Science.gov

Sample records for arabidopsis nicotianamine synthase

  1. Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

    PubMed

    Koen, Emmanuel; Besson-Bard, Angélique; Duc, Céline; Astier, Jérémy; Gravot, Antoine; Richaud, Pierre; Lamotte, Olivier; Boucherez, Jossia; Gaymard, Frédéric; Wendehenne, David

    2013-08-01

    The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it displayed a reduced accumulation of ferritins and exhibited a hypersensitivity to iron deficiency. This phenotype was rescued in the complemented lines. Under iron deficiency, atnas4 displayed a lower expression of the iron uptake-related genes IRT1 and FRO2 as well as a reduced ferric reductase activity. Atnas4 plants also showed an enhanced sensitivity to cadmium while the transgenic plants overexpressing AtNAS4 were more tolerant. Collectively, our data, together with recent studies, support the hypothesis that AtNAS4 displays an important role in iron distribution and is required for proper response to iron deficiency and to cadmium supply.

  2. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.

    PubMed

    Weber, Michael; Harada, Emiko; Vess, Christoph; Roepenack-Lahaye, Edda v; Clemens, Stephan

    2004-01-01

    The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT-PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-MS)-based NA analysis procedure and consistently found higher NA levels in roots of A. halleri. Expression of a NA synthase in Zn2+-hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri. Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.

  3. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    PubMed

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family.

    PubMed

    Schuler, Mara; Bauer, Petra

    2011-01-01

    Understanding the regulated inter- and intra-cellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA) is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS). NA is involved in mobilization, uptake, transport, storage, and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes.

  5. Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize.

    PubMed

    Zhou, Mei-Liang; Qi, Lei-Peng; Pang, Jun-Feng; Zhang, Qian; Lei, Zhi; Tang, Yi-Xiong; Zhu, Xue-Mei; Shao, Ji-Rong; Wu, Yan-Min

    2013-06-01

    Nicotianamine (NA) is an important divalent metal chelator and the main precursor of phytosiderophores. NA is synthesized from S-adenosylmethionine in a process catalyzed by nicotianamine synthase (NAS). In this study, a set of structural and phylogenetic analyses have been applied to identify the maize NAS genes based on the maize genome sequence release. Ten maize NAS genes have been mapped; seven of them have not been reported to date. Phylogenetic analysis and expression pattern from microarray data led to their classification into two different orthologous groups. C-terminal fusion of ZmNAS3 with GFP was found in the cytoplasm of Arabidopsis leaf protoplast. Expression analysis by reverse transcription polymerase chain reaction revealed ZmNAS genes are responsive to heavy metal ions (Ni, Fe, Cu, Mn, Zn, and Cd), and all 10 ZmNAS genes were only observed in the root tissue except of ZmNAS6. The promoter of ZmNAS genes was analyzed for the presence of different cis-element response to all kinds of phytohormones and environment stresses. We found that the ZmNAS gene expression of maize seedlings was regulated by jasmonic acid, abscisic acid, and salicylic acid. Microarray data demonstrated that the ZmNAS genes show differential, organ-specific expression patterns in the maize developmental steps. The integrated comparative analysis can improve our current view of ZmNAS genes and facilitate the functional characterization of individual members.

  6. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Cheng, C; Zhang, G Y; Su, J J; Zhi, Y; Xu, S S; Cai, D T; Zhang, X K; Huang, B Q

    2015-12-22

    Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots.

  7. Elevated Nicotianamine Levels in Arabidopsis halleri Roots Play a Key Role in Zinc Hyperaccumulation[W

    PubMed Central

    Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H.; Husted, Søren; Schjoerring, Jan K.; Talke, Ina N.; Krämer, Ute; Clemens, Stephan

    2012-01-01

    Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem. PMID:22374395

  8. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation.

    PubMed

    Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H; Husted, Søren; Schjoerring, Jan K; Talke, Ina N; Krämer, Ute; Clemens, Stephan

    2012-02-01

    Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.

  9. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine.

    PubMed

    Cassin, Gaëlle; Mari, Stéphane; Curie, Catherine; Briat, Jean-François; Czernic, Pierre

    2009-01-01

    Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Arabidopsis lines accumulating 4- and 100-fold more NA than wild-type plants were used in order to evaluate the impact of such an NA overaccumulation on iron homeostasis. The expression of iron-regulated genes including the IRT1/FRO2 iron uptake system is highly induced at the transcript level under both iron-sufficient and iron-deficient conditions. Nevertheless, NA overaccumulation does not interfere with the iron uptake mechanisms since the iron levels are similar in the NA-overaccumulating line and wild-type plants in both roots and leaves under both sufficient and deficient conditions. This observation also suggests that the translocation of iron from the root to the shoot is not affected in the NA-overaccumulating line. However, NA overaccumulation triggers an enhanced sensitivity to iron starvation, associated with a decrease in iron availability. This study draws attention to a particular phenotype where NA in excess paradoxically leads to iron deficiency, probably because of an increase of the NA apoplastic pool sequestering iron. This finding strengthens the notion that extracellular NA in the apoplast could be a major checkpoint to control plant iron homeostasis.

  10. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine

    PubMed Central

    Cassin, Gaëlle; Mari, Stéphane; Curie, Catherine; Briat, Jean-François; Czernic, Pierre

    2009-01-01

    Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Arabidopsis lines accumulating 4- and 100-fold more NA than wild-type plants were used in order to evaluate the impact of such an NA overaccumulation on iron homeostasis. The expression of iron-regulated genes including the IRT1/FRO2 iron uptake system is highly induced at the transcript level under both iron-sufficient and iron-deficient conditions. Nevertheless, NA overaccumulation does not interfere with the iron uptake mechanisms since the iron levels are similar in the NA-overaccumulating line and wild-type plants in both roots and leaves under both sufficient and deficient conditions. This observation also suggests that the translocation of iron from the root to the shoot is not affected in the NA-overaccumulating line. However, NA overaccumulation triggers an enhanced sensitivity to iron starvation, associated with a decrease in iron availability. This study draws attention to a particular phenotype where NA in excess paradoxically leads to iron deficiency, probably because of an increase of the NA apoplastic pool sequestering iron. This finding strengthens the notion that extracellular NA in the apoplast could be a major checkpoint to control plant iron homeostasis. PMID:19188276

  11. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize

    PubMed Central

    2013-01-01

    Background Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families were identified. Although three NAS genes have been characterized in maize, there is still no systematic identification of maize NAS family by genomic mining. Results In this study, nine NAS genes in maize were identified and their expression patterns in different organs including developing seeds were determined. According to the evolutionary relationship and tissue specific expression profiles of ZmNAS genes, they can be subgrouped into two classes. Moreover, the expression patterns of ZmNAS genes in response to fluctuating metal status were analysed. The class I ZmNAS genes were induced under Fe deficiency and were suppressed under Fe excessive conditions, while the expression pattern of class II genes were opposite to class I. The complementary expression patterns of class I and class II ZmNAS genes confirmed the classification of this family. Furthermore, the histochemical localization of ZmNAS1;1/1;2 and ZmNAS3 were determined using in situ hybridization. It was revealed that ZmNAS1;1/1;2, representing the class I genes, mainly expressed in cortex and stele of roots with sufficient Fe, and its expression can expanded in epidermis, as well as shoot apices under Fe deficient conditions. On the contrary, ZmNAS3, one of the class II genes, was accumulated in axillary meristems, leaf primordia and mesophyll cells. These results suggest that the two classes of ZmNAS genes may be regulated on transcriptional level when responds to various demands for iron uptake, translocation

  12. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice.

    PubMed

    Wang, Meng; Gruissem, Wilhelm; Bhullar, Navreet K

    2013-01-01

    Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  13. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    PubMed Central

    Wang, Meng; Gruissem, Wilhelm; Bhullar, Navreet K.

    2013-01-01

    Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content. PMID:23755054

  14. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    PubMed

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in Arabidopsis[C][W

    PubMed Central

    Schuler, Mara; Rellán-Álvarez, Rubén; Fink-Straube, Claudia; Abadía, Javier; Bauer, Petra

    2012-01-01

    The metal chelator nicotianamine promotes the bioavailability of Fe and reduces cellular Fe toxicity. For breeding Fe-efficient crops, we need to explore the fundamental impact of nicotianamine on plant development and physiology. The quadruple nas4x-2 mutant of Arabidopsis thaliana cannot synthesize any nicotianamine, shows strong leaf chlorosis, and is sterile. To date, these phenotypes have not been fully explained. Here, we show that sink organs of this mutant were Fe deficient, while aged leaves were Fe sufficient. Upper organs were also Zn deficient. We demonstrate that transport of Fe to aged leaves relied on citrate, which partially complemented the loss of nicotianamine. In the absence of nicotianamine, Fe accumulated in the phloem. Our results show that rather than enabling the long-distance movement of Fe in the phloem (as is the case for Zn), nicotianamine facilitates the transport of Fe from the phloem to sink organs. We delimit nicotianamine function in plant reproductive biology and demonstrate that nicotianamine acts in pollen development in anthers and pollen tube passage in the carpels. Since Fe and Zn both enhance pollen germination, a lack of either metal may contribute to the reproductive defect. Our study sheds light on the physiological functions of nicotianamine. PMID:22706286

  16. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status.

    PubMed

    Mizuno, Daichi; Higuchi, Kyoko; Sakamoto, Tatsuya; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2003-08-01

    Nicotianamine synthase (NAS) is an enzyme that is critical for the biosynthesis of the mugineic acid family of phytosiderophores in graminaceous plants, and for the homeostasis of metal ions in nongraminaceous plants. We isolated one genomic NAS clone, ZmNAS3, and two cDNA NAS clones, ZmNAS1 and ZmNAS2, from maize (Zea mays cv Alice). In agreement with the increased secretion of phytosiderophores with Fe deficiency, ZmNAS1 and ZmNAS2 were positively expressed only in Fe-deficient roots. In contrast, ZmNAS3 was expressed under Fe-sufficient conditions, and was negatively regulated by Fe deficiency. This is the first report describing down-regulation of NAS gene expression in response to Fe deficiency in plants, shedding light on the role of nicotianamine in graminaceous plants, other than as a precursor in phytosiderophore production. ZmNAS1-green fluorescent protein (sGFP) and ZmNAS2-sGFP were localized at spots in the cytoplasm of onion (Allium cepa) epidermal cells, whereas ZmNAS3-sGFP was distributed throughout the cytoplasm of these cells. ZmNAS1 and ZmNAS3 showed NAS activity in vitro, whereas ZmNAS2 showed none. Due to its duplicated structure, ZmNAS2 was much larger (65.8 kD) than ZmNAS1, ZmNAS3, and previously characterized NAS proteins (30-38 kD) from other plant species. We reveal that maize has two types of NAS proteins based on their expression pattern and subcellular localization.

  17. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin.

    PubMed

    Wirth, Judith; Poletti, Susanna; Aeschlimann, Beat; Yakandawala, Nandadeva; Drosse, Benedikt; Osorio, Sonia; Tohge, Takayuki; Fernie, Alisdair R; Günther, Detlef; Gruissem, Wilhelm; Sautter, Christof

    2009-09-01

    Nearly one-third of the world's population, mostly women and children, suffer from iron malnutrition and its consequences, such as anaemia or impaired mental development. Iron fortification of food is difficult because soluble iron is either unstable or unpalatable, and non-soluble iron is not bioavailable. Genetic engineering of crop plants to increase iron content has therefore emerged as an alternative for iron biofortification. To date, strategies to increase iron content have relied on single genes, with limited success. Our work focuses on rice as a model plant, because it feeds one-half of the world's population, including the majority of the iron-malnourished population. Using the targeted expression of two transgenes, nicotianamine synthase and ferritin, we increased the iron content of rice endosperm by more than six-fold. Analysis of transgenic rice lines confirmed that, in combination, they provide a synergistic effect on iron uptake and storage. Laser ablation-inductively coupled plasma-mass spectrometry showed that the iron in the endosperm of the transgenic rice lines accumulated in spots, most probably as a consequence of spatially restricted ferritin accumulation. Agronomic evaluation of the high-iron rice lines did not reveal a yield penalty or significant changes in trait characters, except for a tendency to earlier flowering. Overall, we have demonstrated that rice can be engineered with a small number of genes to achieve iron biofortification at a dietary significant level.

  18. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.

    PubMed

    Tsednee, Munkhtsetseg; Yang, Shun-Chung; Lee, Der-Chuen; Yeh, Kuo-Chen

    2014-10-01

    Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that excess zinc treatment induced secretion of NA in A. halleri roots compared with the nonhyperaccumulator Arabidopsis thaliana. Metal speciation analysis further revealed that the secreted NA forms a stable complex with Zn(II). Supplying NA to a nonhyperaccumulator species markedly increased plant zinc tolerance by decreasing zinc uptake. Therefore, NA secretion from A. halleri roots facilitates zinc hypertolerance through forming a Zn(II)-NA complex outside the roots to achieve a coordinated zinc uptake rate into roots. Secretion of NA was also found to be responsible for the maintenance of iron homeostasis under excess zinc. Together our results reveal root-secretion mechanisms associated with hypertolerance and hyperaccumulation. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Root-Secreted Nicotianamine from Arabidopsis halleri Facilitates Zinc Hypertolerance by Regulating Zinc Bioavailability1[W][OPEN

    PubMed Central

    Tsednee, Munkhtsetseg; Yang, Shun-Chung; Lee, Der-Chuen; Yeh, Kuo-Chen

    2014-01-01

    Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that excess zinc treatment induced secretion of NA in A. halleri roots compared with the nonhyperaccumulator Arabidopsis thaliana. Metal speciation analysis further revealed that the secreted NA forms a stable complex with Zn(II). Supplying NA to a nonhyperaccumulator species markedly increased plant zinc tolerance by decreasing zinc uptake. Therefore, NA secretion from A. halleri roots facilitates zinc hypertolerance through forming a Zn(II)-NA complex outside the roots to achieve a coordinated zinc uptake rate into roots. Secretion of NA was also found to be responsible for the maintenance of iron homeostasis under excess zinc. Together our results reveal root-secretion mechanisms associated with hypertolerance and hyperaccumulation. PMID:25118254

  20. Successful Reproduction Requires the Function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 Metal-Nicotianamine Transporters in Both Vegetative and Reproductive Structures

    SciTech Connect

    Chu, H.; Chiecko, J; Punshon, T; Lanzirotti, A; Lahner, B; Salt, D; Walker, E

    2010-01-01

    Several members of the Yellow Stripe-Like (YSL) family of proteins are transporters of metals that are bound to the metal chelator nicotianamine or the related set of mugineic acid family chelators known as phytosiderophores. Here, we examine the physiological functions of three closely related Arabidopsis (Arabidopsis thaliana) YSL family members, AtYSL1, AtYSL2, and AtYSL3, to elucidate their role(s) in the allocation of metals into various organs of Arabidopsis. We show that AtYSL3 and AtYSL1 are localized to the plasma membrane and function as iron transporters in yeast functional complementation assays. By using inflorescence grafting, we show that AtYSL1 and AtYSL3 have dual roles in reproduction: their activity in the leaves is required for normal fertility and normal seed development, while activity in the inflorescences themselves is required for proper loading of metals into the seeds. We further demonstrate that the AtYSL1 and AtYSL2 proteins, when expressed from the AtYSL3 promoter, can only partially rescue the phenotypes of a ysl1ysl3 double mutant, suggesting that although these three YSL transporters are closely related and have similar patterns of expression, they have distinct activities in planta. In particular, neither AtYSL1 nor AtYSL2 is able to functionally complement the reproductive defects exhibited by ysl1ysl3 double mutant plants.

  1. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures.

    PubMed

    Chu, Heng-Hsuan; Chiecko, Jeff; Punshon, Tracy; Lanzirotti, Antonio; Lahner, Brett; Salt, David E; Walker, Elsbeth L

    2010-09-01

    Several members of the Yellow Stripe-Like (YSL) family of proteins are transporters of metals that are bound to the metal chelator nicotianamine or the related set of mugineic acid family chelators known as phytosiderophores. Here, we examine the physiological functions of three closely related Arabidopsis (Arabidopsis thaliana) YSL family members, AtYSL1, AtYSL2, and AtYSL3, to elucidate their role(s) in the allocation of metals into various organs of Arabidopsis. We show that AtYSL3 and AtYSL1 are localized to the plasma membrane and function as iron transporters in yeast functional complementation assays. By using inflorescence grafting, we show that AtYSL1 and AtYSL3 have dual roles in reproduction: their activity in the leaves is required for normal fertility and normal seed development, while activity in the inflorescences themselves is required for proper loading of metals into the seeds. We further demonstrate that the AtYSL1 and AtYSL2 proteins, when expressed from the AtYSL3 promoter, can only partially rescue the phenotypes of a ysl1ysl3 double mutant, suggesting that although these three YSL transporters are closely related and have similar patterns of expression, they have distinct activities in planta. In particular, neither AtYSL1 nor AtYSL2 is able to functionally complement the reproductive defects exhibited by ysl1ysl3 double mutant plants.

  2. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis

    PubMed Central

    Wang, Qiang; Jia, Meirong; Huh, Jung-Hyun; Muchlinski, Andrew; Peters, Reuben J.; Tholl, Dorothea

    2016-01-01

    Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues. PMID:27933080

  3. Characterization of the cDNA and gene coding for the biotin synthase of Arabidopsis thaliana.

    PubMed Central

    Weaver, L M; Yu, F; Wurtele, E S; Nikolau, B J

    1996-01-01

    Biotin, an essential cofactor, is synthesized de novo only by plants and some microbes. An Arabidopsis thaliana expressed sequence tag that shows sequence similarity to the carboxyl end of biotin synthase from Escherichia coli was used to isolate a near-full-length cDNA. This cDNA was shown to code for the Arabidopsis biotin synthase by its ability to complement a bioB mutant of E. coli. Site-specific mutagenesis indicates that residue threonine-173, which is highly conserved in biotin synthases, is important for catalytic competence of the enzyme. The primary sequence of the Arabidopsis biotin synthase is most similar to biotin synthases from E. coli, Serratia marcescens, and Saccharomyces cerevisiae (about 50% sequence identity) and more distantly related to the Bacillus sphaericus enzyme (33% sequence identity). The primary sequence of the amino terminus of the Arabidopsis biotin synthase may represent an organelle-targeting transit peptide. The single Arabidopsis gene coding for biotin synthase, BIO2, was isolated and sequenced. The biotin synthase coding sequence is interrupted by five introns. The gene sequence upstream of the translation start site has several unusual features, including imperfect palindromes and polypyrimidine sequences, which may function in the transcriptional regulation of the BIO2 gene. PMID:8819873

  4. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.

    PubMed Central

    Ha, S B; Smith, A P; Howden, R; Dietrich, W M; Bugg, S; O'Connell, M J; Goldsbrough, P B; Cobbett, C S

    1999-01-01

    Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species. PMID:10368185

  5. Nicotianamine, a Novel Enhancer of Rice Iron Bioavailability to Humans

    PubMed Central

    Zheng, Luqing; Cheng, Zhiqiang; Ai, Chunxiang; Jiang, Xinhang; Bei, Xiaoshu; Zheng, Ye; Glahn, Raymond P.; Welch, Ross M.; Miller, Dennis D.; Lei, Xin Gen; Shou, Huixia

    2010-01-01

    Background Polished rice is a staple food for over 50% of the world's population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world. Methodology/Principal Findings We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis. Conclusions Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance. PMID:20419136

  6. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway.

    PubMed Central

    Niyogi, K K; Fink, G R

    1992-01-01

    Arabidopsis thaliana has two genes, ASA1 and ASA2, encoding the alpha subunit of anthranilate synthase, the enzyme catalyzing the first reaction in the tryptophan biosynthetic pathway. As a branchpoint enzyme in aromatic amino acid biosynthesis, anthranilate synthase has an important regulatory role. The sequences of the plant genes are homologous to their microbial counterparts. Both predicted proteins have putative chloroplast transit peptides at their amino termini and conserved amino acids involved in feedback inhibition by tryptophan. ASA1 and ASA2 cDNAs complement anthranilate synthase alpha subunit mutations in the yeast Saccharomyces cerevisiae and in Escherichia coli, confirming that both genes encode functional anthranilate synthase proteins. The distributions of ASA1 and ASA2 mRNAs in various parts of Arabidopsis plants are overlapping but nonidentical, and ASA1 mRNA is approximately 10 times more abundant in whole plants. Whereas ASA2 is expressed at a constitutive basal level, ASA1 is induced by wounding and bacterial pathogen infiltration, suggesting a novel role for ASA1 in the production of tryptophan pathway metabolites as part of an Arabidopsis defense response. Regulation of key steps in aromatic amino acid biosynthesis in Arabidopsis appears to involve differential expression of duplicated genes. PMID:1392592

  7. β-Cyanoalanine Synthase Is a Mitochondrial Cysteine Synthase-Like Protein in Spinach and Arabidopsis1

    PubMed Central

    Hatzfeld, Yves; Maruyama, Akiko; Schmidt, Ahlert; Noji, Masaaki; Ishizawa, Kimiharu; Saito, Kazuki

    2000-01-01

    β-Cyano-alanine synthase (CAS; EC 4.4.1.9) plays an important role in cyanide metabolism in plants. Although the enzymatic activity of β-cyano-Ala synthase has been detected in a variety of plants, no cDNA or gene has been identified so far. We hypothesized that the mitochondrial cysteine synthase (CS; EC 4.2.99.8) isoform, Bsas3, could actually be identical to CAS in spinach (Spinacia oleracea) and Arabidopsis. An Arabidopsis expressed sequence tag database was searched for putative Bsas3 homologs and four new CS-like isoforms, ARAth;Bsas1;1, ARAth;Bsas3;1, ARAth;Bsas4;1, and ARAth;Bsas4;2, were identified in the process. ARAth;Bsas3;1 protein was homologous to the mitochondrial SPIol;Bsas3;1 isoform from spinach, whereas ARAth;Bsas4;1 and ARAth;Bsas4;2 proteins defined a new class within the CS-like proteins family. In contrast to spinach SPIol;Bsas1;1 and SPIol;Bsas2;1 recombinant proteins, spinach SPIol;Bsas3;1 and Arabidopsis ARAth;Bsas3;1 recombinant proteins exhibited preferred substrate specificities for the CAS reaction rather than for the CS reaction, which identified these Bsas3 isoforms as CAS. Immunoblot studies supported this conclusion. This is the first report of the identification of CAS synthase-encoding cDNAs in a living organism. A new nomenclature for CS-like proteins in plants is also proposed. PMID:10889265

  8. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.

    PubMed

    Le Jean, Marie; Schikora, Adam; Mari, Stéphane; Briat, Jean-François; Curie, Catherine

    2005-12-01

    The Arabidopsis Yellow Stripe 1-Like (YSL) proteins have been identified by homology with the maize (Zea mays) Yellow Stripe 1 (YS1) transporter which is responsible for iron-phytosiderophore (PS) uptake by roots in response to iron shortage. Although dicotyledonous plants do not synthesize PS, they do synthesize the PS precursor nicotianamine, a strong metal chelator essential for maintenance of iron homeostasis and copper translocation. Furthermore, ZmYS1 and the rice (Oryza sativa) protein OsYSL2 have metal-nicotianamine transport activities in heterologous expression systems. In this work, we have characterized the function of AtYSL1 in planta. Two insertional loss-of-function ysl1 mutants of Arabidopsis were found to exhibit increased nicotianamine accumulation in shoots. More importantly, seeds of both ysl1 knockouts contained less iron and nicotianamine than wild-type seeds, even when produced by plants grown in the presence of an excess of iron. This phenotype could be reverted by expressing the wild-type AtYSL1 gene in ysl1 plants. ysl1 seeds germinated slowly, but this defect was rescued by an iron supply. AtYSL1 was expressed in the xylem parenchyma of leaves, where it was upregulated in response to iron excess, as well as in pollen and in young silique parts. This pattern is consistent with long-distance circulation of iron and nicotianamine and their delivery to the seed. Taken together, our work provides strong physiological evidence that iron and nicotianamine levels in seeds rely in part on AtYSL1 function.

  9. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    SciTech Connect

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  10. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus.

    PubMed

    Ghssein, Ghassan; Brutesco, Catherine; Ouerdane, Laurent; Fojcik, Clémentine; Izaute, Amélie; Wang, Shuanglong; Hajjar, Christine; Lobinski, Ryszard; Lemaire, David; Richaud, Pierre; Voulhoux, Romé; Espaillat, Akbar; Cava, Felipe; Pignol, David; Borezée-Durant, Elise; Arnoux, Pascal

    2016-05-27

    Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection. Copyright © 2016, American Association for the Advancement of Science.

  11. Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 from Arabidopsis thaliana

    PubMed Central

    Griffin, Michael D. W.; Billakanti, Jagan M.; Gerrard, Juliet A.; Dobson, Renwick C. J.; Pearce, F. Grant

    2011-01-01

    Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the first committed step of the lysine-biosynthetic pathway in plants and bacteria. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS2 from Arabidopsis thaliana are reported. Diffraction-quality protein crystals belonged to space group P21212. PMID:22102238

  12. Identification of marneral synthase, which is critical for growth and development in Arabidopsis.

    PubMed

    Go, Young S; Lee, Saet B; Kim, Hae J; Kim, Jungmook; Park, Hyo-Young; Kim, Jeong-Kook; Shibata, Kyomi; Yokota, Takao; Ohyama, Kiyoshi; Muranaka, Toshiya; Arseniyadis, Siméon; Suh, Mi C

    2012-12-01

    Plants produce structurally diverse triterpenoids, which are important for their life and survival. Most triterpenoids and sterols share a common biosynthetic intermediate, 2,3-oxidosqualene (OS), which is cyclized by 2,3-oxidosqualene cyclase (OSC). To investigate the role of an OSC, marneral synthase 1 (MRN1), in planta, we characterized a Arabidopsis mrn1 knock-out mutant displaying round-shaped leaves, late flowering, and delayed embryogenesis. Reduced growth of mrn1 was caused by inhibition of cell expansion and elongation. Marnerol, a reduced form of marneral, was detected in Arabidopsis overexpressing MRN1, but not in the wild type or mrn1. Alterations in the levels of sterols and triterpenols and defects in membrane integrity and permeability were observed in the mrn1. In addition, GUS expression, under the control of the MRN1 gene promoter, was specifically detected in shoot and root apical meristems, which are responsible for primary growth, and the mRNA expression of Arabidopsis clade II OSCs was preferentially observed in roots and siliques containing developing seeds. The eGFP:MRN1 was localized to the endoplasmic reticulum in tobacco protoplasts. Taken together, this report provides evidence that the unusual triterpenoid pathway via marneral synthase is important for the growth and development of Arabidopsis. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  13. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    PubMed Central

    Lei, Lei; Bashline, Logan; Li, Shundai

    2015-01-01

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress. PMID:26443667

  14. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    SciTech Connect

    Lei, Lei; Singh, Abhishek; Bashline, Logan; Li, Shundai; Yingling, Yaroslava G.; Gu, Ying

    2015-10-06

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.

  15. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis.

    PubMed

    Luttgeharm, Kyle D; Cahoon, Edgar B; Markham, Jonathan E

    2016-03-01

    Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism.

  16. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  17. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  18. Biochemical Characterization of the Arabidopsis Biotin Synthase Reaction. The Importance of Mitochondria in Biotin Synthesis1

    PubMed Central

    Picciocchi, Antoine; Douce, Roland; Alban, Claude

    2001-01-01

    Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h−1 with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (Km = 30 μm) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K0.5 = 39 μm), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis. PMID:11706201

  19. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  20. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    PubMed Central

    Yoshida, Hitoshi; Nagata, Masayasu; Saito, Koji; Wang, Kevin LC; Ecker, Joseph R

    2005-01-01

    Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1 family proteins

  1. Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis1[W][OA

    PubMed Central

    Owens, Daniel K.; Alerding, Anne B.; Crosby, Kevin C.; Bandara, Aloka B.; Westwood, James H.; Winkel, Brenda S.J.

    2008-01-01

    The genome of Arabidopsis (Arabidopsis thaliana) contains five sequences with high similarity to FLAVONOL SYNTHASE1 (AtFLS1), a previously characterized flavonol synthase gene that plays a central role in flavonoid metabolism. This apparent redundancy suggests the possibility that Arabidopsis uses multiple isoforms of FLS with different substrate specificities to mediate the production of the flavonols, quercetin and kaempferol, in a tissue-specific and inducible manner. However, biochemical and genetic analysis of the six AtFLS sequences indicates that, although several of the members are expressed, only AtFLS1 encodes a catalytically competent protein. AtFLS1 also appears to be the only member of this group that influences flavonoid levels and the root gravitropic response in seedlings under nonstressed conditions. This study showed that the other expressed AtFLS sequences have tissue- and cell type-specific promoter activities that overlap with those of AtFLS1 and encode proteins that interact with other flavonoid enzymes in yeast two-hybrid assays. Thus, it is possible that these “pseudogenes” have alternative, noncatalytic functions that have not yet been uncovered. PMID:18467451

  2. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination.

    PubMed

    Pracharoenwattana, Itsara; Cornah, Johanna E; Smith, Steven M

    2005-07-01

    We tested the hypothesis that peroxisomal citrate synthase (CSY) is required for carbon transfer from peroxisomes to mitochondria during respiration of triacylglycerol in Arabidopsis thaliana seedlings. Two genes encoding peroxisomal CSY are expressed in Arabidopsis seedlings, and seeds from plants with both CSY genes disrupted were dormant and did not metabolize triacylglycerol. Germination was achieved by removing the seed coat and supplying sucrose, but the seedlings still did not use triacylglycerol. The mutant seedlings were resistant to 2,4-dichlorophenoxybutyric acid, indicating a block in peroxisomal beta-oxidation, and were unable to develop further after transfer to soil. The mutant phenotype was complemented with a cDNA encoding CSY with either its native peroxisomal targeting sequence (PTS2) or a heterologous PTS1 sequence from pumpkin (Cucurbita pepo) malate synthase. These results suggest that peroxisomal CSY in Arabidopsis is not only a key enzyme of the glyoxylate cycle but also catalyzes an essential step in the respiration of fatty acids. We conclude that citrate is exported from the peroxisome during fatty acid respiration, whereas in yeast, acetylcarnitine is exported.

  3. Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana.

    PubMed

    Yun, Choong-Soo; Yamamoto, Tomio; Nozawa, Akira; Tozawa, Yuzuru

    2008-04-01

    Arabidopsis thaliana lacks the flavone biosynthetic pathway, probably because of a lack or low activity of a flavone synthase. To establish this biosynthetic pathway in Arabidopsis, we subjected this model plant to transformation with the parsley gene for flavone synthase type I (FNS-I). Transgenic seedlings expressing FNS-I were cultured in liquid medium with or without naringenin, and plant extracts were then analyzed by high-performance liquid chromatography. In contrast to wild-type seedlings, the transgenic seedlings accumulated substantial amounts of apigenin, which is produced from naringenin by FNS-I, and the apigenin level correlated with the abundance of FNS-I mRNA in three different transgenic lines. These results indicate that the FNS-I transgene produces a functional enzyme that catalyzes the conversion of naringenin to apigenin in Arabidopsis. These FNS-I transgenic lines should prove useful in investigating the in vivo functions of enzymes that mediate the synthesis of the wide variety of flavones found in other plants.

  4. (+)-Thalianatriene and (-)-Retigeranin B Catalyzed by Sesterterpene Synthases from Arabidopsis thaliana.

    PubMed

    Shao, Jie; Chen, Qing-Wen; Lv, Hua-Jun; He, Juan; Liu, Zhi-Feng; Lu, Yan-Na; Liu, Hai-Li; Wang, Guo-Dong; Wang, Yong

    2017-04-07

    Two GFPPS linked (+)-thalianatriene (1) and (-)-retigeranin B (2) sesterterpene synthase genes were identified from the genome of Arabidopsis thaliana. 1 possesses an unprecedented 11-6-5 tricyclic ring system, while 2 contains a characteristic 5-5-5-6-5 pentacyclic ring system. Their structures were determined by extensive NMR spectroscopy, chemical derivatization, and X-ray crystallography. The variable-temp NMR measurement of 3, a diepoxy-bearing derivative of 1, enables us to completely assign the NMR signals of the two conformers as 3a (67%, UUU) and 3b (33%, UUD). A plausible biosynthesis mechanism of 1 was proposed.

  5. Functional characterization of 5-enopyruvylshikimate-3-phosphate synthase from Alkaliphilus metalliredigens in transgenic Arabidopsis.

    PubMed

    Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xu, Jing; Zhao, Wei; Yao, Quan-Hong; Sun, Sheng

    2014-10-01

    Although a large number of AroA enzymes (EPSPS: 5-enopyruvylshikimate-3-phosphate synthase) have been identified, cloned, and tested for glyphosate resistance, only two AroA variants, derived from Agrobacterium tumefaciens strain CP4 and Zea mays, have been utilized to produce the commercial glyphosate-resistant crops. Here, we have used a PCR-based twostep DNA synthesis method to synthesize an aroA gene (aroAA. metalliredigens) from Alkaliphilus metalliredigens, encoding a new EPSPS. Furthermore, transgenic Arabidopsis with the new aroAA. metalliredigens gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.

  6. Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana.

    PubMed

    Jun, Luo; Saiki, Ryoichi; Tatsumi, Kei; Nakagawa, Tsuyoshi; Kawamukai, Makoto

    2004-12-01

    Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells. These two different subcellular localizations are thought to be the reflection of their roles in solanesyl diphosphate synthesis in two different parts: presumably SPS1 and SPS2 for the side chains of ubiquinone and plastoquinone, respectively.

  7. Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana.

