT), from α-linolenic acid. This suggests that the colocalization of α-DOX1 and CLO3 on oil bodies might prevent the degradation of unstable 2-HPOT by efficiently converting 2-HPOT into the stable compound 2-HOT. We found that 2-HOT had antifungal activity against members of the genus Colletotrichum and that infection with C. higginsianum induced 2-HOT production. These results defined 2-HOT as an Arabidopsis phytoalexin. This study provides, to our knowledge, the first evidence that leaf oil bodies produce a phytoalexin under a pathological condition, which suggests a new mechanism of plant defense.

  6. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.

    PubMed

    Li, Lei; Nelson, Clark J; Trösch, Josua; Castleden, Ian; Huang, Shaobai; Millar, A Harvey

    2017-02-01

    We applied (15)N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with (15)N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.

  7. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana

    PubMed Central

    Blonder, Benjamin; Vasseur, François; Violle, Cyrille; Shipley, Bill; Enquist, Brian J.; Vile, Denis

    2015-01-01

    The leaf economics spectrum (LES) describes strong relationships between multiple functional leaf traits that determine resource fluxes in vascular plants. Five models have been proposed to explain these patterns: two based on patterns of structural allocation, two on venation networks and one on resource allocation to cell walls and cell contents. Here we test these models using data for leaf and whole-plant functional traits. We use structural equation modelling applied to multiple ecotypes, recombinant inbred lines, near isogenic lines and vascular patterning mutants of Arabidopsis thaliana that express LES trait variation. We show that a wide variation in multiple functional traits recapitulates the LES at the whole-plant scale. The Wright et al. (2004) model and the Blonder et al. (2013) venation network model cannot be rejected by data, while two simple models and the Shipley et al. (2006) allocation model are rejected. Venation networks remain a key hypothesis for the origin of the LES, but simpler explanations also cannot be ruled out. PMID:25957316

  8. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  9. Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis.

    PubMed

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M; Gardeström, Per

    2010-12-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.

  10. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf .

  11. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.

    PubMed

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-06-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.

  12. In Vivo Packaging of Triacylglycerols Enhances Arabidopsis Leaf Biomass and Energy Density1[W][OA

    PubMed Central

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-01-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism. PMID:23616604

  13. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  14. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.

    PubMed

    Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine

    2012-09-01

    Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively.

  15. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  16. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis

    PubMed Central

    Gonzalez, Nathalie; Pauwels, Laurens; Baekelandt, Alexandra; De Milde, Liesbeth; Van Leene, Jelle; Besbrugge, Nienke; Heyndrickx, Ken S.; Pérez, Amparo Cuéllar; Durand, Astrid Nagels; De Clercq, Rebecca; Van De Slijke, Eveline; Vanden Bossche, Robin; Eeckhout, Dominique; Gevaert, Kris; Vandepoele, Klaas; De Jaeger, Geert; Goossens, Alain; Inzé, Dirk

    2015-01-01

    Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls. PMID:26232487

  17. The conserved mobility of mitochondria during leaf senescence reflects differential regulation of the cytoskeletal components in Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Leaf senescence is an organized process, which requires fine tuning between nuclear gene expression, activity of proteases and the maintenance of primary metabolism. Recently, we reported that leaf senescence was accompanied by an early degradation of the microtubule cytoskeleton in Arabidopsis thaliana. As the cytoskeleton is essential for cell stability, vesicle shuttling and organelle mobility, it might be asked how the regulation of these cell functions occurs with such drastic modifications of the cytoskeleton. Based on confocal laser microscopy observations and a micro-array analysis, the following addendum shows that mitochondrial mobility is conserved until the late stages of leaf senescence and provides evidences that the actin-cytoskeleton is maintained longer than the microtubule network. This conservation of actin-filaments is discussed with regards to energy metabolism as well as calcium signaling during programmed cell death. PMID:21270537

  18. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    PubMed

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana.

  19. Differentiation of programmed Arabidopsis cells

    PubMed Central

    Xie, De-Yu; Shi, Ming-Zhu

    2012-01-01

    Plants express genes that encode enzymes that catalyse reactions to form plant secondary metabolites in specific cell types. However, the mechanisms of how plants decide their cellular metabolic fate and how cells diversify and specialise their specific secondary metabolites remains largely unknown. Additionally, whether and how an established metabolic program impacts genome-wide reprogramming of plant gene expression is unclear. We recently isolated PAP1-programmed anthocyanin-producing (red) and -free (white) cells from Arabidopsis thaliana; our previous studies have indicated that the PAP1 expression level is similar between these two different cell types. Transcriptional analysis showed that the red cells contain the TTG1-GL3/TT8-PAP1 regulatory complex, which controls anthocyanin biosynthesis; in contrast, the white cells and the wild-type cells lack this entire complex. These data indicate that different regulatory programming underlies the different metabolic states of these cells. In addition, our previous transcriptomic comparison indicated that there is a clear difference in the gene expression profiles of the red and wild-type cells, which is probably a consequence of cell-specific reprogramming. Based on these observations, in this report we discuss the potential mechanisms that underlie the programming and reprogramming of gene expression involved in anthocyanin biosynthesis. PMID:22126737

  20. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  1. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  2. Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis

    PubMed Central

    Ding, Shunhua; Wang, Liang; Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    2015-01-01

    Abstract Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) and participates in the ascorbate‐glutathione cycle, which scavenges H2O2. Here, we report that chloroplastic/mitochondrial GR2 is an important regulator of leaf senescence. Seed development of the homozygous gr2 knockout mutant was blocked at the globular stage. Therefore, to investigate the function of GR2 in leaf senescence, we generated transgenic Arabidopsis plants with decreased GR2 using RNAi. The GR2 RNAi plants displayed early onset of age‐dependent and dark‐ and H2O2‐induced leaf senescence, which was accompanied by the induction of the senescence‐related marker genes SAG12 and SAG13. Furthermore, transcriptome analysis revealed that genes related to leaf senescence, oxidative stress, and phytohormone pathways were upregulated directly before senescence in RNAi plants. In addition, H2O2 accumulated to higher levels in RNAi plants than in wild‐type plants and the levels of H2O2 peaked in RNAi plants directly before the early onset of leaf senescence. RNAi plants showed a greater decrease in GSH/GSSG levels than wild‐type plants during leaf development. Our results suggest that GR2 plays an important role in leaf senescence by modulating H2O2 and glutathione signaling in Arabidopsis. PMID:26031939

  3. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

    PubMed

    Woo, Hye Ryun; Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Nam, Hong Gil; Lim, Pyung Ok

    2016-05-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.

  4. Auxin-induced leaf blade expansion in Arabidopsis requires both wounding and detachment

    PubMed Central

    Keller, Christopher P.; Grundstad, Morgan L.; Evanoff, Michael A.; Keith, Jeremy D.; Lentz, Derek S.; Wagner, Samuel L.; Culler, Angela H.; Cohen, Jerry D.

    2011-01-01

    Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition. PMID:22101347

  5. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically.

    PubMed

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt D J; Muino, Jose M; Cutri, Lucas; Dornelas, Marcelo C; Angenent, Gerco C; Immink, Richard G H

    2012-08-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.

  6. Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis1[C][W

    PubMed Central

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M.; Gardeström, Per

    2010-01-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca2+-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence. PMID:20966154

  7. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  8. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  9. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  10. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation.

    PubMed

    Wargent, Jason J; Gegas, Vasilis C; Jenkins, Gareth I; Doonan, John H; Paul, Nigel D

    2009-01-01

    Responses specific to ultraviolet B (UV-B) wavelengths are still poorly understood, both in terms of initial signalling and effects on morphogenesis. Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is the only known UV-B specific signalling component, but the role of UVR8 in leaf morphogenesis is unknown. The regulatory effects of UVR8 on leaf morphogenesis at a range of supplementary UV-B doses were characterized, revealing both UVR8-dependent and independent responses to UV irradiation. Inhibition of epidermal cell division in response to UV-B is largely independent of UVR8. However, overall leaf growth under UV-B irradiation in wild-type plants is enhanced compared with a uvr8 mutant because of a UVR8-dependent compensatory increase of cell area in wild-type plants. UVR8 was also required for the regulation of endopolyploidy in response to UV-B, and the uvr8 mutant also has a lower density of stomata than the wild type in the presence of UV-B, indicating that UVR8 has a regulatory role in other developmental events. Our findings show that, in addition to regulating UV-protective gene expression responses, UVR8 is involved in controlling aspects of leaf growth and morphogenesis. This work extends our understanding of how UV-B response is orchestrated at the whole-plant level.

  11. Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia

    PubMed Central

    Marcos, Danielle; Berleth, Thomas

    2014-01-01

    Self-regulatory patterning mechanisms capable of generating biologically meaningful, yet unpredictable cellular patterns offer unique opportunities for obtaining mathematical descriptions of underlying patterning systems properties. The networks of higher-order veins in leaf primordia constitute such a self-regulatory system. During the formation of higher-order veins, vascular precursors are selected from a homogenous field of subepidermal cells in unpredictable positions to eventually connect in complex cellular networks. Auxin transport routes have been implicated in this selection process, but understanding of their role in vascular patterning has been limited by our inability to monitor early auxin transport dynamics in vivo. Here we describe a live-imaging system in emerging Arabidopsis thaliana leaves that uses a PIN1:GFP reporter to visualize auxin transport routes and an Athb8:YFP reporter as a marker for vascular commitment. Live-imaging revealed common features initiating the formation of all higher-order veins. The formation of broad PIN1 expression domains is followed by their restriction, leading to sustained, elevated PIN1 expression in incipient procambial cells files, which then express Athb8. Higher-order PIN1 expression domains (hPEDs) are initiated as freely ending domains that extend toward each other and sometimes fuse with them, creating connected domains. During the restriction and specification phase, cells in wider hPEDs are partitioned into vascular and non-vascular fates: Central cells acquire a coordinated cell axis and express elevated PIN1 levels as well as the pre-procambial marker Athb8, while edge cells downregulate PIN1 and remain isodiametric. The dynamic nature of the early selection process is underscored by the instability of early hPEDs, which can result in dramatic changes in vascular network architecture prior to Athb8 expression, which is correlated with the promotion onto vascular cell fate. PMID:24966861

  12. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B.

    PubMed

    Gegas, Vasilis C; Wargent, Jason J; Pesquet, Edouard; Granqvist, Emma; Paul, Nigel D; Doonan, John H

    2014-06-01

    The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.

  13. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development.

    PubMed

    Hasson, Alice; Plessis, Anne; Blein, Thomas; Adroher, Bernard; Grigg, Stephen; Tsiantis, Miltos; Boudaoud, Arezki; Damerval, Catherine; Laufs, Patrick

    2011-01-01

    CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.

  14. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species.

    PubMed

    Ballester, Patricia; Navarrete-Gómez, Marisa; Carbonero, Pilar; Oñate-Sánchez, Luis; Ferrándiz, Cristina

    2015-09-01

    The NGATHA (NGA) clade of transcription factors (TFs) forms a small subfamily of four members in Arabidopsis thaliana. NGA genes act redundantly to direct the development of apical tissues in the gynoecium, where they have been shown to be essential for style and stigma specification. In addition, NGA genes have a more general role in controlling lateral organ growth. The four NGA genes in Arabidopsis are expressed in very similar domains, although little is known about the nature of their putative regulators. Here, we have identified a conserved region within the four NGA promoters that we have used as a bait to screen a yeast library, aiming to identify such NGA regulators. Three members of the TCP family of TFs, named after the founding factors TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR 1 AND 2), were recovered from this screening, of which two [TCP2 and TCP3, members of the CINCINNATA (CIN) family of TCP genes (CIN-TCP) subclade] were shown to activate the NGA3 promoter in planta. We provide evidence that support that CIN-TCP genes are true regulators of NGA gene expression, and that part of the CIN-TCP role in leaf development is mediated by NGA upregulation. Moreover, we have found that this TCP-NGA regulatory interaction is likely conserved in angiosperms, including important crop species, for which the regulation of leaf development is a target for biotechnological improvement.

  15. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development

    PubMed Central

    Sacharowski, Sebastian P.; Gratkowska, Dominika M.; Sarnowska, Elzbieta A.; Kondrak, Paulina; Jancewicz, Iga; Porri, Aimone; Bucior, Ernest; Rolicka, Anna T.; Franzen, Rainer; Kowalczyk, Justyna; Pawlikowska, Katarzyna; Huettel, Bruno; Torti, Stefano; Schmelzer, Elmon; Coupland, George; Jerzmanowski, Andrzej; Koncz, Csaba; Sarnowski, Tomasz J.

    2015-01-01

    Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control. PMID:26106148

  16. Quantitative phenotyping of leaf margins in three dimensions, demonstrated on KNOTTED and TCP trangenics in Arabidopsis

    PubMed Central

    Sharon, Eran

    2014-01-01

    The geometry of leaf margins is an important shape characteristic that distinguishes among different leaf phenotypes. Current definitions of leaf shape are qualitative and do not allow quantification of differences in shape between phenotypes. This is especially true for leaves with some non-trivial three-dimensional (3D) configurations. Here we present a novel geometrical method novel geometrical methods to define, measure, and quantify waviness and lobiness of leaves. The method is based on obtaining the curve of the leaf rim from a 3D surface measurement and decomposing its local curvature vector into the normal and geodesic components. We suggest that leaf waviness is associated with oscillating normal curvature along the margins, while lobiness is associated with oscillating geodesic curvature. We provide a way to integrate these local measures into global waviness and lobiness quantities. Using these novel definitions, we analysed the changes in leaf shape of two Arabidopsis genotypes, either as a function of gene mis-expression induction level or as a function of time. These definitions and experimental methods open the way for a more quantitative study of the shape of leaves and other growing slender organs. PMID:24706720

  17. The impact of water deficiency on leaf cuticle lipids of Arabidopsis.

    PubMed

    Kosma, Dylan K; Bourdenx, Brice; Bernard, Amélie; Parsons, Eugene P; Lü, Shiyou; Joubès, Jérôme; Jenks, Matthew A

    2009-12-01

    Arabidopsis (Arabidopsis thaliana) plants subjected to water deficit, sodium chloride (NaCl), or abscisic acid treatments were shown to exhibit a significant increase in the amount of leaf cuticular lipids. These stress treatments led to increases in cuticular wax amount per unit area of 32% to 80%, due primarily to 29% to 98% increases in wax alkanes. Of these treatments, only water deficit increased the total cutin monomer amount (by 65%), whereas both water deficit and NaCl altered the proportional amounts of cutin monomers. Abscisic acid had little effect on cutin composition. Water deficit, but not NaCl, increased leaf cuticle thickness (by 49%). Electron micrographs revealed that both water-deprived and NaCl-treated plants had elevated osmium accumulation in their cuticles. The abundance of cuticle-associated gene transcripts in leaves was altered by all treatments, including those performed in both pot-grown and in vitro conditions. Notably, the abundance of the ECERIFERUM1 gene transcript, predicted to function in alkane synthesis, was highly induced by all treatments, results consistent with the elevated alkane amounts observed in all treatments. Further, this induction of cuticle lipids was associated with reduced cuticle permeability and may be important for plant acclimation to subsequent water-limited conditions. Taken together, these results show that Arabidopsis provides an excellent model system to study the role of the cuticle in plant response to drought and related stresses, and its associated genetic and cellular regulation.

  18. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    PubMed

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  19. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis.

    PubMed

    Fujiwara, Makoto T; Kojo, Kei H; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids.

  20. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  1. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    PubMed Central

    Uchiyama, Asako; Shimada-Beltran, Harumi; Levy, Amit; Zheng, Judy Y.; Javia, Parth A.; Lazarowitz, Sondra G.

    2014-01-01

    Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread. PMID:25414709

  2. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  3. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.

    PubMed

    Tanaka, Yu; Sugano, Shigeo S; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2013-05-01

    Photosynthetic rate is determined by CO2 fixation and CO2 entry into the plant through pores in the leaf epidermis called stomata. However, the effect of increased stomatal density on photosynthetic rate remains unclear. This work investigated the effect of alteration of stomatal density on leaf photosynthetic capacity in Arabidopsis thaliana. Stomatal density was modulated by overexpressing or silencing STOMAGEN, a positive regulator of stomatal development. Leaf photosynthetic capacity and plant growth were examined in transgenic plants. Increased stomatal density in STOMAGEN-overexpressing plants enhanced the photosynthetic rate by 30% compared to wild-type plants. Transgenic plants showed increased stomatal conductance under ambient CO2 conditions and did not show alterations in the maximum rate of carboxylation, indicating that the enhancement of photosynthetic rate was caused by gas diffusion changes. A leaf photosynthesis-intercellular CO2 concentration response curve showed that photosynthetic rate was increased under high CO2 conditions in association with increased stomatal density. STOMAGEN overexpression did not alter whole plant biomass, whereas its silencing caused biomass reduction. Our results indicate that increased stomatal density enhanced leaf photosynthetic capacity by modulating gas diffusion. Stomatal density may be a target trait for plant engineering to improve photosynthetic capacity.

  4. Leaf Age-Dependent Photoprotective and Antioxidative Response Mechanisms to Paraquat-Induced Oxidative Stress in Arabidopsis thaliana

    PubMed Central

    Moustaka, Julietta; Tanou, Georgia; Adamakis, Ioannis-Dimosthenis; Eleftheriou, Eleftherios P.; Moustakas, Michael

    2015-01-01

    Exposure of Arabidopsis thaliana young and mature leaves to the herbicide paraquat (Pq) resulted in a localized increase of hydrogen peroxide (H2O2) in the leaf veins and the neighboring mesophyll cells, but this increase was not similar in the two leaf types. Increased H2O2 production was concomitant with closed reaction centers (qP). Thirty min after Pq exposure despite the induction of the photoprotective mechanism of non-photochemical quenching (NPQ) in mature leaves, H2O2 production was lower in young leaves mainly due to the higher increase activity of ascorbate peroxidase (APX). Later, 60 min after Pq exposure, the total antioxidant capacity of young leaves was not sufficient to scavenge the excess reactive oxygen species (ROS) that were formed, and thus, a higher H2O2 accumulation in young leaves occurred. The energy allocation of absorbed light in photosystem II (PSII) suggests the existence of a differential photoprotective regulatory mechanism in the two leaf types to the time-course Pq exposure accompanied by differential antioxidant protection mechanisms. It is concluded that tolerance to Pq-induced oxidative stress is related to the redox state of quinone A (QA). PMID:26096005

  5. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach.

    PubMed

    Diaz, Céline; Purdy, Sarah; Christ, Aurélie; Morot-Gaudry, Jean-Francois; Wingler, Astrid; Masclaux-Daubresse, Céline

    2005-06-01

    Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.

  6. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division

    PubMed Central

    Karidas, Premananda; Challa, Krishna Reddy; Nath, Utpal

    2015-01-01

    The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs. PMID:25711708

  7. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division.

    PubMed

    Karidas, Premananda; Challa, Krishna Reddy; Nath, Utpal

    2015-04-01

    The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.

  8. Comparative transcriptomics of Arabidopsis sperm cells.

    PubMed

    Borges, Filipe; Gomes, Gabriela; Gardner, Rui; Moreno, Nuno; McCormick, Sheila; Feijó, José A; Becker, Jörg D

    2008-10-01

    In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.

  9. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2001-01-01

    Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.

  10. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.

    PubMed

    Schelbert, Silvia; Aubry, Sylvain; Burla, Bo; Agne, Birgit; Kessler, Felix; Krupinska, Karin; Hörtensteiner, Stefan

    2009-03-01

    During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.

  11. The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    Ethylene regulates a variety of physiological processes, such as flowering, senescence, abscission, and fruit ripening. In particular, leaf expansion is also controlled by ethylene in Arabidopsis. Exogenous treatment with ethylene inhibits leaf expansion, and consistently, ethylene insensitive mutants show increased leaf area. Here, we report that the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) regulates leaf expansion in an ethylene signaling pathway. The HOS1-deficient mutant showed reduced leaf area and was insensitive to ethylene perception inhibitor, silver thiosulfate (STS). Accordingly, genes encoding ethylene signaling components were significantly up-regulated in hos1-3. This study demonstrates that the HOS1 protein is involved in ethylene signal transduction for the proper regulation of leaf expansion possibly under environmentally stressful conditions.

  12. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis

    PubMed Central

    Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667

  13. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis1[OPEN

    PubMed Central

    Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Lim, Pyung Ok

    2016-01-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  14. Hyperspectral Imaging Techniques for Rapid Identification of Arabidopsis Mutants with Altered Leaf Pigment Status

    PubMed Central

    Matsuda, Osamu; Tanaka, Ayako; Fujita, Takao; Iba, Koh

    2012-01-01

    The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the ‘targeted mode’ and the second as the ‘non-targeted mode’. The ‘targeted’ mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The ‘non-targeted’ mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions. PMID:22470059

  15. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    PubMed

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  16. Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis.

    PubMed

    Han, In-Seob; Cho, Hae-Young; Moni, Akhi; Lee, Ah-Young; Briggs, Winslow R

    2013-01-01

    We recently investigated the roles of the phototropin 1 (PHOT1) LOV (light, oxygen or voltage) domains in mediating phototropic curvature in transgenic Arabidopsis seedlings expressing either wild-type PHOT1 or PHOT1 with one or both LOV domains inactivated by a single amino acid replacement. We have now investigated the role of the PHOT1 LOV domains in chloroplast movement and in leaf positioning in response to blue light. Low fluence rate blue light is known to mediate a chloroplast accumulation response and high fluence rate blue light an avoidance response in Arabidopsis leaves. As was the case for phototropism, LOV2 of PHOT1 is essential for chloroplast accumulation and LOV1 is dispensable. PHOT1 LOV2 is also essential to maintain developing primary leaves in a horizontal position under white light from above and LOV1 is again dispensable. A red light pulse given to dark-adapted light-grown plants followed by 2 h of darkness enhances both the chloroplast accumulation response under dim blue light and the chloroplast avoidance response under strong blue light. The effect is far-red reversible. This photoreversible response is normal in a phyB null mutant but does not appear in a phyA null mutant. These results suggest that phyA mediates the enhancement, induced by a red light pulse, of blue light-induced chloroplast movements.

  17. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development[OPEN

    PubMed Central

    Nelson, Clark J.; Castleden, Ian

    2017-01-01

    We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. PMID:28138016

  18. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  19. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana.

    PubMed

    Diaz, Céline; Saliba-Colombani, Vera; Loudet, Olivier; Belluomo, Pierre; Moreau, Laurence; Daniel-Vedele, Françoise; Morot-Gaudry, Jean-François; Masclaux-Daubresse, Céline

    2006-01-01

    For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.

  20. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue.

    PubMed

    Taylor, Kerry L; Brackenridge, Anika E; Vivier, Melané A; Oberholster, Anita

    2006-07-14

    Carotenoids are extremely sensitive to a variety of physico-chemical attacks which may have a profound effect on their characteristic properties, thereby influencing the accurate identification and quantification of individual compounds. In this light, a comprehensive summary of the pitfalls encountered and precautions to be administered during handling and storage of authentic standards and samples was found to be incomplete. Furthermore, acceptable baseline separation of trans-lutein from trans-zeaxanthin and between the cis- and trans-forms of neoxanthin and violaxanthin has not been satisfactorily demonstrated. Hence the most optimal sample preparation and analytical steps were determined and a sensitive and reproducible method for the quantitative HPLC profiling of the principal carotenoids found in plant leaf tissue was developed. A reverse-phase C(30) column with a binary mobile solvent system was used for the baseline separation of eight of the major carotenoids and the two chlorophylls (a and b) within 18min. These compounds were identified via the use of authentic standards, their spectral characteristics and HPLC-atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) confirmation. This method has been successfully applied for the quantification of plant pigments in Arabidopsis thaliana wild-type (WT) leaf tissue and in two A. thaliana non-photochemical mutants, namely npq1 and npq2. These mutants have previously been well-characterised and provided valuable reference data as well as acting as internal controls for the assessment of our new method.

  1. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit

    PubMed Central

    Baerenfaller, Katja; Massonnet, Catherine; Walsh, Sean; Baginsky, Sacha; Bühlmann, Peter; Hennig, Lars; Hirsch-Hoffmann, Matthias; Howell, Katharine A; Kahlau, Sabine; Radziejwoski, Amandine; Russenberger, Doris; Rutishauser, Dorothea; Small, Ian; Stekhoven, Daniel; Sulpice, Ronan; Svozil, Julia; Wuyts, Nathalie; Stitt, Mark; Hilson, Pierre; Granier, Christine; Gruissem, Wilhelm

    2012-01-01

    Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level. PMID:22929616

  2. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Brown, C. S.; Matthews, S. W.

    1998-01-01

    Leaf structure and function under spaceflight conditions have received little study despite their important implications for biological life support systems using plants. Previous reports described disruption of the membrane apparatus for photosynthesis and a general decrease in carbohydrate content in foliage. During a series of three short-duration experiments (Chromex-03, -04, -05) on the US space shuttle (STS-54, STS-51, STS-68), we examined Arabidopsis thaliana leaves. The plants were at the rosette stage at the time of loading onto the space shuttle, and received the same light, temperature, carbon dioxide and humidity regimes in the orbiter as in ground controls. The experiments differed according to the regime provided in the headspace around the plants: this was either sealed (on mission STS-54); sealed with high levels of carbon dioxide (on mission STS-51) or vented to the cabin air through a filtration system (on mission STS-68). Immediately post-flight, leaf materials were fixed for microscopy or frozen in liquid nitrogen for subsequent analyses of chlorophyll and foliar carbohydrates. At the ultrastructural level, no aberrations in membrane structure were observed in any of the experiments. When air-flow was provided, plastids developed large starch grains in both spaceflight and ground controls. In the experiments with sealed chambers, spaceflight plants differed from ground controls with regard to measured concentrations of carbohydrate and chlorophyll, but the addition of airflow eliminated these differences. The results point to the crucial importance of consideration of the foliage microenvironment when spaceflight effects on leaf structure and metabolism are studied.

  3. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.

    PubMed

    Hectors, Kathleen; Jacques, Eveline; Prinsen, Els; Guisez, Yves; Verbelen, Jean-Pierre; Jansen, Marcel A K; Vissenberg, Kris

    2010-10-01

    Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.