    PubMed

    Liu, Zhaolei; Gu, Chunsun; Chen, Fadi; Yang, Dongyin; Wu, Kunwei; Chen, Sumei; Jiang, Jiafu; Zhang, Zhen

    2012-02-01

    Phytochelatin synthase (PCS) is a key enzyme involved in the synthesis of phytochelatins, which are thought to play important roles in heavy metal detoxification. The sacred lotus (Nelumbo nucifera), one of the most popular ornamental species, has been shown to be a potential phytoremediator of heavy metal polluted water. However, the phytochelatin synthase gene in N. nucifera has not been identified yet. Here, we report the isolation and function characterization of a N. nucifera homologue of phytochelatin synthase. The sequence obtained shares a high degree of similarity with PCSs from other plant species and was named as Nelumbo nucifera phytochelatin synthase1 (NnPCS1). By using quantitative RT-PCR, we found that the expression of NnPCS1 in leaves of N. nucifera was dramatically increased in response to Cadmium (Cd) treatment. We further showed that, when exposed to Cd stress, Arabidopsis transgenic plants heterologous expressing NnPCS1 accumulated more Cd when compared with wild type. These results suggest that NnPCS1 involved in the response of N. nucifera to Cd stress and may represent a useful target gene for the phytoremediation of Cd-polluted water.

  8. Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis.

    PubMed

    Chary, S Narasimha; Hicks, Glenn R; Choi, Yoon Gi; Carter, David; Raikhel, Natasha V

    2008-01-01

    The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker delta-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.

  9. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  10. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

    PubMed

    Kim, Won-Chan; Reca, Ida-Barbara; Kim, Yongsig; Park, Sunchung; Thomashow, Michael F; Keegstra, Kenneth; Han, Kyung-Hwan

    2014-03-01

    Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family. Earlier work has shown that CSLA9 is responsible for the majority of glucomannan synthesis in both primary and secondary cell walls of Arabidopsis inflorescence stems. Little is known about how expression of the CLSA9 gene is regulated. Sequence analysis of the CSLA9 promoter region revealed the presence of multiple copies of a cis-regulatory motif (M46RE) recognized by transcription factor MYB46, leading to the hypothesis that MYB46 (At5g12870) is a direct regulator of the mannan synthase CLSA9. We obtained several lines of experimental evidence in support of this hypothesis. First, the expression of CSLA9 was substantially upregulated by MYB46 overexpression. Second, electrophoretic mobility shift assay (EMSA) was used to demonstrate the direct binding of MYB46 to the promoter of CSLA9 in vitro. This interaction was further confirmed in vivo by a chromatin immunoprecipitation assay. Finally, over-expression of MYB46 resulted in a significant increase in mannan content. Considering the multifaceted nature of MYB46-mediated transcriptional regulation of secondary wall biosynthesis, we reasoned that additional transcription factors are involved in the CSLA9 regulation. This hypothesis was tested by carrying out yeast-one hybrid screening, which identified ANAC041 and bZIP1 as direct regulators of CSLA9. Transcriptional activation assays and EMSA were used to confirm the yeast-one hybrid results. Taken together, we report that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.

  11. Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis

    PubMed Central

    Yuan, Yinan; Chung, Jeng-Der; Fu, Xueyan; Johnson, Virgil E.; Ranjan, Priya; Booth, Sarah L.; Harding, Scott A.; Tsai, Chung-Jui

    2009-01-01

    Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing ≈50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels. PMID:19996170

  12. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis.

    PubMed

    Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2007-05-01

    Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.

  13. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase.

    PubMed

    Wang, Jian-Guo; Lee, Patrick K-M; Dong, Yu-Hui; Pang, Siew Siew; Duggleby, Ronald G; Li, Zheng-Ming; Guddat, Luke W

    2009-03-01

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is the first enzyme in the biosynthetic pathway of the branched-chain amino acids. It catalyzes the conversion of two molecules of pyruvate into 2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 2-aceto-2-hydroxybutyrate. AHAS requires the cofactors thiamine diphosphate (ThDP), Mg(2+) and FAD for activity. The herbicides that target this enzyme are effective in protecting a broad range of crops from weed species. However, resistance in the field is now a serious problem worldwide. To address this, two new sulfonylureas, monosulfuron and monosulfuron ester, have been developed as commercial herbicides in China. These molecules differ from the traditional sulfonylureas in that the heterocyclic ring attached to the nitrogen atom of the sulfonylurea bridge is monosubstituted rather than disubstituted. The structures of these compounds in complex with the catalytic subunit of Arabidopsis thaliana AHAS have been determined to 3.0 and 2.8 A, respectively. In both complexes, these molecules are bound in the tunnel leading to the active site, such that the sole substituent of the heterocyclic ring is buried deepest and oriented towards the ThDP. Unlike the structures of Arabidopsis thaliana AHAS in complex with the classic disubstituted sulfonylureas, where ThDP is broken, this cofactor is intact and present most likely as the hydroxylethyl intermediate.

  14. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase

    SciTech Connect

    Wang, Jian-Guo; Lee, Patrick K.-M.; Dong, Yu-Hui; Pang, Siew Siew; Duggleby, Ronald G.; Li, Zheng-Ming; Guddat, Luke W.

    2009-08-17

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is the first enzyme in the biosynthetic pathway of the branched-chain amino acids. It catalyzes the conversion of two molecules of pyruvate into 2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 2-aceto-2-hydroxybutyrate. AHAS requires the cofactors thiamine diphosphate (ThDP), Mg{sup 2+} and FAD for activity. The herbicides that target this enzyme are effective in protecting a broad range of crops from weed species. However, resistance in the field is now a serious problem worldwide. To address this, two new sulfonylureas, monosulfuron and monosulfuron ester, have been developed as commercial herbicides in China. These molecules differ from the traditional sulfonylureas in that the heterocyclic ring attached to the nitrogen atom of the sulfonylurea bridge is monosubstituted rather than disubstituted. The structures of these compounds in complex with the catalytic subunit of Arabidopsis thaliana AHAS have been determined to 3.0 and 2.8 {angstrom}, respectively. In both complexes, these molecules are bound in the tunnel leading to the active site, such that the sole substituent of the heterocyclic ring is buried deepest and oriented towards the ThDP. Unlike the structures of Arabidopsis thaliana AHAS in complex with the classic disubstituted sulfonylureas, where ThDP is broken, this cofactor is intact and present most likely as the hydroxylethyl intermediate.

  15. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  16. Phosphatidylserine synthase 1 is required for inflorescence meristem and organ development in Arabidopsis.

    PubMed

    Liu, Chengwu; Yin, Hengfu; Gao, Peng; Hu, Xiaohe; Yang, Jun; Liu, Zhongchi; Fu, Xiangdong; Luo, Da

    2013-08-01

    Phosphatidylserine (PS), a quantitatively minor membrane phospholipid, is involved in many biological processes besides its role in membrane structure. One PS synthesis gene, PHOSPHATIDYLSERINE SYNTHASE1 (PSS1), has been discovered to be required for microspore development in Arabidopsis thaliana L. but how PSS1 affects postembryonic development is still largely unknown. Here, we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis. Disruption of PSS1 causes severe dwarfism, smaller lateral organs and reduced size of inflorescence meristem. Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant. RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) depend on PSS1. Moreover, the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant. Both SHOOTSTEMLESS (STM) and BREVIPEDICELLUS (BP) are upregulated, and auxin distribution is disrupted in rosette leaves of pss1-1. However, expression of BP, which is also a regulator of internode development, is lost in the pss1-1 inflorescence stem. Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway, and in leaf and internode development by differentially regulating the class I KNOX genes. © 2013 Institute of Botany, Chinese Academy of Sciences.

  17. A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis

    DOE PAGES

    Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.; ...

    2017-04-26

    Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFBCHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFBCHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFBCHS exhibits developmental expression patterns in Arabidopsis leaves, stems, and siliques and stronglymore » responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFBCHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFBCHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less

  18. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.

    PubMed

    Wawrzyńska, Anna; Kurzyk, Agata; Mierzwińska, Monika; Płochocka, Danuta; Wieczorek, Grzegorz; Sirko, Agnieszka

    2013-06-01

    Biosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production. The aim of our studies was to deregulate the CS complex formation in order to investigate its function in the control of sulfur homeostasis and optimize cysteine synthesis. Computational modeling was used to build a model of the Arabidopsis thaliana mitochondrial CS complex. Several polypeptides based on OAS-TL C amino-acid sequence found at SAT-OASTL interaction sites were designed as probable competitors for SAT3 binding. After verification of the binding in a yeast two-hybrid assay, the most strongly interacting polypeptide was introduced to different cellular compartments of Arabidopsis cell via genetic transformation. Moderate increase in total SAT and OAS-TL activities, but not thiols content, was observed dependent on the transgenic line and sulfur availability in the hydroponic medium. Though our studies demonstrate the proof of principle, they also suggest more complex interaction of both enzymes underlying the mechanism of their reciprocal regulation.

  19. A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms1[OPEN

    PubMed Central

    Schipper, Bert; Beekwilder, Jules

    2016-01-01

    A wide diversity of isoprenoids is produced in different plant compartments. Most groups of isoprenoids synthesized in plastids, and some produced elsewhere in the plant cell derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. In Arabidopsis (Arabidopsis thaliana), five genes appear to encode GGPPS isoforms localized in plastids (two), the endoplasmic reticulum (two), and mitochondria (one). However, the loss of function of the plastid-targeted GGPPS11 isoform (referred to as G11) is sufficient to cause lethality. Here, we show that the absence of a strong transcription initiation site in the G11 gene results in the production of transcripts of different lengths. The longer transcripts encode an isoform with a functional plastid import sequence that produces GGPP for the major groups of photosynthesis-related plastidial isoprenoids. However, shorter transcripts are also produced that lack the first translation initiation codon and rely on a second in-frame ATG codon to produce an enzymatically active isoform lacking this N-terminal domain. This short enzyme localizes in the cytosol and is essential for embryo development. Our results confirm that the production of differentially targeted enzyme isoforms from the same gene is a central mechanism to control the biosynthesis of isoprenoid precursors in different plant cell compartments. PMID:27707890

  20. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis

    PubMed Central

    Zhou, Xiangjun; Welsch, Ralf; Yang, Yong; Álvarez, Daniel; Riediger, Matthias; Yuan, Hui; Fish, Tara; Liu, Jiping; Thannhauser, Theodore W.; Li, Li

    2015-01-01

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control carotenoid biosynthesis and accumulation in plants. However, little is known about the mechanisms underlying their posttranscriptional regulation. Here we report that PSY and OR family proteins [Arabidopsis thaliana OR (AtOR) and AtOR-like] physically interacted with each other in plastids. We found that alteration of OR expression in Arabidopsis exerted minimal effect on PSY transcript abundance. However, overexpression of AtOR significantly increased the amount of enzymatically active PSY, whereas an ator ator-like double mutant exhibited a dramatically reduced PSY level. The results indicate that the OR proteins serve as the major posttranscriptional regulators of PSY. The ator or ator-like single mutant had little effect on PSY protein levels, which involves a compensatory mechanism and suggests partial functional redundancy. In addition, modification of PSY expression resulted in altered AtOR protein levels, corroborating a mutual regulation of PSY and OR. Carotenoid content showed a correlated change with OR-mediated PSY level, demonstrating the function of OR in controlling carotenoid biosynthesis by regulating PSY. Our findings reveal a novel mechanism by which carotenoid biosynthesis is controlled via posttranscriptional regulation of PSY in plants. PMID:25675505

  2. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  3. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii.

    PubMed

    Hewezi, Tarek; Howe, Peter J; Maier, Tom R; Hussey, Richard S; Mitchum, Melissa G; Davis, Eric L; Baum, Thomas J

    2010-02-01

    Cyst nematodes are sedentary plant parasites that cause dramatic cellular changes in the plant root to form feeding cells, so-called syncytia. 10A06 is a cyst nematode secretory protein that is most likely secreted as an effector into the developing syncytia during early plant parasitism. A homolog of the uncharacterized soybean cyst nematode (Heterodera glycines), 10A06 gene was cloned from the sugar beet cyst nematode (Heterodera schachtii), which is able to infect Arabidopsis (Arabidopsis thaliana). Constitutive expression of 10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii as well as to other plant pathogens. Using yeast two-hybrid assays, we identified Spermidine Synthase2 (SPDS2), a key enzyme involved in polyamine biosynthesis, as a specific 10A06 interactor. In support of this protein-protein interaction, transgenic plants expressing 10A06 exhibited elevated SPDS2 mRNA abundance, significantly higher spermidine content, and increased polyamine oxidase (PAO) activity. Furthermore, the SPDS2 promoter was strongly activated in the nematode-induced syncytia, and transgenic plants overexpressing SPDS2 showed enhanced plant susceptibility to H. schachtii. In addition, in planta expression of 10A06 or SPDS2 increased mRNA abundance of a set of antioxidant genes upon nematode infection. These data lend strong support to a model in which the cyst nematode effector 10A06 exerts its function through the interaction with SPDS2, thereby increasing spermidine content and subsequently PAO activity. Increasing PAO activity results in stimulating the induction of the cellular antioxidant machinery in syncytia. Furthermore, we observed an apparent disruption of salicylic acid defense signaling as a function of 10A06. Most likely, increased antioxidant protection and interruption of salicylic acid signaling are key aspects of 10A06 function in addition to other physiological and morphological changes caused by altered polyamines

  4. High-resolution crystal structure of the eukaryotic HMP-P synthase (THIC) from Arabidopsis thaliana.

    PubMed

    Coquille, Sandrine; Roux, Céline; Mehta, Angad; Begley, Tadhg P; Fitzpatrick, Teresa B; Thore, Stéphane

    2013-12-01

    Vitamin B₁ is an essential compound in all organisms acting as a cofactor in key metabolic reactions. It is formed by the condensation of two independently biosynthesized molecules referred to as the pyrimidine and thiazole moieties. In bacteria and plants, the biosynthesis of the pyrimidine moiety, 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), requires a single enzyme, THIC (HMP-P synthase). The enzyme uses an iron-sulfur cluster as well as a 5'-deoxyadenosyl radical as cofactors to rearrange the 5-amino-imidazole ribonucleotide (AIR) substrate to the pyrimidine ring. So far, the only structure reported is the one from the bacteria Caulobacter crescentus. In an attempt to structurally characterize an eukaryotic HMP-P synthase, we have determined the high-resolution crystal structure of THIC from Arabidopsis thaliana at 1.6 Å. The structure is highly similar to its bacterial counterpart although several loop regions show significant differences with potential implications for the enzymatic properties. Furthermore, we have found a metal ion with octahedral coordination at the same location as a zinc ion in the bacterial enzyme. Our high-resolution atomic model shows a metal ion with multiple coordinated water molecules in the close vicinity of the substrate binding sites and is an important step toward the full characterization of the chemical rearrangement occurring during HMP-P biosynthesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  6. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance1[OPEN

    PubMed Central

    Luttgeharm, Kyle D.; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E.; Markham, Jonathan E.; Cahoon, Edgar B.

    2015-01-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  7. Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels

    PubMed Central

    Maass, Dirk; Arango, Jacobo; Wüst, Florian; Beyer, Peter; Welsch, Ralf

    2009-01-01

    Background As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY) is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. Methology/Principal Findings In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 µg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to β-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. Conclusions The sequestration of carotenoids into crystals can be driven by the functional overexpression of one

  8. Complex processing patterns of mRNAs of the large ATP synthase operon in Arabidopsis chloroplasts.

    PubMed

    Malik Ghulam, Mustafa; Ghulam, Mustafa Malik; Courtois, Florence; Lerbs-Mache, Silva; Merendino, Livia

    2013-01-01

    Chloroplasts are photosynthetic cell organelles which have evolved from endosymbiosis of the cyanobacterial ancestor. In chloroplasts, genes are still organized into transcriptional units as in bacteria but the corresponding poly-cistronic mRNAs undergo complex processing events, including inter-genic cleavage and 5' and 3' end-definition. The current model for processing proposes that the 3' end of the upstream cistron transcripts and the 5' end of the downstream cistron transcripts are defined by the same RNA-binding protein and overlap at the level of the protein-binding site. We have investigated the processing mechanisms that operate within the large ATP synthase (atp) operon, in Arabidopsis thaliana chloroplasts. This operon is transcribed by the plastid-encoded RNA polymerase starting from two promoters, which are upstream and within the operon, respectively, and harbors four potential sites for RNA-binding proteins. In order to study the functional significance of the promoters and the protein-binding sites for the maturation processes, we have performed a detailed mapping of the atp transcript ends. Our data indicate that in contrast to maize, atpI and atpH transcripts with overlapping ends are very rare in Arabidopsis. In addition, atpA mRNAs, which overlap with atpF mRNAs, are even truncated at the 3' end, thus representing degradation products. We observe, instead, that the 5' ends of nascent poly-cistronic atp transcripts are defined at the first protein-binding site which follows either one of the two transcription initiation sites, while the 3' ends are defined at the subsequent protein-binding sites or at hairpin structures that are encountered by the progressing RNA polymerase. We conclude that the overlapping mechanisms of mRNA protection have only a limited role in obtaining stable processed atp mRNAs in Arabidopsis. Our findings suggest that during evolution of different plant species as maize and Arabidopsis, chloroplasts have evolved multiple

  9. Complex Processing Patterns of mRNAs of the Large ATP Synthase Operon in Arabidopsis Chloroplasts

    PubMed Central

    Ghulam, Mustafa Malik; Courtois, Florence; Lerbs-Mache, Silva; Merendino, Livia

    2013-01-01

    Chloroplasts are photosynthetic cell organelles which have evolved from endosymbiosis of the cyanobacterial ancestor. In chloroplasts, genes are still organized into transcriptional units as in bacteria but the corresponding poly-cistronic mRNAs undergo complex processing events, including inter-genic cleavage and 5′ and 3′ end-definition. The current model for processing proposes that the 3′ end of the upstream cistron transcripts and the 5′ end of the downstream cistron transcripts are defined by the same RNA-binding protein and overlap at the level of the protein-binding site. We have investigated the processing mechanisms that operate within the large ATP synthase (atp) operon, in Arabidopsis thaliana chloroplasts. This operon is transcribed by the plastid-encoded RNA polymerase starting from two promoters, which are upstream and within the operon, respectively, and harbors four potential sites for RNA-binding proteins. In order to study the functional significance of the promoters and the protein-binding sites for the maturation processes, we have performed a detailed mapping of the atp transcript ends. Our data indicate that in contrast to maize, atpI and atpH transcripts with overlapping ends are very rare in Arabidopsis. In addition, atpA mRNAs, which overlap with atpF mRNAs, are even truncated at the 3′ end, thus representing degradation products. We observe, instead, that the 5′ ends of nascent poly-cistronic atp transcripts are defined at the first protein-binding site which follows either one of the two transcription initiation sites, while the 3′ ends are defined at the subsequent protein-binding sites or at hairpin structures that are encountered by the progressing RNA polymerase. We conclude that the overlapping mechanisms of mRNA protection have only a limited role in obtaining stable processed atp mRNAs in Arabidopsis. Our findings suggest that during evolution of different plant species as maize and Arabidopsis, chloroplasts have

  10. Callose Synthase GSL7 Is Necessary for Normal Phloem Transport and Inflorescence Growth in Arabidopsis1[W][OA

    PubMed Central

    Barratt, D.H. Paul; Kölling, Katharina; Graf, Alexander; Pike, Marilyn; Calder, Grant; Findlay, Kim; Zeeman, Samuel C.; Smith, Alison M.

    2011-01-01

    One isoform of callose synthase, Glucan Synthase-Like7 (GSL7), is tightly coexpressed with two isoforms of sucrose synthase (SUS5 and SUS6) known to be confined to phloem sieve elements in Arabidopsis (Arabidopsis thaliana). Investigation of the phenotype of gsl7 mutants of Arabidopsis revealed that the sieve plate pores of stems and roots lack the callose lining seen in wild-type plants. Callose synthesis in other tissues of the plant appears to be unaffected. Although gsl7 plants show only minor phenotypic alterations during vegetative growth, flowering stems are reduced in height and all floral parts are smaller than those of wild-type plants. Several lines of evidence suggest that the reduced growth of the inflorescence is a result of carbohydrate starvation. Levels of sucrose, hexoses, and starch are lower in the terminal bud clusters of gsl7 than in those of wild-type plants. Transcript levels of “starvation” genes expressed in response to low sugars are elevated in the terminal bud clusters of gsl7 plants, at the end of the night, and during an extended night. Pulse-chase experiments with 14CO2 show that transport of assimilate in the flowering stem is much slower in gsl7 mutants than in wild-type plants. We suggest that the callose lining of sieve plate pores is essential for normal phloem transport because it confers favorable flow characteristics on the pores. PMID:21098675

  11. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase.

    PubMed

    Cornah, Johanna E; Germain, Véronique; Ward, Jane L; Beale, Michael H; Smith, Steven M

    2004-10-08

    The aim of this research was to test the role of the glyoxylate cycle enzyme malate synthase (MLS) in lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis. We hypothesized that in the absence of MLS, succinate produced by isocitrate lyase (ICL) could still feed into the tricarboxylic acid cycle, whereas glyoxylate could be converted to sugars using enzymes of the photorespiratory pathway. To test this hypothesis we isolated knock-out mls mutants and studied their growth and metabolism in comparison to wild type and icl mutant seedlings. In contrast to icl seedlings, which grow slowly and are unable to convert lipid into sugars (Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M. & Graham, I. A. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5669-5674), mls seedlings grow faster, use their lipid more rapidly, and are better able to establish as plantlets. Transcriptome and metabolome analyses show that icl seedlings exhibit many features characteristic of carbohydrate starvation, whereas mls seedlings differ relatively little from wild type. In the light mls seedlings generate more sugars than icl seedlings, and when fed with [14C]acetate, 14C-labeling of sugars is three times greater than in icl seedlings and more than half that in wild type seedlings. The mls seedlings also accumulate more glycine and serine than icl or wild type seedlings, consistent with a diversion of glyoxylate into these intermediates of the photorespiratory pathway. We conclude that, in contrast to bacteria and fungi in which MLS is essential for gluconeogenesis from acetate or fatty acids, MLS is partially dispensable for lipid utilization and gluconeogenesis in Arabidopsis seedlings.

  12. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis thaliana plants

    SciTech Connect

    Carroll, Andrew; Mansoori, N; Li, Shundai; Lei, Lei; Vernhettes, Samantha; Visser, Richard G. F.; Somerville, Chris R; Gu, Ying; Trindade, Luisa M.

    2012-10-01

    In higher plants, cellulose is synthesized by so-called rosette protein complexes with cellulose synthases (CESAs) as catalytic subunits of the complex. The CESAs are divided into two distinct families, three of which are thought to be specialized for the primary cell wall and three for the secondary cell wall. In this article, the potential of primary and secondary CESAs forming a functional rosette complex has been investigated. The membrane-based yeast two-hybrid and biomolecular fluorescence systems were used to assess the interactions between three primary (CESA1, CESA3, CESA6), and three secondary (CESA4, CESA7, CESA8) Arabidopsis (Arabidopsis thaliana) CESAs. The results showed that all primary CESAs can physically interact both in vitro and in planta with all secondary CESAs. Although CESAs are broadly capable of interacting in pairwise combinations, they are not all able to form functional complexes in planta. Analysis of transgenic lines showed that CESA7 can partially rescue defects in the primary cell wall biosynthesis in a weak cesa3 mutant. Green fluorescent protein-CESA protein fusions revealed that when CESA3 was replaced by CESA7 in the primary rosette, the velocity of the mixed complexes was slightly faster than the native primary complexes. CESA1 in turn can partly rescue defects in secondary cell wall biosynthesis in a cesa8ko mutant, resulting in an increase of cellulose content relative to cesa8ko. These results demonstrate that sufficient parallels exist between the primary and secondary complexes for cross-functionality and open the possibility that mixed complexes of primary and secondary CESAs may occur at particular times.

  13. Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases.

    PubMed

    Meyer, Claire-Lise; Peisker, Daniel; Courbot, Mikael; Craciun, Adrian Radu; Cazalé, Anne-Claire; Desgain, Denis; Schat, Henk; Clemens, Stephan; Verbruggen, Nathalie

    2011-07-01

    The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²⁺ ions.

  14. Tentative identification of the second substrate binding site in Arabidopsis phytochelatin synthase.

    PubMed

    Chia, Ju-Chen; Yang, Chien-Chih; Sui, Yu-Ting; Lin, Shin-Yu; Juang, Rong-Huay

    2013-01-01

    Phytochelatin synthase (PCS) uses the substrates glutathione (GSH, γGlu-Cys-Gly) and a cadmium (Cd)-bound GSH (Cd∙GS2) to produce the shortest phytochelatin product (PC2, (γGlu-Cys)2-Gly) through a ping-pong mechanism. The binding of the 2 substrates to the active site, particularly the second substrate binding site, is not well-understood. In this study, we generated a structural model of the catalytic domain of Arabidopsis AtPCS1 (residues 12-218) by using the crystal structure of the γGlu-Cys acyl-enzyme complex of the PCS of the cyanobacterium Nostoc (NsPCS) as a template. The modeled AtPCS1 revealed a cavity in proximity to the first substrate binding site, consisting of 3 loops containing several conserved amino acids including Arg152, Lys185, and Tyr55. Substitutions of these amino acids (R152K, K185R, or double mutation) resulted in the abrogation of enzyme activity, indicating that the arrangement of these 2 positive charges is crucial for the binding of the second substrate. Recombinant AtPCS1s with mutations at Tyr55 showed lower catalytic activities because of reduced affinity (3-fold for Y55W) for the Cd∙GS2, further suggesting the role of the cation-π interaction in recognition of the second substrate. Our study results indicate the mechanism for second substrate recognition in PCS. The integrated catalytic mechanism of PCS is further discussed.

  15. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase.

    PubMed

    Hernández-Vega, Juan C; Cady, Brian; Kayanja, Gilbert; Mauriello, Anthony; Cervantes, Natalie; Gillespie, Andrea; Lavia, Lisa; Trujillo, Joshua; Alkio, Merianne; Colón-Carmona, Adán

    2017-01-05

    Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance[W

    PubMed Central

    Hernández-Blanco, Camilo; Feng, Dong Xin; Hu, Jian; Sánchez-Vallet, Andrea; Deslandes, Laurent; Llorente, Francisco; Berrocal-Lobo, Marta; Keller, Harald; Barlet, Xavier; Sánchez-Rodríguez, Clara; Anderson, Lisa K.; Somerville, Shauna; Marco, Yves; Molina, Antonio

    2007-01-01

    Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane–localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW–RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)–responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. PMID:17351116

  17. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase

    PubMed Central

    Hernández-Vega, Juan C.; Cady, Brian; Kayanja, Gilbert; Mauriello, Anthony; Cervantes, Natalie; Gillespie, Andrea; Lavia, Lisa; Trujillo, Joshua; Alkio, Merianne; Colón-Carmona, Adán

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment. PMID:27637093

  18. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana.

    PubMed

    Knopf, Ronit Rimon; Feder, Ari; Mayer, Kristin; Lin, Albina; Rozenberg, Mor; Schaller, Andreas; Adam, Zach

    2012-11-01

    Rhomboids are intra-membrane serine proteases whose sequences are found in nearly all organisms. They are involved in a variety of biological functions in both eukaryotes and prokaryotes. Localization assays revealed that two Arabidopsis thaliana rhomboid-like proteases (AtRBL), AtRBL8 and AtRBL9, are targeted to the chloroplast. Using transgenic plants expressing epitope-tagged AtRBL9, we localized AtRBL9 to the chloroplast inner envelope membrane, with both its N- and C-termini facing the stroma. Mass spectrometry analyses confirmed this localization, and suggested that this is also the case for AtRBL8. Both are proteins of very low abundance. The results of size-exclusion chromatography implied that AtRBL9 forms homo-oligomers. In search of a putative function, a comparative proteomic analysis was performed on wild-type and double-knockout plants, lacking both AtRBL8 and AtRBL9, using the iTRAQ method. Of 180 envelope proteins, the level of only a few was either increased or decreased in the mutant line. One of the latter, allene oxide synthase, is involved in jasmonic acid biosynthesis. This observation provides an explanation for the recently reported aberration in flower morphology that is associated with the loss of AtRBL8. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    PubMed Central

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  20. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis.

    PubMed

    Yamaguchi, S; Sun, T p; Kawaide, H; Kamiya, Y

    1998-04-01

    The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2-1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2-1 mutant. Taken together, our results show that the GA2 locus encodes KS.

  1. CUTIN SYNTHASE2 maintains progressively developing cuticular ridges in Arabidopsis sepals.

    PubMed

    Hong, Lilan; Brown, Joel; Segerson, Nicholas A; Rose, Jocelyn K C; Roeder, Adrienne H K

    2017-01-18

    The cuticle is a crucial barrier on the aerial surfaces of land plants. In many plants, including Arabidopsis, the sepals and petals form distinctive nanoridges in their cuticles. Yet little is known about how the formation and maintenance of these nanostructures is coordinated with the growth and development of the underlying cells. Here we characterize the cutin synthase 2 (cus2) mutant, which causes a great reduction in cuticular ridges on the mature sepal epidermis, but only a moderate effect on petal cone cell ridges. Using scanning electron microscopy and confocal live imaging combined with quantification of cellular growth, we find that cuticular ridge formation progresses down the sepal from tip to base as the sepal grows. pCUS2::GFP-GUS reporter expression coincides with cuticular ridge formation, descending the sepal from tip to base. Ridge formation also coincides with the reduction in growth rate and termination of cell division of the underlying epidermal cells. Surprisingly, cuticular ridges at first form normally in the cus2 mutant, but are lost progressively at later stages of sepal development, indicating that CUS2 is crucial for maintenance of cuticular ridges after they are formed. Our results reveal the dynamics of both ridge formation and maintenance as the sepal grows.

  2. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions1[OPEN

    PubMed Central

    Falcone Ferreyra, María Lorena; Emiliani, Julia; Rodriguez, Eduardo José; Campos-Bermudez, Valeria Alina; Grotewold, Erich; Casati, Paula

    2015-01-01

    Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe2+/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility. PMID:26269546

  3. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions.

    PubMed

    Falcone Ferreyra, María Lorena; Emiliani, Julia; Rodriguez, Eduardo José; Campos-Bermudez, Valeria Alina; Grotewold, Erich; Casati, Paula

    2015-10-01

    Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe(2+)/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility.

  4. Cadmium(II)-stimulated enzyme activation of Arabidopsis thaliana phytochelatin synthase 1.

    PubMed

    Ogawa, Shinya; Yoshidomi, Takahiro; Yoshimura, Etsuro

    2011-01-01

    Phytochelatin (PC), a class of heavy metal-binding peptides, is synthesized from the tripeptide glutathione (GSH) and/or previously synthesized PC in a reaction mediated by PC synthase (PCS). In the present study, the PC production rate catalyzed by recombinant Arabidopsis PCS1 (rAtPCS1) in the presence of a constant free Cd(II) level increased steadily and the kinetic parameters were approximated using a substituted-enzyme mechanism in which GSH and bis(glutathionato)cadmium acted as co-substrates. In contrast, the PC production rate as a function of GSH concentration at a constant total Cd(II) concentration reached a maximum, which shifted toward higher GSH concentrations as the concentration of Cd(II) was increased. These observations are consistent with the suggestion that rAtPCS1 possesses a Cd(II) binding site where Cd(II) binds to activate the enzyme. The affinity constant, optimized using a one-site mathematical model, successfully simulated the experimental data for the assay system using lower concentrations of Cd(II) (5 or 10 μM) but not for the assay using higher concentrations (50 or 500 μM), where a sigmoidal increase in PCS activity was evident. Furthermore, the PCS activity determined at a constant GSH concentration as a function of Cd(II) concentration also reached a maximum. These findings demonstrate that rAtPCS1 also possesses a second Cd(II) binding site where Cd(II) binds to induce an inhibitory effect. A two-site mathematical model was applied successfully to account for the observed phenomena, supporting the suggestion that rAtPCS1 possesses two Cd(II) binding sites.

  5. Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase.

    PubMed

    Tan, Fui-Ching; Cheng, Qi; Saha, Kaushik; Heinemann, Ilka U; Jahn, Martina; Jahn, Dieter; Smith, Alison G

    2008-03-01

    UROS (uroporphyrinogen III synthase; EC 4.2.1.75) is the enzyme responsible for the formation of uroporphyrinogen III, the precursor of all cellular tetrapyrroles including haem, chlorophyll and bilins. Although UROS genes have been cloned from many organisms, the level of sequence conservation between them is low, making sequence similarity searches difficult. As an alternative approach to identify the UROS gene from plants, we used functional complementation, since this does not require conservation of primary sequence. A mutant of Saccharomyces cerevisiae was constructed in which the HEM4 gene encoding UROS was deleted. This mutant was transformed with an Arabidopsis thaliana cDNA library in a yeast expression vector and two colonies were obtained that could grow in the absence of haem. The rescuing plasmids encoded an ORF (open reading frame) of 321 amino acids which, when subcloned into an Escherichia coli expression vector, was able to complement an E. coli hemD mutant defective in UROS. Final proof that the ORF encoded UROS came from the fact that the recombinant protein expressed with an N-terminal histidine-tag was found to have UROS activity. Comparison of the sequence of AtUROS (A. thaliana UROS) with the human enzyme found that the seven invariant residues previously identified were conserved, including three shown to be important for enzyme activity. Furthermore, a structure-based homology search of the protein database with AtUROS identified the human crystal structure. AtUROS has an N-terminal extension compared with orthologues from other organisms, suggesting that this might act as a targeting sequence. The precursor protein of 34 kDa translated in vitro was imported into isolated chloroplasts and processed to the mature size of 29 kDa. Confocal microscopy of plant cells transiently expressing a fusion protein of AtUROS with GFP (green fluorescent protein) confirmed that AtUROS was targeted exclusively to chloroplasts in vivo.

  6. NITRIC OXIDE SYNTHASE INHIBITOR L-NAMEAFFECTS ARABIDOPSIS ROOT GROWTH, MORPHOLOGY AND MICROTUBULE ORGANIZATION.

    PubMed

    Yu A, Krasylenko; A I, Yemets; Ya B, Blume

    2017-10-05

    The presence of evolutionarily conserved NOS or NOS-like enzymes in land plants different than those in animals is still unclear, despite their activity has been revealed in cytosol and some organelles. At the same time, the emerging evidence for the importance of L-arginine-dependent pathways of NO synthesis in plant cells is still accumulating. The aim of our study was to reveal physiological effects on growth and differentiation processes and microtubular cytoskeleton organization of the competitive mammalian NO synthase inhibitor L-NAME. Thus, the treatment of Arabidopsis with L-NAME (50 μM-1 mM) caused dose- and time-dependent inhibition of primary roots growth. Moreover, the morphology of primary roots under the influence of L-NAME also underwent changes. L-NAME (>100 μM) induced the formation of novel over-elongated root hairs in shortened elongation zone, while in higher concentrations (500 μM) it caused a slight swelling of epidermal cells in differentiation zone. L-NAME also provoked microtubule reorganization in epidermal cells of different root growth zones. Thus, L-NAME at concentrations of 50 μM-1 mM induces cortical microtubules randomization and/or depolymerization in epidermal cells of the root apex, meristem, transition, elongation and differentiation zones after 2 h of treatment. Disordered microtubules in trichoblasts could initiate the formation of actively elongating root hairs that reveals longitudinal microtubules ensuring their active growth at 24 h of treatment. Therefore, L-NAME inhibits primary root growth, induces the differentiation processes in roots and reorganizes cortical microtubules in epidermal root cells suggesting the importance of L-arginine-dependent pathways of NO synthesis in plants. This article is protected by copyright. All rights reserved.