  4. The peri-cell-cycle in Arabidopsis.

    PubMed

    Beeckman, T; Burssens, S; Inzé, D

    2001-03-01

    The root systems of plants proliferate via de novo formed meristems originating from differentiated pericycle cells. The identity of putative signals responsible for triggering some of the pericycle cells to re-enter the cell cycle remains unknown. Here, the cell cycle regulation in the pericycle of seedling roots of Arabidopsis thaliana (L.) HEYNH: is studied shortly after germination using various strategies. Based on the detailed analysis of the promoter-beta-glucuronidase activity of four key cell cycle regulatory genes, combined with cell length measurements, microdensitometry of DNA content, and experiments with a cell cycle-blocking agent, a model is proposed for cell cycle regulation in the pericycle at the onset of lateral root initiation. The results clearly show that before the first lateral root is initiated, the pericycle consists of dissimilar cell files in respect of their cell division history. Depending on the distance behind the root tip and on position in relation to the vascular tissue, particular pericycle cells remain in the G(2) phase of the cell cycle and are apparently more susceptible to lateral root initiation than others.

  5. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei.

    PubMed

    Park, Kyunghyuk; Frost, Jennifer M; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2016-10-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

  6. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

    PubMed Central

    Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2016-01-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573

  7. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.

    PubMed

    Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane

    2016-01-01

    The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.

  8. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  9. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    PubMed Central

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  10. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved.

  11. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  12. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure.

    PubMed

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-11-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period.

  13. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.

    PubMed

    Voss, Ingo; Koelmann, Meike; Wojtera, Joanna; Holtgrefe, Simone; Kitzmann, Camillo; Backhausen, Jan E; Scheibe, Renate

    2008-07-01

    Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds-T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions.

  14. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    PubMed

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.

  15. Evolution and Diverse Roles of the CUP-SHAPED COTYLEDON Genes in Arabidopsis Leaf Development[C][W

    PubMed Central

    Hasson, Alice; Plessis, Anne; Blein, Thomas; Adroher, Bernard; Grigg, Stephen; Tsiantis, Miltos; Boudaoud, Arezki; Damerval, Catherine; Laufs, Patrick

    2011-01-01

    CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes. PMID:21258003

  16. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  17. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.

    PubMed

    Boex-Fontvieille, Edouard; Daventure, Marlène; Jossier, Mathieu; Zivy, Michel; Hodges, Michael; Tcherkez, Guillaume

    2013-01-01

    Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.

  18. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa.

    PubMed

    Wang, Zhi; Su, Guoxia; Li, Min; Ke, Qingbo; Kim, Soo Young; Li, Hongbing; Huang, Jin; Xu, Bingcheng; Deng, Xi-Ping; Kwak, Sang-Soo

    2016-12-01

    Arabidopsis ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3 (ABF3), a bZIP transcription factor, plays an important role in regulating multiple stress responses in plants. Overexpressing AtABF3 increases tolerance to various stresses in several plant species. Alfalfa (Medicago sativa L.), one of the most important perennial forage crops worldwide, has high yields, high nutritional value, and good palatability and is widely distributed in irrigated and semi-arid regions throughout the world. However, drought and salt stress pose major constraints to alfalfa production. In this study, we developed transgenic alfalfa plants (cv. Xinjiang Daye) expressing AtABF3 under the control of the sweetpotato oxidative stress-inducible SWPA2 promoter (referred to as SAF plants) via Agrobacterium tumefaciens-mediated transformation. After drought stress treatment, we selected two transgenic lines with high expression of AtABF3, SAF5 and SAF6, for further characterization. Under normal conditions, SAF plants showed smaller leaf size compared to non-transgenic (NT) plants, while no other morphological changes were observed. Moreover, SAF plants exhibited enhanced drought stress tolerance and better growth under drought stress treatment, which was accompanied by a reduced transpiration rate and lower reactive oxygen species contents. In addition, SAF plants showed an increased tolerance to salt and oxidative stress. Therefore, these transgenic AtABF3 alfalfa plants might be useful for breeding forage crops with enhanced tolerance to environmental stress for use in sustainable agriculture on marginal lands.

  19. Stomatal and pavement cell density linked to leaf internal CO2 concentration

    PubMed Central

    Šantrůček, Jiří; Vráblová, Martina; Šimková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-01-01

    Background and Aims Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Methods Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. Key Results SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. Conclusions It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. PMID:24825295

  20. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis.

    PubMed

    Amanda, Dhika; Doblin, Monika S; Galletti, Roberta; Bacic, Antony; Ingram, Gwyneth C; Johnson, Kim L

    2016-12-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.

  1. Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis1

    PubMed Central

    Zhang, Xiaoli; Myers, Alan M.; James, Martha G.

    2005-01-01

    The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis. PMID:15908598

  2. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.

  3. Ethylene response pathway is essential for ARABIDOPSIS A-FIFTEEN function in floral induction and leaf senescence.

    PubMed

    Chen, Guan-Hong; Chan, Yuan-Li; Liu, Chia-Ping; Wang, Long-Chi

    2012-04-01

    ARABIDOPSIS A-FIFTEEN (AAF) encodes a plastid protein and was originally identified as a SENESCENCE-ASSOCIATED GENE. Previously, we found that overexpression of AAF (AAF-OX) in Arabidopsis led to accumulated reactive oxygen species and promoted leaf senescence induced by oxidative stress, which was suppressed by a null mutant, ein2-5, in ethylene response pathway. Whether AAF function is involved in ethylene biosynthesis and/or the response pathway remained unknown. Here we show that neither overexpression (AAF-OX) nor a null mutant (aaf-KO) of AAF generates a higher level of ethylene than the wild type and display a typical triple-response phenotype in etiolated seedlings treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Nevertheless, ein2-5 suppresses the phenotypes of early flowering and age-dependent leaf senescence in AAF-OX plants. We reveal that a functional ethylene response is essential for AAF function in leaf senescence and floral induction, but AAF is unlikely a regulatory component integral to the ethylene pathway.

  4. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition.

    PubMed

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-07-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.

  5. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition1

    PubMed Central

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-01-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 × Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of 15N between sink and source leaves during the vegetative stage of development using 15N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of 15N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs. PMID:18467460

  6. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.

    PubMed Central

    Melaragno, JE; Mehrotra, B; Coleman, AW

    1993-01-01

    Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050

  7. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  8. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana

    PubMed Central

    Widemann, Emilie; Smirnova, Ekaterina; Aubert, Yann; Miesch, Laurence; Heitz, Thierry

    2016-01-01

    The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an

  9. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    PubMed Central

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  10. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation.

    PubMed

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-04-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function.SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.

  11. Leaf Senescence Signaling: The Ca2+-Conducting Arabidopsis Cyclic Nucleotide Gated Channel2 Acts through Nitric Oxide to Repress Senescence Programming1[W][OA

    PubMed Central

    Ma, Wei; Smigel, Andries; Walker, Robin K.; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A.

    2010-01-01

    Ca2+ and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca2+. The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca2+ modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca2+ and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca2+ uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca2+ accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H2O2 generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca2+ channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca2+ signaling provides evidence consistent with genetic studies of the relationship between Ca2+ signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca2+ uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition

  12. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming.

    PubMed

    Ma, Wei; Smigel, Andries; Walker, Robin K; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A

    2010-10-01

    Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal

  13. Leaf Segmentation and Tracking in Arabidopsis thaliana Combined to an Organ-Scale Plant Model for Genotypic Differentiation

    PubMed Central

    Viaud, Gautier; Loudet, Olivier; Cournède, Paul-Henry

    2017-01-01

    A promising method for characterizing the phenotype of a plant as an interaction between its genotype and its environment is to use refined organ-scale plant growth models that use the observation of architectural traits, such as leaf area, containing a lot of information on the whole history of the functioning of the plant. The Phenoscope, a high-throughput automated platform, allowed the acquisition of zenithal images of Arabidopsis thaliana over twenty one days for 4 different genotypes. A novel image processing algorithm involving both segmentation and tracking of the plant leaves allows to extract areas of the latter. First, all the images in the series are segmented independently using a watershed-based approach. A second step based on ellipsoid-shaped leaves is then applied on the segments found to refine the segmentation. Taking into account all the segments at every time, the whole history of each leaf is reconstructed by choosing recursively through time the most probable segment achieving the best score, computed using some characteristics of the segment such as its orientation, its distance to the plant mass center and its area. These results are compared to manually extracted segments, showing a very good accordance in leaf rank and that they therefore provide low-biased data in large quantity for leaf areas. Such data can therefore be exploited to design an organ-scale plant model adapted from the existing GreenLab model for A. thaliana and subsequently parameterize it. This calibration of the model parameters should pave the way for differentiation between the Arabidopsis genotypes. PMID:28123392

  14. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.

    PubMed

    Luttgeharm, Kyle D; Kimberlin, Athen N; Cahoon, Rebecca E; Cerny, Ronald L; Napier, Johnathan A; Markham, Jonathan E; Cahoon, Edgar B

    2015-07-01

    Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.

  15. Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence1[W

    PubMed Central

    van der Graaff, Eric; Schwacke, Rainer; Schneider, Anja; Desimone, Marcelo; Flügge, Ulf-Ingo; Kunze, Reinhard

    2006-01-01

    A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network. PMID:16603661

  16. Tissue-wide Mechanical Forces Influence the Polarity of Stomatal Stem Cells in Arabidopsis.

    PubMed

    Bringmann, Martin; Bergmann, Dominique C

    2017-03-20

    Mechanical information is an important contributor to cell polarity in uni- and multicellular systems [1-3]. In planar tissues like the Drosophila wing, cell polarity reorients during growth as cells divide and reorganize [4]. In another planar tissue, the Arabidopsis leaf epidermis [5], polarized, asymmetric divisions of stomatal stem cells (meristemoid mother cells [MMCs]) are fundamental for the generation and patterning of multiple cell types, including stomata. The activity of key transcription factors, polarizing factors [6], and peptide signals [7] explains some local stomatal patterns emerging from the behavior of a few lineally related cells [6, 8-11]. Here we demonstrate that, in addition to locally acting signals, tissue-wide mechanical forces can act as organizing cues, and that they do so by influencing the polarity of individual MMCs. If the mechanical stress environment in the tissue is altered through stretching or cell ablations, cellular polarity changes in response. In turn, polarity predicts the orientation of cellular and tissue outgrowth, leading to increased mechanical conflicts between neighboring cells. This interplay among growth, oriented divisions, and cell specification could contribute to the characteristic patterning of stomatal guard cells in the context of a growing leaf.

  17. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf.

    PubMed

    Cheung, C Y Maurice; Ratcliffe, R George; Sweetlove, Lee J

    2015-11-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.

  18. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf1[OPEN

    PubMed Central

    Cheung, C.Y. Maurice; Ratcliffe, R. George; Sweetlove, Lee J.

    2015-01-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture. PMID:26265776

  19. Measuring Callose Deposition, an Indicator of Cell Wall Reinforcement, During Bacterial Infection in Arabidopsis.

    PubMed

    Jin, Lin; Mackey, David M

    2017-01-01

    The plant cell wall responds dynamically during interaction with various pathogens. Upon recognition of "nonself" components, plant cells deploy a variety of immune responses including cell wall fortification. Callose, a β-(1, 3)-D-glucan polymer, is a component of the material deposited at the site of infection between the plasma membrane and the preexisting cell wall that is hypothesized to serve as a physical barrier and platform for directed antimicrobial compound deposition. The defense-associated function of callose deposition is supported by its induction during pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI) and its inhibition by defense suppressing virulence effectors. Thus, callose deposition is a commonly monitored read-out in plant defense. This protocol describes the use of aniline blue staining and fluorescent microscopy to measure callose deposition in bacteria-infected or elicitor-challenged Arabidopsis leaf tissues.

  20. Re-evaluating the role of phenolic glycosides and ascorbic acid in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...

  1. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Liu, Fang; Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation in the leaves of Arabidopsis NO-deficient mutant nos1/noa1 that exhibited an early-senescence phenotype. The activity of pheide a oxygenase (PAO) was higher in the dark-induced senescent leaves of nos1/noa1 compared with wild type. Furthermore, the knockout of PAO in nos1/noa1 background led to pheide a accumulation in the double mutant pao1 nos1/noa1, which retained the level of Chl during dark-induced leaf senescence. The accumulated pheide a in darkened leaves of pao1 nos1/noa1 was likely to inhibit the senescence-activated transcriptional levels of Chl catabolic genes as a feed-back inhibitory effect. We also found that NO deficiency led to decrease in the stability of photosynthetic complexes in thylakoid membranes. Importantly, the accumulation of pheide a caused by PAO mutations in combination with NO deficiency had a synergistic effect on the stability loss of thylakoid membrane complexes in the double mutant pao1 nos1/noa1 during dark-induced leaf senescence. Taken together, our findings have demonstrated that NO is a novel negative regulator of Chl catabolic pathway and positively functions in maintaining the stability of thylakoid membranes during leaf senescence. PMID:23418559

  2. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit.

    PubMed

    Sperdouli, Ilektra; Moustakas, Michael

    2014-07-01

    We examined whether young and mature leaves of Arabidopsis thaliana in their response to mild water deficit (MiWD) and moderate water deficit (MoWD), behave differentially, and whether photosynthetic acclimation to water deficit correlates with increased proline and sugar accumulation. We observed that with increasing water deficit, leaf relative water content decreased, while proline and sugar accumulation increased in both leaf-developmental stages. Under both MiWD and MoWD, young leaves showed less water loss and accumulated higher level of metabolites compared to mature leaves. This, leaf age-related increase in metabolite accumulation that was significantly higher under MoWD, allowed young leaves to cope with oxidative damage by maintaining their base levels of lipid peroxidation. Thus, acclimation of young leaves to MoWD, involves a better homeostasis of reactive oxygen species (ROS), that was achieved among others by (1) increased sugar accumulation and (2) either increased proline synthesis and/or decreased proline catabolism, that decrease the NADPH/NADP(+) ratio, resulting in a higher level of oxidized state of quinone A and thus in a reduced excitation pressure, and by (3) stimulation of the photoprotective mechanism of non-photochemical quenching, that reflects the dissipation of excess excitation energy in the form of harmless heat, thus protecting the plant from the damaging effects of ROS.

  3. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    PubMed

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals.

  4. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  5. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    PubMed

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  6. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves.

    PubMed

    Parlitz, Steffi; Kunze, Reinhard; Mueller-Roeber, Bernd; Balazadeh, Salma

    2011-08-15

    Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.

  7. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.

  8. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress.

    PubMed

    Orendi, G; Zimmermann, P; Baar, C; Zentgraf, U

    2001-07-01

    Different stress conditions can induce changes in the activity of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6). The enzyme activities of all SOD and APX isoforms detected in young Arabidopsis leaves remained unaffected or slightly decreased after moderate paraquat treatment. While CAT2 activity also remained unaffected under these conditions, CAT3 enzyme activity was enhanced. In contrast to the enzyme activities, mRNA levels of both cat2 and cat3 were enhanced under oxidative stress induced by either paraquat or the fungal toxin cercosporin. This indicates that, with respect to enzyme activity level, CAT3 is the enzyme which is most sensitive to oxidative stress in this developmental stage and that the enzyme activity of CAT2 is possibly regulated at the post-transcriptional level. Interestingly, cat3 mRNA level and CAT3 activity are not elevated by paraquat treatment in senescing leaves. In contrast, the response to other stress conditions, such as water stress induced by flooding of detached leaves and heat stress, is maintained in senescing leaves. Since changes in stress response are not a general phenomenon in leaf senescence but appear to be restricted to oxidative stress, this might be a specific mechanism to promote senescence in Arabidopsis thaliana.

  9. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition.

    PubMed

    Kulich, Ivan; Vojtíková, Zdeňka; Glanc, Matouš; Ortmannová, Jitka; Rasmann, Sergio; Žárský, Viktor

    2015-05-01

    Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.

  10. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.

    PubMed

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-02-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence.

  11. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana.

    PubMed

    Pan, Wen-Juan; Xiong, Can; Wua, Qiu-Ping; Liu, Jin-Xia; Liao, Hong-Mei; Chen, Wei; Liu, Yong-Sheng; Zheng, Lei

    2013-11-01

    Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 µM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 µM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.

  12. Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Van Daele, Twiggy; Maleux, Katrien

    2016-01-01

    Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations. PMID:27729396

  13. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes.

  14. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.

    PubMed

    Ay, Nicole; Irmler, Kristina; Fischer, Andreas; Uhlemann, Ria; Reuter, Gunter; Humbeck, Klaus

    2009-04-01

    Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.

  15. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The patterning of initiating organs along specific axes of polarity is critical for the proper development of all higher organisms. Plant lateral organs, such as leaves, are derived from the shoot apical meristems located at the growing tips. After initiation, the leaf primordia of species such as A...

  16. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  17. Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from Arabidopsis callus cultures.

    PubMed

    Murota, Katsunori; Hagiwara-Komoda, Yuka; Komoda, Keisuke; Onouchi, Hitoshi; Ishikawa, Masayuki; Naito, Satoshi

    2011-08-01

    The analysis of post-transcriptional regulatory mechanisms in plants has benefited greatly from the use of cell-free extract systems. Arabidopsis as a model system provides extensive genetic resources; however, to date a suitable cell-free translation system from Arabidopsis has not been available. In this study, we devised an Arabidopsis cell-free extract (ACE) to be used for in vitro translation studies. Protoplasts were prepared from callus cultures derived from Arabidopsis seedlings, and cell-free extracts were prepared after evacuolation of the protoplasts by Percoll gradient centrifugation. The new ACE system exhibits translation activity comparable with that of the wheat germ extract system. We demonstrated that ACE prepared from the 5'-3' exoribonuclease-deficient mutant of Arabidopsis, xrn4-5, exhibited increased stability of an uncapped mRNA as compared with that from wild-type Arabidopsis. We applied the ACE system to study post-transcriptional regulation of AtCGS1. AtCGS1 codes for cystathionine γ-synthase (CGS) that catalyzes the first committed step of methionine and S-adenosyl-l-methionine (AdoMet) biosynthesis in plants, and is feedback regulated by mRNA degradation coupled with translation elongation arrest. The ACE system was capable of reproducing translation elongation arrest and subsequent AtCGS1 mRNA degradation that are induced by AdoMet. The ACE system described here can be prepared in a month after seed sowing and will make it possible to study post-transcriptional regulation of plant genes while taking advantage of the genetics of Arabidopsis.

  18. WRKY22 Transcription Factor Mediates Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Zhou, Xiang; Jiang, Zhou; Yu, Diqiu

    2011-01-01

    Arabidopsis WRKY proteins are plant-specific transcrip-tion factors, encoded by a large gene family, which contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs, Cys2His2 or Cys2HisCys. They can recognize and bind the TTGAC(C/T) W-box cis-elements found in the promoters of target genes, and are involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. Here we investigated the physiological function of the Arabidopsis WRKY22 transcription factor during dark-induced senescence. WRKY22 transcription was suppressed by light and promoted by darkness. In addi-tion, AtWRKY22 expression was markedly induced by H2O2. These results indicated that AtWRKY22 was involved in signal pathways in response to abiotic stress. Dark-treated AtWRKY22 over-expression and knockout lines showed accelerated and delayed senescence phenotypes, respectively, and senescence-associated genes exhibited increased and decreased expression levels. Mutual regulation existed between AtWRKY22 and AtWRKY6, AtWR-KY53, and AtWRKY70, respectively. Moreover, AtWRKY22 could influence their relative expression levels by feedback regulation or by other, as yet unknown mechanisms in response to dark. These results prove that AtWRKY22 participates in the dark-induced senescence signal transduction pathway. PMID:21359674

  19. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  20. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  1. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  2. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-03

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  3. Specific localization and measurement of hydrogen peroxide in Arabidopsis thaliana cell suspensions and protoplasts elicited by COS-OGA.

    PubMed

    Ledoux, Quentin; Van Cutsem, Pierre; Markό, Istvan E; Veys, Pascal

    2014-01-01

    H2O2 acts as an important signaling molecule during plant/pathogen interactions but its study remains a challenge due to the current shortcomings in H2O2-responsive probes. In this work, ContPY1, a new molecular probe developed to specifically detect H2O2 was used to study the elicitation of Arabidopsis thaliana cells by a complex of chitosan oligomers (COS) and oligogalacturonides (OGA). The comparison of cell suspensions, protoplasts of cell suspensions and leaf protoplasts treated with different inhibitors gave indications on the potential sources of hydrogen peroxide in plant cells. The relative contribution of the cell wall, of membrane dehydrogenases and of peroxidases depended on cell type and treatment and proved to be variable. Our present protocol can be used to study hydrogen peroxide production in a large variety of plant species by simple protocol adaptation.

  4. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy

    PubMed Central

    Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.

    2013-01-01

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration. PMID:24105302

  5. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy.

    PubMed

    Castro-Camus, E; Palomar, M; Covarrubias, A A

    2013-10-09

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.

  6. Unified changes in cell size permit coordinated leaf evolution.

    PubMed

    Brodribb, Tim J; Jordan, Greg J; Carpenter, Raymond J

    2013-07-01

    The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats.

  7. Additive and non-additive effects of simulated leaf and inflorescence damage on survival, growth and reproduction of the perennial herb Arabidopsis lyrata.

    PubMed

    Puentes, Adriana; Ågren, Jon

    2012-08-01

    Herbivores may damage both leaves and reproductive structures, and although such combined damage may affect plant fitness non-additively, this has received little attention. We conducted a 2-year field experiment with a factorial design to examine the effects of simulated leaf (0, 12.5, 25, or 50% of leaf area removed) and inflorescence damage (0 vs. 50% of inflorescences removed) on survival, growth and reproduction in the perennial herb Arabidopsis lyrata. Leaf and inflorescence damage negatively and independently reduced flower, fruit and seed production in the year of damage; leaf damage also reduced rosette size by the end of the first season and flower production in the second year. Leaf damage alone reduced the proportion of flowers forming a fruit and fruit production per plant the second year, but when combined with inflorescence damage no such effect was observed (significant leaf × inflorescence damage interaction). Damage to leaves (sources) caused a greater reduction in future reproduction than did simultaneous damage to leaves and inflorescences (sinks). This demonstrates that a full understanding of the effects of herbivore damage on plant fitness requires that consequences of damage to vegetative and reproductive structures are evaluated over more than 1 year and that non-additive effects are considered.

  8. Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells.

    PubMed

    Islam, Md Sayeedul; Niwa, Yasuo; Takagi, Shingo

    2009-06-01

    Mitochondria, the power house of the cell, are one of the most dynamic cell organelles. Although there are several reports on actin- or microtubule-dependent movement of mitochondria in plant cells, intracellular positioning and motility of mitochondria under different light conditions remain open questions. Mitochondria were visualized in living Arabidopsis thaliana leaf cells using green fluorescent protein fused to a mitochondrion-targeting signal. In darkness, mitochondria were distributed randomly in palisade cells. In contrast, mitochondria accumulated along the periclinal walls, similar to the accumulation response of chloroplasts, when treated with weak blue light (470 nm, 4 micromol m(-2) s(-1)). Under strong blue light (100 micromol m(-2) s(-1)), mitochondria occupied the anticlinal positions similar to the avoidance response of chloroplasts and nuclei. While strong red light (660 nm, 100 micromol m(-2) s(-1)) induced the accumulation of mitochondria along the inner periclinal walls, green light exhibited little effect on the distribution of mitochondria. In addition, the mode of movement of individual mitochondria along the outer periclinal walls under different light conditions was precisely analyzed by time-lapse fluorescence microscopy. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts with a time period of blue light illumination clearly demonstrated the accumulation response of mitochondria. Light-induced co-localization of mitochondria with chloroplasts strongly suggested their mutual metabolic interactions. This is the first characterization of the light-dependent redistribution of mitochondria in plant cells.

  9. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    PubMed

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  10. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  11. Behavior of Leaf Meristems and Their Modification

    PubMed Central

    Ichihashi, Yasunori; Tsukaya, Hirokazu

    2015-01-01

    A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution. PMID:26648955

  12. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    PubMed Central

    Liang, Chao; Zhang, Youjun; Cheng, Shifeng; Osorio, Sonia; Sun, Yuzhe; Fernie, Alisdair R.; Cheung, C. Y. M.; Lim, Boon L.

    2015-01-01

    Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and

  13. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  14. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  15. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    PubMed

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed (14)C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications.

  16. Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...

  17. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana.

    PubMed

    Rowan, Daryl D; Cao, Mingshu; Lin-Wang, Kui; Cooney, Janine M; Jensen, Dwayne J; Austin, Paul T; Hunt, Martin B; Norling, Cara; Hellens, Roger P; Schaffer, Robert J; Allan, Andrew C

    2009-01-01

    * High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyanin regulators. High-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LCMS) and Affimetrix-based microarrays were used to measure changes in anthocyanin, flavonoids, and gene expression in response to HTLL. * HTLL treatment of control and 35S:PAP1 A. thaliana resulted in a reversible reduction in the concentrations of major anthocyanins despite ongoing over-expression of the PAP1 MYB transcription factor. Twenty-one anthocyanins including eight cis-coumaryl esters were identified by LCMS. The concentrations of nine anthocyanins were reduced and those of three were increased, consistent with a sequential process of anthocyanin degradation. Analysis of gene expression showed down-regulation of flavonol and anthocyanin biosynthesis and of transport-related genes within 24 h of HTLL treatment. No catabolic genes up-regulated by HTLL were found. * Reductions in the concentrations of anthocyanins and down-regulation of the genes of anthocyanin biosynthesis were achieved by environmental manipulation, despite ongoing over-expression of PAP1. Quantitative PCR showed reduced expression of three genes (TT8, TTG1 and EGL3) of the PAP1 transcriptional complex, and increased expression of the potential transcriptional repressors AtMYB3, AtMYB6 and AtMYBL2 coincided with HTLL-induced down-regulation of anthocyanin biosynthesis. * HTLL treatment offers a model system with which to explore anthocyanin catabolism and to discover novel genes involved in the environmental control of anthocyanins.

  18. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  19. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    DOE PAGES

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; ...

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leafmore » photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.« less

  20. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism.

  1. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  2. Pericycle cell proliferation and lateral root initiation in Arabidopsis.