  7. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters

    PubMed Central

    Curie, Catherine; Cassin, Gaëlle; Couch, Daniel; Divol, Fanchon; Higuchi, Kyoko; Le Jean, Marie; Misson, Julie; Schikora, Adam; Czernic, Pierre; Mari, Stéphane

    2009-01-01

    Background Since the identification of the genes controlling the root acquisition of iron (Fe), the control of inter- and intracellular distribution has become an important challenge in understanding metal homeostasis. The identification of the yellow stripe-like (YSL) transporter family has paved the way to decipher the mechanisms of long-distance transport of Fe. Scope Once in the plant, Fe will systematically react with organic ligands whose identity is poorly known so far. Among potential ligands, nicotianamine has been identified as an important molecule for the circulation and delivery of metals since it participates in the loading of copper (Cu) and nickel in xylem and prevents Fe precipitation in leaves. Nicotianamine is a precursor of phytosiderophores, which are high-affinity Fe ligands exclusively synthesized by Poaceae species and excreted by roots for the chelation and acquisition of Fe. Maize YS1 is the founding member of a family of membrane transporters called YS1-like (YSL), which functions in root Fe–phytosiderophore uptake from the soil. Next to this well-known Fe acquisition role, most of the other YSL family members are likely to function in plant-wide distribution of metals since (a) they are produced in vascular tissues throughout the plant and (b) they are found in non-Poaceae species that do not synthesize phytosiderophores. The hypothesized activity as Fe–nicotianamine transporters of several YSL members has been demonstrated experimentally by heterologous expression in yeast or by electrophysiology in Xenopus oocytes but, despite numerous attempts, proof of the arabidopsis YSL substrate specificity is still lacking. Reverse genetics, however, has revealed a role for AtYSL members in the remobilization of Cu and zinc from senescing leaves, in the formation of pollen and in the Fe, zinc and Cu loading of seeds. Conclusions Preliminary data on the YSL family of transporters clearly argues in favour of its role in the long

  8. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters.

    PubMed

    Curie, Catherine; Cassin, Gaëlle; Couch, Daniel; Divol, Fanchon; Higuchi, Kyoko; Le Jean, Marie; Misson, Julie; Schikora, Adam; Czernic, Pierre; Mari, Stéphane

    2009-01-01

    Background Since the identification of the genes controlling the root acquisition of iron (Fe), the control of inter- and intracellular distribution has become an important challenge in understanding metal homeostasis. The identification of the yellow stripe-like (YSL) transporter family has paved the way to decipher the mechanisms of long-distance transport of Fe. Scope Once in the plant, Fe will systematically react with organic ligands whose identity is poorly known so far. Among potential ligands, nicotianamine has been identified as an important molecule for the circulation and delivery of metals since it participates in the loading of copper (Cu) and nickel in xylem and prevents Fe precipitation in leaves. Nicotianamine is a precursor of phytosiderophores, which are high-affinity Fe ligands exclusively synthesized by Poaceae species and excreted by roots for the chelation and acquisition of Fe. Maize YS1 is the founding member of a family of membrane transporters called YS1-like (YSL), which functions in root Fe-phytosiderophore uptake from the soil. Next to this well-known Fe acquisition role, most of the other YSL family members are likely to function in plant-wide distribution of metals since (a) they are produced in vascular tissues throughout the plant and (b) they are found in non-Poaceae species that do not synthesize phytosiderophores. The hypothesized activity as Fe-nicotianamine transporters of several YSL members has been demonstrated experimentally by heterologous expression in yeast or by electrophysiology in Xenopus oocytes but, despite numerous attempts, proof of the arabidopsis YSL substrate specificity is still lacking. Reverse genetics, however, has revealed a role for AtYSL members in the remobilization of Cu and zinc from senescing leaves, in the formation of pollen and in the Fe, zinc and Cu loading of seeds. Conclusions Preliminary data on the YSL family of transporters clearly argues in favour of its role in the long-distance transport

  9. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    PubMed

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of

  10. Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana

    PubMed Central

    Gangl, Roman; Behmüller, Robert; Tenhaken, Raimund

    2015-01-01

    Stachyose is among the raffinose family oligosaccharides (RFOs) one of the major water-soluble carbohydrates next to sucrose in seeds of a number of plant species. Especially in leguminous seeds, e.g. chickpea, stachyose is reported as the major component. In contrast to their ambiguous potential as essential source of carbon for germination, RFOs are indigestible for humans and can contribute to diverse abdominal disorders. In the genome of Arabidopsis thaliana, six putative raffinose synthase genes are reported, whereas little is known about these putative raffinose synthases and their biochemical characteristics or their contribution to the RFO physiology in A. thaliana. In this paper, we report on the molecular cloning, functional expression in Escherichia coli and purification of recombinant AtRS4 from A. thaliana and the biochemical characterisation of the putative stachyose synthase (AtSTS, At4g01970) as a raffinose and high affinity stachyose synthase (Km for raffinose 259.2 ± 21.15 μM) as well as stachyose and galactinol specific galactosylhydrolase. A T-DNA insertional mutant in the AtRS4 gene was isolated. Only semi-quantitative PCR from WT siliques showed a specific transcriptional AtRS4 PCR product. Metabolite measurements in seeds of ΔAtRS4 mutant plants revealed a total loss of stachyose in ΔAtRS4 mutant seeds. We conclude that AtRS4 is the only stachyose synthase in the genome of A. thaliana that AtRS4 represents a key regulation mechanism in the RFO physiology of A. thaliana due to its multifunctional enzyme activity and that AtRS4 is possibly the second seed specific raffinose synthase beside AtRS5, which is responsible for Raf accumulation under abiotic stress. PMID:26483807

  11. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    PubMed Central

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  12. The Thylakoid Membrane Protein CGL160 Supports CF1CF0 ATP Synthase Accumulation in Arabidopsis thaliana

    PubMed Central

    Fristedt, Rikard; Martins, Nádia Figueira; Strenkert, Daniela; Clarke, Cornelia A.; Suchoszek, Monika; Thiele, Wolfram; Schöttler, Mark Aurel; Merchant, Sabeeha S.

    2015-01-01

    The biogenesis of the major thylakoid protein complexes of the photosynthetic apparatus requires auxiliary proteins supporting individual assembly steps. Here, we identify a plant lineage specific gene, CGL160, whose homolog, atp1, co-occurs with ATP synthase subunits in an operon-like arrangement in many cyanobacteria. Arabidopsis thaliana T-DNA insertion mutants, which no longer accumulate the nucleus-encoded CGL160 protein, accumulate less than 25% of wild-type levels of the chloroplast ATP synthase. Severe cosmetic or growth phenotypes result under either short day or fluctuating light growth conditions, respectively, but this is ameliorated under long day constant light growth conditions where the growth, ATP synthase activity and photosynthetic electron transport of the mutants are less affected. Accumulation of other photosynthetic complexes is largely unaffected in cgl160 mutants, suggesting that CGL160 is a specific assembly or stability factor for the CF1CF0 complex. CGL160 is not found in the mature assembled complex but it does interact specifically with subunits of ATP synthase, predominantly those in the extrinsic CF1 sub-complex. We suggest therefore that it may facilitate the assembly of CF1 into the holocomplex. PMID:25835989

  13. The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest.

    PubMed

    Closa, Marta; Vranová, Eva; Bortolotti, Cristina; Bigler, Laurent; Arró, Montserrat; Ferrer, Albert; Gruissem, Wilhelm

    2010-08-01

    Farnesyl diphosphate (FPP) synthase (FPS) catalyses the synthesis of FPP, the major substrate used by cytosolic and mitochondrial branches of the isoprenoid pathway. Arabidopsis contains two farnesyl diphosphate synthase genes, FPS1 and FPS2, that encode isozymes FPS1L (mitochondrial), FPS1S and FPS2 (both cytosolic). Here we show that simultaneous knockout of both FPS genes is lethal for Arabidopsis, and embryo development is arrested at the pre-globular stage, demonstrating that FPP-derived isoprenoid metabolism is essential. In addition, lack of FPS enzyme activity severely impairs male genetic transmission. In contrast, no major developmental and metabolic defects were observed in fps1 and fps2 single knockout mutants, demonstrating the redundancy of the genes. The levels of sterols and ubiquinone, the major mitochondrial isoprenoid, are only slightly reduced in the single mutants. Although one functional FPS gene is sufficient to support isoprenoid biosynthesis for normal growth and development, the functions of FPS1 and FPS2 during development are not completely redundant. FPS1 activity has a predominant role during most of the plant life cycle, and FPS2 appears to have a major role in seeds and during the early stages of seedling development. Lack of FPS2 activity in seeds, but not of FPS1 activity, is associated with a marked reduction in sitosterol content and positive feedback regulation of 3-hydroxy-3-methylglutaryl CoA reductase activity that renders seeds hypersensitive to the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor mevastatin. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  14. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis*

    PubMed Central

    Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian

    2016-01-01

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3. PMID:27458017

  15. From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis[W][OA

    PubMed Central

    de Kraker, Jan-Willem; Gershenzon, Jonathan

    2011-01-01

    Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the kcat/Km for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. PMID:21205930

  16. Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis1

    PubMed Central

    Zhang, Xiaoli; Myers, Alan M.; James, Martha G.

    2005-01-01

    The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis. PMID:15908598

  17. The Importance of Cardiolipin Synthase for Mitochondrial Ultrastructure, Respiratory Function, Plant Development, and Stress Responses in Arabidopsis[W

    PubMed Central

    Pineau, Bernard; Bourge, Mickaël; Marion, Jessica; Mauve, Caroline; Gilard, Francoise; Maneta-Peyret, Lilly; Moreau, Patrick; Satiat-Jeunemaître, Béatrice; Brown, Spencer C.; De Paepe, Rosine; Danon, Antoine

    2013-01-01

    Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions. PMID:24151294

  18. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B Encode Hydroxyalkyl α-Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis thaliana[C][W][OA

    PubMed Central

    Kim, Sung Soo; Grienenberger, Etienne; Lallemand, Benjamin; Colpitts, Che C.; Kim, Sun Young; Souza, Clarice de Azevedo; Geoffroy, Pierrette; Heintz, Dimitri; Krahn, Daniel; Kaiser, Markus; Kombrink, Erich; Heitz, Thierry; Suh, Dae-Yeon; Legrand, Michel; Douglas, Carl J.

    2010-01-01

    Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors. PMID:21193570

  19. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

    PubMed Central

    Pajerowska-Mukhtar, Karolina M.; Mukhtar, M. Shahid; Guex, Nicolas; Halim, Vincentius A.; Rosahl, Sabine; Somssich, Imre E.

    2008-01-01

    Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0737-x) contains supplementary material, which is available to authorized users

  20. Nitric Oxide Synthase-Dependent Nitric Oxide Production Is Associated with Salt Tolerance in Arabidopsis1[OA

    PubMed Central

    Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2007-01-01

    Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis. PMID:17351048

  1. CELLULOSE SYNTHASE-LIKE A2, a Glucomannan Synthase, Is Involved in Maintaining Adherent Mucilage Structure in Arabidopsis Seed1[C][W

    PubMed Central

    Yu, Li; Shi, Dachuan; Li, Junling; Kong, Yingzhen; Yu, Yanchong; Chai, Guohua; Hu, Ruibo; Wang, Juan; Hahn, Michael G.; Zhou, Gongke

    2014-01-01

    Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-β-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization. PMID:24569843

  2. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack.

    PubMed Central

    Keith, B; Dong, X N; Ausubel, F M; Fink, G R

    1991-01-01

    We have isolated cDNAs from two distinct genes encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) in Arabidopsis thaliana. Predicted protein sequences from both genes, DHS1 and DHS2, and a potato DAHP synthase gene are highly related, but none shows significant sequence similarity to conserved microbial DAHP synthase proteins. Despite this structural difference, the DHS1 cDNA complements mutations in a yeast strain lacking DAHP synthase activity. DHS1 RNA levels increase in Arabidopsis leaves subjected either to physical wounding or to infiltration with pathogenic Pseudomonas syringae strains. DHS2 RNA levels are not increased by these treatments, suggesting that the DHS1 and DHS2 proteins fulfill different physiological functions. Other enzymes in the Arabidopsis aromatic pathway are also encoded by duplicated genes, an arrangement that may allow independent regulation of aromatic amino acid biosynthesis by distinct physiological requirements such as protein synthesis and secondary metabolism. The presence of amino-terminal extensions characteristic of chloroplast transit peptides on DHS1 and DHS2 suggests that both proteins may be targeted to the chloroplast. Images PMID:1681544

  3. Inducible Knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 Reveals Roles of Galactolipids in Organelle Differentiation in Arabidopsis Cotyledons1[W][OPEN

    PubMed Central

    Fujii, Sho; Kobayashi, Koichi; Nakamura, Yuki; Wada, Hajime

    2014-01-01

    Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of thylakoid membranes and is essential for chloroplast biogenesis in plants. In Arabidopsis (Arabidopsis thaliana), MGDG is predominantly synthesized by inner envelope-localized MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (MGD1); its knockout causes albino seedlings. Because of the lethal phenotype of the null MGD1 mutant, functional details of MGDG synthesis at seedling development have remained elusive. In this study, we used an inducible gene-suppression system to investigate the impact of MGDG synthesis on cotyledon development. We created transgenic Arabidopsis lines that express an artificial microRNA targeting MGD1 (amiR-MGD1) under the control of a dexamethasone-inducible promoter. The induction of amiR-MGD1 resulted in up to 75% suppression of MGD1 expression, although the resulting phenotypes related to chloroplast development were diverse, even within a line. The strong MGD1 suppression by continuous dexamethasone treatment caused substantial decreases in galactolipid content in cotyledons, leading to severe defects in the formation of thylakoid membranes and impaired photosynthetic electron transport. Time-course analyses of the MGD1 suppression during seedling germination revealed that MGDG synthesis at the very early germination stage is particularly important for chloroplast biogenesis. The MGD1 suppression down-regulated genes associated with the photorespiratory pathway in peroxisomes and mitochondria as well as those responsible for photosynthesis in chloroplasts and caused high expression of genes for the glyoxylate cycle. MGD1 function may link galactolipid synthesis with the coordinated transcriptional regulation of chloroplasts and other organelles during cotyledon greening. PMID:25253888

  4. Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase

    PubMed Central

    Sriprang, Rutchadaporn; Hayashi, Makoto; Ono, Hisayo; Takagi, Masahiro; Hirata, Kazumasa; Murooka, Yoshikatsu

    2003-01-01

    We expressed the Arabidopsis thaliana gene for phytochelatin synthase (PCSAt) in Mesorhizobium huakuii subsp. rengei B3, a microsymbiont of Astragalus sinicus, a legume used as manure. The PCSAt gene was expressed under the control of the nifH promoter, which regulates the nodule-specific expression of the nifH gene. The expression of the PCSAt gene was demonstrated in free-living cells under low-oxygen conditions. Phytochelatin synthase (PCS) was expressed and catalyzed the synthesis of phytochelatins [(γ-Glu-Cys)n-Gly; PCs] in strain B3. A range of PCs, with values of n from 2 to 7, was synthesized by cells that expressed the PCSAt gene, whereas no PCs were found in control cells that harbored the empty plasmid. The presence of CdCl2 activated PCS and induced the synthesis of substantial amounts of PCs. Cells that contained PCs accumulated 36 nmol of Cd2+/mg (dry weight) of cells. The expression of the PCSAt gene in M. huakuii subsp. rengei B3 increased the ability of cells to bind Cd2+ approximately 9- to 19-fold. The PCS protein was detected by immunostaining bacteroids of mature nodules of A. sinicus containing the PCSAt gene. When recombinant M. huakuii subsp. rengei B3 established the symbiotic relationship with A. sinicus, the symbionts increased Cd2+ accumulation in nodules 1.5-fold. PMID:12620871

  5. Analysis of Sequence, Map Position, and Gene Expression Reveals Conserved Essential Genes for Iron Uptake in Arabidopsis and Tomato1[w

    PubMed Central

    Bauer, Petra; Thiel, Thomas; Klatte, Marco; Bereczky, Zsolt; Brumbarova, Tzvetina; Hell, Rüdiger; Grosse, Ivo

    2004-01-01

    Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) show similar physiological responses to iron deficiency, suggesting that homologous genes are involved. Essential gene functions are generally considered to be carried out by orthologs that have remained conserved in sequence and map position in evolutionarily related species. This assumption has not yet been proven for plant genomes that underwent large genome rearrangements. We addressed this question in an attempt to deduce functional gene pairs for iron reduction, iron transport, and iron regulation between Arabidopsis and tomato. Iron uptake processes are essential for plant growth. We investigated iron uptake gene pairs from tomato and Arabidopsis, namely sequence, conserved gene content of the regions containing iron uptake homologs based on conserved orthologous set marker analysis, gene expression patterns, and, in two cases, genetic data. Compared to tomato, the Arabidopsis genome revealed more and larger gene families coding for the iron uptake functions. The number of possible homologous pairs was reduced if functional expression data were taken into account in addition to sequence and map position. We predict novel homologous as well as partially redundant functions of ferric reductase-like and iron-regulated transporter-like genes in Arabidopsis and tomato. Arabidopsis nicotianamine synthase genes encode a partially redundant family. In this study, Arabidopsis gene redundancy generally reflected the presumed genome duplication structure. In some cases, statistical analysis of conserved gene regions between tomato and Arabidopsis suggested a common evolutionary origin. Although involvement of conserved genes in iron uptake was found, these essential genes seem to be of paralogous rather than orthologous origin in tomato and Arabidopsis. PMID:15531708

  6. Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean.

    PubMed

    Nozoye, Tomoko; Kim, Suyoen; Kakei, Yusuke; Takahashi, Michiko; Nakanishi, Hiromi; Nishizawa, Naoko K

    2014-01-01

    Iron (Fe) is an essential nutrient in both plants and humans. Fe deficiency on calcareous soil with low Fe availability is a major agricultural problem. Nicotianamine (NA) is one of the Fe chelator in plants, which is involved in metal translocation into seeds, and serves as an antihypertensive substance in humans. In this study, soybean plants overexpressing the barley NA synthase 1 (HvNAS1) gene driven by the constitutive CaMV 35S promoter were produced using Agrobacterium-mediated transformation. The transgenic soybean showed no growth defect and grew normally. The NA content of transgenic soybean seeds was up to four-fold greater than that of non-transgenic (NT) soybean seeds. The level of HvNAS1 expression was positively correlated with the amount of NA, and a high concentration of NA was maintained in the seeds in succeeding generations. The Fe concentration was approximately two-fold greater in transgenic soybean seeds than in NT soybean seeds. Furthermore, the transgenic soybeans showed tolerance to low Fe availability in calcareous soil. Our results suggested that increasing the NA content in soybean seeds by the overexpression of HvNAS1 offers potential benefits for both human health and agricultural productivity.

  7. Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in Arabidopsis thaliana[W

    PubMed Central

    García, Irene; Castellano, José María; Vioque, Blanca; Solano, Roberto; Gotor, Cecilia; Romero, Luis C.

    2010-01-01

    Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development. PMID:20935247

  8. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    PubMed Central

    Singh, Sunil K; Fischer, Urs; Singh, Manoj; Grebe, Markus; Marchant, Alan

    2008-01-01

    Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procuste1 (prc1-1) cellulose synthase mutant was studied in order to investigate the role of the cell wall loosening during the early stages of hair formation. Results The prc1-1 mutant exhibits uncontrolled, preferential bulging of trichoblast cells coupled with mislocalised hair positioning. Combining the prc1-1 mutant with root hair defective6-1 (rhd6-1), which on its own is almost completely devoid of root hairs results in a significant restoration of root hair formation. The pEXPANSIN7::GFP (pEXP7::GFP) marker which is specifically expressed in trichoblast cell files of wild-type roots, is absent in the rhd6-1 mutant. However, pEXP7::GFP expression in the rhd6-1/prc1-1 double mutant is restored in a subset of epidermal cells which have either formed a root hair or exhibit a bulged phenotype consistent with a function for EXP7 during the early stages of hair formation. Conclusion These results show that RHD6 acts upstream of the normal cell wall loosening event which involves EXP7 expression and that in the absence of a functional RHD6 the loosening and accompanying EXP7 expression is blocked. In the prc1-1 mutant background, the requirement for RHD6 during hair initiation is reduced which may result from a weaker cell wall structure mimicking the cell wall loosening events during hair formation. PMID:18485206

  9. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.

  10. NADH-dependent glutamate synthase participated in ammonium assimilation in Arabidopsis root

    PubMed Central

    Kojima, Soichi; Konishi, Noriyuki; Beier, Marcel Pascal; Ishiyama, Keiki; Maru, Ikumi; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2014-01-01

    Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly expressed in roots,1 needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in Arabidopsis roots. The supply of ammonium to the roots caused an accumulation of NADH-GOGAT, while Fd-GOGAT 1 and Fd-GOGAT 2 showed no response. A promoter–GUS fusion analysis and immunohistochemistry showed that NADH-GOGAT was located in non-green tissues like vascular bundles, shoot apical meristem, pollen, stigma, and roots. The localization of NADH-GOGAT and Fd-GOGAT was not overlapped. NADH-GOGAT T-DNA insertion lines showed a reduction of glutamate and biomass under normal CO2 conditions. These data emphasizes the importance of NADH-GOGAT in the ammonium assimilation of Arabidopsis roots. PMID:25763622

  11. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    PubMed

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species.

  12. Cytosolic hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase from Arabidopsis thaliana: a specific role in early development and stress response.

    PubMed

    Storozhenko, Sergei; Navarrete, Oscar; Ravanel, Stéphane; De Brouwer, Veerle; Chaerle, Peter; Zhang, Guo-Fang; Bastien, Olivier; Lambert, Willy; Rébeillé, Fabrice; Van Der Straeten, Dominique

    2007-04-06

    In plants, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (mitHPPK/DHPS) is a bifunctional mitochondrial enzyme, which catalyzes the first two consecutive steps of tetrahydrofolate biosynthesis. Mining the Arabidopsis genome data base has revealed a second gene encoding a protein that lacks a potential transit peptide, suggesting a cytosolic localization of the isoenzyme (cytHPPK/DHPS). When the N-terminal part of the cytHPPK/DHPS was fused to green fluorescent protein, the fusion protein appeared only in the cytosol, confirming the above prediction. Functionality of cytHPPK/DHPS was addressed by two parallel approaches: first, the cytHPPK/DHPS was able to rescue yeast mutants lacking corresponding activities; second, recombinant cytHPPK/DHPS expressed and purified from Escherichia coli displayed both HPPK and DHPS activities in vitro. In contrast to mitHPPK/DHPS, which was ubiquitously expressed, the cytHPPK/DHPS gene was exclusively expressed in reproductive tissue, more precisely in developing seeds as revealed by histochemical analysis of a transgenic cytHPPK/DHPS promoter-GUS line. In addition, it was observed that expression of cytHPPK/DHPS mRNA was induced by salt stress, suggesting a potential role of the enzyme in stress response. This was supported by the phenotype of a T-DNA insertion mutant in the cytHPPK/DHPS gene, resulting in lower germination rates as compared with the wild-type upon application of oxidative and osmotic stress.

  13. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.

    PubMed

    Wang, Xiaoyan; Gao, Jiong; Zhu, Zheng; Dong, Xianxin; Wang, Xiaolei; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2015-04-01

    Salicylic acid (SA) plays an important role in various aspects of plant development and responses to stresses. To elucidate the sophisticated regulatory mechanism of SA synthesis and signaling, we used a yeast one-hybrid system to screen for regulators of isochorismate synthase 1 (ICS1), a gene encoding the key enzyme in SA biosynthesis in Arabidopsis thaliana. A TCP family transcription factor AtTCP8 was initially identified as a candidate regulator of ICS1. The regulation of ICS1 by TCP proteins is supported by the presence of a typical TCP binding site in the ICS1 promoter. The binding of TCP8 to this site was confirmed by in vitro and in vivo assays. Expression patterns of TCP8 and its corresponding gene TCP9 largely overlapped with ICS1 under pathogen attack. A significant reduction in the expression of ICS1 during immune responses was observed in the tcp8 tcp9 double mutant. We also detected strong interactions between TCP8 and SAR deficient 1 (SARD1), WRKY family transcription factor 28 (WRKY28), NAC (NAM/ATAF1,ATAF2/CUC2) family transcription factor 019 (NAC019), as well as among TCP8, TCP9 and TCP20, suggesting a complex coordinated regulatory mechanism underlying ICS1 expression. Our results collectively demonstrate that TCP proteins are involved in the orchestrated regulation of ICS1 expression, with TCP8 and TCP9 being verified as major representatives.

  14. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants

    PubMed Central

    Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant’s circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source–sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant–nematode interactions. PMID:24187419

  15. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.

    PubMed

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.

  16. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon.

    PubMed

    Himuro, Yasuyo; Ishiyama, Kanako; Mori, Fumie; Gondo, Takahiro; Takahashi, Fuminori; Shinozaki, Kazuo; Kobayashi, Masatomo; Akashi, Ryo

    2014-08-15

    Brachypodium distachyon (purple false brome) is a herbaceous species belonging to the grass subfamily Pooideae, which also includes major crops like wheat, barley, oat and rye. The species has been established as experimental model organism for understanding and improving cereal crops and temperate grasses. The complete genome of Bd21, the community standard line of B. distachyon, has been sequenced and protocols for Agrobacterium-mediated transformation have been published. Further improvements to the experimental platform including better evaluation systems for transgenic plants are still needed. Here we describe the growth conditions for Bd21 plants yielding highly responsive immature embryos that can generate embryogenic calli for transformation. A prolonged 20-h photoperiod produced seeds with superior immature embryos. In addition, osmotic treatment of embryogenic calli enhanced the efficiency of transfection by particle bombardment. We generated transgenic plants expressing Arabidopsis thaliana galactinol synthase 2 (AtGolS2) in these experiments. AtGolS2-expressing transgenics displayed significantly improved drought tolerance, increasing with increased expression of AtGolS2. These results demonstrate that AtGolS2 can confer drought tolerance to monocots and confirm that Brachypodium is a useful model to further explore ways to understand and improve major monocot crop species.

  17. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids.

    PubMed

    Ruiz-Sola, M Águila; Coman, Diana; Beck, Gilles; Barja, M Victoria; Colinas, Maite; Graf, Alexander; Welsch, Ralf; Rütimann, Philipp; Bühlmann, Peter; Bigler, Laurent; Gruissem, Wilhelm; Rodríguez-Concepción, Manuel; Vranová, Eva

    2016-01-01

    Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. 14-3-3 Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Protein Turnover in Arabidopsis[C][W

    PubMed Central

    Yoon, Gyeong Mee; Kieber, Joseph J.

    2013-01-01

    14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Plants have large 14-3-3 gene families, and many binding partners have been identified, though relatively few functions have been defined. Here, we demonstrate that 14-3-3 proteins interact with multiple 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms in Arabidopsis thaliana. ACS catalyzes the generally rate-limiting step in the biosynthesis of the phytohormone ethylene. This interaction increases the stability of the ACS proteins. 14-3-3s also interact with the ETHYLENE-OVERPRODUCER1 (ETO1)/ETO1-LIKE (EOLs), a group of three functionally redundant proteins that are components of a CULLIN-3 E3 ubiquitin ligase that target a subset of the ACS proteins for rapid degradation by the 26S proteasome. In contrast with ACS, the interaction with 14-3-3 destabilizes the ETO1/EOLs. The level of the ETO1/EOLs in vivo plays a role in mediating ACS protein turnover, with increased levels leading to a decrease in ACS protein levels. These studies demonstrate that regulation of ethylene biosynthesis occurs by a mechanism in which 14-3-3 proteins act through a direct interaction and stabilization of ACS and through decreasing the abundance of the ubiquitin ligases that target a subset of ACS proteins for degradation. PMID:23512855

  19. Biosynthesis of terpenoids: 4-Diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana

    PubMed Central

    Rohdich, Felix; Wungsintaweekul, Juraithip; Eisenreich, Wolfgang; Richter, Gerald; Schuhr, Christoph A.; Hecht, Stefan; Zenk, Meinhart H.; Bacher, Adelbert

    2000-01-01

    A hypothetical gene with similarity to the ispD gene of Escherichia coli was cloned from Arabidopsis thaliana cDNA. The ORF of 909 bp specifies a protein of 302 amino acid residues. The cognate chromosomal gene consists of 2,071 bp and comprises 11 introns with a size range of 78–202 bp. A fragment comprising amino acid residues 76–302 was expressed in a recombinant E. coli strain. The protein was purified to homogeneity and was shown to catalyze the formation of 4-diphosphocytidyl-2C-methyl-d-erythritol from 2C-methyl-d-erythritol 4-phosphate with a specific activity of 67 μmol⋅min−1 mg−1. The Michaelis constants for 4-diphosphocytidyl-2C-methyl-d-erythritol and CTP were 500 μM and 114 μM, respectively. PMID:10841550

  20. Recycling of Methylthioadenosine Is Essential for Normal Vascular Development and Reproduction in Arabidopsis1[W][OA

    PubMed Central

    Waduwara-Jayabahu, Ishari; Oppermann, Yasmin; Wirtz, Markus; Hull, Zachary T.; Schoor, Sarah; Plotnikov, Alexander N.; Hell, Rüdiger; Sauter, Margret; Moffatt, Barbara A.

    2012-01-01

    5′-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5′-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A. PMID:22345506

  1. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    PubMed Central

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  2. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    PubMed

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-06-09

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.

  3. Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis.

    PubMed

    Geisler, Daniela A; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L; Fernie, Alisdair R; Persson, Staffan

    2012-07-01

    The mitochondrial ATP synthase (F(1)F(o) complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded F(o) part to the matrix-facing central stalk of F(1). We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development.

  4. Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in Arabidopsis[W][OA

    PubMed Central

    Geisler, Daniela A.; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L.; Fernie, Alisdair R.; Persson, Staffan

    2012-01-01

    The mitochondrial ATP synthase (F1Fo complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded Fo part to the matrix-facing central stalk of F1. We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development. PMID:22805435

  5. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  6. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis.

    PubMed

    Landrein, Benoît; Lathe, Rahul; Bringmann, Martin; Vouillot, Cyril; Ivakov, Alexander; Boudaoud, Arezki; Persson, Staffan; Hamant, Olivier

    2013-05-20

    The parallel alignment of stiff cellulose microfibrils in plant-cell walls mediates anisotropic growth. This is largely controlled by cortical microtubules, which drive the insertion and trajectory of the cellulose synthase (CESA) complex at the plasma membrane. The CESA interactive protein 1 (CSI1) acts as a physical linker between CESA and cortical microtubules. Here we show that the inflorescence stems of csi1 mutants exhibit subtle right-handed torsion. Because cellulose deposition is largely uncoupled from cortical microtubules in csi1, we hypothesize that strictly transverse deposition of microfibrils in the wild-type is replaced by a helical orientation of uniform handedness in the mutant and that the helical microfibril alignment generates torsion. Interestingly, both elastic and viscous models for an expanding cell predict that a net helical orientation of microfibrils gives rise to a torque. We indeed observed tilted microfibrils in csi1 cells, and the torsion was almost absent in a csi1 prc1 background with impaired cellulose synthesis. In addition, the stem torsion led to a novel bimodal and robust phyllotactic pattern in the csi1 mutant, illustrating how growth perturbations can replace one robust mathematical pattern with a different, equally robust pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Isochorismate synthase 1 is required for thylakoid organization, optimal plastoquinone redox status, and state transitions in Arabidopsis thaliana

    PubMed Central

    Gawroński, Piotr; Górecka, Magdalena; Bederska, Magdalena; Rusaczonek, Anna; Ślesak, Ireneusz; Kruk, Jerzy; Karpiński, Stanisław

    2013-01-01

    Isochorismate synthase 1 (ICS1) is a crucial enzyme in the salicylic acid (SA) synthesis pathway, and thus it is important for immune defences. The ics1 mutant is used in experiments on plant–pathogen interactions, and ICS1 is required for the appropriate hypersensitive disease defence response. However, ICS1 also takes part in the synthesis of phylloquinone, which is incorporated into photosystem I and is an important component of photosynthetic electron transport in plants. Therefore, photosynthetic and molecular analysis of the ics1 mutant in comparison with wild-type and SA-degrading transgenic NahG Arabidopsis thaliana plants was performed. Photosynthetic parameters in the ics1 mutant, when compared with the wild type, were changed in a manner observed previously for state transition-impaired plants (STN7 kinase recessive mutant, stn7). In contrast to stn7, deregulation of the redox status of the plastoquinone pool (measured as 1–q p) in ics1 showed significant variation depending on the leaf age. SA-degrading transgenic NahG plants targeted to the cytoplasm or chloroplasts displayed normal (wild-type-like) state transition. However, ics1 plants treated with a phylloquinone precursor displayed symptoms of phenotypic reversion towards the wild type. ics1 also showed altered thylakoid structure with an increased number of stacked thylakoids per granum which indicates the role of ICS1 in regulation of state transition. The results presented here suggest the role of ICS1 in integration of the chloroplast ultrastructure, the redox status of the plastoquinone pool, and organization of the photosystems, which all are important for optimal immune defence and light acclimatory responses. PMID:23956412

  8. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis.

    PubMed

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W; Hannam, Carol; Long, Nykoll; Clarke, Joseph D; Bi, Yong-Mei; Rothstein, Steven J

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.

  9. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    PubMed Central

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  10. PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis

    PubMed Central

    Fagard, Mathilde; Desnos, Thierry; Desprez, Thierry; Goubet, Florence; Refregier, Guislaine; Mouille, Gregory; McCann, Maureen; Rayon, Catherine; Vernhettes, Samantha; Höfte, Herman

    2000-01-01

    Mutants at the PROCUSTE1 (PRC1) locus show decreased cell elongation, specifically in roots and dark-grown hypocotyls. Cell elongation defects are correlated with a cellulose deficiency and the presence of gapped walls. Map-based cloning of PRC1 reveals that it encodes a member (CesA6) of the cellulose synthase catalytic subunit family, of which at least nine other members exist in Arabidopsis. Mutations in another family member, RSW1 (CesA1), cause similar cell wall defects in all cell types, including those in hypocotyls and roots, suggesting that cellulose synthesis in these organs requires the coordinated expression of at least two distinct cellulose synthase isoforms. PMID:11148287

  11. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole.

    PubMed

    Chen, Feng; Ro, Dae-Kyun; Petri, Jana; Gershenzon, Jonathan; Bohlmann, Jörg; Pichersky, Eran; Tholl, Dorothea

    2004-08-01

    Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively low K(m) value for geranyl diphosphate of 0.2 microm. At3g25820/At3g25830 promoter activity, measured with a beta-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47-58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-beta-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are

  12. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis1[OPEN

    PubMed Central

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E.; Chen, Ming; Zhou, Yongming; Yu, Bin

    2015-01-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. PMID:26048882

  13. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    PubMed Central

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

    2015-01-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  14. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    PubMed

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A; Eicke, Simona; Zeeman, Samuel C

    2015-02-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  15. LAP5 and LAP6 Encode Anther-Specific Proteins with Similarity to Chalcone Synthase Essential for Pollen Exine Development in Arabidopsis1[W][OA

    PubMed Central

    Dobritsa, Anna A.; Lei, Zhentian; Nishikawa, Shuh-ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Preuss, Daphne; Sumner, Lloyd W.

    2010-01-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  16. Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development.

    PubMed

    Dezfulian, Mohammad H; Foreman, Curtis; Jalili, Espanta; Pal, Mrinal; Dhaliwal, Rajdeep K; Roberto, Don Karl A; Imre, Kathleen M; Kohalmi, Susanne E; Crosby, William L

    2017-04-07

    Branched-chain amino acids (BCAAs) are synthesized by plants, fungi, bacteria, and archaea with plants being the major source of these amino acids in animal diets. Acetolactate synthase (ALS) is the first enzyme in the BCAA synthesis pathway. Although the functional contribution of ALS to BCAA biosynthesis has been extensively characterized, a comprehensive understanding of the regulation of this pathway at the molecular level is still lacking. To characterize the regulatory processes governing ALS activity we utilized several complementary approaches. Using the ALS catalytic protein subunit as bait we performed a yeast two-hybrid (Y2H) screen which resulted in the identification of a set of interacting proteins, two of which (denoted as ALS-INTERACTING PROTEIN1 and 3 [AIP1 and AIP3, respectively]) were found to be evolutionarily conserved orthologues of bacterial feedback-regulatory proteins and therefore implicated in the regulation of ALS activity. To investigate the molecular role AIPs might play in BCAA synthesis in Arabidopsis thaliana, we examined the functional contribution of aip1 and aip3 knockout alleles to plant patterning and development and BCAA synthesis under various growth conditions. Loss-of-function genetic backgrounds involving these two genes exhibited differential aberrant growth responses in valine-, isoleucine-, and sodium chloride-supplemented media. While BCAA synthesis is believed to be localized to the chloroplast, both AIP1 and AIP3 were found to localize to the peroxisome in addition to the chloroplast. Analysis of free amino acid pools in the mutant backgrounds revealed that they differ in the absolute amount of individual BCAAs accumulated and exhibit elevated levels of BCAAs in leaf tissues. Despite the phenotypic differences observed in aip1 and aip3 backgrounds, functional redundancy between these loci was suggested by the finding that aip1/aip3 double knockout mutants are severely developmentally compromised. Taken together the

  17. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1

    PubMed Central

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Marri, Lucia; Mellor, Silas B.; Glaring, Mikkel A.; Jensen, Poul E.; Palcic, Monica M.; Blennow, Andreas

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98–99%). In addition of being part of a redox directed activity “light switch”, reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings

  18. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  19. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis.

    PubMed

    Doblin, Monika S; Pettolino, Filomena A; Wilson, Sarah M; Campbell, Rebecca; Burton, Rachel A; Fincher, Geoffrey B; Newbigin, Ed; Bacic, Antony

    2009-04-07

    The walls of grasses and related members of the Poales are characterized by the presence of the polysaccharide (1,3, 1,4)-beta-D-glucan (beta-glucan). To date, only members of the grass-specific cellulose synthase-like F (CSLF) gene family have been implicated in its synthesis. Assuming that other grass-specific CSL genes also might encode synthases for this polysaccharide, we cloned HvCSLH1, a CSLH gene from barley (Hordeum vulgare L.), and expressed an epitope-tagged version of the cDNA in Arabidopsis, a species with no CSLH genes and no beta-glucan in its walls. Transgenic Arabidopsis lines that had detectable amounts of the epitope-tagged HvCSLH1 protein accumulated beta-glucan in their walls. The presence of beta-glucan was confirmed by immunoelectron microscopy (immuno-EM) of sectioned tissues and chemical analysis of wall extracts. In the chemical analysis, characteristic tri- and tetra-saccharides were identified by high-performance anion-exchange chromatography and MALDI-TOF MS following their release from transgenic Arabidopsis walls by a specific beta-glucan hydrolase. Immuno-EM also was used to show that the epitope-tagged HvCSLH1 protein was in the endoplasmic reticulum and Golgi-associated vesicles, but not in the plasma membrane. In barley, HvCSLH1 was expressed at very low levels in leaf, floral tissues, and the developing grain. In leaf, expression was highest in xylem and interfascicular fiber cells that have walls with secondary thickenings containing beta-glucan. Thus both the CSLH and CSLF families contribute to beta-glucan synthesis in grasses and probably do so independently of each other, because there is no significant transcriptional correlation between these genes in the barley tissues surveyed.

  20. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-d-glucan synthesis in transgenic Arabidopsis

    PubMed Central

    Doblin, Monika S.; Pettolino, Filomena A.; Wilson, Sarah M.; Campbell, Rebecca; Burton, Rachel A.; Fincher, Geoffrey B.; Newbigin, Ed; Bacic, Antony

    2009-01-01

    The walls of grasses and related members of the Poales are characterized by the presence of the polysaccharide (1,3, 1,4)-β-D-glucan (β-glucan). To date, only members of the grass-specific cellulose synthase-like F (CSLF) gene family have been implicated in its synthesis. Assuming that other grass-specific CSL genes also might encode synthases for this polysaccharide, we cloned HvCSLH1, a CSLH gene from barley (Hordeum vulgare L.), and expressed an epitope-tagged version of the cDNA in Arabidopsis, a species with no CSLH genes and no β-glucan in its walls. Transgenic Arabidopsis lines that had detectable amounts of the epitope-tagged HvCSLH1 protein accumulated β-glucan in their walls. The presence of β-glucan was confirmed by immunoelectron microscopy (immuno-EM) of sectioned tissues and chemical analysis of wall extracts. In the chemical analysis, characteristic tri- and tetra-saccharides were identified by high-performance anion-exchange chromatography and MALDI-TOF MS following their release from transgenic Arabidopsis walls by a specific β-glucan hydrolase. Immuno-EM also was used to show that the epitope-tagged HvCSLH1 protein was in the endoplasmic reticulum and Golgi-associated vesicles, but not in the plasma membrane. In barley, HvCSLH1 was expressed at very low levels in leaf, floral tissues, and the developing grain. In leaf, expression was highest in xylem and interfascicular fiber cells that have walls with secondary thickenings containing β-glucan. Thus both the CSLH and CSLF families contribute to β-glucan synthesis in grasses and probably do so independently of each other, because there is no significant transcriptional correlation between these genes in the barley tissues surveyed. PMID:19321749

  1. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  2. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation.

    PubMed

    Shukla, Devesh; Kesari, Ravi; Tiwari, Manish; Dwivedi, Sanjay; Tripathi, Rudra Deo; Nath, Pravendra; Trivedi, Prabodh Kumar

    2013-12-01

    Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation. Earlier, we isolated and functionally characterised PCS gene from an aquatic macrophyte Ceratophyllum demersum L., a metal accumulator aquatic plant. Expression of this gene, CdPCS1, in tobacco enhanced PC synthesis and metal accumulation of transgenic tobacco plants. In the present study, we have expressed CdPCS1 in more diverse systems, Escherichia coli and Arabidopsis, and studied growth and metal accumulation of transgenic organisms. The expression of CdPCS1 in E. coli offered tolerance against cadmium as well as higher accumulation accompanied with PCS1 activity. The expression of CdPCS1 in Arabidopsis showed a significant enhanced accumulation of heavy metal(loid)s in aerial parts without significant difference in growth parameters in comparison to wild-type Arabidopsis plants. Our study suggests that CdPCS1 can be utilised for enhancing bioremediation potential of different organisms using biotechnological approaches.

  3. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    PubMed Central

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  4. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis.

    PubMed

    Li, Fengling; Wu, Xuemin; Lam, Patricia; Bird, David; Zheng, Huanquan; Samuels, Lacey; Jetter, Reinhard; Kunst, Ljerka

    2008-09-01

    Wax esters are neutral lipids composed of aliphatic alcohols and acids, with both moieties usually long-chain (C(16) and C(18)) or very-long-chain (C(20) and longer) carbon structures. They have diverse biological functions in bacteria, insects, mammals, and terrestrial plants and are also important substrates for a variety of industrial applications. In plants, wax esters are mostly found in the cuticles coating the primary shoot surfaces, but they also accumulate to high concentrations in the seed oils of a few plant species, including jojoba (Simmondsia chinensis), a desert shrub that is the major commercial source of these compounds. Here, we report the identification and characterization of WSD1, a member of the bifunctional wax ester synthase/diacylglycerol acyltransferase gene family, which plays a key role in wax ester synthesis in Arabidopsis (Arabidopsis thaliana) stems, as first evidenced by severely reduced wax ester levels of in the stem wax of wsd1 mutants. In vitro assays using protein extracts from Escherichia coli expressing WSD1 showed that this enzyme has a high level of wax synthase activity and approximately 10-fold lower level of diacylglycerol acyltransferase activity. Expression of the WSD1 gene in Saccharomyces cerevisiae resulted in the accumulation of wax esters, but not triacylglycerol, indicating that WSD1 predominantly functions as a wax synthase. Analyses of WSD1 expression revealed that this gene is transcribed in flowers, top parts of stems, and leaves. Fully functional yellow fluorescent protein-tagged WSD1 protein was localized to the endoplasmic reticulum, demonstrating that biosynthesis of wax esters, the final products of the alcohol-forming pathway, occurs in this subcellular compartment.

  5. Identification of the Wax Ester Synthase/Acyl-Coenzyme A:Diacylglycerol Acyltransferase WSD1 Required for Stem Wax Ester Biosynthesis in Arabidopsis12[W][OA

    PubMed Central

    Li, Fengling; Wu, Xuemin; Lam, Patricia; Bird, David; Zheng, Huanquan; Samuels, Lacey; Jetter, Reinhard; Kunst, Ljerka

    2008-01-01

    Wax esters are neutral lipids composed of aliphatic alcohols and acids, with both moieties usually long-chain (C16 and C18) or very-long-chain (C20 and longer) carbon structures. They have diverse biological functions in bacteria, insects, mammals, and terrestrial plants and are also important substrates for a variety of industrial applications. In plants, wax esters are mostly found in the cuticles coating the primary shoot surfaces, but they also accumulate to high concentrations in the seed oils of a few plant species, including jojoba (Simmondsia chinensis), a desert shrub that is the major commercial source of these compounds. Here, we report the identification and characterization of WSD1, a member of the bifunctional wax ester synthase/diacylglycerol acyltransferase gene family, which plays a key role in wax ester synthesis in Arabidopsis (Arabidopsis thaliana) stems, as first evidenced by severely reduced wax ester levels of in the stem wax of wsd1 mutants. In vitro assays using protein extracts from Escherichia coli expressing WSD1 showed that this enzyme has a high level of wax synthase activity and approximately 10-fold lower level of diacylglycerol acyltransferase activity. Expression of the WSD1 gene in Saccharomyces cerevisiae resulted in the accumulation of wax esters, but not triacylglycerol, indicating that WSD1 predominantly functions as a wax synthase. Analyses of WSD1 expression revealed that this gene is transcribed in flowers, top parts of stems, and leaves. Fully functional yellow fluorescent protein-tagged WSD1 protein was localized to the endoplasmic reticulum, demonstrating that biosynthesis of wax esters, the final products of the alcohol-forming pathway, occurs in this subcellular compartment. PMID:18621978

  6. Determination of nicotianamine in soy sauce and other plant-based foods by LC-MS/MS.

    PubMed

    Yamaguchi, Hitomi; Uchida, Riichiro

    2012-10-10

    Nicotianamine is a nonproteinogenic amino acid, known to be an important metal chelator in plants. Recently, the antihypertensive effect of nicotianamine was discovered. In this study, a simple method to determine nicotianamine was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a multimode ODS column. This method does not need derivatizing or ion-pairing reagents to retain nicotianamine, which is known for its poor retention on reversed-phase columns because of its high polarity. Moreover, this method showed a sufficient limit of detection (0.5 ng/mL), so it was found to be suitable for the analysis of nicotianamine in soy sauce and other foods, without cleanup. To subtract the matrix effect during LC-MS/MS analysis, a standard addition method was used. The levels of nicotianamine in soy sauce ranged from <0.25 to 71 μg/g. Nicotianamine was also determined in other foods, including soy milk, vegetable juice, fruit juice, and bottled tea.

  7. Mutation in cysteine bridge domain of the gamma-subunit affects light regulation of the ATP synthase in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    The chloroplast ATP synthase functions to synthesize ATP from ADP and free phosphate coupled by the electrochemical potential across the thylakoid membrane in the light. The light-dependent regulation of ATP synthase activity is carried out in part through redox modulation of a cysteine bridge in CF...

  8. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1

    PubMed Central

    Brunetti, Patrizia; Zanella, Letizia; Proia, Alessandra; De Paolis, Angelo; Falasca, Giuseppina; Altamura, Maria Maddalena; Sanità di Toppi, Luigi; Costantino, Paolo; Cardarelli, Maura

    2011-01-01

    Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length. PMID:21841172

  9. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1.

    PubMed

    Brunetti, Patrizia; Zanella, Letizia; Proia, Alessandra; De Paolis, Angelo; Falasca, Giuseppina; Altamura, Maria Maddalena; Sanità di Toppi, Luigi; Costantino, Paolo; Cardarelli, Maura

    2011-11-01

    Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length.

  10. Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana.

    PubMed

    Kim, Soon-Hee; Chang, Yung-Jin; Kim, Soo-Un

    2008-02-01

    Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental distributions of ADS, a full ADS promoter was generated using PCR, and fused to GUS for introduction into Arabidopsis thaliana. ADSpro::GUS fusion transcripts were organ-specific, mainly present in the anthers and trichomes of the green tissues of the juvenile leaves. This result was consistent with the ADS transcription pattern observed in A. annua as examined by RT-PCR. To determine the subcellular localization of ADS, an open reading frame (ORF) of ADS was fused to the green fluorescent protein (smGFP) gene and introduced into the A. thaliana protoplasts. GFP fluorescence was located exclusively in the cytosol, an indication that ADS is a cytosol-localized protein.

  11. Functional Analysis of the Cellulose Synthase-Like Genes CSLD1, CSLD2, and CSLD4 in Tip-Growing Arabidopsis Cells1[W

    PubMed Central

    Bernal, Adriana J.; Yoo, Cheol-Min; Mutwil, Marek; Jensen, Jakob Krüger; Hou, Guichuan; Blaukopf, Claudia; Sørensen, Iben; Blancaflor, Elison B.; Scheller, Henrik Vibe; Willats, William G.T.

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that previously described for CSLD3 (KOJAK). CSLD2 is required during a later stage of hair development than CSLD3, and CSLD2 mutants produce root hairs with a range of abnormalities, with many root hairs rupturing late in development. Remarkably, though, it was often the case that in CSLD2 mutants, tip growth would resume after rupturing of root hairs. In silico, semiquantitative reverse transcription-polymerase chain reaction, and promoter-reporter construct analyses indicated that the expression of both CSLD2 and CSLD3 is elevated at reduced temperatures, and the phenotypes of mutants homozygous for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect in male transmission, and plants heterozygous for insertions in CSLD1 or CSLD4 were defective in their ability to produce pollen tubes, although the number and morphology of pollen grains was normal. We propose that the CSLD family of putative glycosyltransferases synthesize a polysaccharide that has a specialized structural role in the cell walls of tip-growing cells. PMID:18768911

  12. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.

    PubMed

    Foresi, Noelia; Mayta, Martín L; Lodeyro, Anabella F; Scuffi, Denise; Correa-Aragunde, Natalia; García-Mata, Carlos; Casalongué, Claudia; Carrillo, Néstor; Lamattina, Lorenzo

    2015-06-01

    Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well-described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb-4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions.

  13. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    PubMed Central

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  14. GLUCAN SYNTHASE-LIKE8 and STEROL METHYLTRANSFERASE2 Are Required for Ploidy Consistency of the Sexual Reproduction System in Arabidopsis[C][W][OA

    PubMed Central

    De Storme, Nico; De Schrijver, Joachim; Van Criekinge, Wim; Wewer, Vera; Dörmann, Peter; Geelen, Danny

    2013-01-01

    In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the stochastic occurrence of premeiotic endomitosis. Endomitotic polyploidization events were induced by alterations in cell wall formation, and similar cytokinetic defects were sporadically observed in other tissues, including cotyledons and leaves. ET2 encodes GLUCAN SYNTHASE-LIKE8 (GSL8), a callose synthase that mediates the deposition of callose at developing cell plates, root hairs, and plasmodesmata. Unlike other gsl8 mutants, in which defects in cell plate formation are seedling lethal, cytokinetic defects in et2 predominantly occur in flowers and have little effect on vegetative growth and development. Similarly, mutations in STEROL METHYLTRANSFERASE2 (SMT2), a major sterol biosynthesis enzyme, also lead to weak cytokinetic defects, primarily in the flowers. In addition, SMT2 allelic mutants also generate tetraploid meiocytes through the ectopic induction of premeiotic endomitosis. These observations demonstrate that appropriate callose and sterol biosynthesis are required for maintaining the ploidy level of the premeiotic germ lineage and that subtle defects in cytokinesis may lead to diploid gametes and polyploid offspring. PMID:23404886

  15. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase.

    PubMed

    Wawrzynska, Anna; Rodibaugh, Natalie L; Innes, Roger W

    2010-05-01

    Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)-inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.

  16. Synergistic Activation of Defense Responses in Arabidopsis by Simultaneous Loss of the GSL5 Callose Synthase and the EDR1 Protein Kinase

    PubMed Central

    Wawrzynska, Anna; Rodibaugh, Natalie L.; Innes, Roger W.

    2012-01-01

    Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1, and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA and methyl-jasmonate (JA) inducible defense genes and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4, PMR4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production and/or signaling by independent mechanisms, and that negative regulation of defense signaling by GSL5 may be independent of callose production. PMID:20367466

  17. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    PubMed

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  18. Arabidopsis S-Sulfocysteine Synthase Activity Is Essential for Chloroplast Function and Long-Day Light-Dependent Redox Control[W

    PubMed Central

    Bermúdez, Maria Angeles; Páez-Ochoa, Maria Angeles; Gotor, Cecilia; Romero, Luis C.

    2010-01-01

    In bacteria, the biosynthesis of Cys is accomplished by two enzymes that are encoded by the cysK and cysM genes. CysM is also able to use thiosulfate as a substrate to produce S-sulfocysteine. In plant cells, the biosynthesis of Cys occurs in the cytosol, mitochondria, and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes in Arabidopsis thaliana. An in vitro enzymatic analysis of the recombinant CS26 protein demonstrated that this isoform possesses S-sulfocysteine synthase activity and lacks O-acetylserine(thiol)lyase activity. In vivo functional analysis of this enzyme in knockout mutants demonstrated that mutation of CS26 suppressed the S-sulfocysteine synthase activity that was detected in the wild type; furthermore, the cs26 mutants exhibited a reduction in size and showed paleness, but penetrance of the growth phenotype depended on the light regime. The cs26 mutant plants also had reductions in chlorophyll content and photosynthetic activity (neither of which were observed in oas-b mutants) as well as elevated glutathione levels. However, cs26 leaves were not able to properly detoxify reactive oxygen species, which accumulated to high levels under long-day growth conditions. The transcriptional profile of the cs26 mutant revealed that the mutation had a pleiotropic effect on many cellular and metabolic processes. Our findings reveal that S-sulfocysteine and the activity of S-sulfocysteine synthase play important roles in chloroplast function and are essential for light-dependent redox regulation within the chloroplast. PMID:20179139

  19. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  20. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana

    PubMed Central

    Beres, Zachery T.; Jin, Lin; Parrish, Jason T.; Zhao, Wanying; Mackey, David; Snow, Allison A.

    2017-01-01

    Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide’s target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines. PMID

  1. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana.

    PubMed

    Yang, Xiao; Beres, Zachery T; Jin, Lin; Parrish, Jason T; Zhao, Wanying; Mackey, David; Snow, Allison A

    2017-01-01

    Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide's target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines.

  2. DOLICHOL PHOSPHATE MANNOSE SYNTHASE1 Mediates the Biogenesis of Isoprenyl-Linked Glycans and Influences Development, Stress Response, and Ammonium Hypersensitivity in Arabidopsis[W

    PubMed Central

    Jadid, Nurul; Mialoundama, Alexis Samba; Heintz, Dimitri; Ayoub, Daniel; Erhardt, Mathieu; Mutterer, Jérôme; Meyer, Denise; Alioua, Abdelmalek; Van Dorsselaer, Alain; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2011-01-01

    The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers’ yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference–mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress. PMID:21558543

  3. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana.

    PubMed

    Valdez, Hugo A; Busi, Maria V; Wayllace, Nahuel Z; Parisi, Gustavo; Ugalde, Rodolfo A; Gomez-Casati, Diego F

    2008-03-04

    Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.

  4. Arabidopsis Brassinosteroid-Insensitive dwarf12 Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3β-Like Kinase1

    PubMed Central

    Choe, Sunghwa; Schmitz, Robert J.; Fujioka, Shozo; Takatsuto, Suguru; Lee, Mi-Ok; Yoshida, Shigeo; Feldmann, Kenneth A.; Tax, Frans E.

    2002-01-01

    Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3β family. Unlike human glycogen synthase kinase 3β, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways. PMID:12428015

  5. 16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: potent mechanism-based inhibitors of recombinant ent-kaurene synthase from Arabidopsis thaliana.

    PubMed

    Roy, Arnab; Roberts, Frank G; Wilderman, P Ross; Zhou, Ke; Peters, Reuben J; Coates, Robert M

    2007-10-17

    The secondary ent-beyeran-16-yl carbocation (7) is a key branch point intermediate in mechanistic schemes to rationalize the cyclic structures of many tetra- and pentacyclic diterpenes, including ent-beyerene, ent-kaurene, ent-trachylobane, and ent-atiserene, presumed precursors to >1000 known diterpenes. To evaluate these mechanistic hypotheses, we synthesized the heterocyclic analogues 16-aza-ent-beyerane (12) and 16-aza-ent-trachylobane (13) by means of Hg(II)- and Pb(IV)-induced cyclizations onto the Delta12 double bonds of tricyclic intermediates bearing carbamoylmethyl and aminomethyl groups at C-8. The 13,16-seco-16-norcarbamate (20a) was obtained from ent-beyeran-16-one oxime (17) by Beckmann fragmentation, hydrolysis, and Curtius rearrangement. The aza analogues inhibited recombinant ent-kaurene synthase from Arabidopsis thaliana (GST-rAtKS) with inhibition constants (IC50 = 1 x 10-7 and 1 x 10-6 M) similar in magnitude to the pseudo-binding constant of the bicyclic ent-copalyl diphosphate substrate (Km = 3 x 10-7 M). Large enhancements of binding affinities (IC50 = 4 x 10-9 and 2 x 10-8 M) were observed in the presence of 1 mM pyrophosphate, which is consistent with a tightly bound ent-beyeranyl+/pyrophosphate- ion pair intermediate in the cyclization-rearrangement catalyzed by this diterpene synthase. The weak inhibition (IC50 = 1 x 10-5 M) exhibited by ent-beyeran-16-exo-yl diphosphate (11) and its failure to undergo bridge rearrangement to kaurene appear to rule out the covalent diphosphate as a free intermediate. 16-Aza-ent-beyerane is proposed as an effective mimic for the ent-beyeran-16-yl carbocation with potential applications as an active site probe for the various ent-diterpene cyclases and as a novel, selective inhibitor of gibberellin biosynthesis in plants.

  6. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis.

    PubMed

    Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan

    2013-02-01

    Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5' splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5.

  7. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    PubMed

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO.

  8. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants.

    PubMed Central

    Chang, A K; Duggleby, R G

    1998-01-01

    Acetohydroxyacid synthase (AHAS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. Four mutants (A122V, W574S, W574L and S653N) of the AHAS gene from Arabidopsis thaliana were constructed, expressed in Escherichia coli, and the enzymes were purified. Each mutant form and wild-type was characterized with respect to its catalytic properties and sensitivity to nine herbicides. Each enzyme had a pH optimum near 7.5. The specific activity varied from 13% (A122V) to 131% (W574L) of the wild-type and the Km for pyruvate of the mutants was similar to the wild-type, except for W574L where it was five-fold higher. The activation by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined. A122V showed reduced affinity for all three cofactors, whereas S653N bound FAD more strongly than wild-type AHAS. Six sulphonylurea herbicides inhibited A122V to a similar degree as the wild-type but S653N showed a somewhat greater reduction in sensitivity to these compounds. In contrast, the W574 mutants were insensitive to these sulphonylureas, with increases in the Kiapp (apparent inhibition constant) of several hundred fold. All four mutants were resistant to three imidazolinone herbicides with decreases in sensitivity ranging from 100-fold to more than 1000-fold. PMID:9677339

  9. Two poplar cellulose synthase-like D genes, PdCSLD5 and PdCSLD6, are functionally conserved with Arabidopsis CSLD3.

    PubMed

    Qi, Guang; Hu, Ruibo; Yu, Li; Chai, Guohua; Cao, Yingping; Zuo, Ran; Kong, Yingzhen; Zhou, Gongke

    2013-09-15

    Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.

  10. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum.

    PubMed

    Kumar, Pavan; Jander, Georg

    2017-04-05

    Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.

  11. AtCSLA7, a Cellulose Synthase-Like Putative Glycosyltransferase, Is Important for Pollen Tube Growth and Embryogenesis in Arabidopsis1

    PubMed Central

    Goubet, Florence; Misrahi, Audrey; Park, Soon Ki; Zhang, Zhinong; Twell, David; Dupree, Paul

    2003-01-01

    The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide β-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development. PMID:12586879

  12. Cellular Localization and Biochemical Characterization of a Chimeric Fluorescent Protein Fusion of Arabidopsis Cellulose Synthase-Like A2 Inserted into Golgi Membrane

    PubMed Central

    Lenucci, Marcello S.; Montefusco, Anna

    2014-01-01

    Cellulose synthase-like (Csl) genes are believed to encode enzymes for the synthesis of cell wall matrix polysaccharides. The subfamily of CslA is putatively involved in the biosynthesis of β-mannans. Here we report a study on the cellular localization and the enzyme activity of an Arabidopsis CslA family member, AtCslA2. We show that the fluorescent protein fusion AtCslA2-GFP, transiently expressed in tobacco leaf protoplasts, is synthesized in the ER and it accumulates in the Golgi stacks. The chimera is inserted in the Golgi membrane and is functional since membrane preparations obtained by transformed protoplasts carry out the in vitro synthesis of a 14C-mannan starting from GDP-d-[U-14C]mannose as substrate. The enzyme specific activity is increased by approximately 38% in the transformed protoplasts with respect to wild-type. Preliminary tests with proteinase K, biochemical data, and TM domain predictions suggest that the catalytic site of AtCslA2 faces the Golgi lumen. PMID:24558328

  13. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis.

    PubMed

    Gámez-Arjona, Francisco M; Raynaud, Sandy; Ragel, Paula; Mérida, Angel

    2014-10-01

    Starch synthesis requires the formation of a primer that can be subsequently elongated and branched. How this primer is produced, however, remains unknown. The control of the number of starch granules produced per chloroplast is also a matter of debate. We previously showed starch synthase 4 (SS4) to be involved in both processes, although the mechanisms involved are yet to be fully characterised. The present work shows that SS4 displays a specific localization different from other starch synthases. Thus, this protein is located in specific areas of the thylakoid membrane and interacts with the proteins fibrillin 1a (FBN1a) and 1b (FBN1b), which are mainly located in plastoglobules. SS4 would seem to be associated with plastoglobules attached to the thylakoids (or to that portion of the thylakoids where plastoglobules have originated), forming a complex that includes the FBN1s and other as-yet unidentified proteins. The present results also indicate that the localization pattern of SS4, and its interactions with the FBN1 proteins, are mediated through its N-terminal region, which contains two long coiled-coil motifs. The localization of SS4 in specific areas of the thylakoid membrane suggests that starch granules are originated at specific regions of the chloroplast.

  14. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry

    SciTech Connect

    Hill, Joseph L.; Hammudi, Mustafa B.; Tien, Ming

    2014-12-01

    In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and 35S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  15. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation.

    PubMed

    Tsai, Shen-Long; Singh, Shailendra; Dasilva, Nancy A; Chen, Wilfred

    2012-02-01

    Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic. Copyright © 2011 Wiley Periodicals, Inc.

  16. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells.

    PubMed

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan

    2013-06-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.

  17. Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine γ-synthase.

    PubMed

    Hanafy, Moemen S; Rahman, Shaikh M; Nakamoto, Yumi; Fujiwara, Toru; Naito, Satoshi; Wakasa, Kyo; Ishimoto, Masao

    2013-02-15

    Methionine (Met) is a sulfur-containing amino acid that is essential in mammals and whose low abundance limits the nutritional value of grain legumes. Cystathionine γ-synthase (CGS) catalyzes the first committed step of Met biosynthesis, and the stability of its mRNA is autoregulated by the cytosolic concentration of S-adenosyl-l-methionine (SAM), a direct metabolite of Met. The mto1-1 mutant of Arabidopsis thaliana harbors a mutation in the AtCGS1 gene that renders the mRNA resistant to SAM-dependent degradation and therefore results in the accumulation of free Met to high levels in young leaves. To manipulate Met biosynthesis in soybean and azuki bean, we introduced the AtCGS1 mto1-1 gene into the two grain legumes under the control of a seed-specific glycinin gene promoter. Transgenic seeds of both species accumulated soluble Met to levels at least twice those apparent in control seeds. However, the increase in free Met did not result in an increase in total Met content of the transgenic seeds. In transgenic azuki bean seeds, the amount of cystathionine, the direct product of CGS, was markedly increased whereas the total content of Met was significantly decreased compared with control seeds. Similar changes were not detected in soybean. Our data suggest that the regulation of Met biosynthesis differs between soybean and azuki bean, and that the expression of AtCGS1 mto1-1 differentially affects the metabolic stability of sulfur amino acids and their metabolites in the two grain legumes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. Expression analysis of a heat-inducible, Myo-inositol-1-phosphate synthase (MIPS) gene from wheat and the alternatively spliced variants of rice and Arabidopsis.

    PubMed

    Khurana, Neetika; Chauhan, Harsh; Khurana, Paramjit

    2012-01-01

    Molecular dissection and a deeper analysis of the heat stress response mechanism in wheat have been poorly understood so far. This study delves into the molecular basis of action of TaMIPS, a heat stress-inducible enzyme that was identified through PCR-select subtraction technology, which is named here as TaMIPS2. MIPS (L-Myo-inositol-phosphate synthase) is important for the normal growth and development in plants. Expression profiling showed that TaMIPS2 is expressed during different developing seed stages upon heat stress. Also, the transcript levels increase in unfertilized ovaries and significant amounts are present during the recovery period providing evidence that MIPS is crucial for its role in heat stress recovery and flower development. Alternatively spliced forms from rice and Arabidopsis were also identified and their expression analysis revealed that apart from heat stress, some of the spliced variants were also inducible by drought, NaCl, Cold, ABA, BR, SA and mannitol. In silico promoter analysis revealed various cis-elements that could contribute for the differential regulation of MIPS in different plant systems. Phylogenetic analysis indicated that MIPS are highly conserved among monocots and dicots and TaMIPS2 grouped specifically with monocots. Comparative analyses was undertaken by different experimental approaches, i.e., semi-quantitative RT-PCR, quantitative RT-PCR, Genevestigator as a reference expression tool and motif analysis to predict the possible function of TaMIPS2 in regulating the different aspects of plant development under abiotic stress in wheat.

  19. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-06-19

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 (OE) ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 (OE) rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 (OE) rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  20. The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains.

    PubMed

    Ishiguro, Sumie; Nishimori, Yuka; Yamada, Miho; Saito, Hiroko; Suzuki, Toshiya; Nakagawa, Tsuyoshi; Miyake, Hiroshi; Okada, Kiyotaka; Nakamura, Kenzo

    2010-06-01

    The pollen coat is a surface component of pollen grains required for fertilization. To study how the pollen coat is produced, we identified and characterized a recessive and conditional male-sterile Arabidopsis mutant, flaky pollen1-1 (fkp1-1), whose pollen grains lack functional pollen coats. FKP1 is a single-copy gene in the Arabidopsis genome and encodes 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMG-CoA synthase), an enzyme of the mevalonate (MVA) pathway involved in biosynthesis of isoprenoids such as sterols. We found that fkp1-1 possesses a T-DNA insertion 550 bp upstream of the initiation codon. RT-PCR and promoter analyses revealed that fkp1-1 results in knockdown of FKP1 predominantly in tapetum. Electron microscopy showed that the mutation affected the development of tapetum-specific lipid-containing organelles (elaioplast and tapetosome), causing the deficient formation of fkp1-1 pollen coats. These results suggest that both elaioplasts, which accumulate vast amount of sterol esters, and tapetosomes, which are unique oil-accumulating structures, require the MVA pathway for development. Null alleles of fkp1 were male-gametophyte lethal upon pollen tube elongation, whereas female gametophytes were normal. These results show that the MVA pathway is essential, at least in tapetal cells and pollen grains, for the development of tapetum-specific organelles and the fertility of pollen grains.