    PubMed

    Dubrovsky, J G; Doerner, P W; Colón-Carmona, A; Rost, T L

    2000-12-01

    In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.

  3. Molecule mechanism of stem cells in Arabidopsis thaliana.

    PubMed

    Zhang, Wenjin; Yu, Rongming

    2014-07-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  4. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.

    PubMed

    Zhang, Guang-Heng; Xu, Qian; Zhu, Xu-Dong; Qian, Qian; Xue, Hong-Wei

    2009-03-01

    As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling.

  5. Arabidopsis cell expansion is controlled by a photothermal switch

    PubMed Central

    Johansson, Henrik; Jones, Harriet J.; Foreman, Julia; Hemsted, Joseph R.; Stewart, Kelly; Grima, Ramon; Halliday, Karen J.

    2014-01-01

    In Arabidopsis, the seedling hypocotyl has emerged as an exemplar model system to study light and temperature control of cell expansion. Light sensitivity of this organ is epitomized in the fluence rate response where suppression of hypocotyl elongation increases incrementally with light intensity. This finely calibrated response is controlled by the photoreceptor, phytochrome B, through the deactivation and proteolytic destruction of phytochrome-interacting factors (PIFs). Here we show that this classical light response is strictly temperature dependent: a shift in temperature induces a dramatic reversal of response from inhibition to promotion of hypocotyl elongation by light. Applying an integrated experimental and mathematical modelling approach, we show how light and temperature coaction in the circuitry drives a molecular switch in PIF activity and control of cell expansion. This work provides a paradigm to understand the importance of signal convergence in evoking different or non-intuitive alterations in molecular signalling. PMID:25258215

  6. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  7. Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories1[W

    PubMed Central

    Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A.; Caldana, Camila; Lisec, Jan; Beemster, Gerrit T.S.; Meyer, Rhonda C.; Messerli, Gaëlle; Gronlund, Jesper T.; Perkovic, Josip; Wigmore, Emma; May, Sean; Bevan, Michael W.; Meyer, Christian; Rubio-Díaz, Silvia; Weigel, Detlef; Micol, José Luis; Buchanan-Wollaston, Vicky; Fiorani, Fabio; Walsh, Sean; Rinn, Bernd; Gruissem, Wilhelm; Hilson, Pierre; Hennig, Lars; Willmitzer, Lothar; Granier, Christine

    2010-01-01

    A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories. PMID:20200072

  8. Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis.

    PubMed

    Van Houtte, Hilde; López-Galvis, Lorena; Vandesteene, Lies; Beeckman, Tom; Van Dijck, Patrick

    2013-03-01

    The Arabidopsis trehalose-6-phosphate phosphatase (TPP) gene family arose mainly from whole genome duplication events and consists of 10 genes (TPPA-J). All the members encode active TPP enzymes, possibly regulating the levels of trehalose-6-phosphate, an established signaling metabolite in plants. GUS activity studies revealed tissue-, cell- and stage-specific expression patterns for the different members of the TPP gene family. Here we list additional examples of the remarkable features of the TPP gene family. TPPA-J expression levels seem, in most of the cases, differently regulated in response to light, darkness and externally supplied sucrose. Disruption of the TPPB gene leads to Arabidopsis plants with larger leaves, which is the result of an increased cell number in the leaves. Arabidopsis TPPA and TPPG are preferentially expressed in atrichoblast cells. TPPA and TPPG might fulfill redundant roles during the differentiation process of root epidermal cells, since the tppa tppg double mutant displays a hairy root phenotype, while the respective single knockouts have a distribution of trichoblast and atrichoblast cells similar to the wild type. These new data portray redundant and non-redundant functions of the TPP proteins in regulatory pathways of Arabidopsis.

  9. TYPE-ONE PROTEIN PHOSPHATASE4 Regulates Pavement Cell Interdigitation by Modulating PIN-FORMED1 Polarity and Trafficking in Arabidopsis1

    PubMed Central

    Guo, Xiaola; Qin, Qianqian; Yan, Jia; Niu, Yali; Huang, Bingyao; Guan, Liping; Li, Yuan; Ren, Dongtao; Li, Jia; Hou, Suiwen

    2015-01-01

    In plants, cell morphogenesis is dependent on intercellular auxin accumulation. The polar subcellular localization of the PIN-FORMED (PIN) protein is crucial for this process. Previous studies have shown that the protein kinase PINOID (PID) and protein phosphatase6-type phosphatase holoenzyme regulate the phosphorylation status of PIN1 in root tips and shoot apices. Here, we show that a type-one protein phosphatase, TOPP4, is essential for the formation of interdigitated pavement cell (PC) pattern in Arabidopsis (Arabidopsis thaliana) leaf. The dominant-negative mutant topp4-1 showed severely inhibited interdigitated PC growth. Expression of topp4-1 gene in wild-type plants recapitulated the PC defects in the mutant. Genetic analyses suggested that TOPP4 and PIN1 likely function in the same pathway to regulate PC morphogenesis. Furthermore, colocalization, in vitro and in vivo protein interaction studies, and dephosphorylation assays revealed that TOPP4 mediated PIN1 polar localization and endocytic trafficking in PCs by acting antagonistically with PID to modulate the phosphorylation status of PIN1. In addition, TOPP4 affects the cytoskeleton pattern through the Rho of Plant GTPase-dependent auxin-signaling pathway. Therefore, we conclude that TOPP4-regulated PIN1 polar targeting through direct dephosphorylation is crucial for PC morphogenesis in the Arabidopsis leaf. PMID:25560878

  10. Ion distribution in leaf cells of Egeria densa.

    PubMed

    Linsel, G; Zglinicki, T

    1990-01-01

    The lement concentrations of intracellular compartments of leaf cells of Egeria densa are estimated by X-ray microanalysis. Ultrathin frozen-dried sections are used in TEM mode. The concentrations of Na, Mg, P, Cl, K, and Ca are determined in the cell wall, cytoplasm and chloroplasts. The cell wall represents a Donnan free space with a negative fixed charge concentration of 360 mval/l water. The water fraction of the cytoplasm is between 85 and 90% and strikes the bounds of possibility of that method.

  11. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-02-02

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases.

  12. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  13. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  14. Immobilized Subpopulations of Leaf Epidermal Mitochondria Mediate PENETRATION2-Dependent Pathogen Entry Control in Arabidopsis

    PubMed Central

    Klapprodt, Christine; Hause, Gerd; Lipka, Volker

    2016-01-01

    The atypical myrosinase PENETRATION2 (PEN2) is required for broad-spectrum invasion resistance to filamentous plant pathogens. Previous localization studies suggested PEN2-GFP association with peroxisomes. Here, we show that PEN2 is a tail-anchored protein with dual-membrane targeting to peroxisomes and mitochondria and that PEN2 has the capacity to form homo-oligomer complexes. We demonstrate pathogen-induced recruitment and immobilization of mitochondrial subpopulations at sites of attempted fungal invasion and show that mitochondrial arrest is accompanied by peripheral accumulation of GFP-tagged PEN2. PEN2 substrate production by the cytochrome P450 monooxygenase CYP81F2 is localized to the surface of the endoplasmic reticulum, which focally reorganizes close to the immobilized mitochondria. Exclusive targeting of PEN2 to the outer membrane of mitochondria complements the pen2 mutant phenotype, corroborating the functional importance of the mitochondrial PEN2 protein subpool for controlled local production of PEN2 hydrolysis products at subcellular plant-microbe interaction domains. Moreover, live-cell imaging shows that mitochondria arrested at these domains exhibit a pathogen-induced redox imbalance, which may lead to the production of intracellular signals. PMID:26721862

  15. Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana.

    PubMed

    Fujikura, Ushio; Horiguchi, Gorou; Ponce, María Rosa; Micol, José Luis; Tsukaya, Hirokazu

    2009-08-01

    Co-ordination of cell proliferation and cell expansion is a key regulatory process in leaf-size determination, but its molecular details are unknown. In Arabidopsis thaliana, mutations in a positive regulator of cell proliferation often trigger excessive cell enlargement post-mitotically in leaves. This phenomenon, called compensation syndrome, is seen in the mutant angustifolia3 (an3), which is defective in a transcription co-activator. Such compensation, however, does not occur in response to a decrease in cell number in oligocellula (oli). oli2, oli5 and oli7 did not exhibit compensation and the reduction in cell number in these mutants was moderate. However, when an oli mutation was combined with a different oli mutation to create a double mutant, cell number was further reduced and compensation was induced. Similarly, weak suppression of AN3 expression reduced cell number moderately but did not induce compensation compared with an an3 null mutant. Furthermore, double mutants of either oli2, oli5 or oli7 and an3 showed markedly enhanced compensation. These results suggest that compensation is triggered when cell proliferation regulated by OLI2/OLI5/OLI7 and AN3 is compromised in a threshold-dependent manner. OLI2 encodes a Nop2 homolog in Saccharomyces cerevisiae that is involved in ribosome biogenesis, whereas OLI5 and OLI7 encode ribosome proteins RPL5A and RPL5B, respectively. This suggests that a factor involved in the induction of compensation may be under the dual control of AN3 and a ribosome-related process.

  16. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells

    PubMed Central

    Miao, Yansong; Li, Hong-Ye; Shen, Jinbo; Wang, Junqi; Jiang, Liwen

    2011-01-01

    Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures. PMID:21725030

  17. Reporter Gene-Facilitated Detection of Compounds in Arabidopsis Leaf Extracts that Activate the Karrikin Signaling Pathway

    PubMed Central

    Sun, Yueming K.; Flematti, Gavin R.; Smith, Steven M.; Waters, Mark T.

    2016-01-01

    Karrikins are potent germination stimulants generated by the combustion of plant matter. Treatment of Arabidopsis with karrikins triggers a signaling process that is dependent upon a putative receptor protein KARRIKIN INSENSITIVE 2 (KAI2). KAI2 is a homolog of DWARF 14 (D14), the receptor for endogenous strigolactone hormones. Genetic analyses suggest that KAI2 also perceives endogenous signal(s) that are not strigolactones. Activation of KAI2 by addition of karrikins to Arabidopsis plants induces expression of transcripts including D14-LIKE 2 (DLK2). We constructed the synthetic reporter gene DLK2:LUC in Arabidopsis, which comprises the firefly luciferase gene (LUC) driven by the DLK2 promoter. Here we describe a luminescence-based reporter assay with Arabidopsis seeds to detect chemical signals that can activate the KAI2 signaling pathway. We demonstrate that the DLK2:LUC assay can selectively and sensitively detect karrikins and a functionally similar synthetic strigolactone analog. Crucially we show that crude extracts from Arabidopsis leaves can also activate DLK2:LUC in a KAI2-dependent manner. Our work provides the first direct evidence for the existence of endogenous chemical signals that can activate the KAI2-mediated signaling pathway in Arabidopsis. This sensitive reporter system can now be used for the bioassay-guided purification and identification of putative endogenous KAI2 ligands or their precursors, and endogenous compounds that might modulate the KAI2 signaling pathway. PMID:27994609

  18. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    SciTech Connect

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  19. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  20. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    PubMed Central

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  1. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE PAGES

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  2. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    SciTech Connect

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.

  3. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  4. Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco[W

    PubMed Central

    Braun, Nils; Wyrzykowska, Joanna; Muller, Philippe; David, Karine; Couch, Daniel; Perrot-Rechenmann, Catherine; Fleming, Andrew J.

    2008-01-01

    AUXIN BINDING PROTEIN1 (ABP1) has long been characterized as a potentially important mediator of auxin action in plants. Analysis of the functional requirement for ABP1 during development was hampered because of embryo lethality of the null mutant in Arabidopsis thaliana. Here, we used conditional repression of ABP1 to investigate its function during vegetative shoot development. Using an inducible cellular immunization approach and an inducible antisense construct, we showed that decreased ABP1 activity leads to a severe retardation of leaf growth involving an alteration in cell division frequency, an altered pattern of endocycle induction, a decrease in cell expansion, and a change in expression of early auxin responsive genes. In addition, local repression of ABP1 activity in the shoot apical meristem revealed an additional role for ABP1 in cell plate formation and cell shape. Moreover, cells at the site of presumptive leaf initiation were more sensitive to ABP1 repression than other regions of the meristem. This spatial context-dependent response of the meristem to ABP1 inactivation and the other data presented here are consistent with a model in which ABP1 acts as a coordinator of cell division and expansion, with local auxin levels influencing ABP1 effectiveness. PMID:18952781

  5. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    PubMed Central

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-01-01

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis. PMID:27110768

  6. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    PubMed

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  7. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis1[OPEN

    PubMed Central

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Churchman, Michelle; Larkin, John C.

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  8. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system.

    PubMed

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A

    2011-05-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.

  9. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    SciTech Connect

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; Atwell, Susanna; Martens, Helle J.; Pedas, Pai R.; Hansen, Sara F.; Nawrath, Christiane; Scheller, Henrik V.; Kliebenstein, Daniel J.; Sakuragi, Yumiko

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

  10. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DOE PAGES

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; ...

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed andmore » surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.« less

  11. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects.

    PubMed

    Henriques, Rossana; Jásik, Ján; Klein, Markus; Martinoia, Enrico; Feller, Urs; Schell, Jeff; Pais, Maria S; Koncz, Csaba

    2002-11-01

    IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.

  12. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses.

  13. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis.

    PubMed

    Qiu, Kai; Li, Zhongpeng; Yang, Zhen; Chen, Junyi; Wu, Shouxin; Zhu, Xiaoyu; Gao, Shan; Gao, Jiong; Ren, Guodong; Kuai, Benke; Zhou, Xin

    2015-07-01

    Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs). Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA) indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP) assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll degradation

  14. The ULTRAPETALA1 trxG factor contributes to patterning the Arabidopsis adaxial-abaxial leaf polarity axis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcripti...

  15. Xanthomonas campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor1[OA

    PubMed Central

    Gudesblat, Gustavo E.; Torres, Pablo S.; Vojnov, Adrián A.

    2009-01-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  16. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  17. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.

    PubMed

    Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori

    2006-05-01

    The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.

  18. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis thaliana Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil.

    PubMed

    Kühnlenz, Tanja; Hofmann, Christian; Uraguchi, Shimpei; Schmidt, Holger; Schempp, Stefanie; Weber, Michael; Lahner, Brett; Salt, David E; Clemens, Stephan

    2016-11-01

    Phytochelatin (PC) synthesis is essential for the detoxification of non-essential metals such as cadmium (Cd). In vitro experiments with Arabidopsis thaliana seedlings had indicated a contribution to zinc (Zn) tolerance as well. We addressed the physiological role of PC synthesis in Zn homeostasis of plants under more natural conditions. Growth responses, PC accumulation and leaf ionomes of wild-type and AtPCS1 mutant plants cultivated in different soils representing adequate Zn supply, Zn deficiency and Zn excess were analyzed. Growth on Zn-contaminated soil triggers PC synthesis and is strongly impaired in PC-deficient mutants. In fact, the contribution of AtPCS1 to tolerating Zn excess is comparable with that of the major Zn tolerance factor MTP1. For plants supplied with a normal level of Zn, a significant reduction in leaf Zn accumulation of AtPCS1 mutants was detected. In contrast, AtPCS1 mutants grown under Zn-limited conditions showed wild-type levels of Zn accumulation, suggesting the operation of distinct Zn translocation pathways. Contrasting phenotypes of the tested AtPCS1 mutant alleles upon growth in Zn- or Cd-contaminated soil indicated differential activation of PC synthesis by these metals. Experiments with truncated versions identified a part of the AtPCS1 protein required for the activation by Zn but not by Cd.

  19. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts.

    PubMed

    Schumann, Uwe; Prestele, Jakob; O'Geen, Henriette; Brueggeman, Robert; Wanner, Gerhard; Gietl, Christine

    2007-01-16

    Plant peroxisomes perform multiple vital metabolic processes including lipid mobilization in oil-storing seeds, photorespiration, and hormone biosynthesis. Peroxisome biogenesis requires the function of peroxin (PEX) proteins, including PEX10, a C(3)HC(4) Zn RING finger peroxisomal membrane protein. Loss of function of PEX10 causes embryo lethality at the heart stage. We investigated the function of PEX10 with conditional sublethal mutants. Four T-DNA insertion lines expressing pex10 with a dysfunctional RING finger were created in an Arabidopsis WT background (DeltaZn plants). They could be normalized by growth in an atmosphere of high CO(2) partial pressure, indicating a defect in photorespiration. beta-Oxidation in mutant glyoxysomes was not affected. However, an abnormal accumulation of the photorespiratory metabolite glyoxylate, a lowered content of carotenoids and chlorophyll a and b, and a decreased quantum yield of photosystem II were detected under normal atmosphere, suggesting impaired leaf peroxisomes. Light and transmission electron microscopy demonstrated leaf peroxisomes of the DeltaZn plants to be more numerous, multilobed, clustered, and not appressed to the chloroplast envelope as in WT. We suggest that inactivation of the RING finger domain in PEX10 has eliminated protein interaction required for attachment of peroxisomes to chloroplasts and movement of metabolites between peroxisomes and chloroplasts.

  20. Screening for wound-induced oxylipins in Arabidopsis thaliana by differential HPLC-APCI/MS profiling of crude leaf extracts and subsequent characterisation by capillary-scale NMR.

    PubMed

    Thiocone, Aly; Farmer, Edward E; Wolfender, Jean-Luc

    2008-01-01

    A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest.

  1. Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].

    PubMed

    Markelz, R J Cody; Vosseller, Lauren N; Leakey, Andrew D B

    2014-11-01

    Plant respiration responses to elevated growth [CO(2)] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO(2)] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole plant photoassimilate availability and growth, elevated [CO(2)] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO(2)] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO(2)] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO(2) efflux. In mature leaves, elevated [CO(2)] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO(2) efflux. Therefore, growth at elevated [CO(2)] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO(2)] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO(2)] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.

  2. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  3. Mechanical Behavior of Cells within a Cell-Based Model of Wheat Leaf Growth

    PubMed Central

    Zubairova, Ulyana; Nikolaev, Sergey; Penenko, Aleksey; Podkolodnyy, Nikolay; Golushko, Sergey; Afonnikov, Dmitry; Kolchanov, Nikolay

    2016-01-01

    Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth. PMID:28018409

  4. Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level.

    PubMed

    Meng, Shuan; Peng, Jia-Shi; He, Ya-Ni; Zhang, Guo-Bin; Yi, Hong-Ying; Fu, Yan-Lei; Gong, Ji-Ming

    2016-03-07

    Nitrogen deficiency induces leaf senescence. However, whether or how nitrate might affect this process remains to be investigated. Here, we report an interesting finding that nitrate-instead of nitrogen-starvation induced early leaf senescence in nrt1.5 mutant, and present genetic and physiological data demonstrating that nitrate starvation-induced leaf senescence is suppressed by NRT1.5. NRT1.5 suppresses the senescence process dependent on its function from roots, but not the nitrate transport function. Further analyses using nrt1.5 single and nia1 nia2 nrt1.5-4 triple mutant showed a negative correlation between nitrate concentration and senescence rate in leaves. Moreover, when exposed to nitrate starvation, foliar potassium level decreased in nrt1.5, but adding potassium could essentially restore the early leaf senescence phenotype of nrt1.5 plants. Nitrate starvation also downregulated the expression of HAK5, RAP2.11, and ANN1 in nrt1.5 roots, and appeared to alter potassium level in xylem sap from nrt1.5. These data suggest that NRT1.5 likely perceives nitrate starvation-derived signals to prevent leaf senescence by facilitating foliar potassium accumulation.

  5. Automatic Quantification of the Number of Intracellular Compartments in Arabidopsis thaliana Root Cells

    PubMed Central

    Bayle, Vincent; Platre, Matthieu Pierre; Jaillais, Yvon

    2017-01-01

    In the era of quantitative biology, it is increasingly required to quantify confocal microscopy images. If possible, quantification should be performed in an automatic way, in order to avoid bias from the experimenter, to allow the quantification of a large number of samples, and to increase reproducibility between laboratories. In this protocol, we describe procedures for automatic counting of the number of intracellular compartments in Arabidopsis root cells, which can be used for example to study endocytosis or secretory trafficking pathways and to compare membrane organization between different genotypes or treatments. While developed for Arabidopsis roots, this method can be used on other tissues, cell types and plant species. PMID:28255574

  6. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.

    PubMed

    Cui, Hongchang; Kong, Danyu; Liu, Xiuwen; Hao, Yueling

    2014-04-01

    Bundle sheath (BS) cells form a single cell layer surrounding the vascular tissue in leaves. In C3 plants, photosynthesis occurs in both the BS and mesophyll cells, but the BS cells are the major sites of photosynthesis in C4 plants, whereas the mesophyll cells are only involved in CO2 fixation. Because C4 plants are more efficient photosynthetically, introduction of the C4 mechanism into C3 plants is considered a key strategy to improve crop yield. One prerequisite for such C3-to-C4 engineering is the ability to manipulate the number and physiology of the BS cells, but the molecular basis of BS cell-fate specification remains unclear. Here we report that mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana. SCR and SCL23 are expressed specifically in the BS cells and act redundantly in BS cell-fate specification, but their expression pattern and function diverge at later stages of leaf development. Using ChIP-chip experiments and sugar assays, we show that SCR is primarily involved in sugar transport whereas SCL23 functions in mineral transport. SHR is also essential for BS cell-fate specification, but it is expressed in the central vascular tissue. However, the SHR protein moves into the BS cells, where it directly regulates SCR and SCL23 expression. SHR, SCR and SCL23 homologs are present in many plant species, suggesting that this developmental pathway for BS cell-fate specification is likely to be evolutionarily conserved.

  7. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis.

    PubMed

    Filardo, Fiona; Robertson, Masumi; Singh, Davinder Pal; Parish, Roger W; Swain, Stephen M

    2009-02-01

    SPINDLY (SPY) is an important regulator of plant development, and consists of an N-half tetratricopeptide repeat (TPR) domain containing 10 TPR motifs and a C-half catalytic domain, similar to O-GlcNAc transferase (OGT) of animals. The best characterised role of SPY is a negative regulator of GA signalling, and all known spy alleles have been isolated based on increased GA response. Of the eight alleles that directly affect the TPR domain, all alter TPRs 6, 8 and/or 9. To test the hypothesis that a subset of TPRs, including 6, 8 and 9, are both essential and sufficient for the regulation of GA response, we overexpressed the full-length barley (Hordeum vulgare L.) SPY protein (HvSPY) and several deletion mutants in barley aleurone cells and in Arabidopsis wild type (WT) and spy-4 plants. Transient assays in barley aleurone cells, that also express endogenous HvSPY, demonstrated that introduced HvSPY and HvTPR inhibited GA(3)-induced alpha-amylase expression. With the exception of HvSPYDelta1-5, the other deletion proteins were partially active in the barley assay, including HvSPYDelta6-9 which lacks TPRs 6, 8 and 9. In Arabidopsis, analysis of seed germination under a range of conditions revealed that 35S:HvSPY increased seed dormancy. Hvspy-2, which lacks parts of the eighth and ninth TPRs, was able to partially complement all aspects of the spy-4 phenotype. In the presence of AtSPY, 35S:HvTPR caused some phenotypes consistent with a decrease in GA signalling, including increased seed sensitivity to paclobutrazol and delayed flowering. These plants also possessed distorted leaf morphology and altered epidermal cell shape. Thus, despite genetic analysis demonstrating that TPRs 6, 8 and 9 are required for regulation of GA signalling, our results suggest that these TPRs are neither absolutely essential nor sufficient for SPY activity.

  8. Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection1[W][OA

    PubMed Central

    Ascencio-Ibáñez, José Trinidad; Sozzani, Rosangela; Lee, Tae-Jin; Chu, Tzu-Ming; Wolfinger, Russell D.; Cella, Rino; Hanley-Bowdoin, Linda

    2008-01-01

    Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle. PMID:18650403

  9. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  10. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant.

    PubMed Central

    Staswick, P E; Su, W; Howell, S H

    1992-01-01

    Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), are plant signaling molecules that affect plant growth and gene expression. Primary root growth of wild-type Arabidopsis thaliana seedlings was inhibited 50% when seedlings were grown on agar medium containing 0.1 M MeJA. An ethyl methanesulfonate mutant (jar1) with decreased sensitivity to MeJA inhibition of root elongation was isolated and characterized. Genetic data indicated the trait was recessive and controlled by a single Mendelian factor. MeJA-induced polypeptides were detected in Arabidopsis leaves by antiserum to a MeJA-inducible vegetative storage protein from soybean. The induction of these proteins by MeJA in the mutant was at least 4-fold less in jar1 compared to wild type. In contrast, seeds of jar1 plants were more sensitive than wild type to inhibition of germination by abscisic acid. These results suggest that the defect in jar1 affects a general jasmonate response pathway, which may regulate multiple genes in different plant organs. Images PMID:11607311

  11. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules.

    PubMed

    Wang, Xia; Zhu, Lei; Liu, Baoquan; Wang, Che; Jin, Lifeng; Zhao, Qian; Yuan, Ming

    2007-03-01

    Microtubule-associated proteins (MAPs) play important roles in the regulation of microtubule function in cells. We describe Arabidopsis thaliana MAP18, which binds to microtubules and inhibits tubulin polymerization in vitro and colocalizes along cortical microtubules as patches of dot-like structures. MAP18 is expressed mostly in the expanding cells. Cells overexpressing MAP18 in Arabidopsis exhibit various growth phenotypes with loss of polarity. Cortical microtubule arrays were significantly altered in cells either overexpressing MAP18 or where it had been downregulated by RNA interference (RNAi). The cortical microtubules were more sensitive to treatment with microtubule-disrupting drugs when MAP18 was overexpressed, but more resistant when MAP18 was eliminated in cells expressing MAP18 RNAi. Our study demonstrated that MAP18 may play a role in regulating directional cell growth and cortical microtubule organization by destabilizing microtubules.