  1. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis1[OPEN

    PubMed Central

    Li, Chun-Long; Wang, Mei; Wu, Xiao-Meng; Chen, Dong-Hua; Lv, Hong-Jun; Shen, Jian-Lin; Qiao, Zhu; Zhang, Wei

    2016-01-01

    Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca2+-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling. PMID:26662273

  2. Genome-Wide Screening of Salt Tolerant Genes by Activation-Tagging Using Dedifferentiated Calli of Arabidopsis and Its Application to Finding Gene for Myo-Inositol-1-P-Synthase

    PubMed Central

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Kobayashi, Kyoko; Shimizu, Masanori; Ito, Sohei; Usui, Yumiko; Nakayama, Tsutomu; Kobayashi, Hirokazu

    2015-01-01

    Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis. PMID:25978457

  3. Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress.

    PubMed

    Joshi, Rohit; Ramanarao, Mangu Venkata; Baisakh, Niranjan

    2013-04-01

    Salinity is one of the most important environmental constraints limiting agricultural productivity. Considering the importance of the accumulation of osmolytes, myo-inositol in particular, in halophytic plant's adaptive response to salinity, an effort was made to overexpress the SaINO1 gene from the grass halophyte Spartina alterniflora encoding myo-inositol 1-phosphate synthase (MIPS) in Arabidopsis thaliana. We demonstrated that SaINO1 is a stress-responsive gene and its constitutive over expression in Arabidopsis provides significantly improved tolerance to salt stress during germination and seedling growth and development. The transgenics retained more chlorophyll and carotenoid by protecting the photosystem II. The low level of stress-induced cellular damage in the transgenics was clearly evident by lower accumulation of proline in comparison to WT. Our results indicated that possible overaccumulation of MIPS enzyme in the cytosol protected the transgenic Arabidopsis plants overexpressing SaINO1 from the toxic effect of Na(+) under salt stress by reducing cellular damage and chlorophyll loss.

  4. Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS031[W][OA

    PubMed Central

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-01-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-β-ocimene and (E,E)-α-farnesene from accession Wassilewskija (Ws), a high-(E)-β-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species. PMID:20463089

  5. Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin.

    PubMed

    Brust, Henrike; Lehmann, Tanja; D'Hulst, Christophe; Fettke, Joerg

    2014-01-01

    Starch synthase (SS) and branching enzyme (BE) establish the two glycosidic linkages existing in starch. Both enzymes exist as several isoforms. Enzymes derived from several species were studied extensively both in vivo and in vitro over the last years, however, analyses of a functional interaction of SS and BE isoforms are missing so far. Here, we present data from in vitro studies including both interaction of leaf derived and heterologously expressed SS and BE isoforms. We found that SSI activity in native PAGE without addition of glucans was dependent on at least one of the two BE isoforms active in Arabidopsis leaves. This interaction is most likely not based on a physical association of the enzymes, as demonstrated by immunodetection and native PAGE mobility analysis of SSI, BE2, and BE3. The glucans formed by the action of SSI/BEs were analysed using leaf protein extracts from wild type and be single mutants (Atbe2 and Atbe3 mutant lines) and by different combinations of recombinant proteins. Chain length distribution (CLD) patterns of the formed glucans were irrespective of SSI and BE isoforms origin and still independent of assay conditions. Furthermore, we show that all SS isoforms (SSI-SSIV) were able to interact with BEs and form branched glucans. However, only SSI/BEs generated a polymodal distribution of glucans which was similar to CLD pattern detected in amylopectin of Arabidopsis leaf starch. We discuss the impact of the SSI/BEs interplay for the CLD pattern of amylopectin.

  6. Analysis of the Functional Interaction of Arabidopsis Starch Synthase and Branching Enzyme Isoforms Reveals that the Cooperative Action of SSI and BEs Results in Glucans with Polymodal Chain Length Distribution Similar to Amylopectin

    PubMed Central

    Brust, Henrike; Lehmann, Tanja; D'Hulst, Christophe; Fettke, Joerg

    2014-01-01

    Starch synthase (SS) and branching enzyme (BE) establish the two glycosidic linkages existing in starch. Both enzymes exist as several isoforms. Enzymes derived from several species were studied extensively both in vivo and in vitro over the last years, however, analyses of a functional interaction of SS and BE isoforms are missing so far. Here, we present data from in vitro studies including both interaction of leaf derived and heterologously expressed SS and BE isoforms. We found that SSI activity in native PAGE without addition of glucans was dependent on at least one of the two BE isoforms active in Arabidopsis leaves. This interaction is most likely not based on a physical association of the enzymes, as demonstrated by immunodetection and native PAGE mobility analysis of SSI, BE2, and BE3. The glucans formed by the action of SSI/BEs were analysed using leaf protein extracts from wild type and be single mutants (Atbe2 and Atbe3 mutant lines) and by different combinations of recombinant proteins. Chain length distribution (CLD) patterns of the formed glucans were irrespective of SSI and BE isoforms origin and still independent of assay conditions. Furthermore, we show that all SS isoforms (SSI-SSIV) were able to interact with BEs and form branched glucans. However, only SSI/BEs generated a polymodal distribution of glucans which was similar to CLD pattern detected in amylopectin of Arabidopsis leaf starch. We discuss the impact of the SSI/BEs interplay for the CLD pattern of amylopectin. PMID:25014622

  7. Formation of the Unusual Semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory[W

    PubMed Central

    Vaughan, Martha M.; Wang, Qiang; Webster, Francis X.; Kiemle, Dave; Hong, Young J.; Tantillo, Dean J.; Coates, Robert M.; Wray, Austin T.; Askew, Whitnee; O’Donnell, Christopher; Tokuhisa, James G.; Tholl, Dorothea

    2013-01-01

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type–specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects. PMID:23512856

  8. Seed-Specific Expression of a Feedback-Insensitive Form of CYSTATHIONINE-γ-SYNTHASE in Arabidopsis Stimulates Metabolic and Transcriptomic Responses Associated with Desiccation Stress1[W][OPEN

    PubMed Central

    Cohen, Hagai; Israeli, Hadasa; Matityahu, Ifat; Amir, Rachel

    2014-01-01

    With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition to higher levels of Met, the levels of many other amino acids were elevated. The most pronounced changes were the higher levels of stress-related amino acids (isoleucine, leucine, valine, and proline), sugars, intermediates of the tricarboxylic acid cycle, and polyamines and lower levels of polyols, cysteine, and glutathione. These changes reflect stress responses and an altered mitochondrial energy metabolism. The transgenic seeds also had higher contents of total proteins and starch but lower water contents. In accordance with the metabolic profiles, microarray analysis identified a strong induction of genes involved in defense mechanisms against osmotic and drought conditions, including those mediated by the signaling cascades of ethylene and abscisic acid. These changes imply that stronger desiccation processes occur during seed development. The expression levels of transcripts controlling the levels of Met, sugars, and tricarboxylic acid cycle metabolites were also significantly elevated. Germination assays showed that the transgenic seeds had higher germination rates under salt and osmotic stresses and in the presence of ethylene substrate and abscisic acid. However, under oxidative conditions, the transgenic seeds displayed much lower germination rates. Altogether, the data provide new insights on the factors regulating Met metabolism in Arabidopsis seeds and on the mechanisms by which elevated Met levels affect seed composition and behavior. PMID:25232013

  9. Expression of Caenorhabditis elegans PCS in the AtPCS1-deficient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases.

    PubMed

    Kühnlenz, Tanja; Westphal, Lore; Schmidt, Holger; Scheel, Dierk; Clemens, Stephan

    2015-11-01

    Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal-binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non-host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non-host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non-host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function. © 2015 John Wiley & Sons Ltd.

  10. Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators.

    PubMed

    Callahan, Damien L; Kolev, Spas D; O'Hair, Richard A J; Salt, David E; Baker, Alan J M

    2007-01-01

    Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography-mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and L-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

  11. Enhanced Grain Iron Levels in Rice Expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN Gene Cassette

    PubMed Central

    Boonyaves, Kulaporn; Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K.

    2017-01-01

    Micronutrient malnutrition is widespread, especially in poor populations across the globe, and iron deficiency anemia is one of the most prevalent forms of micronutrient deficiencies. Iron deficiency anemia has severe consequences for human health, working ability, and quality of life. Several interventions including iron supplementation and food fortification have been attempted and met with varied degrees of success. Rice, which is a staple food for over half of the world’s population, is an important target crop for iron biofortification. The genetic variability of iron content in the rice germplasm is very narrow, and thus, conventional breeding has not been successful in developing high iron rice varieties. Therefore, genetic engineering approaches have targeted at increasing iron uptake, translocation, and storage in the rice endosperm. We previously reported that AtIRT1, when expressed together with AtNAS1 and PvFERRITIN (PvFER) in high-iron (NFP) rice, has a synergistic effect of further increasing the iron concentration of polished rice grains. We have now engineered rice expressing AtIRT1, AtNAS1, and PvFER as a single locus gene cassette and compared the resulting lines with transgenic lines expressing AtIRT1 and PvFER gene cassettes. We also evaluated the efficacies of the MsENOD12B and native AtIRT1 promoters for the expression of AtIRT1 in rice in both types of gene cassettes, and found the native AtIRT1 promoter to be a better choice for driving the AtIRT1 expression in our biofortification strategy. All the single insertion transgenic lines have significant increases of iron concentration, both in polished and unpolished grains, but the concerted expression of AtIRT1, AtNAS1, and PvFER resulted to be a more effective strategy in achieving the highest iron increases of up to 10.46 μg/g dry weight. Furthermore, the transformed high iron lines grew better under iron deficiency growth conditions and also have significantly increased grain zinc concentration. Together, these rice lines have nutritionally relevant increases in polished grain iron and zinc concentration necessary to support human health. PMID:28223994

  12. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean.

    PubMed

    Takahashi, Saori; Yoshiya, Taku; Yoshizawa-Kumagaye, Kumiko; Sugiyama, Toshihiro

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase which is highly homologous to angiotensin-converting enzyme (ACE). ACE2 produces vasodilator peptides angiotensin 1-7 from angiotensin II. In the present study, we synthesized various internally quenched fluorogenic (IQF) substrates (fluorophore-Xaa-Pro-quencher) based on the cleavage site of angiotensin II introducing N-terminal fluorophore N-methylanthranilic acid (Nma) and C-terminal quencher N(ε)-2,4- dinitrophenyl-lysine [Lys(Dnp)]. The synthesized mixed substrates "Nma-Xaa-Pro-Lys(Dnp)" were hydrolyzed by recombinant human (rh) ACE2. The amount of each product was determined by liquid chromatography mass spectrometry (LC-MS) with fluorescence detection and it was found that Nma-His-Pro-Lys(Dnp) is the most suitable substrate for rhACE2. The K(m), k(cat), and k(cat)/K(m) values of Nma-His-Pro-Lys(Dnp) on rhACE2 were determined to be 23.3 μM, 167 s(-1), and 7.17 μM(-1) s(-1), respectively. Using the rhACE2 and the newly developed IQF substrate, we found rhACE2 inhibitory activity in soybean and isolated the active compound soybean ACE2 inhibitor (ACE2iSB). The physicochemical data on the isolated ACE2iSB were identical to those of nicotianamine. ACE2iSB strongly inhibited rhACE2 activity with an IC50 value of 84 nM. This is the first demonstration of an ACE2 inhibitor from foodstuffs.

  13. Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava1[C][W

    PubMed Central

    Gonzalez, María Elisa; Marco, Francisco; Minguet, Eugenio Gómez; Carrasco-Sorli, Pedro; Blázquez, Miguel Angel; Carbonell, Juan; Ruiz, Oscar Adolfo; Pieckenstain, Fernando Luis

    2011-01-01

    The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P. viridiflava than wild-type plants, while the latter were more susceptible. Exogenous supply of spermine to wild-type plants also increased disease resistance. Increased resistance provided by spermine was partly counteracted by the polyamine oxidase inhibitor SL-11061, demonstrating that the protective effect of spermine partly depends on its oxidation. In addition, global changes in gene expression resulting from perturbations of spermine levels were analyzed by transcript profiling 35S::SPMS-9 and spms-2 plants. Overexpression of 602 genes was detected in 35S::SPMS-9 plants, while 312 genes were down-regulated, as compared to the wild type. In the spms-2 line, 211 and 158 genes were up- and down-regulated, respectively. Analysis of gene ontology term enrichment demonstrated that many genes overexpressed only in 35S::SPMS-9 participate in pathogen perception and defense responses. Notably, several families of disease resistance genes, transcription factors, kinases, and nucleotide- and DNA/RNA-binding proteins were overexpressed in this line. Thus, a number of spermine-responsive genes potentially involved in resistance to P. viridiflava were identified. The obtained results support the idea that spermine contributes to plant resistance to P. viridiflava. PMID:21628628

  14. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses

    PubMed Central

    Kalamaki, Mary S.; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J.; Kanellis, Angelos K.

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  15. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.

  16. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.

  17. Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis1

    PubMed Central

    Estévez, Juan M.; Cantero, Araceli; Romero, Cynthia; Kawaide, Hiroshi; Jiménez, Luis F.; Kuzuyama, Tomohisa; Seto, Haruo; Kamiya, Yuji; León, Patricia

    2000-01-01

    The discovery of the 2-C-methyl-d-erythritol-4-phosphate pathway for the biosynthesis of isoprenoids raises the important question of the nature and regulation of the enzymes involved in this pathway. CLA1, a gene previously isolated from Arabidopsis, encodes the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate pathway, 1-deoxy-d-xylulose-5-phosphate synthase. We demonstrate this enzyme activity by complementation of the cla1-1 mutant phenotype and by direct enzymatic assays. Based on mRNA and protein expression patterns this enzyme is expressed mainly in developing photosynthetic and non-photosynthetic tissues. The β-glucuronidase expression pattern driven from the CLA1 gene regulatory region supports the northern and protein data while also showing that this gene has some level of expression in most tissues of the plant. A mutation in the CLA1 gene interferes with the normal development of chloroplasts and etioplasts, but does not seem to affect amyloplast structure. Microscopic analysis also shows a pleiotropic effect of the CLA1 gene mutation in mesophyll tissue formation. PMID:10982425

  18. In Planta Recapitulation of Isoprene Synthases Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-06-16

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated.We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated in vivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause in vivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms.Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Cloning Two Genes for Nicotianamine Aminotransferase, a Critical Enzyme in Iron Acquisition (Strategy II) in Graminaceous Plants

    PubMed Central

    Takahashi, Michiko; Yamaguchi, Hirotaka; Nakanishi, Hiromi; Shioiri, Takayuki; Nishizawa, Naoko-Kishi; Mori, Satoshi

    1999-01-01

    Nicotianamine aminotransferase (NAAT), the key enzyme involved in the biosynthesis of mugineic acid family phytosiderophores (MAs), catalyzes the amino transfer of nicotianamine (NA). MAs are found only in graminaceous plants, although NA has been detected in every plant so far investigated. Therefore, this amino transfer reaction is the first step in the unique biosynthesis of MAs that has evolved in graminaceous plants. NAAT activity is dramatically induced by Fe deficiency and suppressed by Fe resupply. Based on the protein sequence of NAAT purified from Fe-deficient barley (Hordeum vulgare) roots, two distinct cDNA clones encoding NAAT, naat-A and naat-B, were identified. Their deduced amino acid sequences were homologous to several aminotransferases, and shared consensus sequences for the pyridoxal phosphate-binding site lysine residue and its surrounding residues. The expression of both naat-A and naat-B is increased in Fe-deficient barley roots, while naat-B has a low level of constitutive expression in Fe-sufficient barley roots. No detectable mRNA from either naat-A or naat-B was present in the leaves of either Fe-deficient or Fe-sufficient barley. One genomic clone with a tandem array of naat-B and naat-A in this order was identified. naat-B and naat-A each have six introns at the same locations. The isolation of NAAT genes will pave the way to understanding the mechanism of the response to Fe in graminaceous plants, and may lead to the development of cultivars tolerant to Fe deficiency that can grow in calcareous soils. PMID:10557244

  20. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    PubMed

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  1. Patterning and Lifetime of Plasma Membrane-Localized Cellulose Synthase Is Dependent on Actin Organization in Arabidopsis Interphase Cells1[W

    PubMed Central

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E.; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W.; Persson, Staffan

    2013-01-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis. PMID:23606596

  2. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    PubMed

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  3. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    PubMed

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  4. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis.

    PubMed

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-10-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter-reporter gene analyses and quantitative real-time reverse transcription-PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period.

  5. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana.

    PubMed

    Suzuki, Yuya; Arae, Toshihiro; Green, Pamela J; Yamaguchi, Junji; Chiba, Yukako

    2015-05-01

    Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.

  6. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity.

    PubMed

    Pandey, Ashutosh; Misra, Prashant; Khan, Mohd P; Swarnkar, Gaurav; Tewari, Mahesh C; Bhambhani, Sweta; Trivedi, Ritu; Chattopadhyay, Naibedya; Trivedi, Prabodh K

    2014-01-01

    Isoflavones, a group of flavonoids, restricted almost exclusively to family Leguminosae are known to exhibit anticancerous and anti-osteoporotic activities in animal systems and have been a target for metabolic engineering in commonly consumed food crops. Earlier efforts based on the expression of legume isoflavone synthase (IFS) genes in nonlegume plant species led to the limited success in terms of isoflavone content in transgenic tissue due to the limitation of substrate for IFS enzyme. In this work to overcome this limitation, the activation of multiple genes of flavonoid pathway using Arabidopsis transcription factor AtMYB12 has been carried out. We developed transgenic tobacco lines constitutively co-expressing AtMYB12 and GmIFS1 (soybean IFS) genes or independently and carried out their phytochemical and molecular analyses. The leaves of co-expressing transgenic lines were found to have elevated flavonol content along with the accumulation of substantial amount of genistein glycoconjugates being at the highest levels that could be engineered in tobacco leaves till date. Oestrogen-deficient (ovariectomized, Ovx) mice fed with leaf extract from transgenic plant co-expressing AtMYB12 and GmIFS1 but not wild-type extract exhibited significant conservation of trabecular microarchitecture, reduced osteoclast number and expression of osteoclastogenic genes, higher total serum antioxidant levels and increased uterine oestrogenicity compared with Ovx mice treated with vehicle (control). The skeletal effect of the transgenic extract was comparable to oestrogen-treated Ovx mice. Together, our results establish an efficient strategy for successful pathway engineering of isoflavones and other flavonoids in crop plants and provide a direct evidence of improved osteoprotective effect of transgenic plant extract.

  7. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana.

    PubMed

    Strand, A; Zrenner, R; Trevanion, S; Stitt, M; Gustafsson, P; Gardeström, P

    2000-09-01

    Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards

  8. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil

    PubMed Central

    Kühnlenz, Tanja; Schmidt, Holger; Uraguchi, Shimpei; Clemens, Stephan

    2014-01-01

    Phytochelatins play a key role in the detoxification of metals in plants and many other eukaryotes. Their formation is catalysed by phytochelatin synthases (PCS) in the presence of metal excess. It appears to be common among higher plants to possess two PCS genes, even though in Arabidopsis thaliana only AtPCS1 has been demonstrated to confer metal tolerance. Employing a highly sensitive quantification method based on ultraperformance electrospray ionization quadrupole time-of-flight mass spectrometry, we detected AtPCS2-dependent phytochelatin formation. Overexpression of AtPCS2 resulted in constitutive phytochelatin accumulation, i.e. in the absence of metal excess, both in planta and in a heterologous system. This indicates distinct enzymatic differences between AtPCS1 and AtPCS2. Furthermore, AtPCS2 was able to partially rescue the Cd hypersensitivity of the AtPCS1-deficient cad1-3 mutant in a liquid seedling assay, and, more importantly, when plants were grown on soil spiked with Cd to a level that is close to what can be found in agricultural soils. No rescue was found in vertical-plate assays, the most commonly used method to assess metal tolerance. Constitutive AtPCS2-dependent phytochelatin synthesis suggests a physiological role of AtPCS2 other than metal detoxification. The differences observed between wild-type plants and cad1-3 on Cd soil demonstrated: (i) the essentiality of phytochelatin synthesis for tolerating levels of Cd contamination that can naturally be encountered by plants outside of metal-rich habitats, and (ii) a contribution to Cd accumulation under these conditions. PMID:24821959

  9. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil.

    PubMed

    Kühnlenz, Tanja; Schmidt, Holger; Uraguchi, Shimpei; Clemens, Stephan

    2014-08-01

    Phytochelatins play a key role in the detoxification of metals in plants and many other eukaryotes. Their formation is catalysed by phytochelatin synthases (PCS) in the presence of metal excess. It appears to be common among higher plants to possess two PCS genes, even though in Arabidopsis thaliana only AtPCS1 has been demonstrated to confer metal tolerance. Employing a highly sensitive quantification method based on ultraperformance electrospray ionization quadrupole time-of-flight mass spectrometry, we detected AtPCS2-dependent phytochelatin formation. Overexpression of AtPCS2 resulted in constitutive phytochelatin accumulation, i.e. in the absence of metal excess, both in planta and in a heterologous system. This indicates distinct enzymatic differences between AtPCS1 and AtPCS2. Furthermore, AtPCS2 was able to partially rescue the Cd hypersensitivity of the AtPCS1-deficient cad1-3 mutant in a liquid seedling assay, and, more importantly, when plants were grown on soil spiked with Cd to a level that is close to what can be found in agricultural soils. No rescue was found in vertical-plate assays, the most commonly used method to assess metal tolerance. Constitutive AtPCS2-dependent phytochelatin synthesis suggests a physiological role of AtPCS2 other than metal detoxification. The differences observed between wild-type plants and cad1-3 on Cd soil demonstrated: (i) the essentiality of phytochelatin synthesis for tolerating levels of Cd contamination that can naturally be encountered by plants outside of metal-rich habitats, and (ii) a contribution to Cd accumulation under these conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis

    PubMed Central

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M.; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-01-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter–reporter gene analyses and quantitative real-time reverse transcription–PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period. PMID:24994761

  11. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  12. YSL16 Is a Phloem-Localized Transporter of the Copper-Nicotianamine Complex That Is Responsible for Copper Distribution in Rice[C][W

    PubMed Central

    Zheng, Luqing; Yamaji, Naoki; Yokosho, Kengo; Ma, Jian Feng

    2012-01-01

    Cu is an essential element for plant growth, but the molecular mechanisms of its distribution and redistribution within the plants are unknown. Here, we report that Yellow stripe-like16 (YSL16) is involved in Cu distribution and redistribution in rice (Oryza sativa). Rice YSL16 was expressed in the roots, leaves, and unelongated nodes at the vegetative growth stage and highly expressed in the upper nodes at the reproductive stage. YSL16 was expressed at the phloem of nodes and vascular tissues of leaves. Knockout of this gene resulted in a higher Cu concentration in the older leaves but a lower concentration in the younger leaves at the vegetative stage. At the reproductive stage, a higher Cu concentration was found in the flag leaf and husk, but less Cu was present in the brown rice, resulting in a significant reduction in fertility in the knockout line. Isotope labeling experiments with 65Cu showed that the mutant lost the ability to transport Cu-nicotianamine from older to younger leaves and from the flag leaf to the panicle. Rice YSL16 transported the Cu-nicotianamine complex in yeast. Taken together, our results indicate that Os-YSL16 is a Cu-nicotianamine transporter that is required for delivering Cu to the developing young tissues and seeds through phloem transport. PMID:23012434

  13. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  14. A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase gamma-subunit regulatory disulfide above the range of thioredoxin modulation

    USDA-ARS?s Scientific Manuscript database

    The light-dependent regulation of chloroplast ATP synthase activity depends on an intricate but ill-defined interplay between the proton electrochemical potential across the thylakoid membrane and thioredoxin-mediated redox modulation of a cysteine bridge located on the ATP synthase gamma-subunit. T...

  15. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  16. Multi-Element Bioimaging of Arabidopsis thaliana Roots1[OPEN

    PubMed Central

    Salt, David E.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventional protocols for microscopy, we observed that diffusible ions such as potassium and sodium were lost during sample dehydration. Thus, we developed a protocol that preserves ions in their native, cellular environment. Briefly, fresh roots are encapsulated in paraffin, cryo-sectioned, and freeze dried. Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion transport in roots. Being applicable to Arabidopsis, the molecular and genetic approaches available in this system can now be fully exploited in order to gain a better mechanistic understanding of these processes. PMID:27566167

  17. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  18. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  19. Discovery of an extended bundle sheath in Ricinus communis L. and its role as a temporal storage compartment for the iron chelator nicotianamine.

    PubMed

    Rutten, T; Krüger, C; Melzer, M; Stephan, U W; Hell, R

    2003-07-01

    The extended bundle sheath (EBS) is a specialized layer of cells that enhances the lateral transport of photoassimilates within the leaf. This little-known tissue is often considered to be legume-specific. We identified an EBS in cotyledons and leaves of the non-legume Ricinus communis L. By means of cytological and immunological studies and using the localization of the iron-chelator nicotianamine as an established indicator for mass transport, we confirmed its role as a transport tissue and a temporal sink. Observations on cotyledons of Ricinus seedlings further proved that the EBS carries out these tasks from a very early stage of development onwards. This is the first time that information has been obtained on the physiological role of an EBS in a non-legume. Our results support the idea of its widespread occurrence among higher plants.

  20. Terpene Specialized Metabolism in Arabidopsis thaliana

    PubMed Central

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C5-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C20-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C10-, C15-, and C20-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes. PMID:22303268

  1. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    PubMed

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  2. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.

  3. Molecular aspects of beta-ketoacyl synthase (KAS) catalysis.

    PubMed

    von Wettstein-Knowles, P; Olsen, J; Arnvig Mcguire, K; Larsen, S

    2000-12-01

    Crystal structure data for Escherichia coli beta-ketoacyl synthase (KAS) I with C(10) and C(12) fatty acid substrates bound in conjunction with results from mutagenizing residues in the active site leads to a model for catalysis. Differences from and similarities to the other Claisen enzymes carrying out decarboxylations reveal two catalytic mechanisms, one for KAS I and KAS II, the other for KAS III and chalcone synthase. A comparison of the structures of KAS I and KAS II does not reveal the basis of chain-length specificity. The structures of the Arabidopsis thaliana KAS family are compared.

  4. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway.

    PubMed

    Colpitts, Che C; Kim, Sung Soo; Posehn, Sarah E; Jepson, Christina; Kim, Sun Young; Wiedemann, Gertrud; Reski, Ralf; Wee, Andrew G H; Douglas, Carl J; Suh, Dae-Yeon

    2011-12-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.

  5. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora.

    PubMed

    Imamura, Tomohiro; Fujita, Kohei; Tasaki, Keisuke; Higuchi, Atsumi; Takahashi, Hideyuki

    2015-08-07

    Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.

  6. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  7. Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions

    PubMed Central

    Kohzuma, Kaori; Dal Bosco, Cristina; Kanazawa, Atsuko; Dhingra, Amit; Nitschke, Wolfgang; Meurer, Jörg; Kramer, David M.

    2012-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and acts as a key feedback regulatory component of photosynthesis. Arabidopsis possesses two homologues of the regulatory γ subunit of the ATP synthase, encoded by the ATPC1 and ATPC2 genes. Using a series of mutants, we show that both these subunits can support photosynthetic ATP synthesis in vivo with similar specific activities, but that in wild-type plants, only γ1 is involved in ATP synthesis in photosynthesis. The γ1-containing ATP synthase shows classical light-induced redox regulation, whereas the mutant expressing only γ2-ATP synthase (gamma exchange-revised ATP synthase, gamera) shows equally high ATP synthase activity in the light and dark. In situ redox titrations demonstrate that the regulatory thiol groups on γ2-ATP synthase remain reduced under physiological conditions but can be oxidized by the strong oxidant diamide, implying that the redox potential for the thiol/disulphide transition in γ2 is substantially higher than that for γ1. This regulatory difference may be attributed to alterations in the residues near the redox-active thiols. We propose that γ2-ATP synthase functions to catalyze ATP hydrolysis-driven proton translocation in nonphotosynthetic plastids, maintaining a sufficient transthylakoid proton gradient to drive protein translocation or other processes. Consistent with this interpretation, ATPC2 is predominantly expressed in the root, whereas modifying its expression results in alteration of root hair development. Phylogenetic analysis suggests that γ2 originated from ancient gene duplication, resulting in divergent evolution of functionally distinct ATP synthase complexes in dicots and mosses. PMID:22328157

  8. A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis

    PubMed Central

    Panicot, Mireia; Minguet, Eugenio G.; Ferrando, Alejandro; Alcázar, Rubén; Blázquez, Miguel A.; Carbonell, Juan; Altabella, Teresa; Koncz, Csaba; Tiburcio, Antonio F.

    2002-01-01

    The conversion of putrescine to spermidine in the biosynthetic pathway of plant polyamines is catalyzed by two closely related spermidine synthases, SPDS1 and SPDS2, in Arabidopsis. In the yeast two-hybrid system, SPDS2 was found to interact with SPDS1 and a novel protein, SPMS (spermine synthase), which is homologous with SPDS2 and SPDS1. SPMS interacts with both SPDS1 and SPDS2 in yeast and in vitro. Unlike SPDS1 and SPDS2, SPMS failed to suppress the speΔ3 deficiency of spermidine synthase in yeast. However, SPMS was able to complement the speΔ4 spermine deficiency in yeast, indicating that SPMS is a novel spermine synthase. The SPDS and SPMS proteins showed no homodimerization but formed heterodimers in vitro. Pairwise coexpression of hemagglutinin- and c-Myc epitope–labeled proteins in Arabidopsis cells confirmed the existence of coimmunoprecipitating SPDS1-SPDS2 and SDPS2-SPMS heterodimers in vivo. The epitope-labeled SPDS and SPMS proteins copurified with protein complexes ranging in size from 650 to 750 kD. Our data demonstrate the existence of a metabolon involving at least the last two steps of polyamine biosynthesis in Arabidopsis. PMID:12368503

  9. Phloem-Specific Expression of Yang Cycle Genes and Identification of Novel Yang Cycle Enzymes in Plantago and Arabidopsis[C][W

    PubMed Central

    Pommerrenig, Benjamin; Feussner, Kirstin; Zierer, Wolfgang; Rabinovych, Valentyna; Klebl, Franz; Feussner, Ivo; Sauer, Norbert

    2011-01-01

    The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis. PMID:21540433

  10. Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance.

    PubMed

    Gao, Jinpeng; Wallis, James G; Jewell, Jeremy B; Browse, John

    2017-07-01

    Chilling stress is a major factor limiting plant development and crop productivity. Because the plant response to chilling is so complex, we are far from understanding the genes important in the response to chilling. To identify new genes important in chilling tolerance, we conducted a novel mutant screen, combining a confirmed SALK T-DNA insertion collection with traditional forward genetics. We screened a pool of more than 3700 confirmed homozygous SALK T-DNA insertion lines for visible defects under prolonged growth at 5°C. Of the chilling-sensitive mutants we observed, mutations at one locus were characterized in detail. This gene, At1g45231, encodes an Arabidopsis (Arabidopsis thaliana) trimethylguanosine synthase (TGS1), previously uncharacterized in the plant kingdom. We confirmed that Arabidopsis TGS1 is a functional ortholog of other trimethylguanosine synthases based both on its in vitro methyltransferase activity and on its ability to rescue the cold-growth inhibition of a Saccharomyces cerevisiae tgs1Δ mutant in vivo. While tgs1 mutant plants grew normally at 22°C, their vegetative and reproductive growth was severely compromised under chilling conditions. When we transgenically expressed TGS1 in the mutant plants, the chilling-sensitive phenotype was relieved, demonstrating that TGS1 is required for chilling tolerance. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds1

    PubMed Central

    Waters, Brian M.; Chu, Heng-Hsuan; DiDonato, Raymond J.; Roberts, Louis A.; Eisley, Robynn B.; Lahner, Brett; Salt, David E.; Walker, Elsbeth L.

    2006-01-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues. PMID:16815956

  12. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  13. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  14. Catalytic subunit stoichiometry within the cellulose synthase complex.

    PubMed

    Gonneau, Martine; Desprez, Thierry; Guillot, Alain; Vernhettes, Samantha; Höfte, Herman

    2014-12-01

    Cellulose synthesis is driven by large plasma membrane-inserted protein complexes, which in plants have 6-fold symmetry. In Arabidopsis (Arabidopsis thaliana), functional cellulose synthesis complexes (CSCs) are composed of at least three different cellulose synthase catalytic subunits (CESAs), but the actual ratio of the CESA isoforms within the CSCs remains unresolved. In this work, the stoichiometry of the CESAs in the primary cell wall CSC was determined, after elimination of CESA redundancy in a mutant background, by coimmunoprecipitation and mass spectrometry using label-free quantitative methods. Based on spectral counting, we show that CESA1, CESA3, and CESA6 are present in a 1:1:1 molecular ratio. © 2014 American Society of Plant Biologists. All Rights Reserved.

  15. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers.

    PubMed

    Roeder, Susanna; Dreschler, Katharina; Wirtz, Markus; Cristescu, Simona M; van Harren, Frans J M; Hell, Rüdiger; Piechulla, Birgit

    2009-07-01

    S'adenosyl-L: -methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g(-1) fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1-2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO).

  16. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis.

    PubMed

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S; Wightman, Raymond; Meyerowitz, Elliot M

    2016-06-06

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activity1[OPEN

    PubMed Central

    Kimberlin, Athen N.; Chen, Ming; Dunn, Teresa M.

    2016-01-01

    Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoid-like proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network. PMID:27506241

  18. Functional characterization of sesquiterpene synthase from Polygonum minus.

    PubMed

    Ee, Su-Fang; Mohamed-Hussein, Zeti-Azura; Othman, Roohaida; Shaharuddin, Noor Azmi; Ismail, Ismanizan; Zainal, Zamri

    2014-01-01

    Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β -sesquiphellandrene.

  19. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  20. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  1. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum

    PubMed Central

    Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa

    2011-01-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1–3, adc2–3), spermidine synthase (spds1–2, spds2–3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants. PMID:21330782

  2. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.

    PubMed

    Alcázar, Rubén; Bitrián, Marta; Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa; Tiburcio, Antonio F

    2011-02-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (spds1-2, spds2-3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants.

  3. Novel sull binary vectors enable an inexpensive foliar selection method in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Sulfonamide resistance is conferred by the sulI gene found on many Enterobacteriaceae R plasmids and Tn21 type transposons. The sulI gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or Arabidopsis using sulI as...

  4. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  5. (E)-β-Ocimene and Myrcene Synthase Genes of Floral Scent Biosynthesis in Snapdragon

    PubMed Central

    Dudareva, Natalia; Martin, Diane; Kish, Christine M.; Kolosova, Natalia; Gorenstein, Nina; Fäldt, Jenny; Miller, Barbara; Bohlmann, Jörg

    2003-01-01

    Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-β-ocimene, derived from geranyl diphosphate, in ad-dition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-β-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-β-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-β-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-β-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx8W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production. PMID:12724546

  6. Mammalian Ceramide Synthases

    PubMed Central

    Levy, Michal; Futerman, Anthony H.

    2010-01-01

    Summary In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their stucture and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases. PMID:20222015

  7. Mammalian ceramide synthases.

    PubMed

    Levy, Michal; Futerman, Anthony H

    2010-05-01

    In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.

  8. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  9. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes. Copyright © Physiologia Plantarum 2012.

  10. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  11. Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from Arabidopsis callus cultures.

    PubMed

    Murota, Katsunori; Hagiwara-Komoda, Yuka; Komoda, Keisuke; Onouchi, Hitoshi; Ishikawa, Masayuki; Naito, Satoshi

    2011-08-01

    The analysis of post-transcriptional regulatory mechanisms in plants has benefited greatly from the use of cell-free extract systems. Arabidopsis as a model system provides extensive genetic resources; however, to date a suitable cell-free translation system from Arabidopsis has not been available. In this study, we devised an Arabidopsis cell-free extract (ACE) to be used for in vitro translation studies. Protoplasts were prepared from callus cultures derived from Arabidopsis seedlings, and cell-free extracts were prepared after evacuolation of the protoplasts by Percoll gradient centrifugation. The new ACE system exhibits translation activity comparable with that of the wheat germ extract system. We demonstrated that ACE prepared from the 5'-3' exoribonuclease-deficient mutant of Arabidopsis, xrn4-5, exhibited increased stability of an uncapped mRNA as compared with that from wild-type Arabidopsis. We applied the ACE system to study post-transcriptional regulation of AtCGS1. AtCGS1 codes for cystathionine γ-synthase (CGS) that catalyzes the first committed step of methionine and S-adenosyl-l-methionine (AdoMet) biosynthesis in plants, and is feedback regulated by mRNA degradation coupled with translation elongation arrest. The ACE system was capable of reproducing translation elongation arrest and subsequent AtCGS1 mRNA degradation that are induced by AdoMet. The ACE system described here can be prepared in a month after seed sowing and will make it possible to study post-transcriptional regulation of plant genes while taking advantage of the genetics of Arabidopsis.

  12. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.

  13. Product variability of the 'cineole cassette' monoterpene synthases of related Nicotiana species.

    PubMed

    Fähnrich, Anke; Krause, Katrin; Piechulla, Birgit

    2011-11-01

    Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the 'cineole cassette' comprising 1,8-cineole, limonene, myrcene, α-pinene, β-pinene, sabinene, and α-terpineol. We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes, which produced the characteristic monoterpenes of this 'cineole cassette' with α-terpineol being most abundant in the volatile spectra. The amino acid sequences of both terpineol synthases were 99% identical. The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum. The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N. alata and N. langsdorfii were less efficient compared to the 'cineole cassette' monoterpene synthases of Arabidopsis thaliana, N. suaveolens, Salvia fruticosa, Salvia officinalis, and Citrus unshiu. The terpineol synthases of N. alata and N. langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals. The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N. alata was highest at the transition from day to night (diurnal rhythm).

  14. Mechanisms of acetohydroxyacid synthases.

    PubMed

    Chipman, David M; Duggleby, Ronald G; Tittmann, Kai

    2005-10-01

    Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.

  15. Isolation of streptococcal hyaluronate synthase.

    PubMed

    Prehm, P; Mausolf, A

    1986-05-01

    Hyaluronate synthase was isolated from protoblast membranes of streptococci by Triton X-114 extraction and cetylpyridinium chloride precipitation. It was identified as a 52,000-Mr protein, which bound to nascent hyaluronate and was affinity-labelled by periodate-oxidized UDP-glucuronic acid and UDP-N-acetylglucosamine. Antibodies directed against the 52,000-Mr protein inhibited hyaluronate synthesis. Mutants defective in hyaluronate synthase activity lacked the 52,000-Mr protein in membrane extracts. Synthase activity was solubilized from membranes by cholate in active form and purified by ion-exchange chromatography.

  16. Isolation of streptococcal hyaluronate synthase.

    PubMed Central

    Prehm, P; Mausolf, A

    1986-01-01

    Hyaluronate synthase was isolated from protoblast membranes of streptococci by Triton X-114 extraction and cetylpyridinium chloride precipitation. It was identified as a 52,000-Mr protein, which bound to nascent hyaluronate and was affinity-labelled by periodate-oxidized UDP-glucuronic acid and UDP-N-acetylglucosamine. Antibodies directed against the 52,000-Mr protein inhibited hyaluronate synthesis. Mutants defective in hyaluronate synthase activity lacked the 52,000-Mr protein in membrane extracts. Synthase activity was solubilized from membranes by cholate in active form and purified by ion-exchange chromatography. Images Fig. 1. Fig. 2. PMID:3092808

  17. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  18. Bacterial nitric oxide synthases.

    PubMed

    Crane, Brian R; Sudhamsu, Jawahar; Patel, Bhumit A

    2010-01-01

    Nitric oxide synthases (NOSs) are multidomain metalloproteins first identified in mammals as being responsible for the synthesis of the wide-spread signaling and protective agent nitric oxide (NO). Over the past 10 years, prokaryotic proteins that are homologous to animal NOSs have been identified and characterized, both in terms of enzymology and biological function. Despite some interesting differences in cofactor utilization and redox partners, the bacterial enzymes are in many ways similar to their mammalian NOS (mNOS) counterparts and, as such, have provided insight into the structural and catalytic properties of the NOS family. In particular, spectroscopic studies of thermostable bacterial NOSs have revealed key oxyheme intermediates involved in the oxidation of substrate L-arginine (Arg) to product NO. The biological functions of some bacterial NOSs have only more recently come to light. These studies disclose new roles for NO in biology, such as taking part in toxin biosynthesis, protection against oxidative stress, and regulation of recovery from radiation damage.

  19. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis

    PubMed Central

    Ohyama, Kiyoshi; Suzuki, Masashi; Kikuchi, Jun; Saito, Kazuki; Muranaka, Toshiya

    2009-01-01

    The differences between the biosynthesis of sterols in higher plants and yeast/mammals are believed to originate at the cyclization step of oxidosqualene, which is cyclized to cycloartenol in higher plants and lanosterol in yeast/mammals. Recently, lanosterol synthase genes were identified from dicotyledonous plant species including Arabidopsis, suggesting that higher plants possess dual biosynthetic pathways to phytosterols via lanosterol, and through cycloartenol. To identify the biosynthetic pathway to phytosterol via lanosterol, and to reveal the contributions to phytosterol biosynthesis via each cycloartenol and lanosterol, we performed feeding experiments by using [6-13C2H3]mevalonate with Arabidopsis seedlings. Applying 13C-{1H}{2H} nuclear magnetic resonance (NMR) techniques, the elucidation of deuterium on C-19 behavior of phytosterol provided evidence that small amounts of phytosterol were biosynthesized via lanosterol. The levels of phytosterol increased on overexpression of LAS1, and phytosterols derived from lanosterol were not observed in a LAS1-knockout plant. This is direct evidence to indicate that the biosynthetic pathway for phytosterol via lanosterol exists in plant cells. We designate the biosynthetic pathway to phytosterols via lanosterol “the lanosterol pathway.” LAS1 expression is reported to be induced by the application of jasmonate and is thought to have evolved from an ancestral cycloartenol synthase to a triterpenoid synthase, such as β-amyrin synthase and lupeol synthase. Considering this background, the lanosterol pathway may contribute to the biosynthesis of not only phytosterols, but also steroids as secondary metabolites. PMID:19139393

  20. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase.

  1. Lipoic Acid Synthase (LASY)

    PubMed Central

    Padmalayam, Indira; Hasham, Sumera; Saxena, Uday; Pillarisetti, Sivaram

    2009-01-01

    OBJECTIVE—Lipoic acid synthase (LASY) is the enzyme that is involved in the endogenous synthesis of lipoic acid, a potent mitochondrial antioxidant. The aim of this study was to study the role of LASY in type 2 diabetes. RESEARCH DESIGN AND METHODS—We studied expression of LASY in animal models of type 2 diabetes. We also looked at regulation of LASY in vitro under conditions that exist in diabetes. Additionally, we looked at effects of LASY knockdown on cellular antioxidant status, inflammation, mitochondrial function, and insulin-stimulated glucose uptake. RESULTS—LASY expression is significantly reduced in tissues from animal models of diabetes and obesity compared with age- and sex-matched controls. In vitro, LASY mRNA levels were decreased by the proinflammatory cytokine tumor necrosis factor (TNF)-α and high glucose. Downregulation of the LASY gene by RNA interference (RNAi) reduced endogenous levels of lipoic acid, and the activities of critical components of the antioxidant defense network, increasing oxidative stress. Treatment with exogenous lipoic acid compensated for some of these defects. RNAi-mediated downregulation of LASY induced a significant loss of mitochondrial membrane potential and decreased insulin-stimulated glucose uptake in skeletal muscle cells. In endothelial cells, downregulation of LASY aggravated the inflammatory response that manifested as an increase in both basal and TNF-α–induced expression of the proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Overexpression of the LASY gene ameliorated the inflammatory response. CONCLUSIONS—Deficiency of LASY results in an overall disturbance in the antioxidant defense network, leading to increased inflammation, insulin resistance, and mitochondrial dysfunction. PMID:19074983

  2. Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance1[OPEN

    PubMed Central

    Wallis, James G.; Jewell, Jeremy B.

    2017-01-01

    Chilling stress is a major factor limiting plant development and crop productivity. Because the plant response to chilling is so complex, we are far from understanding the genes important in the response to chilling. To identify new genes important in chilling tolerance, we conducted a novel mutant screen, combining a confirmed SALK T-DNA insertion collection with traditional forward genetics. We screened a pool of more than 3700 confirmed homozygous SALK T-DNA insertion lines for visible defects under prolonged growth at 5°C. Of the chilling-sensitive mutants we observed, mutations at one locus were characterized in detail. This gene, At1g45231, encodes an Arabidopsis (Arabidopsis thaliana) trimethylguanosine synthase (TGS1), previously uncharacterized in the plant kingdom. We confirmed that Arabidopsis TGS1 is a functional ortholog of other trimethylguanosine synthases based both on its in vitro methyltransferase activity and on its ability to rescue the cold-growth inhibition of a Saccharomyces cerevisiae tgs1Δ mutant in vivo. While tgs1 mutant plants grew normally at 22°C, their vegetative and reproductive growth was severely compromised under chilling conditions. When we transgenically expressed TGS1 in the mutant plants, the chilling-sensitive phenotype was relieved, demonstrating that TGS1 is required for chilling tolerance. PMID:28495891

  3. Vascular development in Arabidopsis.

    PubMed

    Ye, Zheng-Hua; Freshour, Glenn; Hahn, Michael G; Burk, David H; Zhong, Ruiqin

    2002-01-01

    Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.

  4. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  5. Arabidopsis brassinosteroid signaling pathway.

    PubMed

    Belkhadir, Youssef; Wang, Xuelu; Chory, Joanne

    2006-12-05

    Plants control their size through the action of several phytohormones. One class of growth-promoting hormones is the brassinosteroids (BRs), the polyhydroxylated steroid hormones of plants. Here, we present the Arabidopsis-specific proteins that are the founding members of key BR signaling pathway components found in all plants. The genetic studies that identified these components are unique to Arabidopsis owing to its rapid generation time, sophisticated genetics, and facile transformation protocols, thereby highlighting the importance of a reference plant for understanding fundamental processes in all land plants.

  6. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family.

    PubMed

    Yi, Hankuil; Jez, Joseph M

    2012-11-01

    In plants, proteins of the β-substituted alanine synthase (BSAS) enzyme family perform a diverse range of reactions, including formation of cysteine from O-acetylserine and sulfide, detoxification of cyanide by its addition to cysteine, the breakdown of cysteine into pyruvate, ammonia, and sulfide, and the synthesis of S-sulfocysteine. With the completed genome sequence of soybean (Glycine max (L.) Merr. cv. Williams 82), the functional diversity of the BSAS in this highly duplicated plant species was examined to determine whether soybean BSAS enzymes catalyze the various reactions connected to cysteine metabolism. The 16 soybean BSAS can be grouped into clades that are similar to those observed in Arabidopsis. Biochemical analysis of soybean BSAS proteins demonstrate that enzymes of clades I and III function as O-acetylserine sulfhydrylases for cysteine synthesis, clade II encodes cysteine desulfhydrase activity, and that clade V proteins function as β-cyanoalanine synthase for cyanide detoxification. Although clade IV is similar to Arabidopsis S-sulfocysteine synthase, this activity was not detected in the soybean homolog. Overall, our results show that bioinformatics approach provides a useful method to assess the biochemical properties of BSAS enzymes in plant species.

  7. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.

    PubMed Central

    Clemens, S; Kim, E J; Neumann, D; Schroeder, J I

    1999-01-01

    Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes. PMID:10369673

  8. Raffinose Family Oligosaccharides Act As Galactose Stores in Seeds and Are Required for Rapid Germination of Arabidopsis in the Dark

    PubMed Central

    Gangl, Roman; Tenhaken, Raimund

    2016-01-01

    Raffinose synthase 5 (AtRS5, At5g40390) was characterized from Arabidopsis as a recombinant enzyme. It has a far higher affinity for the substrates galactinol and sucrose than any other raffinose synthase previously reported. In addition raffinose synthase 5 is also working as a galactosylhydrolase, degrading galactinol, and raffinose under certain conditions. Together with raffinose synthase 4, which is predominantly a stachyose synthase, both enzymes contribute to the raffinose family oligosaccharide (RFO) accumulation in seeds. A double knockout in raffinose synthase 4 and raffinose synthase 5 (ΔAtRS4,5) was generated, which is devoid of RFOs in seeds. Unstressed leaves of 4 week old ΔAtRS4,5 plants showed drastically 23.8-fold increased concentrations of galactinol. Unexpectedly, raffinose appeared again in drought stressed ΔAtRS4,5 plants, but not under other abiotic stress conditions. Drought stress leads to novel transcripts of raffinose synthase 6 suggesting that this isoform is a further stress inducible raffinose synthase in Arabidopsis. ΔAtRS4,5 seeds showed a 5 days delayed germination phenotype in darkness and an elevated expression of the transcription factor phytochrome interacting factor 1 (AtPIF1) target gene AtPIF6, being a repressor of germination. This prolonged dormancy is not seen during germination in the light. Exogenous galactose partially promotes germination of ΔAtRS4,5 seeds in the dark suggesting that RFOs act as a galactose store and repress AtPIF6 transcripts. PMID:27507985

  9. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  10. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  11. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase

    PubMed Central

    Cocuron, Jean-Christophe; Lerouxel, Olivier; Drakakaki, Georgia; Alonso, Ana P.; Liepman, Aaron H.; Keegstra, Kenneth; Raikhel, Natasha; Wilkerson, Curtis G.

    2007-01-01

    Despite the central role of xyloglucan (XyG) in plant cell wall structure and function, important details of its biosynthesis are not understood. To identify the gene(s) responsible for synthesizing the β-1,4 glucan backbone of XyG, we exploited a property of nasturtium (Tropaeolum majus) seed development. During the last stages of nasturtium seed maturation, a large amount of XyG is deposited as a reserve polysaccharide. A cDNA library was produced from mRNA isolated during the deposition of XyG, and partial sequences of 10,000 cDNA clones were determined. A single member of the C subfamily from the large family of cellulose synthase-like (CSL) genes was found to be overrepresented in the cDNA library. Heterologous expression of this gene in the yeast Pichia pastoris resulted in the production of a β-1,4 glucan, confirming that the CSLC protein has glucan synthase activity. The Arabidopsis CSLC4 gene, which is the gene with the highest sequence similarity to the nasturtium CSL gene, is coordinately expressed with other genes involved in XyG biosynthesis. These and other observations provide a compelling case that the CSLC gene family encode proteins that synthesize the XyG backbone. PMID:17488821

  12. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis.

    PubMed

    Wada, Takuji; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2014-01-01

    In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL), the flavonoid pathway genes chalcone synthase (CHS), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS) were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  13. Sucrose Synthase: Expanding Protein Function

    USDA-ARS?s Scientific Manuscript database

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  14. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2016-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  15. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase[S

    PubMed Central

    Ternes, Philipp; Brouwers, Jos F. H. M.; van den Dikkenberg, Joep; Holthuis, Joost C. M.

    2009-01-01

    Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. PMID:19454763

  16. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.

  17. Starch Synthesis in Arabidopsis. Granule Synthesis, Composition, and Structure1

    PubMed Central

    Zeeman, Samuel C.; Tiessen, Axel; Pilling, Emma; Kato, K. Lisa; Donald, Athene M.; Smith, Alison M.

    2002-01-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying 14CO2 to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained “growth rings” with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  18. The Priming of Amylose Synthesis in Arabidopsis Leaves1

    PubMed Central

    Zeeman, Samuel C.; Smith, Steven M.; Smith, Alison M.

    2002-01-01

    We investigated the mechanism of amylose synthesis in Arabidopsis leaves using 14C-labeling techniques. First, we tested the hypothesis that short malto-oligosaccharides (MOS) may act as primers for granule-bound starch synthase I. We found increased amylose synthesis in isolated starch granules supplied with ADP[14C]glucose (ADP[14C]Glc) and MOS compared with granules supplied with ADP[14C]Glc but no MOS. Furthermore, using a MOS-accumulating mutant (dpe1), we found that more amylose was synthesized than in the wild type, correlating with the amount of MOS in vivo. When wild-type and mutant plants were tested in conditions where both lines had similar MOS contents, no difference in amylose synthesis was observed. We also tested the hypothesis that branches of amylopectin might serve as the primers for granule-bound starch synthase I. In this model, elongated branches of amylopectin are subsequently cleaved to form amylose. We conducted pulse-chase experiments, supplying a pulse of ADP[14C]Glc to isolated starch granules or 14CO2 to intact plants, followed by a chase period in unlabeled substrate. We detected no transfer of label from the amylopectin fraction to the amylose fraction of starch either in isolated starch granules or in intact leaves, despite varying the time course of the experiments and using a mutant line (sex4) in which high-amylose starch is synthesized. We therefore find no evidence for amylopectin-primed amylose synthesis in Arabidopsis. We propose that MOS are the primers for amylose synthesis in Arabidopsis leaves. PMID:11891261

  19. Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure.

    PubMed

    Zeeman, Samuel C; Tiessen, Axel; Pilling, Emma; Kato, K Lisa; Donald, Athene M; Smith, Alison M

    2002-06-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  20. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  1. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination.

    PubMed

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

  2. Light- and Metabolism-related Regulation of the Chloroplast ATP Synthase Has Distinct Mechanisms and Functions*

    PubMed Central

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M.

    2013-01-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification. PMID:23486473

  3. Arabidopsis assay for mutagenicity.

    PubMed

    Gichner, T; Badayev, S A; Demchenko, S I; Relichová, J; Sandhu, S S; Usmanov, P D; Usmanova, O; Velemínský, J

    1994-10-16

    Four laboratories, two in the Czech Republic (Brno and Prague) and two in the CIS (Moscow and Duschanbe), participated in the International Programme on Chemical Safety's (IPCS) collaborative study to evaluate the utility of the most commonly used plant test systems, including the Arabidopsis thaliana assay, for assessing the mutagenic potential of environmental agents. Out of the five compounds evaluated in the Arabidopsis assay, three compounds, i.e., ethyl methanesulfonate, N-methyl-N-nitrosourea, and azidoglycerol, were reported to be mutagenic by all four participating laboratories. Sodium azide (NaN3) demonstrated a negative response in all four laboratories, whereas maleic hydrazide was reported to be weakly mutagenic by one laboratory and nonmutagenic by the other three laboratories.

  4. SIRT3 Deacetylates Ceramide Synthases

    PubMed Central

    Novgorodov, Sergei A.; Riley, Christopher L.; Keffler, Jarryd A.; Yu, Jin; Kindy, Mark S.; Macklin, Wendy B.; Lombard, David B.; Gudz, Tatyana I.

    2016-01-01

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD+-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke. PMID:26620563

  5. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Rellán-Alvarez, Rubén; Abadía, Javier; Alvarez-Fernández, Ana

    2008-05-01

    Nicotianamine (NA) is considered as a key element in plant metal homeostasis. This non-proteinogenic amino acid has an optimal structure for chelation of metal ions, with six functional groups that allow octahedral coordination. The ability to chelate metals by NA is largely dependent on the pK of the resulting complex and the pH of the solution, with most metals being chelated at neutral or basic pH values. In silico calculations using pKa and pK values have predicted the occurrence of metal-NA complexes in plant fluids, but the use of soft ionization techniques (e.g. electrospray), together with high-resolution mass spectrometers (e.g. time-of-flight mass detector), can offer direct and metal-specific information on the speciation of NA in solution. We have used direct infusion electrospray ionization mass spectrometry (time-of-flight) ESI-MS(TOF) to study the complexation of Mn, Fe(II), Fe(III), Ni, Cu by NA. The pH dependence of the metal-NA complexes in ESI-MS was compared to that predicted in silico. Possible exchange reactions that may occur between Fe-NA and other metal micronutrients as Zn and Cu, as well as between Fe-NA and citrate, another possible Fe ligand candidate in plants, were studied at pH 5.5 and 7.5, values typical of the plant xylem and phloem saps. Metal-NA complexes were generally observed in the ESI-MS experiments at a pH value approximately 1-2 units lower than that predicted in silico, and this difference could be only partially explained by the estimated error, approximately 0.3 pH units, associated with measuring pH in organic solvent-containing solutions. Iron-NA complexes are less likely to participate in ligand- and metal-exchange reactions at pH 7.5 than at pH 5.5. Results support that NA may be the ligand chelating Fe at pH values usually found in phloem sap, whereas in the xylem sap NA is not likely to be involved in Fe transport, conversely to what occurs with other metals such as Cu and Ni. Some considerations that need to be

  6. Herbicide safener-inducible gene expression in Arabidopsis thaliana.

    PubMed

    De Veylder, L; Van Montagu, M; Inzé, D

    1997-05-01

    The potential use of a new chemical-inducible gene expression system in Arabidopsis thaliana has been examined. The system is based on the maize In2-2 promoter which is activated by benzenesulfonamide herbicide safeners. Plants transformed with the beta-glucuronidase (gus) reporter gene under the control of the In2-2 promoter were grown in the presence of different safeners and the induced GUS activity pattern was studied histochemically. In the absence of safeners, the In2-2 promoter was not active. Application of different safeners induced distinct gus expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Plants maintained continuously on inducing concentrations of the safeners were retarded in growth. The growth inhibition effects of the Sa5 safener could be overcome in a sulfonylurea-resistant background. In2-2 promoter activity could also be induced by the sulfonylurea herbicide chlorsulfuron. In the sulfonylurea-resistant background, which derives from herbicide-resistant acetolactate synthase activity, induction of the In2-2 promoter by chlorsulfuron was lower. Furthermore, branched-chain amino acids, known to inhibit acetolactate synthase activity, also induced In2-2 promoter activity. Our data suggest a strong correlation between In2-2 expression and inhibition of the acetolactate synthase activity.

  7. Aspartate-Derived Amino Acid Biosynthesis in Arabidopsis thaliana.

    PubMed

    Jander, Georg; Joshi, Vijay

    2009-01-01

    The aspartate-derived amino acid pathway in plants leads to the biosynthesis of lysine, methionine, threonine, and isoleucine. These four amino acids are essential in the diets of humans and other animals, but are present in growth-limiting quantities in some of the world's major food crops. Genetic and biochemical approaches have been used for the functional analysis of almost all Arabidopsis thaliana enzymes involved in aspartate-derived amino acid biosynthesis. The branch-point enzymes aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase, cystathionine gamma synthase, threonine synthase, and threonine deaminase contain well-studied sites for allosteric regulation by pathway products and other plant metabolites. In contrast, relatively little is known about the transcriptional regulation of amino acid biosynthesis and the mechanisms that are used to balance aspartate-derived amino acid biosynthesis with other plant metabolic needs. The aspartate-derived amino acid pathway provides excellent examples of basic research conducted with A. thaliana that has been used to improve the nutritional quality of crop plants, in particular to increase the accumulation of lysine in maize and methionine in potatoes.

  8. Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds1[C][W][OPEN

    PubMed Central

    Falara, Vasiliki; Alba, Juan M.; Kant, Merijn R.; Schuurink, Robert C.; Pichersky, Eran

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s–1. In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants. PMID:25052853

  9. Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase

    PubMed Central

    Regmi, Kamesh C.; Zhang, Shangji; Gaxiola, Roberto A.

    2016-01-01

    Background and Aims Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H+-PPases; OVPs) in the sieve element–companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms. Additionally, it was contended that the presence of sucrose synthase in the SE-CC complexes would be consistent with an apoplasmic sucrose loading route in rice. Methods Conventional chemical fixation methods were used for immunohistochemical localization of H+-PPases and sucrose synthase in rice and arabidopsis at the light microscopy level, while ultrastructural immunogold labelling of H+-PPases and sucrose synthase was performed on high-pressure frozen source leaves of rice. Key Results Using immunogold labelling, it was found that OVPs predominantly localize at the plasma membrane (PM) of the SE-CC complexes in rice source leaf minor veins, while in the root meristematic cells, OVPs preferentially localize at the vacuoles. The PM specificity of OPVs in the SE-CC complexes was deemed to support apoplasmic loading in the rice phloem. Further backing for this interpretation came from the sucrose synthase-specific immunogold labelling at the SE-CC complexes of rice source leaves. Conclusion These findings are consistent with the idea that, in the same way as in arabidopsis and a majority of grasses, sucrose is actively loaded into the SE-CC complexes of rice leaves using an apoplasmic step. PMID:26614751

  10. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    PubMed Central

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  11. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  12. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis.

    PubMed

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C; Voigt, Christian A

    2013-03-01

    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew.

  13. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation

    PubMed Central

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-01-01

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation. PMID:27725707

  14. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation.

    PubMed

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-10-11

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation.

  15. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized.

  16. Shedding of hyaluronate synthase from streptococci.

    PubMed

    Mausolf, A; Jungmann, J; Robenek, H; Prehm, P

    1990-04-01

    Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state.

  17. A maize spermine synthase 1 PEST sequence fused to the GUS reporter protein facilitates proteolytic degradation.

    PubMed

    Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco

    2014-05-01

    Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.

    PubMed

    Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  19. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    PubMed Central

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  20. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  1. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  2. The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes

    PubMed Central

    Wu, Rui; Asención Diez, Matías D.; Figueroa, Carlos M.; Machtey, Matías; Iglesias, Alberto A.; Ballicora, Miguel A.

    2015-01-01

    ABSTRACT In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a “hinge-latch” combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded. IMPORTANCE We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases. PMID:26013491

  3. A Comparative Analysis of the Plant Cellulose Synthase (CesA) Gene Family1

    PubMed Central

    Holland, Neta; Holland, Doron; Helentjaris, Tim; Dhugga, Kanwarpal S.; Xoconostle-Cazares, Beatriz; Delmer, Deborah P.

    2000-01-01

    CesA genes are believed to encode the catalytic subunit of cellulose synthase. Identification of nine distinct CesA cDNAs from maize (Zea mays) has allowed us to initiate comparative studies with homologs from Arabidopsis and other plant species. Mapping studies show that closely related CesA genes are not clustered but are found at different chromosomal locations in both Arabidopsis and maize. Furthermore, sequence comparisons among the CesA-deduced proteins show that these cluster in groups wherein orthologs are often more similar than paralogs, indicating that different subclasses evolved prior to the divergence of the monocot and dicot lineages. Studies using reverse transcriptase polymerase chain reaction with gene-specific primers for six of the nine maize genes indicate that all genes are expressed to at least some level in all of the organs examined. However, when expression patterns for a few selected genes from maize and Arabidopsis were analyzed in more detail, they were found to be expressed in unique cell types engaged in either primary or secondary wall synthesis. These studies also indicate that amino acid sequence comparisons, at least in some cases, may have value for prediction of such patterns of gene expression. Such analyses begin to provide insights useful for future genetic engineering of cellulose deposition, in that identification of close orthologs across species may prove useful for prediction of patterns of gene expression and may also aid in prediction of mutant combinations that may be necessary to generate severe phenotypes. PMID:10938350

  4. A comparative analysis of the plant cellulose synthase (CesA) gene family.

    PubMed

    Holland, N; Holland, D; Helentjaris, T; Dhugga, K S; Xoconostle-Cazares, B; Delmer, D P

    2000-08-01

    CesA genes are believed to encode the catalytic subunit of cellulose synthase. Identification of nine distinct CesA cDNAs from maize (Zea mays) has allowed us to initiate comparative studies with homologs from Arabidopsis and other plant species. Mapping studies show that closely related CesA genes are not clustered but are found at different chromosomal locations in both Arabidopsis and maize. Furthermore, sequence comparisons among the CesA-deduced proteins show that these cluster in groups wherein orthologs are often more similar than paralogs, indicating that different subclasses evolved prior to the divergence of the monocot and dicot lineages. Studies using reverse transcriptase polymerase chain reaction with gene-specific primers for six of the nine maize genes indicate that all genes are expressed to at least some level in all of the organs examined. However, when expression patterns for a few selected genes from maize and Arabidopsis were analyzed in more detail, they were found to be expressed in unique cell types engaged in either primary or secondary wall synthesis. These studies also indicate that amino acid sequence comparisons, at least in some cases, may have value for prediction of such patterns of gene expression. Such analyses begin to provide insights useful for future genetic engineering of cellulose deposition, in that identification of close orthologs across species may prove useful for prediction of patterns of gene expression and may also aid in prediction of mutant combinations that may be necessary to generate severe phenotypes.

  5. Composition and Physiological Function of the Wax Layers Coating Arabidopsis Leaves: β-Amyrin Negatively Affects the Intracuticular Water Barrier1[W][OA

    PubMed Central

    Buschhaus, Christopher; Jetter, Reinhard

    2012-01-01

    Plants prevent dehydration by coating their aerial, primary organs with waxes. Wax compositions frequently differ between species, organs, and developmental stages, probably to balance limiting nonstomatal water loss with various other ecophysiological roles of surface waxes. To establish structure-function relationships, we quantified the composition and transpiration barrier properties of the gl1 mutant leaf waxes of Arabidopsis (Arabidopsis thaliana) to the necessary spatial resolution. The waxes coating the upper and lower leaf surfaces had distinct compositions. Moreover, within the adaxial wax, the epicuticular layer contained more wax and a higher relative quantity of alkanes, whereas the intracuticular wax had a higher percentage of alcohols. The wax formed a barrier against nonstomatal water loss, where the outer layer contributed twice as much resistance as the inner layer. Based on this detailed description of Arabidopsis leaf waxes, structure-function relationships can now be established by manipulating one cuticle component and assessing the effect on cuticle functions. Next, we ectopically expressed the triterpenoid synthase gene AtLUP4 (for lupeol synthase4 or β-amyrin synthase) to compare water loss with and without added cuticular triterpenoids in Arabidopsis leaf waxes. β-Amyrin accumulated solely in the intracuticular wax, constituting up to 4% of this wax layer, without other concomitant changes of wax composition. This triterpenoid accumulation caused a significant reduction in the water barrier effectiveness of the intracuticular wax. PMID:22885935

  6. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    PubMed

    Keim, Verónica; Manzano, David; Fernández, Francisco J; Closa, Marta; Andrade, Paola; Caudepón, Daniel; Bortolotti, Cristina; Vega, M Cristina; Arró, Montserrat; Ferrer, Albert

    2012-01-01

    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  7. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  8. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  9. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.

    PubMed

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-08-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation.

  10. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana

    PubMed Central

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-01-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation. PMID:22751360

  11. Enantioselective effects of herbicide imazapyr on Arabidopsis thaliana.

    PubMed

    Hsiao, Yu-Ling; Wang, Yei-Shung; Yen, Jui-Hung

    2014-01-01

    The enantioselective toxicity of chiral herbicides in the environment is of increasing concern. To investigate the enantioselective effects of the chiral herbicide imazapyr on target organisms, we exposed Arabidopsis thaliana to imazapyr enantiomers and racemate. The results show that imazapyr was enantioselectively toxic to A. thaliana. The total chlorophyll content in A. thaliana was affected more by (+)-imazapyr than (±)-imazapyr and (-)-imazapyr. Concentrations of proline and malondialdehyde reflected a toxic effect in the order of (+)-imazapyr > (±)-imazapyr > (-)-imazapyr at every concentration. Acetolactate synthase (ALS) activity was inhibited more by (+)-imazapyr than (±)-imazapyr or (-)-imazapyr. At 100 mg L(-1) of imazapyr, ALS activity was 78%, 43%, and 19% with (-)-, (±)-, and (+)-imazapyr, respectively. The results suggest the significant enantioselective toxicity of imazapyr in A. thaliana for greater toxicity with (+)-imazapyr than (±)-imazapyr and (-)-imazapyr, which suggests that (+)-imazapyr has more herbicidal effect.