  12. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening

    PubMed Central

    Han, Ye; Ban, Qiuyan; Li, Hua; Hou, Yali; Jin, Mijing; Han, Shoukun; Rao, Jingping

    2016-01-01

    Fruit softening is mainly associated with cell wall structural modifications, and members of the xyloglucan endotransglucosylase/hydrolase (XTH) family are key enzymes involved in cleaving and re-joining xyloglucan in the cell wall. In this work, we isolated a new XTH gene, DkXTH8, from persimmon fruit. Transcriptional profiling revealed that DkXTH8 peaked during dramatic fruit softening, and expression of DkXTH8 was stimulated by propylene and abscisic acid but suppressed by gibberellic acid and 1-MCP. Transient expression assays in onion epidermal cells indicated direct localization of DkXTH8 to the cell wall via its signal peptide. When expressed in vitro, the recombinant DkXTH8 protein exhibited strict xyloglucan endotransglycosylase activity, whereas no xyloglucan endohydrolase activity was observed. Furthermore, overexpression of DkXTH8 resulted in increased leaf senescence coupled with higher electrolyte leakage in Arabidopsis and faster fruit ripening and softening rates in tomato. Most importantly, transgenic plants overexpressing DkXTH8 displayed more irregular and twisted cells due to cell wall restructuring, resulting in wider interstitial spaces with less compact cells. We suggest that DkXTH8 expression causes cells to be easily destroyed, increases membrane permeability and cell peroxidation, and accelerates leaf senescence and fruit softening in transgenic plants. PMID:27966647

  13. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  14. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    PubMed

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  15. Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling

    PubMed Central

    Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T.; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M. Rob G.; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I.; Kollist, Hannes; Brosché, Mikael

    2016-01-01

    Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management. PMID:27923039

  16. Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling.

    PubMed

    Jakobson, Liina; Vaahtera, Lauri; Tõldsepp, Kadri; Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M Rob G; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I; Kollist, Hannes; Brosché, Mikael

    2016-12-01

    Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.

  17. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    SciTech Connect

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; Allen, Doug K.

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.

  18. DNA demethylation is initiated in the central cells of Arabidopsis and rice

    PubMed Central

    Park, Kyunghyuk; Kim, M. Yvonne; Vickers, Martin; Park, Jin-Sup; Hyun, Youbong; Okamoto, Takashi; Zilberman, Daniel; Fischer, Robert L.; Feng, Xiaoqi; Choi, Yeonhee; Scholten, Stefan

    2016-01-01

    Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis. DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice—species that diverged 150 million years ago—as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis. However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm. PMID:27956642

  19. Routine sample preparation and HPLC analysis for ascorbic acid (vitamin C) determination in wheat plants and Arabidopsis leaf tissues.

    PubMed

    Szalai, Gabriella; Janda, T; Pál, Magda

    2014-06-01

    Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

  20. Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals

    PubMed Central

    Schwarz, Erich M.; Roeder, Adrienne H. K.

    2016-01-01

    Endoreduplication is a specialized cell cycle in which DNA replication occurs, but mitosis is skipped creating enlarged polyploid cells. Endoreduplication is associated with the differentiation of many specialized cell types. In the Arabidopsis thaliana sepal epidermis endoreduplicated giant cells form interspersed between smaller cells. Both the transcription factor Arabidopsis thaliana MERISTEM LAYER1 (ATML1) and the plant-specific cyclin dependent kinase inhibitor LOSS OF GIANT CELLS FROM ORGANS (LGO)/SIAMESE RELATED1 (SMR1) are required for the formation of giant cells. Overexpression of LGO is sufficient to produce sepals covered in highly endoreduplicated giant cells. Here we ask whether overexpression of LGO changes the transcriptome of these mature sepals. We show that overexpression of LGO in the epidermis (LGOoe) drives giant cell formation even in atml1 mutant sepals. Using RNA-seq we show that LGOoe has significant effects on the mature sepal transcriptome that are primarily ATML1-independent changes of gene activity. Genes activated by LGOoe, directly or indirectly, predominantly encode proteins involved in defense responses, including responses to wounding, insects (a predator of Arabidopsis), and fungus. They also encode components of the glucosinolate biosynthesis pathway, a key biochemical pathway in defense against herbivores. LGOoe-activated genes include previously known marker genes of systemic acquired resistance such as PR1 through PR5. The defensive functions promoted by LGOoe in sepals overlap with functions recently shown to be transcriptionally activated by hyperimmune cpr5 mutants in a LGO-dependent manner. Our findings show that the cell cycle regulator LGO can directly or indirectly drive specific states of gene expression; in particular, they are consistent with recent findings showing LGO to be necessary for transcriptional activation of many defense genes in Arabidopsis. PMID:27920789

  1. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    PubMed Central

    2011-01-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis. PMID:27502666

  2. LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis

    PubMed Central

    Yang, Chao; Lin, Hongwei; Wang, Lingling; He, Yi; Ding, Xiaomeng; Grabsztunowicz, Magda; Chen, Tao; Liu, Yu; Wu, Zhongchang; Wu, Yunrong; Wu, Ping; Mo, Xiaorong

    2016-01-01

    LIR1 (LIGHT-INDUCED RICE1) encodes a 13-kD, chloroplast-targeted protein containing two nearly identical motifs of unknown function. LIR1 is present in the genomes of vascular plants, mosses, liverworts, and algae, but not in cyanobacteria. Using coimmunoprecipitation assays, pull-down assays, and yeast two-hybrid analyses, we showed that LIR1 interacts with LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE (LFNR), an essential chloroplast enzyme functioning in the last step of photosynthetic linear electron transfer. LIR1 and LFNR formed high molecular weight thylakoid protein complexes with the TIC62 and TROL proteins, previously shown to anchor LFNR to the membrane. We further showed that LIR1 increases the affinity of LFNRs for TIC62 and that the rapid light-triggered degradation of the LIR1 coincides with the release of the LFNR from the thylakoid membrane. Loss of LIR1 resulted in a marked decrease in the accumulation of LFNR-containing thylakoid protein complexes without a concomitant decrease in total LFNR content. In rice (Oryza sativa), photosynthetic capacity of lir1 plants was slightly impaired, whereas no such effect was observed in Arabidopsis thaliana knockout mutants. The consequences of LIR1 deficiency in different species are discussed. PMID:26941088

  3. Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence.

    PubMed

    Jiang, Jishan; Jia, Huili; Feng, Guangyan; Wang, Zan; Li, Jun; Gao, Hongwen; Wang, Xuemin

    2016-08-01

    Alfalfa (Medicago sativa L.) is a major forage legume for livestock and a target for improving their dietary quality. Vitamin E is an essential vitamin that animals must obtain from their diet for proper growth and development. γ-tocopherol methyltransferase (γ-TMT), which catalyzes the conversion of δ- and γ-tocopherols (or tocotrienols) to β- and α-tocopherols (or tocotrienols), respectively, is the final enzyme involved in the vitamin E biosynthetic pathway. The overexpression of M. sativa L.'s γ-TMT (MsTMT) increased the α-tocopherol content 10-15 fold above that of wild type Arabidopsis seeds without altering the total content of vitamin E. Additionally, in response to osmotic stress, the biomass and the expression levels of several osmotic marker genes were significantly higher in the transgenic lines compared with wild type. Overexpression of MsTMT in alfalfa led to a modest, albeit significant, increase in α-tocopherol in leaves and was also responsible for a delayed leaf senescence phenotype. Additionally, the crude protein content was increased, while the acid and neutral detergent fiber contents were unchanged in these transgenic lines. Thus, increased α-tocopherol content occurred in transgenic alfalfa without compromising the nutritional qualities. The targeted metabolic engineering of vitamin E biosynthesis through MsTMT overexpression provides a promising approach to improve the α-tocopherol content of forage crops.

  4. Cell-Specific Vacuolar Calcium Storage Mediated by CAX1 Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in Arabidopsis[W][OA

    PubMed Central

    Conn, Simon J.; Athman, Asmini; Schreiber, Andreas W.; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A.; Hirschi, Kendal D.; Webb, Alex A.R.; Burton, Rachel; Kaiser, Brent N.; Tyerman, Stephen D.; Leigh, Roger A.

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca2+ transporters, CAX1 (Ca2+/H+-antiporter), ACA4, and ACA11 (Ca2+-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO2 assimilation, and leaf growth rate; increased transcript abundance of other Ca2+ transporter genes; altered expression of cell wall–modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca2+], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca2+] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity. PMID:21258004

  5. Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis

    PubMed Central

    Tian, Caihuan; Wang, Jin; Xu, Tengfei; Xu, Yan; Ohno, Carolyn; Sablowski, Robert; Heisler, Marcus G.; Theres, Klaus; Wang, Ying

    2016-01-01

    Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation. PMID:27398935

  6. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate

    PubMed Central

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C.; Chang, Caren; Tucker, Mark L.

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  7. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate.

    PubMed

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C; Chang, Caren; Tucker, Mark L

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  8. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  9. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  10. Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana

    PubMed Central

    Méndez-Vigo, Belén; de Andrés, M. Teresa; Ramiro, Mercedes; Martínez-Zapater, José M.; Alonso-Blanco, Carlos

    2010-01-01

    Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 Ler×Fei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth. PMID:20190039

  11. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  12. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    PubMed Central

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  13. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.

    PubMed

    Li, Xiang; Mo, Xiaorong; Shou, Huixia; Wu, Ping

    2006-08-01

    In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.

  14. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  15. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  16. A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Plant biomass consists primarily of carbohydrates derived from photosynthesis. Monitoring the assimilation of carbon via the Calvin-Benson cycle and its subsequent utilisation is fundamental to understanding plant growth. The use of stable and radioactive carbon isotopes, supplied to plants as CO2, allows the measurement of fluxes through the intermediates of primary photosynthetic metabolism, long-distance transport of sugars in the vasculature, and the synthesis of structural and storage components. Results Here we describe the design of a system for supplying isotopically labelled CO2 to single leaves of Arabidopsis thaliana. We demonstrate that the system works well using short pulses of 14CO2 and that it can be used to produce robust qualitative and quantitative data about carbon export from source leaves to the sink tissues, such as the developing leaves and the roots. Time course experiments show the dynamics of carbon partitioning between storage as starch, local production of biomass, and export of carbon to sink tissues. Conclusion This isotope labelling method is relatively simple to establish and inexpensive to perform. Our use of 14CO2 helps establish the temporal and spatial allocation of assimilated carbon during plant growth, delivering data complementary to those obtained in recent studies using 13CO2 and MS-based metabolomics techniques. However, we emphasise that this labelling device could also be used effectively in combination with 13CO2 and MS-based techniques. PMID:24252607

  17. Novel ABP1-TMK auxin sensing system controls ROP GTPase-mediated interdigitated cell expansion in Arabidopsis.

    PubMed

    Chen, Jisheng; Yang, Zhenbiao

    2014-06-30

    ROP GTPases (Rho-like GTPase from plants), plant counterparts of animal and fungal Rho-family GTPases, have recently been shown to be key components of a novel signaling pathway activated by the plant hormone auxin. Auxin (indole acetic acid) is a key regulator of virtually every aspect of plant growth and development, yet the molecular mechanisms of auxin responses remain largely unknown. AUXIN BINDING PROTEIN1 (ABP1) is an ancient protein that binds auxin and has been implied as a receptor for a number of auxin responses, but its precise mechanism remains unresolved. A paradox for ABP1's action is that it is predominantly found in the endoplasmic reticulum (ER) lumen, while it has been implicated as a cell surface auxin receptor, functionally distinct from the nuclear TIR1/AFB auxin receptor family that regulates transcriptional responses. Since our group reported that ABP1 is required for activating two antagonizing ROP signaling pathways involved in cytoskeletal reorganization and cell shape formation in Arabidopsis leaf pavement cells, we recently further showed that the plasma membrane-localized TMK receptor-like kinases functionally interact in a complex with ABP1 and are required for ABP1-dependent activation of ROP GTPases by auxin. The formation of this cell surface complex is induced by auxin and requires functional ABP1. These exciting findings provide convincing evidence for this novel auxin sensing system on the cell surface and suggest intriguing mechanisms for TMKs being functional partners of ABP1 to transmit extracellular auxin signal to intracellular ROP signaling module during polar cell expansion.

  18. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem.

    PubMed

    Bhargava, Apurva; Mansfield, Shawn D; Hall, Hardy C; Douglas, Carl J; Ellis, Brian E

    2010-11-01

    Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways.

  19. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  20. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress.

    PubMed

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1-8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H 2O 2 or 600 mM NaCl.

  1. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress

    PubMed Central

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1–8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H2O2 or 600 mM NaCl. PMID:24217216

  2. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    PubMed

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  3. Fluorescence-Activated Cell Sorting for Analysis of Cell Type-Specific Responses to Salinity Stress in Arabidopsis and Rice

    PubMed Central

    Evrard, Aurelie; Bargmann, Bastiaan O.R.; Birnbaum, Kenneth D.; Tester, Mark; Baumann, Ute; Johnson, Alexander A.T.

    2014-01-01

    Fluorescence-activated cell sorting (FACS) provides a rapid means of isolating large numbers of fluorescently tagged cells from a heterogeneous mixture of cells. Collections of transgenic plants with cell type-specific expression of fluorescent marker genes such as green fluorescent protein (GFP) are ideally suited for FACS-assisted studies of individual cell types. Here we describe the use of Arabidopsis and rice enhancer trap lines with tissue-specific GFP expression patterns in the root to isolate specific cell types of root tissues using FACS. Additionally, protocols are provided to impose a ramped salinity stress for 48 h prior to cell sorting. PMID:22895766

  4. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation.

    PubMed

    Boucher, Uriel; Balabane, May; Lamy, Isabelle; Cambier, Philippe

    2005-05-01

    More knowledge is needed concerning the disturbance of soil organic matter cycling due to heavy metal pollution. The present study deals with the impact of heavy metal pollution on litter breakdown. Our aim was to assess whether heavy metals initially present in the leaves of the metallophyte Arabidopsis halleri: (i) slow down the rate of C mineralization, in relation to metal toxicity towards microflora, and/or (ii) increase the amount of organic C resistant to biodegradation, in relation to an intrinsic resistance of metallophyte residues to biodegradation. We incubated uncontaminated soil samples with either metal-free or metal-rich plant material. Metal-free material was grown in a greenhouse, and metal-rich material was collected in situ. During the 2-month period of incubation, we measured evolved CO(2)-C and residual plant C in the coarse organic fraction. Our results of CO(2)-C evolution showed a similar mineralization from the microcosms amended with highly metal-rich leaves of A. halleri and the microcosms amended with the metal-free but otherwise similar plant material. Measuring residual plant C in its input size-fraction gave a more precise insight. Our results suggest that only the large pool of easily decomposable C mineralized similarly from metal-free and from metal-rich plant residues. The pool of less decomposable C seemed on the contrary to be preferentially preserved in the case of metal-rich material. These results support the hypothesis of an annual extra-accumulation in situ of such a slowly decomposable fraction of plant residues which could account to some extent for the observed accumulation of metallophyte litter on the surface of highly metal-polluted soils.

  5. Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis.

    PubMed

    Vu, Hieu Sy; Shiva, Sunitha; Roth, Mary R; Tamura, Pamela; Zheng, Lianqing; Li, Maoyin; Sarowar, Sujon; Honey, Samuel; McEllhiney, Dedan; Hinkes, Paul; Seib, Lawrence; Williams, Todd D; Gadbury, Gary; Wang, Xuemin; Shah, Jyoti; Welti, Ruth

    2014-11-01

    A direct-infusion electrospray ionization triple-quadrupole mass spectrometry method with multiple reaction monitoring (MRM) was employed to measure 264 lipid analytes extracted from leaves of Arabidopsis thaliana subjected to mechanical wounding. The method provided precise measurements with an average coefficient of variation of 6.1%. Lipid classes analyzed comprised galactolipids and phospholipids (including monoacyl molecular species, molecular species with oxidized acyl chains, phosphatidic acids (PAs)), tri- and tetra-galactosyldiacylglycerols (TrGDGs and TeGDGs), head-group-acylated galactolipids, and head-group-acylated phosphatidylglycerol (acPG), sulfoquinovosyldiacylglycerols (SQDGs), sphingolipids, di- and tri-acylglycerols (DAGs and TAGs), and sterol derivatives. Of the 264 lipid analytes, 254 changed significantly in response to wounding. In general, levels of structural lipids decreased, whereas monoacyl molecular species, galactolipids and phosphatidylglycerols (PGs) with oxidized fatty acyl chains, PAs, TrGDGs, TeGDGs, TAGs, head-group-acylated galactolipids, acPG, and some sterol derivatives increased, many transiently. The observed changes are consistent with activation of lipid oxidizing, hydrolyzing, glycosylating, and acylating activities in the wounding response. Correlation analysis of the levels of lipid analytes across individual control and treated plants was used to construct a lipid dendrogram and to define clusters and sub-clusters of lipid analytes, each composed of a group of lipids which occurred in a coordinated manner. Current knowledge of metabolism supports the notion that observed sub-clusters comprise lipids generated by a common enzyme and/or metabolically downstream of a common enzyme. This work demonstrates that co-occurrence analysis, based on correlation of lipid levels among plants, is a powerful approach to defining lipids generated in vivo by a common enzymatic pathway.

  6. Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis.

    PubMed

    Stenvik, Grethe-Elisabeth; Butenko, Melinka A; Urbanowicz, Breeanna Rae; Rose, Jocelyn K C; Aalen, Reidunn B

    2006-06-01

    Plants may shed organs when they have been injured or served their purpose. The differential pattern of organ abscission in different species is most likely the result of evolutionary adaptation to a variety of life styles and environments. The final step of abscission-related cell separation in floral organs of wild-type Arabidopsis thaliana, which only abscises sepals, petals, and stamens, is controlled by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA). Here, we demonstrate that Arabidopsis 35S:IDA lines constitutively overexpressing IDA exhibit earlier abscission of floral organs, showing that the abscission zones are responsive to IDA soon after the opening of the flowers. In addition, ectopic abscission was observed at the bases of the pedicel, branches of the inflorescence, and cauline leaves. The silique valves also dehisced prematurely. Scanning electron microscopy indicated a spread of middle lamella degradation from preformed abscission zone cells to neighboring cells. A transcript encoding an arabinogalactan protein (AGP) was upregulated in the 35S:IDA lines, and large amounts of AGP were secreted at the sites of abscission. AGP was shown to be a constituent of wild-type floral abscission zones during and soon after cell separation had been completed. We suggest that the restricted expression pattern of IDA precludes abscission of nonfloral organs in Arabidopsis.

  7. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death.

    PubMed

    Feng, Haizhong; Chen, Qingguo; Feng, Jian; Zhang, Jian; Yang, Xiaohui; Zuo, Jianru

    2007-07-01

    The eukaryotic translation initiation factor 5A (eIF-5A) is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies in mammalian and yeast (Saccharomyces cerevisiae) cells suggest that eIF-5A is mainly involved in RNA metabolism and trafficking, thereby regulating cell proliferation, cell growth, and programmed cell death. In higher plants, the physiological function of eIF-5A remains largely unknown. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) mutant fumonisin B(1)-resistant12 (fbr12). The fbr12 mutant shows an antiapoptotic phenotype and has reduced dark-induced leaf senescence. Moreover, fbr12 displays severe defects in plant growth and development. The fbr12 mutant plant is extreme dwarf with substantially reduced size and number of all adult organs. During reproductive development, fbr12 causes abnormal development of floral organs and defective sporogenesis, leading to the abortion of both female and male germline cells. Microscopic studies revealed that these developmental defects are associated with abnormal cell division and cell growth. Genetic and molecular analyses indicated that FBR12 encodes a putative eIF-5A-2 protein. When expressed in a yeast mutant strain carrying a mutation in the eIF-5A gene, FBR12 cDNA is able to rescue the lethal phenotype of the yeast mutant, indicating that FBR12 is a functional eIF-5A. We propose that FBR12/eIF-5A-2 is fundamental for plant growth and development by regulating cell division, cell growth, and cell death.

  8. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis.

    PubMed

    Rui, Yue; Anderson, Charles T

    2016-03-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3(je5) mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface.

  9. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  10. The REIL1 and REIL2 Proteins of Arabidopsis thaliana Are Required for Leaf Growth in the Cold1[W][OPEN

    PubMed Central

    Schmidt, Stefanie; Dethloff, Frederik; Beine-Golovchuk, Olga; Kopka, Joachim

    2013-01-01

    The evolutionarily conserved proteins REI1-LIKE (REIL1) and REIL2 have four conserved zinc finger domains and are Arabidopsis thaliana homologs of the cytosolic 60S ribosomal maturation factor Rei1p (for Required for isotropic bud growth1 protein) from yeast (Saccharomyces cerevisiae) and its paralog Reh1p (for REI1 homologue1 protein). The yeast and A. thaliana paralogs result from independent gene duplications. The A. thaliana REIL paralogs are required specifically in the cold (10°C) but not for growth at optimal temperature (20°C). A reil1-1 reil2-1 double mutant is arrested at 10°C prior to the emergence of the first rosette leaf. Two allelic reil2 mutants, reil2-1 and reil2-2, form small spoon-shaped leaves at 10°C. This phenomenon reverts after emergence of the inflorescence in the cold or upon shift to 20°C. Except for a slightly delayed germination, a reil1-1 mutant shows no further growth phenotype under the currently investigated conditions. A comparative analysis demonstrates conserved coexpression of orthologous genes from yeast and A. thaliana that are coregulated with yeast rei1 or with A. thaliana REIL2, respectively. The conserved correlations point to a role of A. thaliana REIL proteins in the maturation of the eukaryotic ribosomal 60S subunit. We support this conclusion by heterologous complementation of the cold-induced growth defect of the yeast Δrei1 deletion. PMID:24038679

  11. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots[OPEN

    PubMed Central

    Sanchez-Perez, Gabino F.; Rutjens, Bas; Gorte, Maartje; Prasad, Kalika; Bao, Dongping; Timmermans-Hereijgers, Johanna L.P.M.; Maeo, Kenichiro; Nakamura, Kenzo; Shimotohno, Akie; Pencik, Ales; van Heesch, Sebastiaan; de Bruijn, Ewart; Cuppen, Edwin; Willemsen, Viola

    2016-01-01

    Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development. PMID:27920338

  12. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    PubMed Central

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth. PMID:17572910

  13. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    SciTech Connect

    Wang, Wei; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl J.; Wang, Shucai

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter, PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.

  14. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE PAGES

    Wang, Wei; Li, Eryang; Porth, Ilga; ...

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  15. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    PubMed Central

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovered TFs that are involved in the control of cell cycle progression. With the aid of multi-parallel quantitative RT-PCR, the expression changes of 1880 TFs represented in the Arabidopsis TF platform was monitored in Arabidopsis synchronous MM2d cells during a 19 h period representing different time points corresponding to the 4 cell cycle phases after treatment of MM2d cells with Aphidicolin. Comparative TF expression analyses performed on synchronous cells resulted in the identification of 239 TFs differentially expressed during the cell cycle, while about one third of TFs were constitutively expressed through all time points. Phase-specific TFs were also identified. PMID:25482767

  16. Cell Wall Heterogeneity in Root Development of Arabidopsis

    PubMed Central

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  17. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).

    PubMed

    Shane, Michael W; Stigter, Kyla; Fedosejevs, Eric T; Plaxton, William C

    2014-11-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested.

  18. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  19. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development

    PubMed Central

    Van Leene, Jelle; Blomme, Jonas; Kulkarni, Shubhada R; Cannoot, Bernard; De Winne, Nancy; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Vanden Bossche, Robin; Heyndrickx, Ken S; Vanneste, Steffen; Goossens, Alain; Gevaert, Kris; Vandepoele, Klaas; Gonzalez, Nathalie; Inzé, Dirk; De Jaeger, Geert

    2016-01-01

    Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development. PMID:27660483

  20. Profilin-Dependent Nucleation and Assembly of Actin Filaments Controls Cell Elongation in Arabidopsis1[OPEN

    PubMed Central

    Cao, Lingyan; Blanchoin, Laurent; Staiger, Christopher J.

    2016-01-01

    Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion. PMID:26574597

  1. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth.

    PubMed

    Hu, Yuxin; Poh, Huay Mei; Chua, Nam-Hai

    2006-07-01

    Cell expansion, and its coordination with cell division, plays a critical role in the growth and development of plant organs. However, the genes controlling cell expansion during organogenesis are largely unknown. Here, we demonstrate that a novel Arabidopsis gene, ARGOS-LIKE (ARL), which has some sequence homology to the ARGOS gene, is involved in this process. Reduced expression or overexpression of ARL in Arabidopsis results in smaller or larger cotyledons and leaves as well as other lateral organs, respectively. Anatomical examination of cotyledons and leaves in ARL transgenic plants demonstrates that the alteration in size can be attributed to changes in cell size rather than cell number, indicating that ARL plays a role in cell expansion-dependent organ growth. ARL is upregulated by brassinosteroid (BR) and this induction is impaired in the BR-insensitive mutant bri1, but not in the BR-deficient mutant det2. Ectopic expression of ARL in bri1-119 partially restores cell growth in cotyledons and leaves. Our results suggest that ARL acts downstream of BRI1 and partially mediates BR-related cell expansion signals during organ growth.

  2. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.

    PubMed

    Gendre, Delphine; Oh, Jaesung; Boutté, Yohann; Best, Jacob G; Samuels, Lacey; Nilsson, Robert; Uemura, Tomohiro; Marchant, Alan; Bennett, Malcolm J; Grebe, Markus; Bhalerao, Rishikesh P

    2011-05-10

    Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.

  3. Regulation of Cell Fate Determination by Single-Repeat R3 MYB Transcription Factors in Arabidopsis

    SciTech Connect

    Wang, Shucai; Chen, Jay

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYB are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis.

  4. Using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro.

    PubMed

    Córdoba-Cañero, Dolores; Roldán-Arjona, Teresa; Ariza, Rafael R

    2012-01-01

    Base excision repair (BER) is a major pathway for the removal of endogenous and exogenous DNA damage. This repair mechanism is initiated by DNA glycosylases that excise the altered base, and continues through alternative routes that culminate in DNA resynthesis and ligation. In contrast to the information available for microbes and animals, our knowledge about this important DNA repair pathway in plants is very limited, partially due to a lack of biochemical approaches. Here we describe an in vitro assay to monitor BER in cell-free extracts from the model plant Arabidopsis thaliana. The assay uses labeled DNA substrates containing a single damaged base within a restriction site, and allows detection of fully repaired molecules as well as DNA repair intermediates. The method is easily applied to measure the repair activity of purified proteins and can be successfully used in combination with the extensive array of biological resources available for Arabidopsis.

  5. Cell wall biogenesis of Arabidopsis thaliana elongating cells: transcriptomics complements proteomics

    PubMed Central

    Jamet, Elisabeth; Roujol, David; San-Clemente, Hélène; Irshad, Muhammad; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Pont-Lezica, Rafael

    2009-01-01

    Background Plant growth is a complex process involving cell division and elongation. Arabidopsis thaliana hypocotyls undergo a 100-fold length increase mainly by cell elongation. Cell enlargement implicates significant changes in the composition and structure of the cell wall. In order to understand cell wall biogenesis during cell elongation, mRNA profiling was made on half- (active elongation) and fully-grown (after growth arrest) etiolated hypocotyls. Results Transcriptomic analysis was focused on two sets of genes. The first set of 856 genes named cell wall genes (CWGs) included genes known to be involved in cell wall biogenesis. A significant proportion of them has detectable levels of transcripts (55.5%), suggesting that these processes are important throughout hypocotyl elongation and after growth arrest. Genes encoding proteins involved in substrate generation or in synthesis of polysaccharides, and extracellular proteins were found to have high transcript levels. A second set of 2927 genes labeled secretory pathway genes (SPGs) was studied to search for new genes encoding secreted proteins possibly involved in wall expansion. Based on transcript level, 433 genes were selected. Genes not known to be involved in cell elongation were found to have high levels of transcripts. Encoded proteins were proteases, protease inhibitors, proteins with interacting domains, and proteins involved in lipid metabolism. In addition, 125 of them encoded proteins with yet unknown function. Finally, comparison with results of a cell wall proteomic study on the same material revealed that 48 out of the 137 identified proteins were products of the genes having high or moderate level of transcripts. About 15% of the genes encoding proteins identified by proteomics showed levels of transcripts below background. Conclusion Members of known multigenic families involved in cell wall biogenesis, and new genes that might participate in cell elongation were identified. Significant

  6. TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize.

    PubMed

    Dresselhaus, Thomas; Amien, Suseno; Márton, Mihaela; Strecke, Anemone; Brettschneider, Reinhold; Cordts, Simone

    2005-03-01

    We report the identification and functional analysis of TRANSPARENT LEAF AREA1 (TLA1), a maize (Zea mays) gene representing a novel class of secreted, extremely hydrophobic peptides (proteolipids) with a C-terminal Caax box-like motif. ZmTLA1 encodes 27 amino acid residues and is most strongly expressed in the egg cell and microspores. Lower transcript amounts were detected during vegetative development. Transgenic maize expressing an antisense transcript displayed a variety of phenotypes. The most visible phenotypes were dwarfism and transparent leaf areas resulting from defective morphogenesis of mesophyll, bundle sheath, stomatal, and epidermal cells during leaf development. Incomplete cell walls were observed, indicating a defect of cytokinesis. The accumulation of gerontoplasts was probably a secondary effect caused by defects of leaf cell morphogenesis. A defect of anther maturation was observed in approximately 30% of the plants displaying the tla phenotype. Male sterility was mainly caused by incomplete disintegration of the tapetal cell layers and tetrad callose as 90% of the microspores developed into functional pollen. Overexpression of ZmTLA1 seemed to have a lethal effect both in maize and Arabidopsis thaliana. Development of primary roots, root hairs, primary leaves, and chloroplasts was suppressed in Arabidopsis seedlings expressing an inducible ZmTLA1-green fluorescent protein (GFP) fusion protein. GFP signals were exclusively detected in cell walls. Based on our observations, we suggest that the ZmTLA1 peptide represents a class of novel plant morphogens required for the development and maturation of leaf and reproductive tissues.

  7. Effect of Azadirachta indica leaf methanol extracts on stem cell reproduction.

    PubMed

    González-Garza, M Teresa; Codinach, Margarita; Alcaraz, Citlali; Moreno-Cuevas, Jorge; Carranza-Rosales, Pilar; Cruz-Vega, Delia E

    2007-04-01

    Methanol extracts of Azadirachta indica leaves at concentration from 0.1 to 40 microg/ml showed in vitro an stimulatory activity in stem cell reproduction. These results suggest that the effect of methanol leaf extracts on stem cell reproduction could be of benefit to improve health.

  8. A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis.

    PubMed

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink-source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation.

  9. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.

    PubMed

    Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D

    2009-01-01

    Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.

  10. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  11. Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis.

    PubMed

    Li, Bing; Li, Deng-Di; Zhang, Jie; Xia, Hui; Wang, Xiu-Lan; Li, Ying; Li, Xue-Bao

    2013-10-01

    The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated from cotton (Gossypium hirsutum) and designated AnnGh3, AnnGh4, AnnGh5, and AnnGh6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that AnnGh3, AnnGh4, and AnnGh5 were preferentially expressed in fibers, while the transcripts of AnnGh6 were predominantly accumulated in roots. During fiber development, the transcripts of AnnGh3/4/5 genes were mainly accumulated in rapidly elongating fibers. With fiber cells further developed, their expression activity was dramatically declined to a relatively low level. In situ hybridization results indicated that AnnGh3 and AnnGh5 were expressed in initiating fiber cells (0-2 DPA). Additionally, their expression in fibers was also regulated by phytohormones and [Ca(2+)]. Subcellular localization analysis discovered that AnnGh3 protein was localized in the cytoplasm. Overexpression of AnnGh3 in Arabidopsis resulted in a significant increase in trichome density and length on leaves of the transgenic plants, suggesting that AnnGh3 may be involved in fiber cell initiation and elongation of cotton.

  12. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds.

    PubMed

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc; Magnani, Enrico

    2017-04-15

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products - embryo and endosperm - and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization.

  13. Epidermal identity is maintained by cell-cell communication via a universally active feedback loop in Arabidopsis thaliana.

    PubMed

    San-Bento, Rita; Farcot, Etienne; Galletti, Roberta; Creff, Audrey; Ingram, Gwyneth

    2014-01-01

    The transcription factors ARABIDOPSIS THALIANA MERISTEM L1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) are indispensable for epidermal cell-fate specification in Arabidopsis embryos. However, the mechanisms of regulation of these genes, particularly their relationship with cell-cell signalling pathways, although the subject of considerable speculation, remain unclear. Here we demonstrate that the receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) positively affects the expression of ATML1 and PDF2 in seedlings. In contrast, ATML1- and PDF2-containing complexes directly and negatively affect both their own expression and that of ACR4. By modelling the resulting feedback loop, we demonstrate a network structure that is capable of maintaining robust epidermal cell identity post-germination. We show that a second seed-specific signalling pathway involving the subtilase ABNORMAL LEAFSHAPE1 (ALE1) and the receptor kinases GASSHO1 (GSO1) and GASSHO2 (GSO2) acts in parallel to the epidermal loop to control embryonic surface formation via an ATML1/PDF2-independent pathway. Genetic interactions between components of this linear pathway and the epidermal loop suggest that an intact embryo surface is necessary for initiation and/or stabilization of the epidermal loop, specifically during early embryogenesis.

  14. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves.

    PubMed

    Benina, Maria; Ribeiro, Dimas Mendes; Gechev, Tsanko S; Mueller-Roeber, Bernd; Schippers, Jos H M

    2015-02-01

    Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5'-untranslated region (5'-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress.

  15. Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings.

    PubMed

    Narukawa, Hideki; Yokoyama, Ryusuke; Komaki, Shinichiro; Sugimoto, Keiko; Nishitani, Kazuhiko

    2015-01-01

    Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function.

  16. Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation

    PubMed Central

    Nibau, Candida; Di Stilio, Verónica S.; Wu, Hen-ming; Cheung, Alice Y.

    2011-01-01

    Arabidopsis thaliana SUPERMAN (SUP) plays an important role during flower development by maintaining the boundary between stamens and carpels in the inner two whorls. It was proposed that SUP maintains this boundary by regulating cell proliferation in both whorls, as loss-of-function superman mutants produce more stamens at the expense of carpels. However, the cellular mechanism that underlies SUP function remains unknown. Here Arabidopsis or tobacco (Nicotiana tabacum) SUP was overexpressed in tobacco plants to substantiate SUP's role as a regulator of cell proliferation and boundary definition and provide evidence that its biological role may be mediated via hormonal changes. It was found that moderate levels of SUP stimulated cell growth and proliferation, whereas high levels were inhibitory. SUP stimulated auxin- and cytokinin-regulated processes, and cells overexpressing SUP displayed reduced hormone dependency for proliferation and regeneration into plants. SUP also induced proliferation of female traits in the second and third flower whorls and promoted differentiation of petaloid properties in sepals, further supporting a role for SUP as a boundary regulator. Moreover, cytokinin suppressed stamen development and promoted differentiation of carpeloid tissues, suggesting that SUP may regulate male and female development via its effect on cytokinin signalling. Taken together, these observations suggest a model whereby the effect of SUP on cell growth and proliferation involves the modulation of auxin- and cytokinin-regulated processes. Furthermore, differential SUP expression or different sensitivities of different cell types to SUP may determine whether SUP stimulates or suppresses their proliferation. PMID:20980362

  17. RIMA-dependent nuclear accumulation of IYO triggers auxin-irreversible cell differentiation in Arabidopsis.

    PubMed

    Muñoz, Alfonso; Mangano, Silvina; González-García, Mary Paz; Contreras, Ramón; Sauer, Michael B; De Rybel, Bert; Weijers, Dolf; Sánchez-Serrano, José J; Sanmartín, Maite; Rojo, Enrique

    2017-02-21

    The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana. Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we have identified RPAP2 IYO Mate (RIMA), a homologue of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knock down at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its pro-differentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analysing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.

  18. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap.

    PubMed

    Hong, Jing Han; Chu, Huangwei; Zhang, Chen; Ghosh, Dipanjana; Gong, Ximing; Xu, Jian

    2015-01-01

    The Lugol's staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late 1990s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells. Here we report that, by labeling dividing stem cells with 5-ethynyl-2'-deoxyuridine (EdU), the number and distribution of their labeled progeny can be studied so that the division rate of stem cells can be measured quantitatively and in addition, that the progression of stem cell progeny differentiation can be assessed in combination with Lugol's staining. EdU staining takes few hours and visualization of the stain characteristics of columella root cap can be performed easily under confocal microscopes. This simple technology, when used together with Lugol's staining, provides a novel quantitative method to study the dynamics of stem cell behavior that govern homeostasis in the Arabidopsis columella root cap.

  19. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells

    NASA Technical Reports Server (NTRS)

    Allen, G. J.; Kwak, J. M.; Chu, S. P.; Llopis, J.; Tsien, R. Y.; Harper, J. F.; Schroeder, J. I.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Cytoplasmic free calcium ([Ca2+]cyt) acts as a stimulus-induced second messenger in plant cells and multiple signal transduction pathways regulate [Ca2+]cyt in stomatal guard cells. Measuring [Ca2+]cyt in guard cells has previously required loading of calcium-sensitive dyes using invasive and technically difficult micro-injection techniques. To circumvent these problems, we have constitutively expressed the pH-independent, green fluorescent protein-based calcium indicator yellow cameleon 2.1 in Arabidopsis thaliana (Miyawaki et al. 1999; Proc. Natl. Acad. Sci. USA 96, 2135-2140). This yellow cameleon calcium indicator was expressed in guard cells and accumulated predominantly in the cytoplasm. Fluorescence ratio imaging of yellow cameleon 2.1 allowed time-dependent measurements of [Ca2+]cyt in Arabidopsis guard cells. Application of extracellular calcium or the hormone abscisic acid (ABA) induced repetitive [Ca2+]cyt transients in guard cells. [Ca2+]cyt changes could be semi-quantitatively determined following correction of the calibration procedure for chloroplast autofluorescence. Extracellular calcium induced repetitive [Ca2+]cyt transients with peak values of up to approximately 1.5 microM, whereas ABA-induced [Ca2+]cyt transients had peak values up to approximately 0.6 microM. These values are similar to stimulus-induced [Ca2+]cyt changes previously reported in plant cells using ratiometric dyes or aequorin. In some guard cells perfused with low extracellular KCl concentrations, spontaneous calcium transients were observed. As yellow cameleon 2.1 was expressed in all guard cells, [Ca2+]cyt was measured independently in the two guard cells of single stomates for the first time. ABA-induced, calcium-induced or spontaneous [Ca2+]cyt increases were not necessarily synchronized in the two guard cells. Overall, these data demonstrate that that GFP-based cameleon calcium indicators are suitable to measure [Ca2+]cyt changes in guard cells and enable the pattern of [Ca

  20. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  1. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis.

    PubMed

    Goubet, Florence; Barton, Christopher J; Mortimer, Jennifer C; Yu, Xiaolan; Zhang, Zhinong; Miles, Godfrey P; Richens, Jenny; Liepman, Aaron H; Seffen, Keith; Dupree, Paul

    2009-11-01

    Mannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development. To determine whether the CSLA proteins are responsible for glucomannan synthesis in vivo, we characterised insertion mutants in each of the nine Arabidopsis CSLA genes and several double and triple mutant combinations. csla9 mutants showed substantially reduced glucomannan, and triple csla2csla3csla9 mutants lacked detectable glucomannan in stems. Nevertheless, these mutants showed no alteration in stem development or strength. Overexpression of CSLA2, CSLA7 and CSLA9 increased the glucomannan content in stems. Increased glucomannan synthesis also caused defective embryogenesis, leading to delayed development and occasional embryo death. The embryo lethality of csla7 was complemented by overexpression of CSLA9, suggesting that the glucomannan products are similar. We conclude that CSLA2, CSLA3 and CSLA9 are responsible for the synthesis of all detectable glucomannan in Arabidopsis stems, and that CSLA7 synthesises glucomannan in embryos. These results are inconsistent with a substantial role for glucomannan in wall strength in Arabidopsis stems, but indicate that glucomannan levels affect embryogenesis. Together with earlier heterologous expression studies, the glucomannan deficiency observed in csla mutant plants demonstrates that the CSLA family encodes glucomannan synthases.

  2. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root.

    PubMed

    De Smet, Ive; Vassileva, Valya; De Rybel, Bert; Levesque, Mitchell P; Grunewald, Wim; Van Damme, Daniël; Van Noorden, Giel; Naudts, Mirande; Van Isterdael, Gert; De Clercq, Rebecca; Wang, Jean Y; Meuli, Nicholas; Vanneste, Steffen; Friml, Jirí; Hilson, Pierre; Jürgens, Gerd; Ingram, Gwyneth C; Inzé, Dirk; Benfey, Philip N; Beeckman, Tom

    2008-10-24

    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.

  3. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis.

    PubMed

    Hackenberg, Thomas; Juul, Trine; Auzina, Aija; Gwizdz, Sonia; Malolepszy, Anna; Van Der Kelen, Katrien; Dam, Svend; Bressendorff, Simon; Lorentzen, Andrea; Roepstorff, Peter; Lehmann Nielsen, Kåre; Jørgensen, Jan-Elo; Hofius, Daniel; Van Breusegem, Frank; Petersen, Morten; Andersen, Stig Uggerhøj

    2013-11-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.

  4. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana.

    PubMed

    Ihsan, Muhammad Z; Ahmad, Samina J N; Shah, Zahid Hussain; Rehman, Hafiz M; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M; Ahmad, Jam N

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana.

  5. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana

    PubMed Central

    Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422

  6. A Role of the FUZZY ONIONS LIKE Gene in Regulating Cell Death and Defense in Arabidopsis

    PubMed Central

    Tremblay, Arianne; Seabolt, Savanna; Zeng, Hongyun; Zhang, Chong; Böckler, Stefan; Tate, Dominique N.; Duong, Vy Thuy; Yao, Nan; Lu, Hua

    2016-01-01

    Programmed cell death (PCD) is critical for development and responses to environmental stimuli in many organisms. FUZZY ONIONS (FZO) proteins in yeast, flies, and mammals are known to affect mitochondrial fusion and function. Arabidopsis FZO-LIKE (FZL) was shown as a chloroplast protein that regulates chloroplast morphology and cell death. We cloned the FZL gene based on the lesion mimic phenotype conferred by an fzl mutation. Here we provide evidence to support that FZL has evolved new function different from its homologs from other organisms. We found that fzl mutants showed enhanced disease resistance to the bacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. Besides altered chloroplast morphology and cell death, fzl showed the activation of reactive oxygen species (ROS) and autophagy pathways. FZL and the defense signaling molecule salicylic acid form a negative feedback loop in defense and cell death control. FZL did not complement the yeast strain lacking the FZO1 gene. Together these data suggest that the Arabidopsis FZL gene is a negative regulator of cell death and disease resistance, possibly through regulating ROS and autophagy pathways in the chloroplast. PMID:27898102

  7. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell PolarityW⃞

    PubMed Central

    Xu, Jian; Scheres, Ben

    2005-01-01

    Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental functions of the ARF1 subclass of the Arabidopsis thaliana multigene ARF family. Six virtually identical ARF1 genes are ubiquitously expressed, and single loss-of-function mutants in these genes reveal no obvious developmental phenotypes. Fluorescence colocalization studies reveal that ARF1 is localized to the Golgi apparatus and endocytic organelles in both onion (Allium cepa) and Arabidopsis cells. Apical-basal polarity of epidermal cells, reflected by the position of root hair outgrowth, is affected when ARF1 mutants are expressed at early stages of cell differentiation but after they exit mitosis. Genetic interactions during root hair tip growth and localization suggest that the ROP2 protein is a target of ARF1 action, but its localization is slowly affected upon ARF1 manipulation when compared with that of Golgi and endocytic markers. Localization of a second potential target of ARF1 action, PIN2, is also affected with slow kinetics. Although extreme redundancy precludes conventional genetic dissection of ARF1 functions, our approach separates different ARF1 downstream networks involved in local and specific aspects of cell polarity. PMID:15659621

  8. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors.

    PubMed

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-12-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.

  9. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.

    2003-01-01

    Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.

  10. Spatial and Temporal Effects of Free-Air CO2 Enrichment (POPFACE) on Leaf Growth, Cell Expansion, and Cell Production in a Closed Canopy of Poplar1

    PubMed Central

    Taylor, Gail; Tricker, Penny J.; Zhang, Fang Z.; Alston, Victoria J.; Miglietta, Franco; Kuzminsky, Elena

    2003-01-01

    Leaf expansion in the fast-growing tree, Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2]. PMID:12529526

  11. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  12. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells.

    PubMed

    Sreelatha, S; Jeyachitra, A; Padma, P R

    2011-06-01

    Medicinal plants provide an inexhaustible source of anticancer drugs in terms of both variety and mechanism of action. Induction of apoptosis is the key success of plant products as anticancer agents. The present study was designed to determine the antiproliferative and apoptotic events of Moringa oleifera leaf extract (MLE) using human tumor (KB) cell line as a model system. KB cells were cultured in the presence of leaf extracts at various concentrations for 48 h and the percentage of cell viability was evaluated by MTT assay. MLE showed a dose-dependent inhibition of cell proliferation of KB cells. The antiproliferative effect of MLE was also associated with induction of apoptosis as well as morphological changes and DNA fragmentation. The morphology of apoptotic nuclei was quantified using DAPI and propidium iodide staining. The degree of DNA fragmentation was analyzed using agarose gel electrophoresis. In addition, MLE at various concentrations was found to induce ROS production suggesting modulation of redox-sensitive mechanism. Eventually, HPTLC analysis indicated the presence of phenolics such as quercetin and kaempferol. Thus, these findings suggest that the leaf extracts from M. oleifera had strong antiproliferation and potent induction of apoptosis. Thus, it indicates that M. oleifera leaf extracts has potential for cancer chemoprevention and can be claimed as a therapeutic target for cancer.

  13. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  14. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts

    PubMed Central

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T.; Lorenzo, Óscar; Revuelta, José L.; McCabe, Paul F.; Arellano, Juan B.

    2014-01-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined. PMID:24723397

  15. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.

    PubMed

    Daum, Gabor; Medzihradszky, Anna; Suzaki, Takuya; Lohmann, Jan U

    2014-10-07

    Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.

  16. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells.

    PubMed

    de Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; de Lourdes Lúcio Ferrarese, Maria; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; de Oliveira Petkowicz, Carmen Lúcia

    2014-11-04

    Coffea arabica is the most important agricultural commodity in the world, and salinity is a major threat to its sustainable irrigation. Coffee leaf polysaccharides from plants subjected to salt stress were extracted and the leaves visualized through optical and electron microscopy. Alterations were detected in the monosaccharide composition of the pectin and hemicelluloses, with increases in uronic acid in all fractions. Changes in the polysaccharides were confirmed by HPSEC and FTIR. Moreover, the monolignol content was increased in the final residue, which suggests increased lignin content. The cytoplasm was altered, and the chloroplasts appeared irregular in shape. The arrangement of the stroma lamellae was disordered, and no starch granules were present. It was concluded that leaves of C. arabica under salt stress showed alterations in cell wall polysaccharides, increased monolignol content and structural damage to the cells of the mesophyll.

  17. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  18. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  19. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  20. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana

    PubMed Central

    Bethke, Gerit; Thao, Amanda; Xiong, Guangyan; Hatsugai, Noriyuki; Katagiri, Fumiaki; Pauly, Markus

    2016-01-01

    Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-d-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-d-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions. PMID:26813622

  1. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  2. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  3. An Efficient Antipodal Cell Isolation Method for Screening of Cell Type-Specific Genes in Arabidopsis thaliana

    PubMed Central

    Sun, Meng-xiang

    2016-01-01

    In flowering plants, the mature embryo sac consists of seven cells, namely two synergid cells and an egg cell at the micropylar end, one central cell, and three antipodal cells at the chalazal end. Excluding the antipodal cell, as a model for the study of cell fate determination and cell type specification, the roles of these embryo sac component cells in fertilization and seed formation have been widely investigated. At this time, little is known regarding the function of antipodal cells and their cell type-specific gene expression patterns. One reason for this is difficulties related to the observation and isolation of cells for detailed functional analyses. Here, we report a method for antipodal cell isolation and transcriptome analysis. We identified antipodal cell-specific marker line K44-1, and based on this marker line, established a procedure allowing us to isolate antipodal cells with both high quality and quantity. PCR validation of antipodal-specific genes from antipodal cell cDNA showed that the isolated cells are qualified and can be used for transcriptome analysis and screening of cell type-specific marker genes. The isolated cells could keep viable for a week in culture condition. This method can be used to efficiently isolate antipodal cells of high quality and will promote the functional investigation of antipodal cells in Arabidopsis thaliana. This increases our understanding of the molecular regulatory mechanism of antipodal cell specification. PMID:27875553

  4. Timing is everything: highly specific and transient expression of a MAP kinase determines auxin-induced leaf venation patterns in Arabidopsis.

    PubMed

    Stanko, Vera; Giuliani, Concetta; Retzer, Katarzyna; Djamei, Armin; Wahl, Vanessa; Wurzinger, Bernhard; Wilson, Cathal; Heberle-Bors, Erwin; Teige, Markus; Kragler, Friedrich

    2014-11-01

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.

  5. Cell death patterns in Arabidopsis cells subjected to four physiological stressors indicate multiple signalling pathways and cell cycle phase specificity.

    PubMed

    Pathirana, Ranjith; West, Phillip; Hedderley, Duncan; Eason, Jocelyn

    2017-03-01

    Corpse morphology, nuclear DNA fragmentation, expression of senescence-associated genes (SAG) and cysteine protease profiles were investigated to understand cell death patterns in a cell cycle-synchronised Arabidopsis thaliana cell suspension culture treated with four physiological stressors in the late G2 phase. Within 4 h of treatment, polyethylene glycol (PEG, 20 %), mannose (100 mM) and hydrogen peroxide (2 mM) caused DNA fragmentation coinciding with cell permeability to Evans Blue (EB) and produced corpse morphology corresponding to apoptosis-like programmed cell death (AL-PCD) with cytoplasmic retraction from the cell wall. Ethylene (8 mL per 250-mL flask) caused permeability of cells to EB without concomitant nuclear DNA fragmentation and cytoplasmic retraction, suggesting necrotic cell death. Mannose inducing glycolysis block and PEG causing dehydration resulted in relatively similar patterns of upregulation of SAG suggesting similar cell death signalling pathways for these two stress factors, whereas hydrogen peroxide caused unique patterns indicating an alternate pathway for cell death induced by oxidative stress. Ethylene did not cause appreciable changes in SAG expression, confirming necrotic cell death. Expression of AtDAD, BoMT1 and AtSAG2 genes, previously shown to be associated with plant senescence, also changed rapidly during AL-PCD in cultured cells. The profiles of nine distinct cysteine protease-active bands ranging in size from ca. 21.5 to 38.5 kDa found in the control cultures were also altered after treatment with the four stressors, with mannose and PEG again producing similar patterns. Results also suggest that cysteine proteases may have a role in necrotic cell death.

  6. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  7. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana.

    PubMed

    Skirycz, Aleksandra; Radziejwoski, Amandine; Busch, Wolfgang; Hannah, Matthew A; Czeszejko, Joanna; Kwaśniewski, Mirosław; Zanor, Maria-Inès; Lohmann, Jan U; De Veylder, Lieven; Witt, Isabell; Mueller-Roeber, Bernd

    2008-12-01

    In contrast to animal growth, plant growth is largely post-embryonic. Therefore plants have developed new mechanisms to precisely regulate cell proliferation by means of internal and external stimuli whilst the general core cell cycle machinery is conserved between eukaryotes. In this work we demonstrate a role for the Arabidopsis thaliana DNA-binding-with-one-finger (DOF) transcription factor OBP1 in the control of cell division upon developmental signalling. Inducible overexpression of OBP1 resulted in a significant overrepresentation of cell cycle genes among the upregulated transcripts. Direct targets of OBP1, as verified by chromatin immunoprecipitation, include at least the core cell cycle gene CYCD3;3 and the replication-specific transcription factor gene AtDOF2;3. Consistent with our molecular data, short-term activation of OBP1 in cell cultures affected cell cycle re-entry, shortening the duration of the G(1) phase and the overall length of the cell cycle, whilst constitutive overexpression of OBP1 in plants influenced cell size and cell number, leading to a dwarfish phenotype. Expression during embryogenesis, germination and lateral root initiation suggests an important role for OBP1 in cell cycle re-entry, operating as a transcriptional regulator of key cell cycle genes. Our findings provide significant input into our understanding of how cell cycle activity is incorporated into plant growth and development.

  8. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation.

    PubMed Central

    Azpiroz, R; Wu, Y; LoCascio, J C; Feldmann, K A

    1998-01-01

    Cell elongation is a developmental process that is regulated by light and phytohormones and is of critical importance for plant growth. Mutants defective in their response to light and various hormones are often dwarfs. The dwarfed phenotype results because of a failure in normal cell elongation. Little is known, however, about the basis of dwarfism as a common element in these diverse signaling pathways and the nature of the cellular functions responsible for cell elongation. Here, we describe an Arabidopsis mutant, dwarf4 (dwf4), whose phenotype can be rescued with exogenously supplied brassinolide. dwf4 mutants display features of light-regulatory mutants, but the dwarfed phenotype is entirely and specifically brassinosteroid dependent; no other hormone can rescue dwf4 to a wild-type phenotype. Therefore, an intact brassinosteroid system is an absolute requirement for cell elongation. PMID:9490745

  9. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis.

    PubMed

    Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik

    2017-02-08

    Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.

  10. Targeted manipulation of leaf form via local growth repression.

    PubMed

    Malinowski, Robert; Kasprzewska, Ania; Fleming, Andrew J

    2011-06-01

    A classical view is that leaf shape is the result of local promotion of growth linked to cell proliferation. However, an alternative hypothesis is that leaf form is the result of local repression of growth in an otherwise growing system. Here we show that leaf form can indeed be manipulated in a directed fashion by local repression of growth. We show that targeting expression of an inhibitor of a cyclin-dependent kinase (KRP1) to the sinus area of developing leaves of Arabidopsis leads to local growth repression and the formation of organs with extreme lobing, including generation of leaflet-like organs. Directing KRP1 expression to other regions of the leaf using an miRNA target sequence tagging approach also leads to predictable novel leaf forms, and repression of growth in the leaf margin blocks the outgrowth of lobes, leading to a smoother perimeter. In addition, we show that decreased growth around the perimeter and across the leaf abaxial surface leads to a change in 3D form, as predicted by mechanical models of leaf growth. Our analysis provides experimental evidence that local repression of growth influences leaf shape, suggesting that it could be part of the mechanism of morphogenesis in plants in the context of an otherwise growing system.

  11. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification

  12. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  13. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

    PubMed

    Jin, Ye; Ni, Di-An; Ruan, Yong-Ling

    2009-07-01

    Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.

  14. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    SciTech Connect

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  15. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  16. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  17. Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status

    SciTech Connect

    Harris, M.J.; Outlaw, W.H. Jr. )

    1991-01-01

    Detached broad bean (Vicia faba L.) leaflets were water stressed; within 15 minutes, guard-cell abscisic acid (ABA) concentration increased ninefold. This result eliminates the apparent discrepancy raised by reports of no correlation between initial water-stress effects on stomata and leaf ABA concentration. Six hours after stress relief, guard-cell ABA concentration was near the prestress value, which would seem to implicate other factors in stress after-effects on stomata.

  18. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  19. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis.

    PubMed

    Xuan, Wei; Band, Leah R; Kumpf, Robert P; Van Damme, Daniël; Parizot, Boris; De Rop, Gieljan; Opdenacker, Davy; Möller, Barbara K; Skorzinski, Noemi; Njo, Maria F; De Rybel, Bert; Audenaert, Dominique; Nowack, Moritz K; Vanneste, Steffen; Beeckman, Tom

    2016-01-22

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.

  20. Cell identity regulators link development and stress responses in the Arabidopsis root.

    PubMed

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.

  1. DEVELOPMENTAL BIOLOGY: Brain Cells Turning Over a New Leaf.

    PubMed

    Vogel, G

    2000-09-08

    New findings described on page 1754 offer the strongest evidence yet that certain cells can be steered onto new career paths even after they've become committed to a particular job. In the current work, researchers managed to coax rat oligodendrocyte precursor cells, which scientists thought were irreversibly committed to becoming neuronal handmaidens called oligodendrocytes or astrocytes, into becoming neurons. Because they ran several experiments to test the purity of their well-characterized cells, they say it is unlikely that the effect was due to undetected immature cells.

  2. Gravitational stress-induced changes in the phosphoproteom of Arabidopsis thaliana cell cultures

    NASA Astrophysics Data System (ADS)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Schuetz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Nordheim, Alfred; Costa, Alex; Barjaktarovic, Zarko

    Callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly (P¡0.05) in amount after 2h of hypergravity (18 up-, 10 down-regulated) could be identified. The corre-sponding proteins were largely involved in stress responses, including detoxification of reactive oxygen species (ROS; Barjaktaroviá et al., J. Exptl. Bot. 58:4357 (2007)). In the present study, c we extended these investigations to phosphorylated proteins. For this purpose, callus cell cul-tures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded most reliable data. First changes, however, were visible as early as 10 min after start of treatment. Out of the protein spots altered in phosphorylation, we were able to identify 24 from those responding to random positioning and 12 which responded to 8 g. The respective proteins are involved in scavenging and detoxification of ROS (32Most recent data obtained from parabolic flights indicate that exposure times to g of as little as 20 s are sufficient to alter the phosphorylation of proteins pattern. This is accompanied by changes in the cellular Ca2+ and H2O2 contents.

  3. Microtubules are essential for guard-cell function in Vicia and Arabidopsis.

    PubMed

    Eisinger, William; Ehrhardt, David; Briggs, Winslow

    2012-05-01

    Radially arranged cortical microtubules are a prominent feature of guard cells. Guard cells expressing GFP-tubulin showed consistent changes in the appearance of microtubules when stomata opened or closed. Guard cells showed fewer microtubule structures as stomata closed, whether induced by transfer to darkness, ABA, hydrogen peroxide, or sodium hydrogen carbonate. Guard cells kept in the dark (closed stomata) showed increases in microtubule structures and stomatal aperture on light treatment. GFP-EB1, marking microtubule growing plus ends, showed no change in number of plus ends or velocity of assembly on stomatal closure. Since the number of growing plus ends and the rate of plus-end growth did not change when microtubule structure numbers declined, microtubule instability and/or rearrangement must be responsible for the apparent loss of microtubules. Guard cells with closed stomata showed more cytosolic GFP-fluorescence than those with open stomata as cortical microtubules became disassembled, although with a large net loss in total fluorescence. Microtubule-targeted drugs blocked guard-cell function in Vicia and Arabidopsis. Oryzalin disrupted guard-cell microtubules and prevented stomatal opening and taxol stabilized guard-cell microtubules and delayed stomatal closure. Gas exchange measurements indicated that the transgenes for fluorescent-labeled proteins did not disrupt normal stomatal function. These dynamic changes in guard-cell microtubules combined with our inhibitor studies provide evidence for an active role of microtubules in guard-cell function.

  4. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis.

    PubMed

    Hayashi, Makoto; Yagi, Mina; Nito, Kazumasa; Kamada, Tomoe; Nishimura, Mikio

    2005-04-15

    Peroxisomes in higher plant cells are known to differentiate in function depending on the cell type. Because of the functional differentiation, plant peroxisomes are subdivided into several classes, such as glyoxysomes and leaf peroxisomes. These peroxisomal functions are maintained by import of newly synthesized proteins containing one of two peroxisomal targeting signals known as PTS1 and PTS2. These targeting signals are known to be recognized by the cytosolic receptors, Pex5p and Pex7p, respectively. To demonstrate the contribution of Pex5p and Pex7p to the maintenance of peroxisomal functions in plants, double-stranded RNA constructs were introduced into the genome of Arabidopsis thaliana. Expression of the PEX5 and PEX7 genes was efficiently reduced by the double-stranded RNA-mediated interference in the transgenic Arabidopsis. The Pex5p-deficient Arabidopsis showed reduced activities for both glyoxysomal and leaf peroxisomal functions. An identical phenotype was observed in a transgenic Arabidopsis overexpressing functionally defective Pex5p. In contrast, the Pex7p-deficient Arabidopsis showed reduced activity for glyoxysomal function but not for leaf peroxisomal function. Analyses of peroxisomal protein import in the transgenic Arabidopsis revealed that Pex5p was involved in import of both PTS1-containing proteins and PTS2-containing proteins, whereas Pex7p contributed to the import of only PTS2-containing proteins. Overall, the results indicated that Pex5p and Pex7p play different roles in the maintenance of glyoxysomal and leaf peroxisomal functions in plants.

  5. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis.

    PubMed

    Garcia, Damien; Fitz Gerald, Jonathan N; Berger, Frédéric

    2005-01-01

    We use Arabidopsis thaliana as a model to investigate coordination of cell proliferation and cell elongation in the three components that develop side by side in the seed. Two of these, the embryo and its nurturing annex, the endosperm, are placed under zygotic control and develop within the seed integument placed under maternal control. We show that integument cell proliferation and endosperm growth are largely independent from each other. By contrast, prevention of cell elongation in the integument by the mutation transparent testa glabra2 (ttg2) restricts endosperm and seed growth. Conversely, endosperm growth controlled by the HAIKU (IKU) genetic pathway modulates integument cell elongation. Combinations of TTG2 defective seed integument with reduction of endosperm size by iku mutations identify integument cell elongation and endosperm growth as the primary regulators of seed size. Our results strongly suggest that a cross talk between maternal and zygotic controls represents the primary regulator of the coordinated control of seed size in Arabidopsis.

  6. MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis.

    PubMed

    Yamaoka, Shohei; Nakajima, Masaki; Fujimoto, Masaru; Tsutsumi, Nobuhiro

    2011-02-01

    Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.

  7. Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination.

    PubMed

    Matsuda, Tomoki; Matsushima, Mai; Nabemoto, Moe; Osaka, Masaaki; Sakazono, Satomi; Masuko-Suzuki, Hiromi; Takahashi, Hirokazu; Nakazono, Mikio; Iwano, Megumi; Takayama, Seiji; Shimizu, Kentaro K; Okumura, Katsuzumi; Suzuki, Go; Watanabe, Masao; Suwabe, Keita

    2015-04-01

    Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.

  8. Substitution of L-fucose by L-galactose in cell walls of arabidopsis mur1

    SciTech Connect

    Zablackis, E.; York, W.S.; Pauly, M.

    1996-06-21

    An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1 plants challenged the hypothesis that fucose is a required component of biologically active oligosaccharides derived from cell wall xyloglucan. However, the replacement of L-fucose (that is, 6-deoxyl-L-galactose) by L-galactose does not detectably alter the biological activity of the oligosaccharides derived from xyloglucan. Thus, essential structural and conformational features of xyloglucan and xyloglucan-derived oligosaccharides are retained when L-galactose replaces L-fucose. 29 refs., 2 figs., 2 tabs.

  9. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.

    PubMed

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R

    2015-09-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.

  10. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity.

    PubMed

    Seo, Pil Joon; Park, Jung-Min; Kang, Seok Ki; Kim, Sang-Gyu; Park, Chung-Mo

    2011-01-01

    The plasma membrane is an important cellular organ that perceives incoming developmental and environmental signals and integrates these signals into cellular regulatory mechanisms. It also acts as a barrier against unfavorable extracellular factors to maintain cell viability. Despite its importance for cell viability, molecular components determining cell viability and underlying mechanisms are largely unknown. Here, we show that a plasma membrane-localized MtN3 protein SAG29 regulates cell viability under high salinity in Arabidopsis. The SAG29 gene is expressed primarily in senescing plant tissues. It is induced by osmotic stresses via an abscisic acid-dependent pathway. Whereas the SAG29-overexpressing transgenic plants (35S:SAG29) exhibited an accelerated senescence and were hypersensitive to salt stress, the SAG29-deficient mutants were less sensitive to high salinity. Consistent with this, the 35S:SAG29 transgenic plants showed reduced cell viability in the roots under normal growth condition. In contrast, cell viability in the SAG29-deficient mutant roots was indistinguishable from that in the roots of control plants. Notably, the mutant roots exhibited enhanced cell viability under high salinity. Our observations indicate that the senescence-associated SAG29 protein is associated with cell viability under high salinity and other osmotic stress conditions. We propose that the SAG29 protein may serve as a molecular link that integrates environmental stress responses into senescing process.

  11. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Fasano, J. M.; Gilroy, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.

  12. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae

    PubMed Central

    Çakır, Birsen; Tumer, Nilgun E.

    2015-01-01

    Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition. PMID:28357275

  13. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis.

    PubMed

    Borg, Michael; Rutley, Nicholas; Kagale, Sateesh; Hamamura, Yuki; Gherghinoiu, Mihai; Kumar, Sanjeev; Sari, Ugur; Esparza-Franco, Manuel A; Sakamoto, Wataru; Rozwadowski, Kevin; Higashiyama, Tetsuya; Twell, David

    2014-05-01

    The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

  14. Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development.

    PubMed

    Hierl, Georg; Vothknecht, Ute; Gietl, Christine

    2012-05-01

    Programmed cell death (PCD) in plants is a prerequisite for development as well as seed and fruit production. It also plays a significant role in pathogen defense. A unique group of papain-type cysteine endopeptidases, characterized by a C-terminal endoplasmic reticulum (ER) retention signal (KDEL CysEP), is involved in plant PCD. Genes for these endopeptidases have been sequenced and analyzed from 25 angiosperms and gymnosperms. They have no structural relationship to caspases involved in mammalian PCD and homologs to this group of plant cysteine endopeptidases have not been found in mammals or yeast. In castor beans (Ricinus communis), the CysEP is synthesized as pre-pro-enzyme. The pro-enzyme is transported to the cytosol of cells undergoing PCD in ER-derived vesicles called ricinosomes. These vesicles release the mature CysEP in the final stages of organelle disintegration triggered by acidification of the cytoplasm resulting from the disruption of the vacuole. Mature CysEP digests the hydroxyproline (Hyp)-rich proteins (extensins) that form the basic scaffold of the plant cell wall. The KDEL CysEPs accept a wide variety of amino acids at the active site, including the glycosylated Hyp residues of the extensins. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2 and AtCEP3) are expressed in tissues undergoing PCD. In transgenic Arabidopsis plants expressing β-glucuronidase under the control of the promoters for these three genes, cell- and tissue-specific activities were mapped during seedling, flower and seed development. KDEL CysEPs participate in the collapse of tissues in the final stage of PCD and in tissue re-modeling such as lateral root formation.

  15. Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey.

    PubMed

    Lersten, Nels R; Czlapinski, Albert R; Curtis, John D; Freckmann, Robert; Horner, Harry T

    2006-12-01

    Neutral (storage) oil bodies occur in leaf mesophyll cells of many angiosperms, but their literature has been largely forgotten. We review this literature and provide a survey of 302 species and hybrids from mostly north-central US species representing 113 families. Freehand cross sections of fresh leaves stained with Sudan IV verified the presence of oil. In 71 species from 24 families we observed 1-15 oil bodies per mesophyll cell. The eudicot families Asteraceae, Caprifoliaceae, Lamiaceae, and Rosaceae had the highest number of species with oil bodies, whereas few or no species in the Apiaceae, Betulaceae, Fabaceae, and Scrophulariaceae had them. Only three of 19 monocot species sampled had oil bodies. Repeat sampling of a Malus (crabapple) cultivar and a Euonymus species showed conspicuous oil bodies in mid-summer and also in mid-autumn in both attached and recently shed leaves. Oil bodies in leaf mesophyll cells are conspicuous (visible in hand cross sections using moderate magnification in unstained water mounts) in numerous species, and they occur throughout the growing season in at least some species. Neutral oil bodies in leaf mesophyll cells are not mentioned in contemporary textbooks and advanced works, but they deserve recognition as significant cellular components of many taxa, in which they may be significant sources of commercial oils.

  16. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  17. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 Are Polygalacturonases Required for Cell Separation during Reproductive Development in Arabidopsis[W

    PubMed Central

    Ogawa, Mikihiro; Kay, Pippa; Wilson, Sarah; Swain, Stephen M.

    2009-01-01

    Cell separation is thought to involve degradation of pectin by several hydrolytic enzymes, particularly polygalacturonase (PG). Here, we characterize an activation tagging line with reduced growth and male sterility caused by increased expression of a PG encoded by QUARTET2 (QRT2). QRT2 is essential for pollen grain separation and is part of a small family of three closely related endo-PGs in the Arabidopsis thaliana proteome, including ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2. Functional assays and complementation experiments confirm that ADPG1, ADPG2, and QRT2 are PGs. Genetic analysis demonstrates that ADPG1 and ADPG2 are essential for silique dehiscence. In addition, ADPG2 and QRT2 contribute to floral organ abscission, while all three genes contribute to anther dehiscence. Expression analysis is consistent with the observed mutant phenotypes. INDEHISCENT (IND) encodes a putative basic helix-loop-helix required for silique dehiscence, and we demonstrate that the closely related HECATE3 (HEC3) gene is required for normal seed abscission and show that IND and HEC3 are required for normal expression of ADPG1 in the silique dehiscence zone and seed abscission zone, respectively. We also show that jasmonic acid and ethylene act together with abscisic acid to regulate floral organ abscission, in part by promoting QRT2 expression. These results demonstrate that multiple cell separation events, including both abscission and dehiscence, require closely related PG genes. PMID:19168715

  18. Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines.

    PubMed

    Wang, De-Shen; Rizwani, Ghazala H; Guo, Huiqin; Ahmed, Mansoor; Ahmed, Maryam; Hassan, Syed Zeeshan; Hassan, Amir; Chen, Zhe-Sheng; Xu, Rui-Hua

    2014-09-01

    Cancer is a common cause of death in human populations. Surgery, chemotherapy and radiotherapy still remain the corner stone of treatment. However, herbal medicines are gaining popularity on account of their lesser harmful side effects on non-targeted human cells and biological environment. Annona squamosa Linn is a common delicious edible fruit and its leaf have been used for the treatment in various types of diseases. The objective of present study is to determine the anticancer potential of the organic and aqueous extracts of leaf of Annona squamosa L. MTT (3-(4, 5-dimethylthiazole-2yl)-2, 5-biphenyl tetrazolium bromide) assay against hepatocellular carcinoma cell line BEL-7404, lung cancer line H460, human epidermoid carcinoma cell line KB-3-1, prostatic cancer cell line DU145, breast carcinoma cell line MDA-MB-435, and colon cancer cell line HCT-116 Human primary embryonic kidney cell line HEK293 as control were used for the study. The crude extract (Zcd) and Ethyl acetate extract (ZE) were found significant anticancer activity only on human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116.

  19. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens.

    PubMed

    Moller, Isabel E; De Fine Licht, Henrik H; Harholt, Jesper; Willats, William G T; Boomsma, Jacobus J

    2011-03-10

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.

  20. Ectopic Expression of WUS in Hypocotyl Promotes Cell Division via GRP23 in Arabidopsis

    PubMed Central

    Wang, Min; Li, Junhua; Guo, Xiaoyu; Chong, Kang; Xu, Yunyuan

    2013-01-01

    WUSCHEL (WUS) is essential for preventing stem cell differentiation in Arabidopsis. Here we report that in addition to its functions in meristematic stem cell maintenance, WUS is involved in the regulation of cell division. The WUS gain-of-function mutant, stem ectopic flowers (sef), displayed elongated hypocotyls, whereas the loss-of-function wus-1 mutant had shortened hypocotyls. The long hypocotyl in sef was due to the presence of more cells, rather than increased cell elongation. Microscopic observation, flow cytometry assays, quantitative RT-PCR (qRT-PCR), and histochemical staining of CycB1;1::GUS supported the hypothesis that ectopic cell division occurred in the sef hypocotyls after germination. Both immunoblot and qRT-PCR results showed that WUS was ectopically expressed in sef hypocotyls. Luciferase activity, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) showed that GLUTAMINE-RICH PROTEIN 23 (GRP23) expression can be activated by WUS and that GRP23 is a direct target gene of WUS. The phenotypes of 35S::GRP23 plants and GRP23 knockdown lines supported the notion that GRP23 mediates the effects of WUS on hypocotyl length. Together, our data suggest that ectopic expression of WUS in hypocotyl controls cell division through its target gene GRP23. PMID:24086632

  1. Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote

    PubMed Central

    Kimata, Yusuke; Higaki, Takumi; Kawashima, Tomokazu; Kurihara, Daisuke; Sato, Yoshikatsu; Yamada, Tomomi; Hasezawa, Seiichiro; Berger, Frederic; Higashiyama, Tetsuya

    2016-01-01

    The asymmetric cell division of the zygote is the initial and crucial developmental step in most multicellular organisms. In flowering plants, whether zygote polarity is inherited from the preexisting organization in the egg cell or reestablished after fertilization has remained elusive. How dynamically the intracellular organization is generated during zygote polarization is also unknown. Here, we used a live-cell imaging system with Arabidopsis zygotes to visualize the dynamics of the major elements of the cytoskeleton, microtubules (MTs), and actin filaments (F-actins), during the entire process of zygote polarization. By combining image analysis and pharmacological experiments using specific inhibitors of the cytoskeleton, we found features related to zygote polarization. The preexisting alignment of MTs and F-actin in the egg cell is lost on fertilization. Then, MTs organize into a transverse ring defining the zygote subapical region and driving cell outgrowth in the apical direction. F-actin forms an apical cap and longitudinal arrays and is required to position the nucleus to the apical region of the zygote, setting the plane of the first asymmetrical division. Our findings show that, in flowering plants, the preexisting cytoskeletal patterns in the egg cell are lost on fertilization and that the zygote reorients the cytoskeletons to perform directional cell elongation and polar nuclear migration. PMID:27911812

  2. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    PubMed Central

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  3. Multiplex micro-respiratory measurements of Arabidopsis tissues.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Holzmann, Cristián; Huang, Shaobai; Taylor, Nicolas L; Jordana, Xavier; Millar, A Harvey

    2013-11-01

    Researchers often want to study the respiratory properties of individual parts of plants in response to a range of treatments. Arabidopsis is an obvious model for this work; however, because of its size, it represents a challenge for gas exchange measurements of respiration. The combination of micro-respiratory technologies with multiplex assays has the potential to bridge this gap, and make measurements possible in this model plant species. We show the adaptation of the commercial technology used for mammalian cell respiration analysis to study three critical tissues of interest: leaf sections, root tips and seeds. The measurement of respiration in single leaf discs has allowed the age dependence of the respiration rate in Arabidopsis leaves across the rosette to be observed. The oxygen consumption of single root tips from plate-grown seedlings shows the enhanced respiration of root tips and their time-dependent susceptibility to salinity. The monitoring of single Arabidopsis seeds shows the kinetics of respiration over 48 h post-imbibition, and the effect of the phytohormones gibberellic acid (GA3 ) and abscisic acid (ABA) on respiration during seed germination. These studies highlight the potential for multiplexed micro-respiratory assays to study oxygen consumption in Arabidopsis tissues, and open up new possibilities to screen and study mutants and to identify differences in ecotypes or populations of different plant species.

  4. The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) Is Involved in Cuticle-Cell Wall Interface Integrity and in Etiolated Hypocotyl Permeability.

    PubMed

    Jacq, Adélaïde; Pernot, Clémentine; Martinez, Yves; Domergue, Frédéric; Payré, Bruno; Jamet, Elisabeth; Burlat, Vincent; Pacquit, Valérie B

    2017-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family implicated in diverse physiological processes. However, their function and mode of action remain unclear probably because of functional redundancy. Among the different roles proposed for nsLTPs, it has long been suggested that they could transport cuticular precursor across the cell wall during the formation of the cuticle, which constitutes the first physical barrier for plant interactions with their aerial environment. Here, we took advantage of the Arabidopsis thaliana etiolated hypocotyl model in which AtLTP2 was previously identified as the unique and abundant nsLTP member in the cell wall proteome, to investigate its function. AtLTP2 expression was restricted to epidermal cells of aerial organs, in agreement with the place of cuticle deposition. Furthermore, transient AtLTP2-TagRFP over-expression in Nicotiana benthamiana leaf epidermal cells resulted in its localization to the cell wall, as expected, but surprisingly also to the plastids, indicating an original dual trafficking for a nsLTP. Remarkably, in etiolated hypocotyls, the atltp2-1 mutant displayed modifications in cuticle permeability together with a disorganized ultra-structure at the cuticle-cell wall interface completely recovered in complemented lines, whereas only slight differences in cuticular composition were observed. Thus, AtLTP2 may not play the historical purported nsLTP shuttling role across the cell wall, but we rather hypothesize that AtLTP2 could play a major structural role by maintaining the integrity of the adhesion between the mainly hydrophobic cuticle and the hydrophilic underlying cell wall. Altogether, these results gave new insights into nsLTP functions.

  5. The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) Is Involved in Cuticle-Cell Wall Interface Integrity and in Etiolated Hypocotyl Permeability

    PubMed Central

    Jacq, Adélaïde; Pernot, Clémentine; Martinez, Yves; Domergue, Frédéric; Payré, Bruno; Jamet, Elisabeth; Burlat, Vincent; Pacquit, Valérie B.

    2017-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family implicated in diverse physiological processes. However, their function and mode of action remain unclear probably because of functional redundancy. Among the different roles proposed for nsLTPs, it has long been suggested that they could transport cuticular precursor across the cell wall during the formation of the cuticle, which constitutes the first physical barrier for plant interactions with their aerial environment. Here, we took advantage of the Arabidopsis thaliana etiolated hypocotyl model in which AtLTP2 was previously identified as the unique and abundant nsLTP member in the cell wall proteome, to investigate its function. AtLTP2 expression was restricted to epidermal cells of aerial organs, in agreement with the place of cuticle deposition. Furthermore, transient AtLTP2-TagRFP over-expression in Nicotiana benthamiana leaf epidermal cells resulted in its localization to the cell wall, as expected, but surprisingly also to the plastids, indicating an original dual trafficking for a nsLTP. Remarkably, in etiolated hypocotyls, the atltp2-1 mutant displayed modifications in cuticle permeability together with a disorganized ultra-structure at the cuticle-cell wall interface completely recovered in complemented lines, whereas only slight differences in cuticular composition were observed. Thus, AtLTP2 may not play the historical purported nsLTP shuttling role across the cell wall, but we rather hypothesize that AtLTP2 could play a major structural role by maintaining the integrity of the adhesion between the mainly hydrophobic cuticle and the hydrophilic underlying cell wall. Altogether, these results gave new insights into nsLTP functions. PMID:28289427

  6. Leaf hydraulics I: scaling transport properties from single cells to tissues.

    PubMed

    Rockwell, Fulton E; Michele Holbrook, N; Stroock, Abraham D

    2014-01-07

    In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe these three pathways in terms of experimental variables. We show that, in plant water relations theory, the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical interactions between cells, is consistent with a special case of the more general continuum mechanical theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of equations governing linear poroelastic behavior. We next consider the case for local equilibrium between protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine how accurately simple volume averaging of material properties (a 'composite' model) describes the hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that a composite description for tissues composed of thin walled cells with air spaces of similar size to the cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-isothermal case, information on the magnitude of the thermal gradients is required to assess the dominant phase of water transport, liquid or vapor.

  7. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells.

    PubMed

    Seifertová, Daniela; Skůpa, Petr; Rychtář, Jan; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre I; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-03-15

    Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.

  8. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis.

    PubMed

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A; Engle, Nancy L; Martin, Madhavi Z; Tschaplinski, Timothy J; Ding, Shi-You; Ragauskas, Arthur J; Dixon, Richard A

    2015-04-01

    Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  9. A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana.

    PubMed

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Reinbothe, Steffen; Reinbothe, Christiane

    2015-10-01

    Flower development and fertilization are tightly controlled in Arabidopsis thaliana. In order to permit the fertilization of a maximum amount of ovules as well as proper embryo and seed development, a subtle balance between pollen tube growth inside the transmitting tract and pollen tube exit from the septum is needed. Both processes depend on a type of programmed cell death that is still poorly understood. Here, it is shown that a Kunitz protease inhibitor related to water-soluble chlorophyll proteins of Brassicaceae (AtWSCP, encoded by At1g72290) is involved in controlling cell death during flower development in A. thaliana. Genetic, biochemical, and cell biology approaches revealed that WSCP physically interacts with RD21 (RESPONSIVE TO DESICCATION) and that this interaction in turn inhibits the activity of RD21 as a pro-death protein. The regulatory circuit identified depends on the restricted expression of WSCP in the transmitting tract and the septum epidermis. In a respective Atwscp knock-out mutant, flowers exhibited precocious cell death in the transmitting tract and unnatural death of septum epidermis cells. As a consequence, apical-basal pollen tube growth, fertilization of ovules, as well as embryo development and seed formation were perturbed. Together, the data identify a unique mechanism of cell death regulation that fine-tunes pollen tube growth.

  10. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  11. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2002-01-01

    An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.

  12. Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis.

    PubMed

    Boutté, Yohann; Frescatada-Rosa, Márcia; Men, Shuzhen; Chow, Cheung-Ming; Ebine, Kazuo; Gustavsson, Anna; Johansson, Lenore; Ueda, Takashi; Moore, Ian; Jürgens, Gerd; Grebe, Markus

    2010-02-03

    Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. The process differs to some extent between animal and plant cells, but proteins of the syntaxin family mediate membrane fusion in the plane of cell division in diverse organisms. How syntaxin localization is kept in check remains elusive. Here, we report that localization of the Arabidopsis KNOLLE syntaxin in the plane of cell division is maintained by sterol-dependent endocytosis involving a clathrin- and DYNAMIN-RELATED PROTEIN1A-dependent mechanism. On genetic or pharmacological interference with endocytosis, KNOLLE mis-localizes to lateral plasma membranes after cell-plate fusion. Fluorescence-loss-in-photo-bleaching and fluorescence-recovery-after-photo-bleaching experiments reveal lateral diffusion of GFP-KNOLLE from the plane of division to lateral membranes. In an endocytosis-defective sterol biosynthesis mutant displaying lateral KNOLLE diffusion, KNOLLE secretory trafficking remains unaffected. Thus, restriction of lateral diffusion by endocytosis may serve to maintain specificity of syntaxin localization during late cytokinesis.

  13. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    SciTech Connect

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A.; Engle, Nancy L.; Martin, Madhavi Z.; Tschaplinski, Timothy J.; Ding, Shi-You; Ragauskas, Arthur J.; Dixon, Richard A.

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  14. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    DOE PAGES

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less

  15. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize

    PubMed Central

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  16. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture

    PubMed Central

    Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques

    2007-01-01

    To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar

  17. Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics.

    PubMed

    Yang, Xiaohan; Ye, Chu-Yu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-12-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.

  18. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism.

    PubMed

    Fernández-Pérez, Francisco; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-10-01

    Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.

  19. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  20. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    PubMed Central

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  1. CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis

    PubMed Central

    Ruhlmann, Jeffrey M.; Kram, Brian W.; Carter, Clay J.

    2010-01-01

    To date, no genes have been reported to directly affect the de novo production of floral nectar. In an effort to identify genes involved in nectar production, the Affymetrix® ATH1 GeneChip was previously used to examine global gene expression profiles in Arabidopsis thaliana nectaries. One of the genes displaying highly enriched expression in nectaries was CELL WALL INVERTASE 4 (AtCWINV4, At2g36190), which encodes an enzyme that putatively catalyses the hydrolysis of sucrose into glucose and fructose. RT-PCR was used to confirm the nectary-enriched expression of AtCWINV4, as well as an orthologue from Brassica rapa. To probe biological function, two independent Arabidopsis cwinv4 T-DNA mutants were isolated. Unlike wild-type plants, cwinv4 lines did not produce nectar. While overall nectary morphology appeared to be normal, cwinv4 flowers accumulated higher than normal levels of starch in the receptacle, but not within the nectaries themselves. Conversely, wild-type, but not cwinv4, nectarial stomata stained intensely for starch. Cell wall extracts prepared from mutant flowers displayed greatly reduced invertase activity when compared with wild-type plants, and cwinv4 flowers also accumulated significantly lower levels of total soluble sugar. Cumulatively, these results implicate CWINV4 as an absolutely required factor for nectar production in the Brassicaceae, specifically by maintaining constant sink status within nectaries, thus allowing them to accumulate the sugars necessary for nectar production. In addition, CWINV4 is probably responsible for the hexose-rich composition observed for many Brassicaceae nectars. PMID:19861655

  2. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation

    PubMed Central

    Escamez, Sacha; André, Domenique; Zhang, Bo; Bollhöner, Benjamin; Pesquet, Edouard; Tuominen, Hannele

    2016-01-01

    ABSTRACT We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs) that undergo programmed cell death (PCD) and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9) was reduced using RNAi (MC9-RNAi). Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2) was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells. PMID:26740571

  3. Combination of Synthetic Chemistry and Live-Cell Imaging Identified a Rapid Cell Division Inhibitor in Tobacco and Arabidopsis thaliana.

    PubMed

    Nambo, Masakazu; Kurihara, Daisuke; Yamada, Tomomi; Nishiwaki-Ohkawa, Taeko; Kadofusa, Naoya; Kimata, Yusuke; Kuwata, Keiko; Umeda, Masaaki; Ueda, Minako

    2016-11-01

    Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants.

  4. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    PubMed Central

    Irshad, Muhammad; Canut, Hervé; Borderies, Gisèle; Pont-Lezica, Rafael; Jamet, Elisabeth

    2008-01-01

    Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest) were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins. PMID:18796151

  5. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells.

    PubMed

    Morimoto, Satoshi; Tanaka, Yumi; Sasaki, Kaori; Tanaka, Hiroyuki; Fukamizu, Tomohide; Shoyama, Yoshinari; Shoyama, Yukihiro; Taura, Futoshi

    2007-07-13

    Cannabinoids are secondary metabolites stored in capitate-sessile glands on leaves of Cannabis sativa. We discovered that cell death is induced in the leaf tissues exposed to cannabinoid resin secreted from the glands, and identified cannabichromenic acid (CBCA) and Delta(1)-tetrahydrocannabinolic acid (THCA) as unique cell death mediators from the resin. These cannabinoids effectively induced cell death in the leaf cells or suspension-cultured cells of C. sativa, whereas pretreatment with the mitochondrial permeability transition (MPT) inhibitor cyclosporin A suppressed this cell death response. Examinations using isolated mitochondria demonstrated that CBCA and THCA mediate opening of MPT pores without requiring Ca(2+) and other cytosolic factors, resulting in high amplitude mitochondrial swelling, release of mitochondrial proteins (cytochrome c and nuclease), and irreversible loss of mitochondrial membrane potential. Therefore, CBCA and THCA are considered to cause serious damage to mitochondria through MPT. The mitochondrial damage was also confirmed by a marked decrease of ATP level in cannabinoid-treated suspension cells. These features are in good accord with those of necrotic cell death, whereas DNA degradation was also observed in cannabinoid-mediated cell death. However, the DNA degradation was catalyzed by nuclease(s) released from mitochondria during MPT, indicating that this reaction was not induced via a caspase-dependent apoptotic pathway. Furthermore, the inhibition of the DNA degradation only slightly blocked the cell death induced by cannabinoids. Based on these results, we conclude that CBCA and THCA have the ability to induce necrotic cell death via mitochondrial dysfunction in the leaf cells of C. sativa.

  6. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division.

    PubMed

    Ambrose, J Christian; Shoji, Tsubasa; Kotzer, Amanda M; Pighin, Jamie A; Wasteneys, Geoffrey O

    2007-09-01

    Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.

  7. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  8. In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis.

    PubMed

    Parizot, Boris; Roberts, Ianto; Raes, Jeroen; Beeckman, Tom; De Smet, Ive

    2012-06-05

    In Arabidopsis, lateral root initiation occurs in a subset of pericycle cells at the xylem pole that will divide asymmetrically to give rise to a new lateral root organ. While lateral roots never develop at the phloem pole, it is unclear how the interaction with xylem and phloem poles determines the distinct pericycle identities with different competences. Nevertheless, pericycle cells at these poles are marked by differences in size, by ultrastructural features and by specific proteins and gene expression. Here, we provide transcriptional evidence that pericycle cells are intimately associated with their vascular tissue instead of being a separate concentric layer. This has implications for the identification of cell- and tissue-specific promoters that are necessary to drive and/or alter gene expression locally, avoiding pleiotropic effects. We were able to identify a small set of genes that display specific expression in the phloem or xylem pole pericycle cells, and we were able to identify motifs that are likely to drive expression in either one of those tissues.

  9. Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell ElongationW⃞

    PubMed Central

    Yang, Xiao-Hua; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-01-01

    A putative Membrane Steroid Binding Protein (designated MSBP1) was identified and functionally characterized as a negative regulator of cell elongation in Arabidopsis thaliana. The MSBP1 gene encodes a 220–amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro. Transgenic plants overexpressing MSBP1 showed short hypocotyl phenotype and increased steroid binding capacity in membrane fractions, whereas antisense MSBP1 transgenic plants showed long hypocotyl phenotypes and reduced steroid binding capacity, indicating that MSBP1 negatively regulates hypocotyl elongation. The reduced cell elongation of MSBP1-overexpressing plants was correlated with altered expression of genes involved in cell elongation, such as expansins and extensins, indicating that enhanced MSBP1 affected a regulatory pathway for cell elongation. Suppression or overexpression of MSBP1 resulted in enhanced or reduced sensitivities, respectively, to exogenous progesterone and 24-eBL, suggesting a negative role of MSBP1 in steroid signaling. Expression of MSBP1 in hypocotyls is suppressed by darkness and activated by light, suggesting that MSBP1, as a negative regulator of cell elongation, plays a role in plant photomorphogenesis. This study demonstrates the functional roles of a steroid binding protein in growth regulation in higher plants. PMID:15608331

  10. MYB98 Is Required for Pollen Tube Guidance and Synergid Cell Differentiation in ArabidopsisW⃞

    PubMed Central

    Kasahara, Ryushiro D.; Portereiko, Michael F.; Sandaklie-Nikolova, Linda; Rabiger, David S.; Drews, Gary N.

    2005-01-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development. PMID:16214903

  11. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis.

    PubMed

    Kasahara, Ryushiro D; Portereiko, Michael F; Sandaklie-Nikolova, Linda; Rabiger, David S; Drews, Gary N

    2005-11-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development.

  12. Oryzalin-modified disruption of microtubular cytoskeleton in Arabidopsis thaliana root cells under clinorotation

    NASA Astrophysics Data System (ADS)

    Kalinina, Ia.; Shevchenko, G.; Kordyum, E.

    There are data on gravisensitivity of cells not specialized to perceive a gravity vector but the molecular processes by which gravity affects not graviperceptive cells are still unclear Spaceflight experiments show that the microtubule self-organization in vitro is gravity-dependent Confocal microscopic analysis of the microtubule spatial organization under altered gravity with combination of approach drugs that disrupt normal microtubule behavior should give us a better understanding of the possible role of microtubule cytoskeleton in gravisensing on cellular level With this aim we examined influence of horizontal clinorotation 2 rpm on the spatial organization of microtubules in the root cortical and epidermal cells by means of LSM 5 PASCAL Zeiss Germany Microtubules were visualized by using stably transformed line of transgenic Arabidopsis thaliana expressing a green fluorescent protein-MAP4 fusion protein We inhibited microtubule function applying 5 956 M L oryzalin microtubule inhibitor in control and clinorotated seedlings Preliminary investigations show that cortical microtubule arrays were dense and predominantly transverse to the root long axis in the meristem and distal elongation zone in control and they got oblique direction when rapid cell elongation is finishing In the differentiation zone microtubules reorient with respect to the longitudinal growth axis of cell Under clinorotation cortical microtubules have the same configuration in the meristem central elongation zone and differentiation zone but it is observed appearances of several

  13. Chloride regulates leaf cell size and water relations in tobacco plants.

    PubMed

    Franco-Navarro, Juan D; Brumós, Javier; Rosales, Miguel A; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M

    2016-02-01

    Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants.

  14. An Arabidopsis Homolog of the Bacterial Cell Division Inhibitor SulA Is Involved in Plastid DivisionW⃞

    PubMed Central

    Raynaud, Cécile; Cassier-Chauvat, Corinne; Perennes, Claudette; Bergounioux, Catherine

    2004-01-01

    Plastids have evolved from an endosymbiosis between a cyanobacterial symbiont and a eukaryotic host cell. Their division is mediated both by proteins of the host cell and conserved bacterial division proteins. Here, we identified a new component of the plastid division machinery, Arabidopsis thaliana SulA. Disruption of its cyanobacterial homolog (SSulA) in Synechocystis and overexpression of an AtSulA-green fluorescent protein fusion in Arabidopsis demonstrate that these genes are involved in cell and plastid division, respectively. Overexpression of AtSulA inhibits plastid division in planta but rescues plastid division defects caused by overexpression of AtFtsZ1-1 and AtFtsZ2-1, demonstrating that its role in plastid division may involve an interaction with AtFtsZ1-1 and AtFtsZ2-1. PMID:15208387

  15. Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings

    PubMed Central

    2013-01-01

    Background Cell growth and cell proliferation are intimately linked in the presence of Earth’s gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. Results We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. Conclusions In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport. PMID:24006876

  16. Novel Vein Patterns in Arabidopsis Induced by Small Molecules1[OPEN

    PubMed Central

    Cutler, Sean

    2016-01-01

    The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking. PMID:26574596

  17. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  18. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    PubMed

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  19. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

    PubMed Central

    Meyer, Heather M; Teles, José; Formosa-Jordan, Pau; Refahi, Yassin; San-Bento, Rita; Ingram, Gwyneth; Jönsson, Henrik; Locke, James C W; Roeder, Adrienne H K

    2017-01-01

    Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process. DOI: http://dx.doi.org/10.7554/eLife.19131.001 PMID:28145865

  20. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells

    PubMed Central

    Balcerowicz, Daria; Schoenaers, Sébastjen; Vissenberg, Kris

    2015-01-01

    Plant roots fulfill important functions as they serve in water and nutrient uptake, provide anchorage of the plant body in the soil and in some species form the site of symbiotic interactions with soil-living biota. Root hairs, tubular-shaped outgrowths of specific epidermal cells, significantly increase the root’s surface area and aid in these processes. In this review we focus on the molecular mechanisms that determine the hair and non-hair cell fate of epidermal cells and that define the site on the epidermal cell where the root hair will be initiated (=planar polarity determination). In the model plant Arabidopsis, trichoblast and atrichoblast cell fate results from intra- and intercellular position-dependent signaling and from complex feedback loops that ultimately regulate GL2 expressing and non-expressing cells. When epidermal cells reach the end of the root expansion zone, root hair promoting transcription factors dictate the establishment of polarity within epidermal cells followed by the selection of the root hair initiation site at the more basal part of the trichoblast. Molecular players in the abovementioned processes as well as the role of phytohormones are discussed, and open areas for future experiments are identified. PMID:26779192

  1. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

    PubMed Central

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.

    2015-01-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  2. Splicing of arabidopsis tRNA(Met) precursors in tobacco cell and wheat germ extracts.

    PubMed

    Akama, K; Junker, V; Yukawa, Y; Sugiura, M; Beier, H

    2000-09-01

    Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNA(GpsiA(Tyr)) and elongator tRNA(CmAU(Met)) contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNA(Tyr). Here we have studied the expression of an Arabidopsis elongator tRNA(Met) gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNA(Met) precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNA(Met) to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3' and 5' splice sites and of a structured intron for pre-tRNA(Met) splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNA(Met) splicing and that a highly structured intron is indispensable for pre-tRNA(Met) splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNA(Met) gene, is efficiently processed and spliced in both plant extracts.

  3. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis.

    PubMed

    Wang, Jing-Jing; Guo, Hui-Shan

    2015-03-01

    MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.

  4. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function.

    PubMed

    Frescatada-Rosa, Márcia; Stanislas, Thomas; Backues, Steven K; Reichardt, Ilka; Men, Shuzhen; Boutté, Yohann; Jürgens, Gerd; Moritz, Thomas; Bednarek, Sebastian Y; Grebe, Markus

    2014-12-01

    Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.

  5. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    SciTech Connect

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.

  6. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    PubMed Central

    Jiang, Hua; Yi, Jun; Boavida, Leonor C.; Chen, Yuan; Becker, Jörg D.; Köhler, Claudia; McCormick, Sheila

    2015-01-01

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells. PMID:26466609

  7. Isolation of Intact Chloroplasts and Other Cell Organelles from Spinach Leaf Protoplasts 1

    PubMed Central

    Nishimura, Mikio; Graham, Douglas; Akazawa, Takashi

    1976-01-01

    Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), NADP triose-P dehydrogenase (EC 1.2.1.9), and carbonic anhydrase (EC 4.2.1.1) in the fractions. A clear separation of chloroplastic ribosomes from the soluble cytoplasmic ribosomes was also demonstrated by the band patterns of constituent RNA species in the polyacrylamide gel electrophoresis. Localization of several enzyme activities specific to leaf peroxisomes, e.g. catalase (EC 1.11.1.6), glycolate oxidase (EC 1.1.3.1), glyoxylate reductase (EC 1.1.1.26), glutamate glyoxylate aminotransferase (EC 2.6.1.4), serine glyoxylate aminotransferase, and alanine glyoxylate aminotransferase (EC 2.6.1.12) in the peroxisomal fractions (d = 1.25), was demonstrated. Overall results show the feasibility of the method for the isolation of pure organelle components in leaf tissues. Images PMID:16659669

  8. Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves

    PubMed Central

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357

  9. Live imaging of companion cells and sieve elements in Arabidopsis leaves.

    PubMed

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A; Thompson, Gary A; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo.

  10. Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates

    PubMed Central

    Øverby, Anders; Bævre, Mette S.; Thangstad, Ole P.; Bones, Atle M.

    2015-01-01

    Isothiocyanates (ITCs) from biodegradation of glucosinolates comprise a group of electrophiles associated with growth-inhibitory effects in plant- and mammalian cells. The underlying modes of action of this feature are not fully understood. Clarifying this has involved mammalian cancer cells due to ITCs' chemopreventive potential. The binding of ITCs to tubulins has been reported as a mechanism by which ITCs induce cell cycle arrest and apoptosis. In the present study we demonstrate that ITCs disrupt microtubules in Arabidopsis thaliana contributing to the observed inhibited growth phenotype. We also confirmed this in rat bladder cancer cells (AY-27) suggesting that cells from plant and animals share mechanisms by which ITCs affect growth. Exposure of A. thaliana to vapor-phase of allyl ITC (AITC) inhibited growth and induced a concurrent bleaching of leaves in a dose-dependent manner. Transcriptional analysis was used to show an upregulation of heat shock-genes upon AITC-treatment. Transgenic A. thaliana expressing GFP-marked α-tubulin was employed to show a time- and dose-dependent disintegration of microtubules by AITC. Treatment of AY-27 with ITCs resulted in a time- and dose-dependent decrease of cell proliferation and G2/M-arrest. AY-27 transiently transfected to express GFP-tagged α-tubulin were treated with ITCs resulting in a loss of microtubular filaments and the subsequent formation of apoptotic bodies. In conclusion, our data demonstrate an ITC-induced mechanism leading to growth inhibition in A. thaliana and rat bladder cancer cells, and expose clues to the mechanisms underlying the physiological role of glucosinolates in vivo. PMID:25657654

  11. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis

    PubMed Central

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-01-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation. PMID:27058316

  12. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation

    PubMed Central

    Bruggeman, Quentin; Prunier, Florence; Mazubert, Christelle; de Bont, Linda; Garmier, Marie; Lugan, Raphaël; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile; Delarue, Marianne

    2015-01-01

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants. PMID:26048869

  13. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.

    PubMed

    Wang, Yi; Dindas, Julian; Rienmüller, Florian; Krebs, Melanie; Waadt, Rainer; Schumacher, Karin; Wu, Wei-Hua; Hedrich, Rainer; Roelfsema, M Rob G

    2015-11-02

    Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces.

  14. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement.

  15. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  16. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells.

    PubMed

    Jung, Il Lae; Lee, Ju Hye; Kang, Se Chan

    2015-09-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44-52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers.

  17. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum

    SciTech Connect

    Wimmers, L.E.; Turgeon, R.

    1987-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation between uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.

  18. A Fusion Algorithm for GFP Image and Phase Contrast Image of Arabidopsis Cell Based on SFL-Contourlet Transform

    PubMed Central

    Feng, Peng; Wang, Jing; Wei, Biao; Mi, Deling

    2013-01-01

    A hybrid multiscale and multilevel image fusion algorithm for green fluorescent protein (GFP) image and phase contrast image of Arabidopsis cell is proposed in this paper. Combining intensity-hue-saturation (IHS) transform and sharp frequency localization Contourlet transform (SFL-CT), this algorithm uses different fusion strategies for different detailed subbands, which include neighborhood consistency measurement (NCM) that can adaptively find balance between color background and gray structure. Also two kinds of neighborhood classes based on empirical model are taken into consideration. Visual information fidelity (VIF) as an objective criterion is introduced to evaluate the fusion image. The experimental results of 117 groups of Arabidopsis cell image from John Innes Center show that the new algorithm cannot only make the details of original images well preserved but also improve the visibility of the fusion image, which shows the superiority of the novel method to traditional ones. PMID:23476716

  19. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.

    PubMed

    Fang, Likui; Zhao, Fangming; Cong, Yunfei; Sang, Xianchun; Du, Qing; Wang, Dezhong; Li, Yunfeng; Ling, Yinghua; Yang, Zhenglin; He, Guanghua

    2012-06-01

    As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.

  20. Cell division plane orientation based on tensile stress in Arabidopsis thaliana

    PubMed Central

    Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier

    2016-01-01

    Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson–Dumais rule generalizes Errera’s rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson–Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson–Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908

  1. Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis.

    PubMed

    Raynaud, Cécile; Sozzani, Rosangela; Glab, Nathalie; Domenichini, Séverine; Perennes, Claudette; Cella, Rino; Kondorosi, Eva; Bergounioux, Catherine

    2006-08-01

    The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding these processes. Here we identify two Arabidopsis SET-domain proteins that interact with PCNA: ATXR5 and ATXR6. A truncated ATXR5Deltaex2, incapable of interacting with PCNA, also occurs in planta. ATXR6, upregulated during the S phase, is upregulated by AtE2F transcription factors, suggesting that it is required for S-phase progression. The two proteins differ in their subcellular localization: ATXR5 has a dual localization in plastids and in the nucleus, whereas ATXR6 is solely nuclear. This indicates that the two proteins may play different roles in plant cells. However, overexpression of either ATXR5 or ATXR6 causes male sterility because of the degeneration of defined cell types. Taken together, our results suggest that both proteins may play a role in the cell cycle or DNA replication, and that the activity of ATXR5 may be regulated via its subcellular localization.

  2. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism.

    PubMed

    Hewezi, Tarek; Howe, Peter; Maier, Tom R; Hussey, Richard S; Mitchum, Melissa Goellner; Davis, Eric L; Baum, Thomas J

    2008-11-01

    Plant-parasitic cyst nematodes secrete a complex of cell wall-digesting enzymes, which aid in root penetration and migration. The soybean cyst nematode Heterodera glycines also produces a cellulose binding protein (Hg CBP) secretory protein. To determine the function of CBP, an orthologous cDNA clone (Hs CBP) was isolated from the sugar beet cyst nematode Heterodera schachtii, which is able to infect Arabidopsis thaliana. CBP is expressed only in the early phases of feeding cell formation and not during the migratory phase. Transgenic Arabidopsis expressing Hs CBP developed longer roots and exhibited enhanced susceptibility to H. schachtii. A yeast two-hybrid screen identified Arabidopsis pectin methylesterase protein 3 (PME3) as strongly and specifically interacting with Hs CBP. Transgenic plants overexpressing PME3 also produced longer roots and exhibited increased susceptibility to H. schachtii, while a pme3 knockout mutant showed opposite phenotypes. Moreover, CBP overexpression increases PME3 activity in planta. Localization studies support the mode of action of PME3 as a cell wall-modifying enzyme. Expression of CBP in the pme3 knockout mutant revealed that PME3 is required but not the sole mechanism for CBP overexpression phenotype. These data indicate that CBP directly interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism.

  3. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize

    PubMed Central

    2014-01-01

    Background Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. Results Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. Conclusions Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy

  4. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings

    PubMed Central

    Camacho-Cristóbal, Juan J.; Martín-Rejano, Esperanza M.; Herrera-Rodríguez, M. Begoña; Navarro-Gochicoa, M. Teresa; Rexach, Jesús; González-Fontes, Agustín

    2015-01-01

    One of the earliest symptoms of boron (B) deficiency is the inhibition of root elongation which can reasonably be attributed to the damaging effects of B deprivation on cell wall integrity. It is shown here that exposure of wild-type Arabidopsis thaliana seedlings to B deficiency for 4h led to a drastic inhibition of root cell length in the transition between the elongation and differentiation zones. To investigate the possible mediation of ethylene, auxin, and reactive oxygen species (ROS) in the effect of B deficiency on root cell elongation, B deficiency was applied together with aminoethoxyvinylglycine (AVG, a chemical inhibitor of ethylene biosynthesis), silver ions (Ag+, an antagonist of ethylene perception), α-(phenylethyl-2‐oxo)‐indoleacetic acid (PEO-IAA, a synthetic antagonist of TIR1 receptor function), and diphenylene iodonium (DPI, an inhibitor of ROS production). Interestingly, all these chemicals partially or fully restored cell elongation in B-deficient roots. To further explore the possible role of ethylene and auxin in the inhibition of root cell elongation under B deficiency, a genetic approach was performed by using Arabidopsis mutants defective in the ethylene (ein2‐1) or auxin (eir1-4 and aux1-22) response. Root cell elongation in these mutants was less sensitive to B-deficient treatment than that in wild-type plants. Altogether, these results demonstrated that a signalling pathway involving ethylene, auxin, and ROS participates in the reduction of root cell elongation when Arabidopsis seedlings are subjected to B deficiency. A similar signalling process has been described to reduce root elongation rapidly under various types of cell wall stress which supports the idea that this signalling pathway is triggered by the impaired cell wall integrity caused by B deficiency. PMID:25922480

  5. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings.

    PubMed

    Camacho-Cristóbal, Juan J; Martín-Rejano, Esperanza M; Herrera-Rodríguez, M Begoña; Navarro-Gochicoa, M Teresa; Rexach, Jesús; González-Fontes, Agustín

    2015-07-01

    One of the earliest symptoms of boron (B) deficiency is the inhibition of root elongation which can reasonably be attributed to the damaging effects of B deprivation on cell wall integrity. It is shown here that exposure of wild-type Arabidopsis thaliana seedlings to B deficiency for 4h led to a drastic inhibition of root cell length in the transition between the elongation and differentiation zones. To investigate the possible mediation of ethylene, auxin, and reactive oxygen species (ROS) in the effect of B deficiency on root cell elongation, B deficiency was applied together with aminoethoxyvinylglycine (AVG, a chemical inhibitor of ethylene biosynthesis), silver ions (Ag(+), an antagonist of ethylene perception), α-(phenylethyl-2-oxo)-indoleacetic acid (PEO-IAA, a synthetic antagonist of TIR1 receptor function), and diphenylene iodonium (DPI, an inhibitor of ROS production). Interestingly, all these chemicals partially or fully restored cell elongation in B-deficient roots. To further explore the possible role of ethylene and auxin in the inhibition of root cell elongation under B deficiency, a genetic approach was performed by using Arabidopsis mutants defective in the ethylene (ein2-1) or auxin (eir1-4 and aux1-22) response. Root cell elongation in these mutants was less sensitive to B-deficient treatment than that in wild-type plants. Altogether, these results demonstrated that a signalling pathway involving ethylene, auxin, and ROS participates in the reduction of root cell elongation when Arabidopsis seedlings are subjected to B deficiency. A similar signalling process has been described to reduce root elongation rapidly under various types of cell wall stress which supports the idea that this signalling pathway is triggered by the impaired cell wall integrity caused by B deficiency.

  6. Transfer cell wall ingrowths and transport capacity in pea leaf discs. [Pisum sativum cv

    SciTech Connect

    Wimmers, L.E.; Turgeon, R.

    1986-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmelemma surface area. Little direct evidence for this hypothesis exists since experimental systems in which the surface area of wall ingrowths can be modulated have not been available. They grew Pisum sativum cv. Little Marvel plants under three light regimes (150, 500, 1000 umol photons m/sup -2/ sec/sup -1/) using 1000 watt Sylvania Metal Halide lamps. Wall ingrowths in minor vein phloem parenchyma cells were analyzed morphometrically from electron micrographs and a positive correlation was found between light intensity and extent of wall ingrowths. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (1 mM). There was a positive correlation between uptake and transfer cell wall surface area, although the latter increased more than the former. No significant differences were found in vein length, numbers of phloem elements, or phloem cross sectional areas. Changes in light intensity after a leaf reached maturity did not change uptake potential over a period of at least three days.

  7. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health.

    PubMed

    Vogel, Christine; Bodenhausen, Natacha; Gruissem, Wilhelm; Vorholt, Julia A

    2016-10-01

    Plants are colonized by a variety of bacteria, most of which are not pathogenic. Currently, the plant responses to phyllosphere commensals or to pathogen infection in the presence of commensals are not well understood. Here, we examined the transcriptional response of Arabidopsis thaliana leaves to colonization by common commensal bacteria in a gnotobiotic system using RNA sequencing and conducted plant mutant assays. Arabidopsis responded differently to the model bacteria Sphingomonas melonis Fr1 (S.Fr1) and Methylobacterium extorquens PA1 (M.PA1). Whereas M.PA1 only marginally affected the expression of plant genes (< 10), S.Fr1 colonization changed the expression of almost 400 genes. For the latter, genes related to defense responses were activated and partly overlapped with those elicited by the pathogen Pseudomonas syringae DC3000 (Pst). As S.Fr1 is able to mediate plant protective activity against Pst, we tested plant immunity mutants and found that the pattern-recognition co-receptor mutant bak1/bkk1 showed attenuated S.Fr1-dependent plant protection. The experiments demonstrate that the plant responds differently to members of its natural phyllosphere microbiota. A subset of commensals trigger expression of defense-related genes and thereby may contribute to plant health upon pathogen encounter.

  8. Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures

    NASA Astrophysics Data System (ADS)

    Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger

    2016-06-01

    Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.

  9. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  10. Arabidopsis Cell Death in Compatible and Incompatible Interactions with Alternaria brassicicola

    PubMed Central

    Su’udi, Mukhamad; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul; Ahn, Il-Pyung

    2011-01-01

    Two strains of necrotrophic Alternaria brassicicola, Ab40857 and Ab42464, are virulent on Korean cabbage and several wild types of Arabidopsis thaliana. Interaction between Ab42464 and Col-0 was compatible, whereas interaction between Ab40857 and Col-0 was incompatible. The loss of defense, no death (dnd) 1 function abrogated the compatibility between Ab42464 and Col-0, and the accelerated cell death (acd) 2 mutation attenuated the Col-0’s resistance against Ab40857. These two fungal strains induced PR1 transcription in Col-0. Ab40857 accelerated transcription of PDF1.2, THI2.1, CAT, and POX by 12 h compared to those challenged with Ab42464. More abundant cell death was observed in Col-0 infected with Ab42464, however, callose deposition was evident in the incompatible interaction. Remarkably, Ab40857-infected areas of acd2-2 underwent rampant cell death and Ab42464 triggered callose production in dnd1-1. Furthermore, the incompatibility between Ab40857 and Col-0 was nullified by the coronatine- insensitive 1 (coi1) and phytoalexin-deficient 3 (pad3) mutations but not by nonexpresser of PR genes (npr1) and pad4. Ab40857 induced abundant cell death in pad3. Taken together, cell death during the early infection stage is a key determinant that discriminates between a compatible interaction and an incompatible one, and the resistance within Col-0 against Ab40857 is dependent on a defensesignaling pathway mediated by jasmonic acid and PAD3. PMID:21688205

  11. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation.

    PubMed

    Bergonci, Tábata; Ribeiro, Bianca; Ceciliato, Paulo H O; Guerrero-Abad, Juan Carlos; Silva-Filho, Marcio C; Moura, Daniel S

    2014-05-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.

  12. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  13. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    PubMed Central

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C.; Ogata, Yoshiyuki

    2016-01-01

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots. PMID:28248212

  14. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate

    PubMed Central

    Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-01-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  15. Binding of Arabinogalactan Proteins by Yariv Phenylglycoside Triggers Wound-Like Responses in Arabidopsis Cell Cultures1[w

    PubMed Central

    Guan, Yu; Nothnagel, Eugene A.

    2004-01-01

    Arabinogalactan-proteins (AGPs) are cell wall proteoglycans and are widely distributed in the plant kingdom. Classical AGPs and some nonclassical AGPs are predicted to have a glycosylphosphatidylinositol lipid anchor and have been suggested to be involved in cell-cell signaling. Yariv phenylglycoside is a synthetic probe that specifically binds to plant AGPs and has been used to study AGP functions. We treated Arabidopsis suspension cell cultures with Yariv phenylglycoside and observed decreased cell viability, increased cell wall apposition and cytoplasmic vesiculation, and induction of callose deposition. The induction of cell wall apposition and callose synthesis led us to hypothesize that Yariv binding of plant surface AGPs triggers wound-like responses. To study the effect of Yariv binding to plant surface AGPs and to further understand AGP functions, an Arabidopsis whole genome array was used to monitor the transcriptional modifications after Yariv treatment. By comparing the genes that are induced by Yariv treatment with genes whose expressions have been previously shown to be induced by other conditions, we conclude that the gene expression profile induced by Yariv phenylglycoside treatment is most similar to that of wound induction. It remains uncertain whether the Yariv phenylglycoside cross-linking of cell surface AGPs induces these genes through a specific AGP-based signaling mechanism or through a general mechanical perturbation of the cell surface. PMID:15235117

  16. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots.

    PubMed

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C; Ogata, Yoshiyuki

    2016-01-12

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  17. Inhibitive Effects of Mulberry Leaf-Related Extracts on Cell Adhesion and Inflammatory Response in Human Aortic Endothelial Cells

    PubMed Central

    Chao, P.-Y.; Lin, K.-H.; Chiu, C.-C.; Yang, Y.-Y.; Huang, M.-Y.; Yang, C.-M.

    2013-01-01

    Effects of mulberry leaf-related extracts (MLREs) on hydrogen peroxide-induced DNA damage in human lymphocytes and on inflammatory signaling pathways in human aortic endothelial cells (HAECs) were studied. The tested MLREs were rich in flavonols, especially bombyx faces tea (BT) in quercetin and kaempferol. Polyphenols, flavonoids, and anthocyanidin also abounded in BT. The best trolox equivalent antioxidant capacity (TEAC) was generated from the acidic methanolic extracts of BT. Acidic methanolic and water extracts of mulberry leaf tea (MT), mulberry leaf (M), and BT significantly inhibited DNA oxidative damage to lymphocytes based on the comet assay as compared to the H2O2-treated group. TNF-α-induced monocyte-endothelial cell adhesion was significantly suppressed by MLREs. Additionally, nuclear factor kappa B (NF-κB) expression was significantly reduced by BT and MT. Significant reductions were also observed in both NF-κB and activator protein (AP)-1 DNA binding by MLREs. Significant increases in peroxisome proliferator-activated receptor (PPAR) α and γ DNA binding by MLREs were also detected in M and MT extracts, but no evidence for PPAR α DNA binding in 50 μg/mL MT extract was found. Apparently, MLREs can provide distinct cytoprotective mechanisms that may contribute to its putative beneficial effects on suppressing endothelial responses to cytokines during inflammation. PMID:24371453

  18. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    PubMed Central

    2010-01-01

    Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN) models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not sufficient to fully

  19. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis.

    PubMed

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-10-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter-reporter gene analyses and quantitative real-time reverse transcription-PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period.

  20. Finding Missing Interactions of the Arabidopsis thaliana Root Stem Cell Niche Gene Regulatory Network

    PubMed Central

    Azpeitia, Eugenio; Weinstein, Nathan; Benítez, Mariana; Mendoza, Luis; Alvarez-Buylla, Elena R.

    2013-01-01

    Over the last few decades, the Arabidopsis thaliana root stem cell niche (RSCN) has become a model system for the study of plant development and stem cell niche dynamics. Currently, many of the molecular mechanisms involved in RSCN maintenance and development have been described. A few years ago, we published a gene regulatory network (GRN) model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the RSCN could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, GRNs inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana RSCN network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the RSCN: (1) a regulation of PHABULOSA to restrict its expression domain to the vascular cells, (2) a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signaling pathway, and (3) a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the RSCN, formal demonstrations of the procedures should be shown in future efforts. PMID:23658556

  1. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana.

    PubMed

    Degrave, A; Fagard, M; Perino, C; Brisset, M N; Gaubert, S; Laroche, S; Patrit, O; Barny, M-A

    2008-08-01

    Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.

  2. Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures.

    PubMed

    Chaki, Mounira; Shekariesfahlan, Azam; Ageeva, Alexandra; Mengel, Alexander; von Toerne, Christine; Durner, Jörg; Lindermayr, Christian

    2015-09-01

    Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.

  3. Base-pair opening dynamics of primary miR156a using NMR elucidates structural determinants important for its processing level and leaf number phenotype in Arabidopsis

    PubMed Central

    Kim, Wanhui; Kim, Hee-Eun; Lee, Ae-Ree; Jun, A Rim; Jung, Myeong Gyo; Ahn, Ji Hoon; Lee, Joon-Hwa

    2017-01-01

    MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the leaf number prior to flowering in the life cycle of plants. To understand the molecular mechanism of biogenesis of primary miR156a (pri-miR156a) to mature miR156, a base-pair opening dynamics study was performed using model RNAs mimicking the cleavage site of wild type and B5 bulge-stabilizing mutant pri-miR156a constructs. We also determined the mature miR156 levels and measured leaf numbers at flowering of plants overexpressing the wild type and mutant constructs. Our results suggest that the stabilities and/or opening dynamics of the C15·G98 and U16·A97 base-pairs at the cleavage site are essential for formation of the active conformation and for efficient processing of pri-miR156a, and that mutations of the B5 bulge can modulate mature miR156 levels as well as miR156-driven leaf number phenotypes via changes in the base-pair stability of the cleavage site. PMID:27574118

  4. Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2003-04-01

    Cyclase-associated proteins (CAP) are multifunctional proteins involved in Ras-cAMP signalling and regulation of the actin cytoskeleton. It has recently been demonstrated that over-expression of AtCAP1 in transgenic arabidopsis plants causes severe morphological defects owing to loss of actin filaments. To test the generality of the function of AtCAP1 in plants, transgenic tobacco plants over-expressing an arabidopsis CAP (AtCAP1) under the regulation of a glucocorticoid-inducible promoter were produced. Over-expression of AtCAP1 in transgenic tobacco plants led to growth abnormalities, in particular a reduction in the size of leaves. Morphological alterations in leaves were the result of reduced elongation of epidermal and mesophyll cells.

  5. MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis.

    PubMed

    Li, Jiejie; Wang, Xianling; Qin, Tao; Zhang, Yan; Liu, Xiaomin; Sun, Jingbo; Zhou, Yuan; Zhu, Lei; Zhang, Ziding; Yuan, Ming; Mao, Tonglin

    2011-12-01

    The regulation of hypocotyl elongation is important for plant growth. Microtubules play a crucial role during hypocotyl cell elongation. However, the molecular mechanism underlying this process is not well understood. In this study, we describe a novel Arabidopsis thaliana microtubule-destabilizing protein 25 (MDP25) as a negative regulator of hypocotyl cell elongation. We found that MDP25 directly bound to and destabilized microtubules to enhance microtubule depolymerization in vitro. The seedlings of mdp25 mutant Arabidopsis lines had longer etiolated hypocotyls. In addition, MDP25 overexpression resulted in significant overall shortening of hypocotyl cells, which exhibited destabilized cortical microtubules and abnormal cortical microtubule orientation, suggesting that MDP25 plays a crucial role in the negative regulation of hypocotyl cell elongation. Although MDP25 localized to the plasma membrane under normal conditions, increased calcium levels in cells caused MDP25 to partially dissociate from the plasma membrane and move into the cytosol. Cellular MDP25 bound to and destabilized cortical microtubules, resulting in their reorientation, and subsequently inhibited hypocotyl cell elongation. Our results suggest that MDP25 exerts its function on cortical microtubules by responding to cytoplasmic calcium levels to mediate hypocotyl cell elongation.

  6. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana

    PubMed Central

    Tian, Juan; Wang, Xiaohong; Mao, Tonglin; Yuan, Ming; Li, Yunhai

    2016-01-01

    How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules. PMID:27768706

  7. Real-Time Imaging of Cellulose Reorientation during Cell Wall Expansion in Arabidopsis Roots1[W][OA

    PubMed Central

    Anderson, Charles T.; Carroll, Andrew; Akhmetova, Laila; Somerville, Chris

    2010-01-01

    Cellulose forms the major load-bearing network of the plant cell wall, which simultaneously protects the cell and directs its growth. Although the process of cellulose synthesis has been observed, little is known about the behavior of cellulose in the wall after synthesis. Using Pontamine Fast Scarlet 4B, a dye that fluoresces preferentially in the presence of cellulose and has excitation and emission wavelengths suitable for confocal microscopy, we imaged the architecture and dynamics of cellulose in the cell walls of expanding root cells. We found that cellulose exists in Arabidopsis (Arabidopsis thaliana) cell walls in large fibrillar bundles that vary in orientation. During anisotropic wall expansion in wild-type plants, we observed that these cellulose bundles rotate in a transverse to longitudinal direction. We also found that cellulose organization is significantly altered in mutants lacking either a cellulose synthase subunit or two xyloglucan xylosyltransferase isoforms. Our results support a model in which cellulose is deposited transversely to accommodate longitudinal cell expansion and reoriented during expansion to generate a cell wall that is fortified against strain from any direction. PMID:19965966

  8. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    PubMed Central

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; Somerville, Chris; Lukowitz, Wolfgang

    2016-01-01

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms. PMID:26745275

  9. The Arabidopsis EDR1 Protein Kinase Negatively Regulates the ATL1 E3 Ubiquitin Ligase to Suppress Cell Death[W

    PubMed Central

    Serrano, Irene; Gu, Yangnan; Qi, Dong; Dubiella, Ullrich

    2014-01-01

    Loss-of-function mutations in the Arabidopsis thaliana ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced programmed cell death under a variety of abiotic and biotic stress conditions. All edr1 mutant phenotypes can be suppressed by missense mutations in the KEEP ON GOING gene, which encodes a trans-Golgi network/early endosome (TGN/EE)-localized E3 ubiquitin ligase. Here, we report that EDR1 interacts with a second E3 ubiquitin ligase, ARABIDOPSIS TOXICOS EN LEVADURA1 (ATL1), and negatively regulates its activity. Overexpression of ATL1 in transgenic Arabidopsis induced severe growth inhibition and patches of cell death, while transient overexpression in Nicotiana benthamiana leaves induced cell death and tissue collapse. The E3 ligase activity of ATL1 was required for both of these processes. Importantly, we found that ATL1 interacts with EDR1 on TGN/EE vesicles and that EDR1 suppresses ATL1-mediated cell death in N. benthamiana and Arabidopsis. Lastly, knockdown of ATL1 expression suppressed cell death phenotypes associated with the edr1 mutant and made Arabidopsis hypersusceptible to powdery mildew infection. Taken together, our data indicate that ATL1 is a positive regulator of programmed cell death and EDR1 negatively regulates ATL1 activity at the TGN/EE and thus controls stress responses initiated by ATL1-mediated ubiquitination events. PMID:25398498

  10. Development of a two-step screening ESI-TOF-MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: the wound response in Arabidopsis thaliana as a case study.

    PubMed

    Grata, Elia; Boccard, Julien; Glauser, Gaetan; Carrupt, Pierre-Alain; Farmer, Edward E; Wolfender, Jean-Luc; Rudaz, Serge

    2007-09-01

    To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.

  11. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation.

    PubMed

    Jing, Yanjun; Zhang, Dong; Wang, Xin; Tang, Weijiang; Wang, Wanqing; Huai, Junling; Xu, Gang; Chen, Dongqin; Li, Yunliang; Lin, Rongcheng

    2013-01-01

    Photomorphogenesis is a critical plant developmental process that involves light-mediated transcriptome changes, histone modifications, and inhibition of hypocotyl growth. However, the chromatin-based regulatory mechanism underlying this process remains largely unknown. Here, we identify ENHANCED PHOTOMORPHOGENIC1 (EPP1), previously known as PICKLE (PKL), an ATP-dependent chromatin remodeling factor of the chromodomain/helicase/DNA binding family, as a repressor of photomorphogenesis in Arabidopsis thaliana. We show that PKL/EPP1 expression is repressed by light in the hypocotyls in a photoreceptor-dependent manner. Furthermore, we reveal that the transcription factor ELONGATED HYPOCOTYL5 (HY5) binds to the promoters of cell elongation-related genes and recruits PKL/EPP1 through their physical interaction. PKL/EPP1 in turn negatively regulates HY5 by repressing trimethylation of histone H3 Lys 27 at the target loci, thereby regulating the expression of these genes and, thus, hypocotyl elongation. We also show that HY5 possesses transcriptional repression activity. Our study reveals a crucial role for a chromatin remodeling factor in repressing photomorphogenesis and demonstrates that transcription factor-mediated recruitment of chromatin-remodeling machinery is important for plant development in response to changing light environments.

  12. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent.

  13. Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction.

    PubMed

    Wudick, Michael M; Luu, Doan-Trung; Tournaire-Roux, Colette; Sakamoto, Wataru; Maurel, Christophe

    2014-04-01

    The water and nutrient status of pollen is crucial to plant reproduction. Pollen grains of Arabidopsis (Arabidopsis thaliana) contain a large vegetative cell and two smaller sperm cells. Pollen grains express AtTIP1;3 and AtTIP5;1, two members of the Tonoplast Intrinsic Protein subfamily of aquaporins. To address the spatial and temporal expression pattern of the two homologs, C-terminal fusions of AtTIP1;3 and AtTIP5;1 with green fluorescent protein and mCherry, respectively, were expressed in transgenic Arabidopsis under the control of their native promoter. Confocal laser scanning microscopy revealed that AtTIP1;3 and AtTIP5;1 are specific for the vacuoles of the vegetative and sperm cells, respectively. The tonoplast localization of AtTIP5;1 was established by reference to fluorescent protein markers for the mitochondria and vacuoles of sperm and vegetative cells and is at variance with the claim that AtTIP5;1 is localized in vegetative cell mitochondria. AtTIP1;3-green fluorescent protein and AtTIP5;1-mCherry showed concomitant expression, from first pollen mitosis up to pollen tube penetration in the ovule, thereby revealing the dynamics of vacuole morphology in maturating and germinating pollen. Transfer DNA insertion mutants for either AtTIP1;3 or AtTIP5;1 showed no apparent growth phenotype and had no significant defect in male transmission of the mutated alleles. By contrast, a double knockout displayed an abnormal rate of barren siliques, this phenotype being more pronounced under limited water or nutrient supply. The overall data indicate that vacuoles of vegetative and sperm cells functionally interact and contribute to male fertility in adverse environmental conditions.

  14. Real-time Recording of Cytosolic Calcium Levels in Arabidopsis thaliana Cell Cultures during Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Neef, Maren; Ecke, Margret; Hampp, Rüdiger

    2015-07-01

    In plants, like in other organisms, calcium (Ca2+) is an important second messenger which participates in the conversion of environmental signals into molecular responses. There is increasing evidence, that sensing of changes in gravitation or reorientation of tissues is an example for such signaling cascades in which Ca2+ is involved. In order to determine g-dependent changes in the cytosolic calcium (Ca^{2+}_{ {cyt}}) concentration of plant cells, semisolid transgenic callus cell cultures of Arabidopsis thaliana (A.t.), expressing the calcium sensor YC3.6 (cameleon), were exposed to g-forces between 1.8 g and μ g during parabolic flights. Using such cells, intracellular calcium transients can be monitored by FRET in vivo and in real-time. Interestingly we observed a slight decrease of the Ca^{2+}_{ {cyt}} level during the hypergravity phases of a parabola but a significant increase of the Ca^{2+}_{ {cyt}} concentration during microgravity. Application of known Ca2+ inhibitors and antagonists yielded the following effects: nifedipine (Ca2+ channel blocker) showed no effect, whereas LaCl3, GdCl3 (both inhibitors of uptake at the plasma membrane), DPI (inhibitor of NADP oxidase), and DMSO (solvent) diminished the gravity-alteration-related Ca^{2+}_{ {cyt}} response. EGTA (binding of Ca2+) and eosin yellow (inhibitor of a plasma membrane-located Ca2+ pump) suppressed the respective Ca^{2+}_{ {cyt}} changes entirely. We thus conclude that the significant increase in Ca^{2+}_{ {cyt}} under microgravity is largely due to extracellular Ca2+ sources.

  15. Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    PubMed Central

    Espinas, Nino A.; Kobayashi, Koichi; Sato, Yasushi; Mochizuki, Nobuyoshi; Takahashi, Kaori; Tanaka, Ryouichi; Masuda, Tatsuru

    2016-01-01

    Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1) and null (fc1-2) mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1) and null (fc2-2) mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions. PMID:27630653

  16. Germination of Arabidopsis Seed in Space and in Simulated Microgravity: Alterations in Root Cell Growth and Proliferation

    NASA Astrophysics Data System (ADS)

    Manzano, Ana I.; Matía, Isabel; González-Camacho, Fernando; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Dijkstra, Camelia; Larkin, Oliver; Anthony, Paul; Davey, Michael R.; Marco, Roberto; Medina, F. Javier

    2009-11-01

    Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of cell cycle progression and the rate of ribosome biogenesis (this latter taken to estimate cell growth) have been studied using morphometric markers or parameters evaluated by light and electron microscopy in real microgravity on the International Space Station (ISS) and in ground-based simulated microgravity, using the Random Positioning Machine and the Magnetic Levitation Instrument. Results showed enhanced cell proliferation but depleted cell growth in both real and simulated microgravity, indicating that the two processes are uncoupled, unlike the situation under normal gravity on Earth in which they are strictly co-