  12. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  13. CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN11[OPEN

    PubMed Central

    Wilkop, Thomas E.; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-01-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. PMID:25535279

  14. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1.

    PubMed

    Worden, Natasha; Wilkop, Thomas E; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-02-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Antisense Inhibition of Threonine Synthase Leads to High Methionine Content in Transgenic Potato Plants1

    PubMed Central

    Zeh, Michaela; Casazza, Anna Paola; Kreft, Oliver; Roessner, Ute; Bieberich, Katrin; Willmitzer, Lothar; Hoefgen, Rainer; Hesse, Holger

    2001-01-01

    Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with the notable feature that plant TS is activated through S-adenosyl-Met, a metabolite derived from Met. To investigate the regulation of this branch point, we engineered TS antisense potato (Solanum tuberosum cv Désirée) plants using the constitutive cauliflower mosaic virus 35S promoter. In leaf tissues, these transgenics exhibit a reduction of TS activity down to 6% of wild-type levels. Thr levels are reduced to 45% wild-type controls, whereas Met levels increase up to 239-fold depending on the transgenic line and environmental conditions. Increased levels of homo-Ser and homo-cysteine indicate increased carbon allocation into the aspartate pathway. In contrast to findings in Arabidopsis, increased Met content has no detectable effect on mRNA or protein levels or on the enzymatic activity of cystathionine gamma-synthase in potato. Tubers of TS antisense potato plants contain a Met level increased by a factor of 30 and no reduction in Thr. These plants offer a major biotechnological advance toward the development of crop plants with improved nutritional quality. PMID:11706163

  16. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines.

    PubMed

    Naumann, Marcel; Somerville, Shauna; Voigt, Christian

    2013-06-01

    The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.

  17. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  18. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE PAGES

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...

    2017-07-24

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  19. Brassinosteroids in Arabidopsis thaliana.

    PubMed

    Fujioka, S; Noguchi, T; Yokota, T; Takatsuto, S; Yoshida, S

    1998-06-01

    From the seeds and siliques of Arabidopsis thaliana, six brassinosteroids, brassinolide, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol and 6-deoxoteasterone, were identified by GC-mass spectrometry or GC-selected ion monitoring. As the occurrence of castasterone, typhasterol, 6-deoxocastasterone and 6-deoxotyphasterol in the shoots of A. thaliana has already been reported, this study provides evidence for the occurrence of the above four brassinosteroids in different organs, seeds and siliques, and the first evidence for the occurrence of brassinolide and 6-deoxoteasterone in A. thaliana. All brassinosteroids identified in this study belong to important components of both the early and late C-6 oxidation pathways, which were established in the cultured cells of Catharanthus roseus. This suggests that both pathways are operating in A. thaliana to produce the most biologically active brassinosteroid, brassinolide, which is responsible for growth and development of the plant.

  20. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase.

    PubMed

    Shi, Fu-Mei; Li, Ying-Zhang

    2008-01-31

    The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.

  1. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    PubMed

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  2. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  3. Free-flow electrophoresis for fractionation of Arabidopsis thaliana membranes.

    PubMed

    Bardy, N; Carrasco, A; Galaud, J P; Pont-Lezica, R; Canut, H

    1998-06-01

    Highly purified tonoplast and plasma membrane vesicles were isolated from microsomes of Arabidopsis thaliana by preparative free-flow electrophoresis. The most electronegative fractions were identified as tonoplast using nitrate-inhibited Mg2+-ATPase as enzyme marker. The least electronegative fractions were identified as plasma membrane using glucan-synthase II, UDPG: sterol-glucosyl-transferase, and vanadate-inhibited Mg2+-ATPase as enzyme markers. Other membrane markers, latent inosine-5'-diphosphatase (Golgi), NADPH-cytochrome-c reductase (endoplasmic reticulum) and cytochrome-c oxidase (mitochondria) were recovered in the fractions intermediate between tonoplast and plasma membrane. Immunoblot analysis of membrane fractions by antibodies directed against tonoplast and plasma membrane proteins confirmed the nature and the purity of the isolated membranes. The cytoskeletal protein actin, which was also identified by immunoblotting, was found to be specifically attached to the plasma membrane vesicles. The structural and functional integrity of the isolated membranes from Arabidopsis thaliana is discussed in the light of results obtained for the location of receptors and enzymes, or for the determination of ligand binding activity.

  4. Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases

    NASA Technical Reports Server (NTRS)

    Lopez, J. C.; Ryan, S.; Blankenship, R. E.

    1996-01-01

    The sequence of the Chloroflexus aurantiacus open reading frame thought to be the C. aurantiacus homolog of the Rhodobacter capsulatus bchG gene is reported. The BchG gene product catalyzes esterification of bacteriochlorophyllide a by geranylgeraniol-PPi during bacteriochlorophyll a biosynthesis. Homologs from Arabidopsis thaliana, Synechocystis sp. strain PCC6803, and C. aurantiacus were identified in database searches. Profile analysis identified three related polyprenyltransferase enzymes which attach an aliphatic alcohol PPi to an aromatic substrate. This suggests a broader relationship between chlorophyll synthases and other polyprenyltransferases.

  5. Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases

    NASA Technical Reports Server (NTRS)

    Lopez, J. C.; Ryan, S.; Blankenship, R. E.

    1996-01-01

    The sequence of the Chloroflexus aurantiacus open reading frame thought to be the C. aurantiacus homolog of the Rhodobacter capsulatus bchG gene is reported. The BchG gene product catalyzes esterification of bacteriochlorophyllide a by geranylgeraniol-PPi during bacteriochlorophyll a biosynthesis. Homologs from Arabidopsis thaliana, Synechocystis sp. strain PCC6803, and C. aurantiacus were identified in database searches. Profile analysis identified three related polyprenyltransferase enzymes which attach an aliphatic alcohol PPi to an aromatic substrate. This suggests a broader relationship between chlorophyll synthases and other polyprenyltransferases.

  6. Inferring the Geometry of Fourth-Period Metallic Elements in Arabidopsis thaliana Seeds using Synchrotron-Based Multi-Angle X-ray Fluorescence Mapping

    SciTech Connect

    Young, Lester; Westcott, Neil; Christensen, Colleen; Terry, Jeff; Lydiate, Derek; Reaney, Martin

    2008-06-16

    Improving our knowledge of plant metal metabolism is facilitated by the use of analytical techniques to map the distribution of elements in tissues. One such technique is X-ray fluorescence (XRF), which has been used previously to map metal distribution in both two and three dimensions. One of the difficulties of mapping metal distribution in two dimensions is that it can be difficult to normalize for tissue thickness. When mapping metal distribution in three dimensions, the time required to collect the data can become a major constraint. In this article a compromise is suggested between two- and three-dimensional mapping using multi-angle XRF imaging. A synchrotron-based XRF microprobe was used to map the distribution of K, Ca, Mn, Fe, Ni, Cu and Zn in whole Arabidopsis thaliana seeds. Relative concentrations of each element were determined by measuring fluorescence emitted from a 10 {micro}m excitation beam at 13 keV. XRF spectra were collected from an array of points with 25 or 30 {micro}m steps. Maps were recorded at 0 and 90{sup o}, or at 0, 60 and 120{sup o} for each seed. Using these data, circular or ellipsoidal cross-sections were modelled, and from these an apparent pathlength for the excitation beam was calculated to normalize the data. Elemental distribution was mapped in seeds from ecotype Columbia-4 plants, as well as the metal accumulation mutants manganese accumulator 1 (man1) and nicotianamine synthetase (nasx). Multi-angle XRF imaging will be useful for mapping elemental distribution in plant tissues. It offers a compromise between two- and three-dimensional XRF mapping, as far as collection times, image resolution and ease of visualization. It is also complementary to other metal-mapping techniques. Mn, Fe and Cu had tissue-specific accumulation patterns. Metal accumulation patterns were different between seeds of the Col-4, man1 and nasx genotypes.

  7. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis.

    PubMed

    Goubet, Florence; Barton, Christopher J; Mortimer, Jennifer C; Yu, Xiaolan; Zhang, Zhinong; Miles, Godfrey P; Richens, Jenny; Liepman, Aaron H; Seffen, Keith; Dupree, Paul

    2009-11-01

    Mannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development. To determine whether the CSLA proteins are responsible for glucomannan synthesis in vivo, we characterised insertion mutants in each of the nine Arabidopsis CSLA genes and several double and triple mutant combinations. csla9 mutants showed substantially reduced glucomannan, and triple csla2csla3csla9 mutants lacked detectable glucomannan in stems. Nevertheless, these mutants showed no alteration in stem development or strength. Overexpression of CSLA2, CSLA7 and CSLA9 increased the glucomannan content in stems. Increased glucomannan synthesis also caused defective embryogenesis, leading to delayed development and occasional embryo death. The embryo lethality of csla7 was complemented by overexpression of CSLA9, suggesting that the glucomannan products are similar. We conclude that CSLA2, CSLA3 and CSLA9 are responsible for the synthesis of all detectable glucomannan in Arabidopsis stems, and that CSLA7 synthesises glucomannan in embryos. These results are inconsistent with a substantial role for glucomannan in wall strength in Arabidopsis stems, but indicate that glucomannan levels affect embryogenesis. Together with earlier heterologous expression studies, the glucomannan deficiency observed in csla mutant plants demonstrates that the CSLA family encodes glucomannan synthases.

  8. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    DOE PAGES

    Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori; ...

    2017-05-03

    In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+) in cfqmore » results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less

  9. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes.

    PubMed

    Cheng, Ai-Xia; Xiang, Cai-Yu; Li, Jian-Xu; Yang, Chang-Qing; Hu, Wen-Li; Wang, Ling-Jian; Lou, Yong-Gen; Chen, Xiao-Ya

    2007-06-01

    Terpenoids serve as both constitutive and inducible defense chemicals in many plant species, and volatile terpenes participate in plant a indirect defense by attracting natural enemies of the herbivores. The rice (Oryza sativa L.) genome contains about 50 genes encoding putative terpene synthases (TPSs). Here we report that two of the rice sesquiterpene synthase genes, OsTPS3 and OsTPS13, encode (E)-beta-caryophyllene synthase and (E,E)-farnesol synthase, respectively. In vitro, the recombinant protein of OsTPS3 catalyzed formation of (E)-beta-caryophyllene and several other sesquiterpenes, including beta-elemene and alpha-humulene, all being components of inducible volatiles of rice plants. The transcript levels of OsTPS3 exhibit a circadian rhythm of fluctuation, and its expression was also greatly induced by methyl jasmonate (MeJA). In addition, expression of OsTPS3 in transgenic plants of Arabidopsis thaliana resulted in emitting high quantities of OsTPS3 products. We also overexpressed OsTPS3 in rice plants which then produced more (E)-beta-caryophyllene after MeJA treatment. Finally, we found that the MeJA-treated transgenic rice plants attracted more parasitoid wasps of Anagrus nilaparvatae than the wild-type. These results demonstrate that OsTPS3, an enzyme catalyzing the formation of volatile sesquiterpenes, plays a role in indirect defense of rice plants.

  10. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) dumort.

    PubMed

    Degola, Francesca; De Benedictis, Maria; Petraglia, Alessandro; Massimi, Alberto; Fattorini, Laura; Sorbo, Sergio; Basile, Adriana; Sanità di Toppi, Luigi

    2014-11-01

    Lunularia cruciata occupies a very basal position in the phylogenetic tree of liverworts, which in turn have been recognized as a very early clade of land plants. It would therefore seem appropriate to take L. cruciata as the startingpoint for investigating character evolution in plants' metal(loid) response. One of the strongest evolutionary pressures for land colonization by plants has come from potential access to much greater amounts of nutritive ions from surface rocks, compared to water. This might have resulted in the need to precisely regulate trace element homeostasis and to minimize the risk of exposure to toxic concentrations of certain metals, prompting the evolution of a number of response mechanisms, such as synthesis of phytochelatins, metal(loid)-binding thiol-peptides. Accordingly, if the ability to synthesize phytochelatins and the occurrence of an active phytochelatin synthase are traits present in a basal liverwort species, and have been even reinforced in 'modern' tracheophytes, e.g. Arabidopsis thaliana, then such traits would presumably have played an essential role in plant fitness over time. Hence, we demonstrated here that: (i) L. cruciata compartmentalizes cadmium in the vacuoles of the phototosynthetic parenchyma by means of a phytochelatin-mediated detoxification strategy, and possesses a phytochelatin synthase that is activated by cadmium and homeostatic concentrations of iron(II) and zinc; and (ii) A. thaliana phytochelatin synthase displays a higher and broader response to several metal(loid)s [namely: cadmium, iron(II), zinc, copper, mercury, lead, arsenic(III)] than L. cruciata phytochelatin synthase.

  11. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    PubMed Central

    Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori; Hoh, Donghee; Strand, Deserah D.; Sato-Cruz, Mio; Savage, Linda; Cruz, Jeffrey A.; Fisher, Nicholas; Froehlich, John E.; Kramer, David M.

    2017-01-01

    In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage. PMID:28515738

  12. Shedding of hyaluronate synthase from streptococci.

    PubMed Central

    Mausolf, A; Jungmann, J; Robenek, H; Prehm, P

    1990-01-01

    Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state. Images Fig. 2. Fig. 3. Fig. 5. PMID:2109602

  13. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  14. Chitin synthase inhibitors as antifungal agents.

    PubMed

    Chaudhary, Preeti M; Tupe, Santosh G; Deshpande, Mukund V

    2013-02-01

    Increased risk of fungal diseases in immunocompromised patients, emerging fungal pathogens, limited repertoire of antifungal drugs and resistance development against the drugs demands for development of new and effective antifungal agents. With greater knowledge of fungal metabolism efforts are being made to inhibit specific enzymes involved in different biochemical pathways for the development of antifungal drugs. Chitin synthase is one such promising target as it is absent in plants and mammals. Nikkomycin Z, a chitin synthase inhibitor is under clinical development. Chitin synthesis in fungi, chitin synthase as a target for antifungal agent development, different chitin synthase inhibitors isolated from natural sources, randomly synthesized and modified from nikkomycin and polyoxin are discussed in this review.

  15. Elevated Early Callose Deposition Results in Complete Penetration Resistance to Powdery Mildew in Arabidopsis1[C][W][OA

    PubMed Central

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C.; Voigt, Christian A.

    2013-01-01

    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew. PMID:23335625

  16. A predicted interactome for Arabidopsis.

    PubMed

    Geisler-Lee, Jane; O'Toole, Nicholas; Ammar, Ron; Provart, Nicholas J; Millar, A Harvey; Geisler, Matt

    2007-10-01

    The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster), and human (Homo sapiens). As an internal quality control, a confidence value was generated based on the amount of supporting evidence for each interaction. A total of 1,159 high confidence, 5,913 medium confidence, and 12,907 low confidence interactions were identified for 3,617 conserved Arabidopsis proteins. There was significant coexpression of genes whose proteins were predicted to interact, even among low confidence interactions. Interacting proteins were also significantly more likely to be found within the same subcellular location, and significantly less likely to be found in conflicting localizations than randomly paired proteins. A notable exception was that proteins located in the Golgi were more likely to interact with Golgi, vacuolar, or endoplasmic reticulum sorted proteins, indicating possible docking or trafficking interactions. These predictions can aid researchers by extending known complexes and pathways with candidate proteins. In addition we have predicted interactions for many previously unknown proteins in known pathways and complexes. We present this interactome, and an online Web interface the Arabidopsis Interactions Viewer, as a first step toward understanding global signaling in Arabidopsis, and to whet the appetite for those who are awaiting results from high-throughput experimental approaches.

  17. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  18. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  19. Terpene synthases from Cannabis sativa.

    PubMed

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  20. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  1. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  2. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  3. Assay of Deoxyhypusine Synthase Activity

    PubMed Central

    Wolff, Edith C.; Lee, Seung Bum; Park, Myung Hee

    2011-01-01

    Deoxyhypusine synthase catalyzes an unusual protein modification reaction. A portion of spermidine is covalently added to one specific lysine residue of one eukaryotic protein, eIF5A (eukaryotic initiation factor 5A) to form a deoxyhypusine residue. The assay measures the incorporation of radioactivity from [1,8-3H]spermidine into the eIF5A protein. The enzyme is specific for the eIF5A precursor protein and does not work on short peptides (<50 amino acids). Optimum conditions for the reaction and four detection methods for the product, deoxyhypusine-containing eIF5A, are described in this chapter. The first, and most specific, method is the measurement of the amount of [3H]deoxyhypusine in the protein hydrolysate after its separation by ion exchange chromatography. However, this method requires some specialized equipment. The second method is counting the radioactivity in TCA-precipitated protein after thorough washing. The third method involves determining the radioactivity in the band of [3H] deoxyhypusine-containing eIF5A after separation by SDS-PAGE. The fourth method is a filter-binding assay. It is important to minimize nonspecific binding of [3H]spermidine to proteins in the assay mixture, especially for methods 2 and 4, as illustrated in a comparison figure in the chapter. PMID:21318875

  4. Inhibitors of specific ceramide synthases.

    PubMed

    Schiffmann, Susanne; Hartmann, Daniela; Fuchs, Sina; Birod, Kerstin; Ferreiròs, Nerea; Schreiber, Yannick; Zivkovic, Aleksandra; Geisslinger, Gerd; Grösch, Sabine; Stark, Holger

    2012-02-01

    Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C(14:0)-Cer - C(26:0)-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure-activity relationships and the potential biological impact of these compounds are discussed.

  5. Isolation of fast purine nucleotide synthase ribozymes.

    PubMed

    Lau, Matthew W L; Cadieux, Kelly E C; Unrau, Peter J

    2004-12-08

    Here we report the in vitro selection of fast ribozymes capable of promoting the synthesis of a purine nucleotide (6-thioguanosine monophosphate) from tethered 5-phosphoribosyl 1-pyrophosphate (PRPP) and 6-thioguanine ((6S)Gua). The two most proficient purine synthases have apparent efficiencies of 284 and 230 M(-1) min(-1) and are both significantly more efficient than pyrimidine nucleotide synthase ribozymes selected previously by a similar approach. Interestingly, while both ribozymes showed good substrate discrimination, one ribozyme had no detectable affinity for 6-thioguanine while the second had a K(m) of approximately 80 muM, indicating that these ribozymes use considerably different modes of substrate recognition. The purine synthases were isolated after 10 rounds of selection from two high-diversity RNA pools. The first pool contained a long random sequence region. The second pool contained random sequence elements interspersed with the mutagenized helical elements of a previously characterized 4-thiouridine synthase ribozyme. While nearly all of the ribozymes isolated from this biased pool population appeared to have benefited from utilizing one of the progenitor's helical elements, little evidence for more complicated secondary structure preservation was evident. The discovery of purine synthases, in addition to pyrimidine synthases, demonstrates the potential for nucleotide synthesis in an 'RNA World' and provides a context from which to study small molecule RNA catalysis.

  6. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  7. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  8. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  9. A single amino acid change in acetolactate synthase confers resistance to valine in tobacco.

    PubMed

    Hervieu, F; Vaucheret, H

    1996-05-23

    The metabolic control of branches chain amino acid (BCAA) biosynthesis involves allosteric regulation of acetolactate synthase (ALS) by the end-products of the pathway, valine, leucine and isoleucine. We describe here the molecular basis of valine resistance. We cloned and sequenced an ALS gene from the tobacco mutant Valr-1 and found a single basepair substitution relative to the wild-type allele. This mutation causes a serine to leucine change in the amino acid sequence of ALS at position 214. We then mutagenized the wild-type allele of the ALS gene of Arabidopsis and found that it confers valine resistance when introduced into tobacco plants. Taken together, these results suggest that the serine to leucine change at position 214 of ALS is responsible for valine resistance in tobacco.

  10. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.

    PubMed

    Luttgeharm, Kyle D; Kimberlin, Athen N; Cahoon, Rebecca E; Cerny, Ronald L; Napier, Johnathan A; Markham, Jonathan E; Cahoon, Edgar B

    2015-07-01

    Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.

  11. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family.

    PubMed

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds

  12. Functional Analysis of the Brassica napus L. Phytoene Synthase (PSY) Gene Family

    PubMed Central

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three “Arabidopsis-like” subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of

  13. Araport: the Arabidopsis information portal.

    PubMed

    Krishnakumar, Vivek; Hanlon, Matthew R; Contrino, Sergio; Ferlanti, Erik S; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A; Stubbs, Joseph; Sullivan, Julie M; Krampis, Konstantinos; Miller, Jason R; Micklem, Gos; Vaughn, Matthew; Town, Christopher D

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release 'modules' that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts 'science apps,' developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Araport: the Arabidopsis Information Portal

    PubMed Central

    Krishnakumar, Vivek; Hanlon, Matthew R.; Contrino, Sergio; Ferlanti, Erik S.; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D.; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A.; Stubbs, Joseph; Sullivan, Julie M.; Krampis, Konstantinos; Miller, Jason R.; Micklem, Gos; Vaughn, Matthew; Town, Christopher D.

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  15. Systemic endopolyploidy in Arabidopsis thaliana

    SciTech Connect

    Galbraith, D.W.; Harkins, K.R. ); Knapp, S. )

    1991-07-01

    Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polypoloid cells. Endoreduplication was found in all tissues except those of the inflorescences and was developmentally regulated according to the age of the tissues and their position within the plant.

  16. The salty tale of Arabidopsis.

    PubMed

    Sanders, D

    2000-06-29

    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  17. The Phenylpropanoid Pathway in Arabidopsis

    PubMed Central

    Fraser, Christopher M.; Chapple, Clint

    2011-01-01

    The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters. PMID:22303276

  18. Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules1[W

    PubMed Central

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616

  19. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules.

    PubMed

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C; Cresti, Mauro

    2011-03-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.

  20. The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides1[C][W][OA

    PubMed Central

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-01-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other. PMID:23037507

  1. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families

    PubMed Central

    Nouwens, Amanda; Lonhienne, Thierry G.; Guddat, Luke W.

    2017-01-01

    Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted “S”-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors. PMID:28137884

  2. Allene oxide synthases and allene oxides.

    PubMed

    Tijet, Nathalie; Brash, Alan R

    2002-08-01

    Allene oxides are unstable epoxides formed by the enzymatic dehydration of the lipoxygenase products of polyunsaturated fatty acids. The allene oxide synthases are of two structurally-unrelated types. In plants, a subfamily of cytochromes P450, designated as CYP74A, use the hydroperoxides of linoleic and linolenic acids as substrate. Both the 9- and 13-hydroperoxides may be converted to allene oxides and subsequently give rise to plant signaling molecules. In corals, a catalase-related hemoprotein functions as the allene oxide synthase. These marine invertebrates, as well as starfish, form allene oxides from the 8R-hydroperoxide of arachidonic acid. The coral allene oxide synthase from Plexaura homomalla occurs as the N-terminal domain of a natural fusion protein with the 8R-lipoxygenase that forms its substrate. This enzyme may be involved in biosynthesis of the cyclopentenone eicosanoids such as the clavulones.

  3. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601

  4. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    PubMed

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  5. A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals.

    PubMed

    Loscos, Jorge; Naya, Loreto; Ramos, Javier; Clemente, Maria R; Matamoros, Manuel A; Becana, Manuel

    2006-04-01

    Phytochelatin synthases (PCS) catalyze phytochelatin (PC) synthesis from glutathione (GSH) in the presence of certain metals. The resulting PC-metal complexes are transported into the vacuole, avoiding toxic effects on metabolism. Legumes have the unique capacity to partially or completely replace GSH by homoglutathione (hGSH) and PCs by homophytochelatins (hPCs). However, the synthesis of hPCs has received little attention. A search for PCS genes in the model legume Lotus (Lotus japonicus) resulted in the isolation of a cDNA clone encoding a protein (LjPCS1) highly homologous to a previously reported homophytochelatin synthase (hPCS) of Glycine max (GmhPCS1). Recombinant LjPCS1 and Arabidopsis (Arabidopsis thaliana) PCS1 (AtPCS1) were affinity purified and their polyhistidine-tags removed. AtPCS1 catalyzed hPC synthesis from hGSH alone at even higher rates than did LjPCS1, indicating that GmhPCS1 is not a genuine hPCS and that a low ratio of hPC to PC synthesis is an inherent feature of PCS1 enzymes. For both enzymes, hGSH is a good acceptor, but a poor donor, of gamma-glutamylcysteine units. Purified AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence of 5 mm GSH and 50 microm metal ions. Activation of both enzymes by Fe3+ was proven by the complete inhibition of PC synthesis by the iron-specific chelator desferrioxamine. Plants of Arabidopsis and Lotus accumulated (h)PCs only in response to a large excess of Cu2+ and Zn2+, but to a much lower extent than did with Cd2+, indicating that (h)PC synthesis does not significantly contribute in vivo to copper, zinc, and iron detoxification.

  6. Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB.

    PubMed

    Ma, Suzanne M; Tang, Yi

    2007-06-01

    The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.

  7. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis.

    PubMed

    Hsieh, Ming-Hsiun; Goodman, Howard M

    2005-06-01

    Plant isoprenoids are synthesized via two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastid nonmevalonate pathway. The Escherichia coli IspH (LytB) protein is involved in the last step of the nonmevalonate pathway. We have isolated an Arabidopsis (Arabidopsis thaliana) ispH null mutant that has an albino phenotype and have generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gene silencing. The initiation of albino phenotypes rendered by IspH gene silencing can arise independently from multiple sites of the same plant. After a spontaneous initiation, the albino phenotype is systemically spread toward younger tissues along the source-to-sink flow relative to the initiation site. The development of chloroplasts is severely impaired in the IspH-deficient albino tissues. Instead of thylakoids, mutant chloroplasts are filled with vesicles. Immunoblot analysis reveals that Arabidopsis IspH is a chloroplast stromal protein. Expression of Arabidopsis IspH complements the lethal phenotype of an E. coli ispH mutant. In 2-week-old Arabidopsis seedlings, the expression of 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), IspD, IspE, IspF, and IspG genes is induced by light, whereas the expression of the IspH gene is constitutive. The addition of 3% sucrose in the media slightly increased levels of DXS, DXR, IspD, IspE, and IspF mRNA in the dark. In a 16-h-light/8-h-dark photoperiod, the accumulation of the IspH transcript oscillates with the highest levels detected in the early light period (2-6 h) and the late dark period (4-6 h). The expression patterns of DXS and IspG are similar to that of IspH, indicating that these genes are coordinately regulated in Arabidopsis when grown in a 16-h-light/8-h-dark photoperiod.

  8. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato.

    PubMed

    Kumar, Akhilesh; Fogelman, Edna; Weissberg, Mira; Tanami, Zachariah; Veilleux, Richard E; Ginzberg, Idit

    2017-08-21

    Phytosterol homeostasis may be maintained in leaves through diversion of intermediates into glycoalkaloid biosynthesis, whereas in tuber flesh, excess intermediates are catalyzed by tuber-specific StLAS - like , resulting in low tuber glycoalkaloids. Lanosterol synthase (LAS) and cycloartenol synthase (CAS) are phylogenetically related enzymes. Cycloartenol is the accepted precursor leading to cholesterol and phytosterols, and in potato, to steroidal glycoalkaloid (SGA) biosynthesis. LAS was also shown to synthesize some plant sterols, albeit at trace amounts, questioning its role in sterol homeostasis. Presently, a potato LAS-related gene (StLAS-like) was identified and its activity verified in a yeast complementation assay. A transgenic approach with targeted gene expression and metabolic profiling of sterols and SGAs was used. Analyses of StLAS-like transcript levels and StLAS-like-promoter::GUS reporter assays indicated specific expression in tuber flesh tissue. Overexpression of Arabidopsis AtLAS in leaves where the endogenic StLAS-like is not expressed, resulted with increased SGA level and reduced phytosterol level, while in the tuber flesh SGA level was reduced. StLAS-like expression only in tuber flesh may explain the differential accumulation of SGAs in commercial cultivars-low in tubers, high in leaves. In leaves, to maintain phytosterol homeostasis, an excess of intermediates may be diverted into SGA biosynthesis, whereas in tuber flesh these intermediates are catalyzed by tuber-specific StLAS-like instead, resulting in low levels of SGA.

  9. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    PubMed

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  10. Cloning and Characterization of a Flavonol Synthase Gene from Scutellaria baicalensis

    PubMed Central

    Kim, Yeon Bok; Kim, KwangSoo; Kim, YeJi; Tuan, Pham Anh; Kim, Haeng Hoon; Cho, Jin Woong; Park, Sang Un

    2014-01-01

    Flavonols are the most abundant of all the flavonoids and play pivotal roles in a variety of plants. We isolated a cDNA clone encoding flavonol synthase from Scutellaria baicalensis (SbFLS). The SbFLS cDNA is 1011 bp long, encodes 336 amino acid residues, and belongs to a family of 2-oxoglutarate-dependent dioxygenases. The overall structure of SbFLS is very similar to that of Arabidopsis thaliana anthocyanidin synthase (AtANS), with a β jelly-roll fold surrounded by tens of short and long α-helices. SbFLS was constitutively expressed in the roots, stems, leaves, and flowers, with particularly high expression in the roots and flowers. SbFLS transcript levels in the roots were 376-, 70-, and 2.5-fold higher than in the leaves, stems, and flowers. The myricetin content was significantly higher than that of kaempferol and quercetin. Therefore, we suggest that SbFLS mediates flavonol formation in the different organs of S. baicalensis. Our study may contribute to the knowledge of the role of FLS in S. baicalensis. PMID:24672406

  11. Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems.

    PubMed

    Fischer, Marc J C; Meyer, Sophie; Claudel, Patricia; Perrin, Mireille; Ginglinger, Jean François; Gertz, Claude; Masson, Jean E; Werck-Reinhardt, Danièle; Hugueney, Philippe; Karst, Francis

    2013-01-10

    Numerous aromatic plant species produce high levels of monoterpenols, using geranyl diphosphate (GPP) as a precursor. Sweet basil (Ocimum basilicum) geraniol synthase (GES) was used to evaluate the monoterpenol profiles arising from heterologous expressions in various plant models. Grapevine (Vitis vinifera) calli were transformed using Agrobacterium tumefasciens and the plants were regenerated. Thale cress (Arabidopsis thaliana) was transformed using the floral dip method. Tobacco (Nicotiana benthamiana) leaves were agro-infiltrated for transient expression. Although, as expected, geraniol was the main product detected in the leaves, different minor products were observed in these plants (V. vinifera: citronellol and nerol; N. benthamiana: linalool and nerol; A. thaliana: none). O. basilicum GES expression was also carried out with microbial system yeasts (Saccharomyces cerevisiae) and Escherichia coli. These results suggest that the functional properties of a monoterpenol synthase depend not only on the enzyme's amino-acidic sequence, but also on the cellular background. They also suggest that some plant species or microbial expression systems could induce the simultaneous formation of several carbocations, and could thus have a natural tendency to produce a wider spectrum of monoterpenols.

  12. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa.

    PubMed

    Barone, Pierluigi; Rosellini, Daniele; Lafayette, Peter; Bouton, Joseph; Veronesi, Fabio; Parrott, Wayne

    2008-05-01

    Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance.

  13. Two residues determine the product profile of the class II diterpene synthases TPS14 and TPS21 of Tripterygium wilfordii.

    PubMed

    Hansen, Nikolaj L; Nissen, Jakob N; Hamberger, Björn

    2017-03-06

    The medicinal plant Tripterygium wilfordii (Celastraceae) contains a pair of class II diterpene synthases (diTPS) of specialized labdane-type metabolism that, despite remarkably close homology, form strikingly different products. TwTPS21 catalyzes bicyclization of the linear C20 precursor geranylgeranyl diphosphate to ent-copal-8-ol diphosphate, while TwTPS14 forms kolavenyl diphosphate. To determine the amino acid signature controlling the functional divergence of the homologues, we modeled their structures based on an existing crystal structure of the Arabidopsis ent-copalyl diphosphate synthase, archetypal of diTPSs in general metabolism of gibberellin phytohormones. Of the residues differing between TwTPS21 and TwTPS14 two located to the predicted active site, and we hypothesized that these are responsible for the functional differentiation of the enzymes. Using site-directed mutagenesis, we generated a panel of six variants, where one, or both positions were exchanged between the enzymes. In coupled heterologous assays with a corresponding class I diTPS, TwTPS2, complete product interchange was observed in variants with both reciprocal mutations, while substitutions of either residue gave mixed product profiles. Two mutants, TwTPS14:Y265H and TwTPS21:A325V, also produced ent-copalyl diphosphate, highlighting the evolutionary potential of enzymes of this family to drive rapid diversification of plant diterpene biosynthesis through neo-functionalization. Our study contributes to the understanding of structure-function relation in plant class II diTPSs and complements previous mutational studies of Arabidopsis ent-copalyl diphosphate synthase with additional examples from the specialized metabolism of T. wilfordii.

  14. Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes.

    PubMed Central

    Li, J; Zhao, J; Rose, A B; Schmidt, R; Last, R L

    1995-01-01

    Phosphoribosylanthranilate isomerase (PAI) catalyzes the third step of the tryptophan biosynthetic pathway. Arabidopsis PAI cDNAs were cloned from a cDNA expression library by complementation of an Escherichia coli trpC- PAI deficiency mutation. Genomic DNA blot hybridization analysis detected three nonallelic genes encoding PAI in the Arabidopsis genome. DNA sequence analysis of cDNA and genomic clones indicated that the PAI1 and PAI2. All three PAI polypeptides possess an N-terminal putative plastid target sequence, suggesting that these enzymes all function in plastids. The PAI1 gene is flanked by nearly identical direct repeats of approximately 350 nucleotides. Our results indicate that, in contrast to most microorganisms, the Arabidopsis PAI protein is not fused with indole-3-glycerolphosphate synthase, which catalyzes the next step in the pathway. Yeast artificial chromosome hybridization studies indicated that the PAI2 gene is tightly linked to the anthranilate synthase alpha subunit 1 (ASA1) gene on chromosome 5. PAI1 was mapped to the top of chromosome 1 using recombinant inbred lines, and PAI3 is loosely linked to PAI1. cDNA restriction mapping and sequencing and RNA gel blot hybridization analysis indicated that all three genes are transcribed in wild-type plants. The expression of antisense PAI1 RNA significantly reduced the immunologically observable PAI protein and enzyme activity in transgenic plants. The plants expressing antisense RNA also showed two phenotypes consistent with a block early in the pathway: blue fluorescence under UV light and resistance to the anthranilate analog 6-methylanthranilate. The extreme nucleotide conservation between the unlinked PAI1 and PAI2 loci suggests that this gene family is actively evolving. PMID:7773017

  15. An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis

    PubMed Central

    Faik, Ahmed; Price, Nicholas J.; Raikhel, Natasha V.; Keegstra, Kenneth

    2002-01-01

    Microsomal membranes catalyze the formation of xyloglucan from UDP-Glc and UDP-Xyl by cooperative action of α-xylosyltransferase and β-glucan synthase activities. Here we report that etiolated pea microsomes contain an α-xylosyltransferase that catalyzes the transfer of xylose from UDP-[14C]xylose onto β(1,4)-linked glucan chains. The solubilized enzyme had the capacity to transfer xylosyl residues onto cello-oligosaccharides having 5 or more glucose residues. Analysis of the data from these biochemical assays led to the identification of a group of Arabidopsis genes and the hypothesis that one or more members of this group may encode α-xylosyltransferases involved in xyloglucan biosynthesis. To evaluate this hypothesis, the candidate genes were expressed in Pichia pastoris and their activities measured with the biochemical assay described above. One of the candidate genes showed cello-oligosaccharide-dependent xylosyltransferase activity. Characterization of the radiolabeled products obtained with cellopentaose as acceptor indicated that the pea and the Arabidopsis enzymes transfer the 14C-labeled xylose mainly to the second glucose residue from the nonreducing end. Enzymatic digestion of these radiolabeled products produced results that would be expected if the xylose was attached in an α(1,6)-linkage to the glucan chain. We conclude that this Arabidopsis gene encodes an α-xylosyltransferase activity involved in xyloglucan biosynthesis. PMID:12032363

  16. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis.

    PubMed

    Yang, Jun; Tian, Lei; Sun, Ming-Xi; Huang, Xue-Yong; Zhu, Jun; Guan, Yue-Feng; Jia, Qi-Shi; Yang, Zhong-Nan

    2013-06-01

    In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression.

  17. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants.

    PubMed

    Corpas, Francisco J; Hayashi, Makoto; Mano, Shoji; Nishimura, Mikio; Barroso, Juan B

    2009-12-01

    Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mM NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO(-)) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress.

  18. Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of Arabidopsis Flavonoid Mutants with Maize Genes1

    PubMed Central

    Dong, Xiaoyun; Braun, Edward L.; Grotewold, Erich

    2001-01-01

    Mutations in the transparent testa (tt) loci abolish pigment production in Arabidopsis seed coats. The TT4, TT5, and TT3 loci encode chalcone synthase, chalcone isomerase, and dihydroflavonol 4-reductase, respectively, which are essential for anthocyanin accumulation and may form a macromolecular complex. Here, we show that the products of the maize (Zea mays) C2, CHI1, and A1 genes complement Arabidopsis tt4, tt5, and tt3 mutants, restoring the ability of these mutants to accumulate pigments in seed coats and seedlings. Overexpression of the maize genes in wild-type Arabidopsis seedlings does not result in increased anthocyanin accumulation, suggesting that the steps catalyzed by these enzymes are not rate limiting in the conditions assayed. The expression of the maize A1 gene in the flavonoid 3′ hydroxylase Arabidopsis tt7 mutant resulted in an increased accumulation of pelargonidin. We conclude that enzymes involved in secondary metabolism can be functionally exchangeable between plants separated by large evolutionary distances. This is in sharp contrast to the notion that the more relaxed selective constrains to which secondary metabolic pathways are subjected is responsible for the rapid divergence of the corresponding enzymes. PMID:11553733

  19. Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis.

    PubMed

    Chiang, Chih-Ming; Chen, Chiu-Chen; Chen, Shi-Peng; Lin, Kuan-Hung; Chen, Li-Ru; Su, Yu-Huei; Yen, His-Cheng

    2017-03-01

    Previously, we found that the flood resistance of eggplant (Solanum melongena) and sponge gourd (Luffa cylindrica) enhanced ascorbate peroxidase (APX) activity under flooding, and consequently, both the SmAPX and LcAPX genes were cloned. In this study, the SmAPX and LcAPX genes were transferred under a ubiquitin promoter to Arabidopsis (At) via Agrobacterium tumefaciens. The expression and amount of APX and APX activities of the SmAPX and LcAPX transgenic lines were significantly higher than those of non-transgenic (NT) plants under a waterlogged condition. Furthermore, the SmAPX, LcAPX, At-sucrose synthases (SUS)-1, phosphoenolpyruvate carboxylase (PEPC), and lactate dehydrogenase (LDH) genes were overexpressed in all transgenic Arabidopsis lines after flooding treatment. Compared to NT plants, the malondialdehyde (MDA) contents and H2O2 accumulation were significantly lower, but germination rates were significantly higher in all transgenic lines with higher APX activity, indicating that the overexpression of SmAPX and LcAPX in Arabidopsis could enhance flood tolerance by eliminating H2O2. Moreover, Arabidopsis seedlings overexpressing SmAPX and LcAPX also displayed greater resistance to flooding and less oxidative injury than NT plants subjected to flooding condition.

  20. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene.

  1. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis.

    PubMed

    Tanoue, Ryo; Kobayashi, Megumi; Katayama, Kenta; Nagata, Noriko; Wada, Hajime

    2014-05-02

    Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  3. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  4. Nitric oxide synthase in tiger salamander retina.

    PubMed

    Kurenni, D E; Thurlow, G A; Turner, R W; Moroz, L L; Sharkey, K A; Barnes, S

    1995-10-23

    Previous studies have indicated that nitric oxide, a labile freely diffusible biological messenger synthesized by nitric oxide synthase, may modulate light transduction and signal transmission in the retina. In the present work, the large size of retinal cells in tiger salamander (Ambystoma tigrinum) allowed the utilization of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry and nitric oxide synthase immunocytochemistry to delineate the cell-specific intracellular localization of nitric oxide synthase. NADPH-diaphorase activity was highly concentrated in the outer retina, in rod and cone inner segment ellipsoids, and between and adjacent to the photoreceptor cell bodies in the outer nuclear layer. Examination of enzymatically isolated retinal cells indicated that outer nuclear layer NADPH-diaphorase activity was localized to the distal processes of the retinal glial (Müller) cells and to putative bipolar cell Landolt clubs. Less intense NADPH-diaphorase activity was seen in the photoreceptor inner segment myoid region, in a small number of inner nuclear layer cells, in cap-like configurations at the distal poles of cells in the ganglion cell layer and surrounding ganglion cell layer somata, and in punctate form within both plexiform layers, the pigment epithelium, and the optic nerve. Nitric oxide synthase-like immunoreactivity was similarly localized, but was also concentrated along a thin sublamina centered within the inner plexiform layer. The potential for nitric oxide generation at multiple retinal sites suggests that this molecule may play a number of roles in the processing of visual information in the retina.

  5. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  6. Assessing Gravitropic Responses in Arabidopsis.

    PubMed

    Barker, Richard; Cox, Benjamin; Silber, Logan; Sangari, Arash; Assadi, Amir; Masson, Patrick

    2016-01-01

    Arabidopsis thaliana was the first higher organism to have its genome sequenced and is now widely regarded as the model dicot. Like all plants, Arabidopsis develops distinct growth patterns in response to different environmental stimuli. This can be seen in the gravitropic response of roots. Methods to investigate this particular tropism are presented here. First, we describe a high-throughput time-lapse photographic analysis of root growth and curvature response to gravistimulation allowing the quantification of gravitropic kinetics and growth rate at high temporal resolution. Second, we present a protocol that allows a quantitative evaluation of gravitropic sensitivity using a homemade 2D clinostat. Together, these approaches allow an initial comparative analysis of the key phenomena associated with root gravitropism between different genotypes and/or accessions.

  7. Cold tolerance in Arabidopsis kamchatica.

    PubMed

    Armstrong, Jessica J; Takebayashi, Naoki; Sformo, Todd; Wolf, Diana E

    2015-03-01

    • Cold tolerance is a critically important factor determining how plants will be influenced by climate change, including changes in snowcover and extreme weather events. Although a great deal is known about cold tolerance in Arabidopsis thaliana, it is not highly cold tolerant. This study examined cold tolerance and its genetic diversity in an herbaceous subarctic relative, Arabidopsis kamchatica, which generally occurs in much colder climates.• Thermal analysis and electrolyte leakage were used to estimate supercooling points and lethal temperatures (LT50) in cold-acclimated and nonacclimated families from three populations of A. kamchatica.• Arabidopsis kamchatica was highly cold tolerant, with a mean LT50 of -10.8°C when actively growing, and -21.8°C when cold acclimated. It also was able to supercool to very low temperatures. Surprisingly, actively growing plants supercooled more than acclimated plants (-14.7 vs. -12.7°C). There was significant genetic variation for cold tolerance both within and among populations. However, both cold tolerance and genetic diversity were highest in the midlatitude population rather than in the far north, indicating that adaptations to climate change are most likely to arise in the center of the species range rather than at the edges.• Arabidopsis kamchatica is highly cold tolerant throughout its range. It is far more freeze tolerant than A. thaliana, and supercooled to lower temperatures, suggesting that A. kamchatica provides a valuable complement to A. thaliana for cold tolerance research. © 2015 Botanical Society of America, Inc.

  8. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    PubMed

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  9. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana

    PubMed Central

    Kelly, Amélie A.; Kalisch, Barbara; Hölzl, Georg; Schulze, Sandra; Thiele, Juliane; Melzer, Michael; Benning, Christoph

    2016-01-01

    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes. PMID:27601658

  10. Expression and Molecular Analysis of the Arabidopsis DXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway1

    PubMed Central

    Carretero-Paulet, Lorenzo; Ahumada, Iván; Cunillera, Nuria; Rodríguez-Concepción, Manuel; Ferrer, Albert; Boronat, Albert; Campos, Narciso

    2002-01-01

    1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. In Arabidopsis, DXR is encoded by a single-copy gene. We have cloned a full-length cDNA corresponding to this gene. A comparative analysis of all plant DXR sequences known to date predicted an N-terminal transit peptide for plastids, with a conserved cleavage site, and a conserved proline-rich region at the N terminus of the mature protein, which is not present in the prokaryotic DXR homologs. We demonstrate that Arabidopsis DXR is targeted to plastids and localizes into chloroplasts of leaf cells. The presence of the proline-rich region in the mature Arabidopsis DXR was confirmed by detection with a specific antibody. A proof of the enzymatic function of this protein was obtained by complementation of an Escherichia coli mutant defective in DXR activity. The expression pattern of β-glucuronidase, driven by the DXR promoter in Arabidopsis transgenic plants, together with the tissue distribution of DXR transcript and protein, revealed developmental and environmental regulation of the DXR gene. The expression pattern of the DXR gene parallels that of the Arabidopsis 1-deoxy-d-xylulose 5-phosphate synthase gene, but the former is slightly more restricted. These genes are expressed in most organs of the plant including roots, with higher levels in seedlings and inflorescences. The block of the 2-C-methyl-d-erythritol 4-phosphate pathway in Arabidopsis seedlings with fosmidomycin led to a rapid accumulation of DXR protein, whereas the 1-deoxy-d-xylulose 5-phosphate synthase protein level was not altered. Our results are consistent with the participation of the Arabidopsis DXR gene in the control of the 2-C-methyl-d-erythritol 4-phosphate pathway. PMID:12177470

  11. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    USDA-ARS?s Scientific Manuscript database

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  12. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  13. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  14. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  15. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis.

    PubMed

    Yuan, Hui; Owsiany, Katherine; Sheeja, T E; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W; Parthasarathy, Mandayam V; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-09-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtOR(His) (R90H) or SbOR(His) (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtOR(Ala) (R90A) functioned similarly to AtOR(His) to promote carotenoid overproduction. Neither AtOR nor AtOR(His) greatly affected carotenogenic gene expression. AtOR(His) exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtOR(His) triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtOR(His) in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates OR(His/Ala) as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying OR(His)-regulated carotenoid accumulation.

  16. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis.

    PubMed

    Vandesteene, Lies; López-Galvis, Lorena; Vanneste, Kevin; Feil, Regina; Maere, Steven; Lammens, Willem; Rolland, Filip; Lunn, John E; Avonce, Nelson; Beeckman, Tom; Van Dijck, Patrick

    2012-10-01

    Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-β-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.

  17. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    PubMed Central

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  18. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator.

    PubMed Central

    James, D W; Lim, E; Keller, J; Plooy, I; Ralston, E; Dooner, H K

    1995-01-01

    The FATTY ACID ELONGATION1 (FAE1) gene of Arabidopsis is required for the synthesis of very long chain fatty acids in the seed. The product of the FAE1 gene is presumed to be a condensing enzyme that extends the chain length of fatty acids from C18 to C20 and C22. We report here the cloning of FAE1 by directed transposon tagging with the maize element Activator (Ac). An unstable fae1 mutant was isolated in a line carrying Ac linked to the FAE1 locus on chromosome 4. Cosegregation and reversion analyses established that the new mutant was tagged by Ac. A DNA fragment flanking Ac was cloned by inverse polymerase chain reaction and used to isolate FAE1 genomic clones and a cDNA clone from a library made from immature siliques. The predicted amino acid sequence of the FAE1 protein shares homology with those of other condensing enzymes (chalcone synthase, stilbene synthases, and beta-ketoacyl-acyl carrier protein synthase III), supporting the notion that FAE1 is the structural gene for a synthase or condensing enzyme. FAE1 is expressed in developing seed, but not in leaves, as expected from the effect of the fae1 mutation on the fatty acid compositions of those tissues. PMID:7734965

  19. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  20. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance.

    PubMed

    Carrillo, L Ruby; Froehlich, John E; Cruz, Jeffrey A; Savage, Linda J; Kramer, David M

    2016-09-01

    The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ-subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild-type levels as irradiance was increased. This effect was caused by an altered redox state of the γ-subunit under low, but not high, light. The low light-specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non-photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin-thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Caffeine synthase and related methyltransferases in plants.

    PubMed

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  3. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  4. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  5. Threonine Synthase of Lemna paucicostata Hegelm. 6746

    PubMed Central

    Giovanelli, John; Veluthambi, K.; Thompson, Gregory A.; Mudd, S. Harvey; Datko, Anne H.

    1984-01-01

    Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet. No evidence was obtained for feedback inhibition, repression, or covalent modification of TS by threonine and/or isoleucine. PMID:16663833

  6. Structure of a modular polyketide synthase

    PubMed Central

    Dutta, Somnath; Whicher, Jonathan R.; Hansen, Douglas A.; Hale, Wendi A.; Chemler, Joseph A.; Congdon, Grady R.; Narayan, Alison R.; Håkansson, Kristina; Sherman, David H.; Smith, Janet L.

    2014-01-01

    Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases, has an architecture in which successive modules catalyze two-carbon linear extensions and keto group processing reactions on intermediates covalently tethered to carrier domains. We employed electron cryo-microscopy to visualize a full-length module and determine sub-nanometer resolution 3D reconstructions that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intra-module carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time the structural basis for both intra-module and inter-module substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems. PMID:24965652

  7. Progress towards clinically useful aldosterone synthase inhibitors.

    PubMed

    Cerny, Matthew A

    2013-01-01

    Owing to the high degree of similarity between aldosterone synthase (CYP11B2) and cortisol synthase (CYP11B1), the design of selective inhibitors of one or the other of these two enzymes was, at one time, thought to be impossible. Through development of novel enzyme screening assays and significant medicinal chemistry efforts, highly potent inhibitors of CYP11B2 have been identified with selectivities approaching 1000-fold between the two enzymes. Many of these molecules also possess selectivity against other steroidogenic cytochromes P450 (e.g. CYP17A1 and CYP19A1) as well as hepatic drug metabolizing P450s. Though not as well developed or explored, inhibitors of CYP11B1, with selectivities approaching 50-fold, have also been identified. The therapeutic benefits of affecting the renin-angiotensin-aldosterone system have been well established with the therapeutically useful angiotensin-converting enzymes inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Data regarding the additional benefits of an aldosterone synthase inhibitor (ASi) are beginning to emerge from animal models and human clinical trials. Despite great promise and much progress, additional challenges still exist in the path towards development of a therapeutically useful ASi.

  8. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  9. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  10. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis.

    PubMed Central

    Errampalli, D; Patton, D; Castle, L; Mickelson, L; Hansen, K; Schnall, J; Feldmann, K; Meinke, D

    1991-01-01

    T-DNA insertional mutagenesis represents a promising approach to the molecular isolation of genes with essential functions during plant embryo development. We describe in this report the isolation and characterization of 18 mutants of Arabidopsis thaliana defective in embryo development following seed transformation with Agrobacterium tumefaciens. Random T-DNA insertion was expected to result in a high frequency of recessive embryonic lethals because many target genes are required for embryogenesis. The cointegrate Ti plasmid used in these experiments contained the nopaline synthase and neomycin phosphotransferase gene markers. Nopaline assays and resistance to kanamycin were used to estimate the number of functional inserts present in segregating families. Nine families appeared to contain a T-DNA insert either within or adjacent to the mutant gene. Eight families were clearly not tagged with a functional insert and appeared instead to contain mutations induced during the transformation process. DNA gel blot hybridization with internal and right border probes revealed a variety of rearrangements associated with T-DNA insertion. A general strategy is presented to simplify the identification of tagged embryonic mutants and facilitate the molecular isolation of genes required for plant embryogenesis. PMID:12324593

  11. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis.

    PubMed

    Lippold, Felix; vom Dorp, Katharina; Abraham, Marion; Hölzl, Georg; Wewer, Vera; Yilmaz, Jenny Lindberg; Lager, Ida; Montandon, Cyrille; Besagni, Céline; Kessler, Felix; Stymne, Sten; Dörmann, Peter

    2012-05-01

    During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.

  12. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana.

    PubMed Central

    Deikman, J.; Hammer, P. E.

    1995-01-01

    Arabidopsis thaliana plants treated with exogenous cytokinins accumulate anthocyanin pigments. We have characterized this response because it is potentially useful as a genetic marker for cytokinin responsiveness. Levels of mRNAs for four genes of the anthocyanin biosynthesis pathway, phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) were shown to increase coordinately in response to benzyladenine (BA). However, nuclear run-on transcription experiments suggested that although CHS and DFR are controlled by BA at the transcriptional level, PAL1 and CHI are controlled by BA posttranscriptionally. CHS mRNA levels increased within 2 h of BA spray application, and peaked by 3 h. Levels of PAL1 mRNA did not increase within 6 h of BA spray. We also showed that PAL1, CHS, CHI, and DFR mRNA levels fluctuate during a 24-h period and appear to be controlled by a circadian clock. The relation between cytokinin regulation and light regulation of CHS gene transcription is discussed. PMID:12228453

  13. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  14. Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles.

    PubMed

    Toyomasu, Tomonobu; Usui, Masami; Sugawara, Chizu; Kanno, Yuri; Sakai, Arisa; Takahashi, Hirokazu; Nakazono, Mikio; Kuroda, Masaharu; Miyamoto, Koji; Morimoto, Yu; Mitsuhashi, Wataru; Okada, Kazunori; Yamaguchi, Shinjiro; Yamane, Hisakazu

    2015-01-01

    Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A-E, and oryzalexins A-F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT-PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence.

  15. Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles

    PubMed Central

    Toyomasu, Tomonobu; Usui, Masami; Sugawara, Chizu; Kanno, Yuri; Sakai, Arisa; Takahashi, Hirokazu; Nakazono, Mikio; Kuroda, Masaharu; Miyamoto, Koji; Morimoto, Yu; Mitsuhashi, Wataru; Okada, Kazunori; Yamaguchi, Shinjiro; Yamane, Hisakazu

    2015-01-01

    Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A–E, and oryzalexins A–F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription–PCR (qRT–PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT–PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence. PMID:25336684

  16. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  17. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  18. Taxonomy and Phylogeny of Arabidopsis (Brassicaceae)

    PubMed Central

    Al-Shehbaz, Ihsan A.; O'Kane, Steve L.

    2002-01-01

    Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given. PMID:22303187

  19. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants.

    PubMed

    Gray, Dennis W; Breneman, Steven R; Topper, Lauren A; Sharkey, Thomas D

    2011-06-10

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.

  20. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  1. Arabidopsis thaliana life without phytochromes

    PubMed Central

    Strasser, Bárbara; Sánchez-Lamas, Maximiliano; Yanovsky, Marcelo J.; Casal, Jorge J.; Cerdán, Pablo D.

    2010-01-01

    Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal. PMID:20176939

  2. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  3. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    PubMed Central

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  4. Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis mlo2 Mutant1[C][W][OA

    PubMed Central

    Consonni, Chiara; Bednarek, Paweł; Humphry, Matt; Francocci, Fedra; Ferrari, Simone; Harzen, Anne; Ver Loren van Themaat, Emiel; Panstruga, Ralph

    2010-01-01

    Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens. PMID:20023151

  5. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals.

    PubMed

    Mazurek, Sylwester; Mucciolo, Antonio; Humbel, Bruno M; Nawrath, Christiane

    2013-06-01

    A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals.

  6. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha.

    PubMed

    Kumar, Santosh; Kempinski, Chase; Zhuang, Xun; Norris, Ayla; Mafu, Sibongile; Zi, Jiachen; Bell, Stephen A; Nybo, Stephen Eric; Kinison, Scott E; Jiang, Zuodong; Goklany, Sheba; Linscott, Kristin B; Chen, Xinlu; Jia, Qidong; Brown, Shoshana D; Bowman, John L; Babbitt, Patricia C; Peters, Reuben J; Chen, Feng; Chappell, Joe

    2016-10-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg(2+) binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  8. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  9. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants.

    PubMed

    Lutfiyya, Linda L; Xu, Nanfei; D'Ordine, Robert L; Morrell, James A; Miller, Philip W; Duff, Stephen M G

    2007-07-01

    In plants and microbes, sucrose phosphate synthase (SPS) is an important enzyme in sucrose biosynthesis. Several different isozymes of SPS exist in plants. Genomic and EST sequence data from Arabidopsis, rice and maize has been analyzed. This analysis has revealed that the Arabidopsis genome contains four unique SPS genes. The rice databases (Monsanto proprietary, and public databases) contain five unique full-length SPS genes. Using the Monsanto maize EST and genomic sequence databases, we have identified five full length and two partial SPS sequences, bringing the total number of presently known maize SPS genes to at least seven. Phylogenetic analysis of all known SPS sequences revealed several putative evolutionary branches of SPS. We have classified SPS genes into three major groups in higher plants, all with distinct features from the known microbial SPS genes. Furthermore, this analysis suggests evolutionary divergence of monocotyledonous (monocot) and dicotyledonous (dicot) SPS sequences. The evidence suggests that several gene duplication events occurred at various points during evolution, both before and after the monocot/dicot split. It appears that at least one of the major forms of SPS genes may have evolved after the divergence of monocots and dicots. In addition, several more recent gene duplication events may have occurred after maize/rice speciation, giving rise to additional SPS genes in maize. Some of the variants lack one or more of the presently known regulatory sites, implying that this evolutionary divergence may have given rise to enzymes with functional differences. We present evidence from transcript distribution studies using cDNA libraries as well as transcriptional profiling experiments and propose that specific SPS genes have diverse patterns of expression that are sometimes responsive to environmental signals. Our data suggests that higher plant SPS isozymes differ with respect to their patterns of expression and regulation and that

  10. Cloning and characterization of a UV-B-inducible maize flavonol synthase.

    PubMed

    Falcone Ferreyra, María Lorena; Rius, Sebastian; Emiliani, Julia; Pourcel, Lucille; Feller, Antje; Morohashi, Kengo; Casati, Paula; Grotewold, Erich

    2010-04-01

    Flavonols are important compounds for conditional male fertility in maize (Zea mays) and other crops, and they also contribute to protecting plants from UV-B radiation. However, little continues to be known on how maize and other grasses synthesize flavonols, and how flavonol biosynthesis is regulated. By homology with an Arabidopsis flavonol synthase (AtFLS1), we cloned a maize gene encoding a protein (ZmFLS1) capable of converting the dihydrokaempferol (DHK) and dihydroquercetin (DHQ) dihydroflavonols to the corresponding flavonols, kaempferol (K) and quercetin (Q). Moreover, ZmFLS1 partially complements the flavonol deficiency of the Arabidopsis fls1 mutant, and restores anthocyanin accumulation to normal levels. We demonstrate that ZmFLS1 is under the control of the anthocyanin (C1/PL1 + R/B) and 3-deoxy flavonoid (P1) transcriptional regulators. Indeed, using chromatin immunoprecipitation (ChIP) experiments, we establish that ZmFLS1 is an immediate direct target of the P1 and C1/R regulatory complexes, revealing similar control as for earlier steps in the maize flavonoid pathway. Highlighting the importance of flavonols in UV-B protection, we also show that ZmFLS1 is induced in maize seedlings by UV-B, and that this induction is in part mediated by the increased expression of the P1, B and PL1 regulators. Together, our results identify a key flavonoid biosynthetic enzyme so far missed in maize and other monocots, and illustrate mechanisms by which flavonol accumulation is controlled in maize.

  11. Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2).

    PubMed

    Salvagnin, Umberto; Carlin, Silvia; Angeli, Sergio; Vrhovsek, Urska; Anfora, Gianfranco; Malnoy, Mickael; Martens, Stefan

    2016-11-01

    E-(β)-caryophyllene is a sesquiterpene volatile emitted by plants and involved in many ecological interactions within and among trophic levels and it has a kairomonal activity for many insect species. In grapevine it is a key compound for host-plant recognition by the European grapevine moth, Lobesia botrana, together with other two sesquiterpenes. In grapevine E-(β)-caryophyllene synthase is coded by the VvGwECar2 gene, although complete characterization of the corresponding protein has not yet been achieved. Here we performed the characterization of the enzyme after heterologous expression in E. coli, which resulted to produce in vitro also minor amounts of the isomer α-humulene and of germacrene D. The pH optimum was estimated to be 7.8, and the Km and Kcat values for farnesyl pyrophosphate were 31.4 μM and 0.19 s(-1) respectively. Then, we overexpressed the gene in the cytoplasm of two plant species, Arabidopsis thaliana and the native host Vitis vinifera. In Arabidopsis the enzyme changed the plant head space release, showing a higher selectivity for E-(β)-caryophyllene, but also the production of thujopsene instead of germacrene D. Overall plants increased the E-(β)-caryophyllene emission in the headspace collection by 8-fold compared to Col-0 control plants. In grapevine VvGwECar2 overexpression resulted in higher E-(β)-caryophyllene emissions, although there was no clear correlation between gene activity and sesquiterpene quantity, suggesting a key role by the plant regulation machinery.

  12. Carotenogenesis Is Regulated by 5'UTR-Mediated Translation of Phytoene Synthase Splice Variants.

    PubMed

    Álvarez, Daniel; Voß, Björn; Maass, Dirk; Wüst, Florian; Schaub, Patrick; Beyer, Peter; Welsch, Ralf

    2016-12-01

    Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation.

  14. A Stilbene Synthase Gene (SbSTS1) Is Involved in Host and Nonhost Defense Responses in Sorghum1

    PubMed Central

    Yu, Christine K.Y.; Springob, Karin; Schmidt, Jürgen; Nicholson, Ralph L.; Chu, Ivan K.; Yip, Wing Kin; Lo, Clive

    2005-01-01

    A chalcone synthase (CHS)-like gene, SbCHS8, with high expressed sequence tag abundance in a pathogen-induced cDNA library, was identified previously in sorghum (Sorghum bicolor). Genomic Southern analysis revealed that SbCHS8 represents a single-copy gene. SbCHS8 expression was induced in sorghum mesocotyls following inoculation with Cochliobolus heterotrophus and Colletotrichum sublineolum, corresponding to nonhost and host defense responses, respectively. However, the induction was delayed by approximately 24 h when compared to the expression of at least one of the other SbCHS genes. In addition, SbCHS8 expression was not induced by light and did not occur in a tissue-specific manner. SbCHS8, together with SbCHS2, was overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) tt4 (transparent testa) mutants defective in CHS activities. SbCHS2 rescued the ability of these mutants to accumulate flavonoids in seed coats and seedlings. In contrast, SbCHS8 failed to complement the mutation, suggesting that the encoded enzyme does not function as a CHS. To elucidate their biochemical functions, recombinant proteins were assayed with different phenylpropanoid-Coenzyme A esters. Flavanones and stilbenes were detected in the reaction products of SbCHS2 and SbCHS8, respectively. Taken together, our data demonstrated that SbCHS2 encodes a typical CHS that synthesizes naringenin chalcone, which is necessary for the formation of different flavonoid metabolites. On the other hand, SbCHS8, now retermed SbSTS1, encodes an enzyme with stilbene synthase activity, suggesting that sorghum accumulates stilbene-derived defense metabolites in addition to the well-characterized 3-deoxyanthocyanidin phytoalexins. PMID:15821144

  15. PAIR: the predicted Arabidopsis interactome resource.

    PubMed

    Lin, Mingzhi; Shen, Xueling; Chen, Xin

    2011-01-01

    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145,494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways.

  16. The fifth international conference on Arabidopsis research

    SciTech Connect

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  17. Nighttime Sugar Starvation Orchestrates Gibberellin Biosynthesis and Plant Growth in Arabidopsis[W

    PubMed Central

    Paparelli, Eleonora; Parlanti, Sandro; Gonzali, Silvia; Novi, Giacomo; Mariotti, Lorenzo; Ceccarelli, Nello; van Dongen, Joost T.; Kölling, Katharina; Zeeman, Samuel C.; Perata, Pierdomenico

    2013-01-01

    A plant’s eventual size depends on the integration of its genetic program with environmental cues, which vary on a daily basis. Both efficient carbon metabolism and the plant hormone gibberellin are required to guarantee optimal plant growth. Yet, little is known about the interplay between carbon metabolism and gibberellins that modulates plant growth. Here, we show that sugar starvation in Arabidopsis thaliana arising from inefficient starch metabolism at night strongly reduces the expression of ent-kaurene synthase, a key regulatory enzyme for gibberellin synthesis, the following day. Our results demonstrate that plants integrate the efficiency of photosynthesis over a period of days, which is transduced into a daily rate of gibberellin biosynthesis. This enables a plant to grow to a size that is compatible with its environment. PMID:24096343

  18. Heterologous expression and purification of catalytic domain of CESA1 from Arabidopsis thaliana

    DOE PAGES

    Vandavasi, Venu Gopal; O'Neill, Hugh Michael

    2016-10-20

    Here, heterologous expression of plant cellulose synthase (CESA) and its purification has remained a challenge for decades impeding detailed biophysical, biochemical and structural characterization of this key enzyme. An in-depth knowledge of structure and function of CESA proteins would enable us to better understand the hierarchical structure of the plant cell wall. Here, we report a detailed, and reproducible method of purification of catalytic domain of CESA1 from Arabidopsis thaliana that was recombinantly expressed in Escherichia coli. The method relies on a two stage purification procedure to obtain the catalytic domain in monomer and trimer forms. The biochemical and biophysicalmore » data including low resolution structures of the protein have been published. Currently the crystallization studies of this protein are underway.« less

  19. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    PubMed Central

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-01-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. PMID:7770517

  20. Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis.

    PubMed

    Paparelli, Eleonora; Parlanti, Sandro; Gonzali, Silvia; Novi, Giacomo; Mariotti, Lorenzo; Ceccarelli, Nello; van Dongen, Joost T; Kölling, Katharina; Zeeman, Samuel C; Perata, Pierdomenico

    2013-10-01

    A plant's eventual size depends on the integration of its genetic program with environmental cues, which vary on a daily basis. Both efficient carbon metabolism and the plant hormone gibberellin are required to guarantee optimal plant growth. Yet, little is known about the interplay between carbon metabolism and gibberellins that modulates plant growth. Here, we show that sugar starvation in Arabidopsis thaliana arising from inefficient starch metabolism at night strongly reduces the expression of ent-kaurene synthase, a key regulatory enzyme for gibberellin synthesis, the following day. Our results demonstrate that plants integrate the efficiency of photosynthesis over a period of days, which is transduced into a daily rate of gibberellin biosynthesis. This enables a plant to grow to a size that is compatible with its environment.

  1. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  2. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis.

    PubMed

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  3. Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid.

    PubMed

    Hayashi, H; Huang, P; Inoue, K; Hiraoka, N; Ikeshiro, Y; Yazaki, K; Tanaka, S; Kushiro, T; Shibuya, M; Ebizuka, Y

    2001-12-01

    An oxidosqualene cyclase cDNA, LcIMS1, was isolated from cultured cells of Luffa cylindrica Roem. by heterologous hybridization with cDNA of Glycyrrhiza glabra beta-amyrin synthase. Expression of LcIMS1 in yeast lacking endogenous oxidosqualene cyclase activity resulted in the accumulation of isomultiflorenol, a triterpene. This is consistent with LcIMS1 encoding isomultiflorenol synthase, an oxidosqualene cyclase involved in bryonolic acid biosynthesis in cultured Luffa cells. The deduced amino-acid sequence of LcIMS1 shows relatively low identity with other triterpene synthases, suggesting that isomultiflorenol synthase should be classified into a new group of triterpene synthases. The levels of isomultiflorenol synthase and cycloartenol synthase mRNAs, which were measured with gene-specific probes, correlated with the accumulation of bryonolic acid and phytosterols over a growth cycle of the Luffa cell cultures. Isomultiflorenol synthase mRNA was low during the early stages of cell growth and accumulated to relatively high levels in the late stages. Induction of this mRNA preceded accumulation of bryonolic acid. In contrast, cycloartenol synthase mRNA accumulated in the early stages of the culture cycle, whereas phytosterols accumulated at the same relative rate throughout the whole growth cycle. These results suggest independent regulation of these two genes and of the accumulation of bryonolic acid and phytosterols.

  4. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    PubMed

    Cai, Wei; Liu, Wen; Wang, Wen-Shu; Fu, Zheng-Wei; Han, Tong-Tong; Lu, Ying-Tang

    2015-01-01

    Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation