Science.gov

Sample records for arabidopsis reduces drought

  1. The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.

    PubMed

    Nir, Ido; Moshelion, Menachem; Weiss, David

    2014-01-01

    Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA-deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole-plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf-epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.

  2. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L.

    PubMed

    Abogadallah, Gaber M; Nada, Reham M; Malinowski, Robert; Quick, Paul

    2011-06-01

    Trifolium alexandrinum L. was transformed with the Arabidopsis HARDY gene that belongs to the stress-related AP2/ERF (APETALA2/ethylene responsive element binding factors) superfamily of transcription factors. The fresh weights of the transgenic lines L2 and L3 were improved by 42 and 55% under drought stress and by 38 and 95% under salt stress compared to the wild type, respectively. The dry weights were similarly improved. Overexpression of HARDY improved the instantaneous water use efficiency (WUE) under drought stress by reducing transpiration (E) and under salt stress by improving photosynthesis (A), through reducing Na+ accumulation in leaves, and reducing E. However, HARDY improved the growth of drought-stressed transgenic plants as compared to the wild type by delaying water depletion from soil and preventing rapid decline in A. L2 and L3 had thicker stems and in case of L3, more xylem rows per vascular bundle, which may have made L3 more resistant to lodging in the field. Field performance of L2 and L3 under combined drought and salt stress was significantly better than that of the wild type in terms of fresh and dry weights (40%, 46% and 31%, 40%, respectively). The results provide further evidence for the efficiency of overexpression of a single gene in improving tolerance to abiotic stress under field conditions.

  3. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    SciTech Connect

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  4. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolished showing high-susceptibility to induced osmotic stress resulting in small wrinkled rosette leaves and stunted primary root. In camta1 under drought condition, we identified growth retardation, poor WUE, low photosystem II efficiency, decline in RWC and higher sensitivity to drought with reduced survivability. The microarray analysis of drought treated camta1 revealed that CAMTA1 regulates “drought recovery” as most indicative pathway along with other stress response, osmotic balance, apoptosis, DNA methylation and photosynthesis. Interestingly, majority of positively regulated genes were related to plasma membrane and chloroplast. Further, our analysis indicates that CAMTA1 regulates several stress responsive genes including RD26, ERD7, RAB18, LTPs, COR78, CBF1, HSPs etc. and promoter of these genes were enriched with CAMTA recognition cis-element. CAMTA1 probably regulate drought recovery by regulating expression of AP2-EREBP transcription factors and Abscisic acid response. Conclusion CAMTA1 rapidly changes broad spectrum of responsive genes of membrane integrity and photosynthetic machinery by generating ABA response for challenging drought stress. Our results demonstrate the important role of CAMTA1 in regulating drought response in Arabidopsis, thus could be genetically engineered for improving drought tolerance in crop. PMID:23547968

  5. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    PubMed

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  6. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model.

    PubMed

    Frolov, Andrej; Bilova, Tatiana; Paudel, Gagan; Berger, Robert; Balcke, Gerd U; Birkemeyer, Claudia; Wessjohann, Ludger A

    2017-01-01

    Drought is one of the most important environmental stressors resulting in increasing losses of crop plant productivity all over the world. Therefore, development of new approaches to increase the stress tolerance of crop plants is strongly desired. This requires precise and adequate modeling of drought stress. As this type of stress manifests itself as a steady decrease in the substrate water potential (ψw), agar plates infused with polyethylene glycol (PEG) are the perfect experimental tool: they are easy in preparation and provide a constantly reduced ψw, which is not possible in soil models. However, currently, this model is applicable only to seedlings and cannot be used for evaluation of stress responses in mature plants, which are obviously the most appropriate objects for drought tolerance research. To overcome this limitation, here we introduce a PEG-based agar infusion model suitable for 6-8-week-old A. thaliana plants, and characterize, to the best of our knowledge for the first time, the early drought stress responses of adult plants grown on PEG-infused agar. We describe essential alterations in the primary metabolome (sugars and related compounds, amino acids and polyamines) accompanied by qualitative and quantitative changes in protein patterns: up to 87 unique stress-related proteins were annotated under drought stress conditions, whereas further 84 proteins showed a change in abundance. The obtained proteome patterns differed slightly from those reported for seedlings and soil-based models. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    PubMed Central

    Gupta, Aarti; Dixit, Sandeep K.; Senthil-Kumar, Muthappa

    2016-01-01

    Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by

  8. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  9. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  10. GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana.

    PubMed

    Ramegowda, Venkategowda; Gill, Upinder Singh; Sivalingam, Palaiyur Nanjappan; Gupta, Aarti; Gupta, Chirag; Govind, Geetha; Nataraja, Karaba N; Pereira, Andy; Udayakumar, Makarla; Mysore, Kirankumar S; Senthil-Kumar, Muthappa

    2017-08-22

    Drought transcriptome analysis of finger millet (Eleusine coracana) by cDNA subtraction identified drought responsive genes that have a potential role in drought tolerance. Through virus-induced gene silencing (VIGS) in a related crop species, maize (Zea mays), several genes, including a G-BOX BINDING FACTOR 3 (GBF3) were identified as candidate drought stress response genes and the role of GBF3 in drought tolerance was studied in Arabidopsis thaliana. Overexpression of both EcGBF3 and AtGBF3 in A. thaliana resulted in improved tolerance to osmotic stress, salinity and drought stress in addition to conferring insensitivity to ABA. Conversely, loss of function of this gene increased the sensitivity of A. thaliana plants to drought stress. EcGBF3 transgenic A. thaliana results also suggest that drought tolerance of sensitive plants can be improved by transferring genes from far related crops like finger millet. Our results demonstrate the role of GBF3 in imparting drought tolerance in A. thaliana and indicate the conserved role of this gene in drought and other abiotic stress tolerance in several plant species.

  11. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Wi, Soo Jin; Kim, Soo Jin; Kim, Woo Taek; Park, Ky Young

    2014-05-01

    Using subtractive hybridization analysis, the S-adenosylmethionine decarboxylase (SAMDC) gene from Capsicum annuum was isolated and renamed CaSAMDC. We generated independent transgenic Arabidopsis (Arabidopsis thaliana) lines constitutively expressing a 35S::CaSAMDC construct. Drought tolerance was significantly enhanced in Arabidopsis T4 transgenic homozygous lines as compared to wild-type (WT) plants. The levels of main polyamines (PAs) were more significantly increased in CaSAMDC-overexpressing transgenic plants after 6 h of drought stress as compared to stressed WT plants. Basal transcription of polyamine oxidase (PAO) showed at a much higher level in unstressed-transgenic plants as compared to unstressed WT plants. However, the difference in PAO transcription level between WT and transgenic plants was reduced after drought stress. Cellular accumulation of reactive oxygen species (ROS) was significantly reduced following drought stress in transgenic Arabidopsis plants as compared to WT plants. These results were in agreement with additional observations that stress-induced ROS generation, as determined by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), was significantly suppressed while transcription of ROS-detoxifying enzymes was notably elevated in transgenic lines in response to drought stress. Further, ROS-induced transcription of the metacaspase II gene was remarkably inhibited in transgenic plants. Collectively, these results suggest that drought stress tolerance due to reduction of ROS production and enhancement of ROS detoxification can be attributed to elevation of PAs.

  12. Compartment specific response of antioxidants to drought stress in Arabidopsis

    PubMed Central

    Koffler, Barbara Eva; Luschin-Ebengreuth, Nora; Stabentheiner, Edith; Müller, Maria; Zechmann, Bernd

    2014-01-01

    Compartment specific changes in ascorbate and glutathione contents were studied during drought stress in Arabidopsis thaliana Col-0 and in ascorbate and glutathione deficient mutants vtc2-1 and pad2-1, respectively, over a time period of 10 days. The results of this study revealed a strong decrease of glutathione contents in both mutants (up to 52% in mitochondria of pad2-1 and 40% in nuclei of vtc2-1) at early time points when drought stress was not yet measurable in leaves even though the soil showed a drop in relative water contents. These results indicate that glutathione is used at early time points to signal drought stress from roots to leaves. Such roles could not be confirmed for ascorbate which remained unchanged in most cell compartments until very late stages of drought. During advanced drought stress the strong depletion of ascorbate and glutathione in chloroplasts (up to 50% in Col-0 and vtc2-1) and peroxisomes (up to 56% in Col-0) could be correlated with a strong accumulation of H2O2. The strong increase of H2O2 and ascorbate in vacuoles (up to 111%) in wildtype plants indicates that ascorbate plays an important role for the detoxification of ROS in vacuoles during drought stress. PMID:25219315

  13. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis.

    PubMed

    Kim, Do-Young; Jin, Jun-Young; Alejandro, Santiago; Martinoia, Enrico; Lee, Youngsook

    2010-06-01

    Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP-binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild-type. We investigated whether the improved growth of AtABCG36-overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36-overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild-type. On the contrary, T-DNA insertional knockout lines were more sensitive to drought stress than wild-type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild-type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.

  14. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids.

    PubMed

    del Pozo, Juan C; Ramirez-Parra, Elena

    2014-12-01

    Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.

  15. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation.

    PubMed

    Li, Yan-jie; Wang, Bo; Dong, Rui-rui; Hou, Bing-kai

    2015-07-01

    The Arabidopsis uridine diphosphate (UDP)-glycosyltransferase 76C2 (UGT76C2), a member of family 1 UGTs, is described as a cytokinin glycosyltransferase. In this study, we demonstrate a novel role of UGT76C2 in response to water deficit. QRT-PCR assay identified that the expression of this gene was downregulated by drought, osmotic stress and abscisic acid (ABA). Compared with wild type (WT) plants, transgenic lines ectopically expressing UGT76C2 exhibited reduced tolerance to ABA and osmotic stress during postgermination growth, while enhanced adaptation to drought stress at mature stage. Consistently, the ugt76c2 mutant plants showed opposite responses to these conditions. To explore the possible mechanisms of UGT76C2 contributing to drought stress adaptation, six stress inducible genes including DREB2A, RD22, RD29B, LEA, COR47 and KIN1 were detected, which showed significant upregulation in UGT76C2 overexpression plants under drought stress. Besides, five cytokinin marker genes AHK2, AHK3, AHK4, ARR1 and ARR2 were also evaluated, which showed less induced in UGT76C2 overexpression plants in response to drought stress. Our results reveal that UGT76C2, as a cytokinin glycosyltransferase, is involved in the plant response to drought stress and might represent novel cues in abiotic stress adaptation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  17. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  18. Reducing societal vulnerability to drought: A methodology

    SciTech Connect

    Wilhite, D.A.

    1995-12-31

    Given worldwide experience with drought during the past several decades and the magnitude of associated impacts, it is apparent that vulnerability to extended periods of water shortage is escalating. Developing a national or provincial drought policy and preparedness plan is a complicated but essential first step toward reducing societal vulnerability. Until recently, nations had devoted little effort to drought preparedness, preferring instead the reactive or crisis management approach. Presently, an increasing number of nations are pursuing a more proactive approach that emphasizes the principles of risk management and sustainable development. Because of the multitude of impacts associated with drought and the numerous governmental agencies that have responsibility for some aspect of monitoring, assessment, mitigation, and planning, developing a policy and plan must be an integrated process within and between levels of government. This paper outlines a generic process that can be adopted by governments that desire to develop a more comprehensive and long-term approach to drought management and planning. Countries and states or provincial authorities that have adopted this approach is presented as case studies. This process is timely, given the declaration of the 1990s as the International Decade for Natural Disaster Reduction and the recent International Convention to Combat Desertification and Drought (June, 1994), an offshoot of deliberations at the United Nations Conference on Environment and Development.

  19. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene

    PubMed Central

    Karaba, Aarati; Dixit, Shital; Greco, Raffaella; Aharoni, Asaph; Trijatmiko, Kurniawan R.; Marsch-Martinez, Nayelli; Krishnan, Arjun; Nataraja, Karaba N.; Udayakumar, Makarla; Pereira, Andy

    2007-01-01

    Freshwater is a limited and dwindling global resource; therefore, efficient water use is required for food crops that have high water demands, such as rice, or for the production of sustainable energy biomass. We show here that expression of the Arabidopsis HARDY (HRD) gene in rice improves water use efficiency, the ratio of biomass produced to the water used, by enhancing photosynthetic assimilation and reducing transpiration. These drought-tolerant, low-water-consuming rice plants exhibit increased shoot biomass under well irrigated conditions and an adaptive increase in root biomass under drought stress. The HRD gene, an AP2/ERF-like transcription factor, identified by a gain-of-function Arabidopsis mutant hrd-D having roots with enhanced strength, branching, and cortical cells, exhibits drought resistance and salt tolerance, accompanied by an enhancement in the expression of abiotic stress associated genes. HRD overexpression in Arabidopsis produces thicker leaves with more chloroplast-bearing mesophyll cells, and in rice, there is an increase in leaf biomass and bundle sheath cells that probably contributes to the enhanced photosynthesis assimilation and efficiency. The results exemplify application of a gene identified from the model plant Arabidopsis for the improvement of water use efficiency coincident with drought resistance in the crop plant rice. PMID:17881564

  20. Arabidopsis PED2 positively modulates plant drought stress resistance.

    PubMed

    Shi, Haitao; Ye, Tiantian; Yang, Fan; Chan, Zhulong

    2015-09-01

    Abscisic acid (ABA) is an important phytohormone that functions in seed germination, plant development, and multiple stress responses. Arabidopsis Peroxisome defective 2 (AtPED2) (also known as AtPEXOXIN14, AtPEX14), is involved in the intracellular transport of thiolase from the cytosol to glyoxysomes, and perosisomal matrix protein import in plants. In this study, we assigned a new role for AtPED2 in drought stress resistance. The transcript level of AtPED2 was downregulated by ABA and abiotic stress treatments. AtPED2 knockout mutants were insensitive to ABA-mediated seed germination, primary root elongation, and stomatal response, while AtPED2 over-expressing plants were sensitive to ABA in comparison to wide type (WT). AtPED2 also positively regulated drought stress resistance, as evidenced by the changes of water loss rate, electrolyte leakage, and survival rate. Notably, AtPED2 positively modulated expression of several stress-responsive genes (RAB18, RD22, RD29A, and RD29B), positively affected underlying antioxidant enzyme activities and negatively regulated reactive oxygen species (ROS) level under drought stress conditions. Moreover, multiple carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines were also positively regulated by AtPED2. Taken together, these results indicated a positive role for AtPED2 in drought resistance, through modulation of stress-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially. © 2015 Institute of Botany, Chinese Academy of Sciences.

  1. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    PubMed

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water.

  2. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.

    PubMed

    Rizhsky, Ludmila; Liang, Hongjian; Shuman, Joel; Shulaev, Vladimir; Davletova, Sholpan; Mittler, Ron

    2004-04-01

    Within their natural habitat, plants are subjected to a combination of abiotic conditions that include stresses such as drought and heat. Drought and heat stress have been extensively studied; however, little is known about how their combination impacts plants. The response of Arabidopsis plants to a combination of drought and heat stress was found to be distinct from that of plants subjected to drought or heat stress. Transcriptome analysis of Arabidopsis plants subjected to a combination of drought and heat stress revealed a new pattern of defense response in plants that includes a partial combination of two multigene defense pathways (i.e. drought and heat stress), as well as 454 transcripts that are specifically expressed in plants during a combination of drought and heat stress. Metabolic profiling of plants subjected to drought, heat stress, or a combination of drought and heat stress revealed that plants subject to a combination of drought and heat stress accumulated sucrose and other sugars such as maltose and glucose. In contrast, Pro that accumulated in plants subjected to drought did not accumulate in plants during a combination of drought and heat stress. Heat stress was found to ameliorate the toxicity of Pro to cells, suggesting that during a combination of drought and heat stress sucrose replaces Pro in plants as the major osmoprotectant. Our results highlight the plasticity of the plant genome and demonstrate its ability to respond to complex environmental conditions that occur in the field.

  3. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

    PubMed

    Han, Xiao; Tang, Sha; An, Yi; Zheng, Dong-Chao; Xia, Xin-Li; Yin, Wei-Lun

    2013-11-01

    Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.

  4. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought

    PubMed Central

    Nguyen, Kien Huu; Ha, Chien Van; Nishiyama, Rie; Watanabe, Yasuko; Leyva-González, Marco Antonio; Fujita, Yasunari; Tran, Uven Thi; Li, Weiqiang; Tanaka, Maho; Seki, Motoaki; Schaller, G. Eric; Herrera-Estrella, Luis; Tran, Lam-Son Phan

    2016-01-01

    In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)—namely ARR1, ARR10, and ARR12—in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering. PMID:26884175

  5. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought.

    PubMed

    Nguyen, Kien Huu; Ha, Chien Van; Nishiyama, Rie; Watanabe, Yasuko; Leyva-González, Marco Antonio; Fujita, Yasunari; Tran, Uven Thi; Li, Weiqiang; Tanaka, Maho; Seki, Motoaki; Schaller, G Eric; Herrera-Estrella, Luis; Tran, L S

    2016-03-15

    In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)--namely ARR1, ARR10, and ARR12--in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.

  6. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum

    PubMed Central

    Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa

    2011-01-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1–3, adc2–3), spermidine synthase (spds1–2, spds2–3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants. PMID:21330782

  7. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.

    PubMed

    Alcázar, Rubén; Bitrián, Marta; Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa; Tiburcio, Antonio F

    2011-02-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (spds1-2, spds2-3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants.

  8. Nitric oxide reduces seed dormancy in Arabidopsis.

    PubMed

    Bethke, Paul C; Libourel, Igor G L; Jones, Russell L

    2006-01-01

    Dormancy is a property of many mature seeds, and experimentation over the past century has identified numerous chemical treatments that will reduce seed dormancy. Nitrogen-containing compounds including nitrate, nitrite, and cyanide break seed dormancy in a range of species. Experiments are described here that were carried out to further our understanding of the mechanism whereby these and other compounds, such as the nitric oxide (NO) donor sodium nitroprusside (SNP), bring about a reduction in seed dormancy of Arabidopsis thaliana. A simple method was devised for applying the products of SNP photolysis through the gas phase. Using this approach it was shown that SNP, as well as potassium ferricyanide (Fe(III)CN) and potassium ferrocyanide (Fe(II)CN), reduced dormancy of Arabidopsis seeds by generating cyanide (CN). The effects of potassium cyanide (KCN) on dormant seeds were tested and it was confirmed that cyanide vapours were sufficient to break Arabidopsis seed dormancy. Nitrate and nitrite also reduced Arabidopsis seed dormancy and resulted in substantial rates of germination. The effects of CN, nitrite, and nitrate on dormancy were prevented by the NO scavenger c-PTIO. It was confirmed that NO plays a role in reducing seed dormancy by using purified NO gas, and a model to explain how nitrogen-containing compounds may break dormancy in Arabidopsis is presented.

  9. Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth1[C][W][OA

    PubMed Central

    Harb, Amal; Krishnan, Arjun; Ambavaram, Madana M.R.; Pereira, Andy

    2010-01-01

    Plant drought stress response and resistance are complex biological processes that need to be analyzed at a systems level using genomics and physiological approaches to dissect experimental models that address drought stresses encountered by crops in the field. Toward this goal, a controlled, sublethal, moderate drought (mDr) treatment system was developed in Arabidopsis (Arabidopsis thaliana) as a reproducible assay for the dissection of plant responses to drought. The drought assay was validated using Arabidopsis mutants in abscisic acid (ABA) biosynthesis and signaling displaying drought sensitivity and in jasmonate response mutants showing drought resistance, indicating the crucial role of ABA and jasmonate signaling in drought response and acclimation. A comparative transcriptome analysis of soil water deficit drought stress treatments revealed the similarity of early-stage mDr to progressive drought, identifying common and specific stress-responsive genes and their promoter cis-regulatory elements. The dissection of mDr stress responses using a time-course analysis of biochemical, physiological, and molecular processes revealed early accumulation of ABA and induction of associated signaling genes, coinciding with a decrease in stomatal conductance as an early avoidance response to drought stress. This is accompanied by a peak in the expression of expansin genes involved in cell wall expansion, as a preparatory step toward drought acclimation by the adjustment of the cell wall. The time-course analysis of mDr provides a model with three stages of plant responses: an early priming and preconditioning stage, followed by an intermediate stage preparatory for acclimation, and a late stage of new homeostasis with reduced growth. PMID:20807999

  10. Increased Drought Tolerance through the Suppression of ESKMO1 Gene and Overexpression of CBF-Related Genes in Arabidopsis

    PubMed Central

    Xu, Fuhui; Liu, Zhixue; Xie, Hongyan; Zhu, Jian; Zhang, Juren; Kraus, Josef; Blaschnig, Tasja; Nehls, Reinhard; Wang, Hong

    2014-01-01

    Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought response. By using siRNA that specifically targets ESK1, the gene expression has been reduced and drought tolerance of the plant has been enhanced dramatically in the work. However, the plant response to external abscisic acid application has not been changed. ICE1, CBF1, and CBF3 are genes involved in a well-characterized plant stress response pathway, overexpression of them in the plant has demonstrated capable to increase drought tolerance. By overexpression of these genes combining together with suppression of ESK1 gene, the significant increase of plant drought tolerance has been achieved in comparison to single gene manipulation, although the effect is not in an additive way. Accompanying the increase of drought tolerance via suppression of ESK1 gene expression, the negative effect has been observed in seeds yield of transgenic plants in normal watering conditions comparing with wide type plant. PMID:25184213

  11. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field.

    PubMed

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin

    2016-01-01

    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.

  12. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3.

    PubMed

    Li, Yuanyuan; Cai, Huixian; Liu, Pu; Wang, Chunyan; Gao, Huiyang; Wu, Changai; Yan, Kang; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2017-03-04

    Mitogen-activated protein kinase (MAPK) cascades are conserved and vital signaling components in the responses to various ambient stresses. Here, we report the identification of MAPKKK18, a drought resistance associated MAPK kinase kinase in Arabidopsis. The mapkkk18 knockout mutants displayed hypersensitivity to drought stress, whereas overaccumulation of MAPKKK18 in transgenic Arabidopsis plants significantly enhanced the resistance to drought. Expression pattern analysis revealed that the inducible expression of MAPKKK18 by osmotic stress was ABA and the canonical ABA signaling pathway dependent. Furthermore, MAPKKK18 mainly exerted its regulatory roles via downstream MAPKK3. These findings uncovered important roles for MAPKKK18 in drought resistance and expanded our understanding of the MAPK pathways in modulating abiotic stress responses.

  13. Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in Arabidopsis[C][W

    PubMed Central

    Su, Zhao; Ma, Xuan; Guo, Huihong; Sukiran, Noor Liyana; Guo, Bin; Assmann, Sarah M.; Ma, Hong

    2013-01-01

    Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes FLOWERING LOCUS T, SUPPRESSOR OF OVEREXPRESSION OF CO1, and LEAFY, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that DEHYDRATION RESPONSE ELEMENT B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB DOMAIN PROTEIN 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought. PMID:24179129

  14. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana.

    PubMed

    Cho, Song Mi; Kang, Beom Ryong; Han, Song Hee; Anderson, Anne J; Park, Ju-Young; Lee, Yong-Hwan; Cho, Baik Ho; Yang, Kwang-Yeol; Ryu, Choong-Min; Kim, Young Cheol

    2008-08-01

    Root colonization of plants with certain rhizobacteria, such as Pseudomonas chlororaphis O6, induces tolerance to biotic and abiotic stresses. Tolerance to drought was correlated with reduced water loss in P. chlororaphis O6-colonized plants and with stomatal closure, indicated by size of stomatal aperture and percentage of closed stomata. Stomatal closure and drought resistance were mediated by production of 2R,3R-butanediol, a volatile metabolite of P. chlororaphis O6. Root colonization with bacteria deficient in 2R,3R-butanediol production showed no induction of drought tolerance. Studies with Arabidopsis mutant lines indicated that induced drought tolerance required the salicylic acid (SA)-, ethylene-, and jasmonic acid-signaling pathways. Both induced drought tolerance and stomatal closure were dependent on Aba-1 and OST-1 kinase. Increases in free SA after drought stress of P. chlororaphis O6-colonized plants and after 2R,3R-butanediol treatment suggested a primary role for SA signaling in induced drought tolerance. We conclude that the bacterial volatile 2R,3R-butanediol was a major determinant in inducing resistance to drought in Arabidopsis through an SA-dependent mechanism.

  15. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions.

    PubMed

    Shen, Jiejie; Xing, Tongji; Yuan, Huihong; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Pei, Yanxi

    2013-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT) Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000) to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT) were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD) activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis.

  16. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance.

    PubMed

    Zhao, Xin; Xu, Mengmeng; Wei, Rongrong; Liu, Yang

    2015-01-01

    The calcium-sensing receptor (CaS), which is localized in the chloroplasts, is a crucial regulator of extracellular calcium-induced stomatal closure in Arabidopsis. It has homologs in Oryza sativa and other plants. These sequences all have a rhodanese-like protein domain, which has been demonstrated to be associated with specific stress conditions. In this study, we cloned the Oryza sativa calcium-sensing receptor gene (OsCAS) and demonstrated that OsCAS could sense an increase of extracellular Ca2+ concentration and mediate an increase in cytosolic Ca2+ concentration. The OsCAS gene was transformed into an Arabidopsis CaS knockout mutant (Salk) and overexpressed in the transgenic plants. OsCAS promoted stomatal closure. We screened homozygous transgenic Arabidopsis plants and determined physiological indices such as the oxidative damage biomarker malondialdehyde (MDA), relative membrane permeability (RMP), proline content, and chlorophyll fluorescence parameters, after 21 days of drought treatment. Our results revealed lower RMP and MDA contents and a higher Proline content in transgenic Arabidopsis plants after drought stress, whereas the opposite was observed in Salk plants. With respect to chlorophyll fluorescence, the electron transport rate and effective PSII quantum yield decreased in all lines under drought stress; however, in the transgenic plants these two parameters changed fewer and were higher than those in wild-type and Salk plants. The quantum yield of regulated energy dissipation and nonregulated energy dissipation in PSII were higher in Salk plants, whereas these values were lower in the transgenic plants than in the wild type under drought stress. The above results suggest that the transgenic plants showed better resistance to drought stress by decreasing damage to the cell membrane, increasing the amount of osmoprotectants, and maintaining a relatively high photosynthetic capacity. In conclusion, OsCAS is an extracellular calcium-sensing receptor

  17. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    PubMed Central

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  18. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  19. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    USDA-ARS?s Scientific Manuscript database

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  20. Etopic expression of "Arabidopsis" H(+)-pyrophosphatase AVP1 enhances drought resistance in bottle gourd

    USDA-ARS?s Scientific Manuscript database

    Bottle gourd ("Lagenaria siceraria" Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the "Arabidopsis AVP1" gene that encodes a vacuolar H(+)-pyro...

  1. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.

    PubMed

    Pasapula, Vijaya; Shen, Guoxin; Kuppu, Sundaram; Paez-Valencia, Julio; Mendoza, Marisol; Hou, Pei; Chen, Jian; Qiu, Xiaoyun; Zhu, Longfu; Zhang, Xianlong; Auld, Dick; Blumwald, Eduardo; Zhang, Hong; Gaxiola, Roberto; Payton, Paxton

    2011-01-01

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.

  2. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought.

    PubMed

    Dubois, Marieke; Claeys, Hannes; Van den Broeck, Lisa; Inzé, Dirk

    2017-02-01

    Drought stress is a major problem for agriculture worldwide, causing significant yield losses. Plants have developed highly flexible mechanisms to deal with drought, including organ- and developmental stage-specific responses. In young leaves, growth is repressed as an active mechanism to save water and energy, increasing the chances of survival but decreasing yield. Despite its importance, the molecular basis for this growth inhibition is largely unknown. Here, we present a novel approach to explore early molecular mechanisms controlling Arabidopsis leaf growth inhibition following mild drought. We found that growth and transcriptome responses to drought are highly dynamic. Growth was only repressed by drought during the day, and our evidence suggests that this may be due to gating by the circadian clock. Similarly, time of day strongly affected the extent, specificity, and in certain cases even direction of drought-induced changes in gene expression. These findings underscore the importance of taking into account diurnal patterns to understand stress responses, as only a small core of drought-responsive genes are affected by drought at all times of the day. Finally, we leveraged our high-resolution data to demonstrate that phenotypic and transcriptome responses can be matched to identify putative novel regulators of growth under mild drought.

  3. Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana.

    PubMed

    Min, Ji-Hee; Ju, Hyun-Woo; Yang, Kwang-Yeol; Chung, Jung-Sung; Cho, Baik-Ho; Kim, Cheol Soo

    2014-04-01

    Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. LsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase LsRZF1 is an important regulator of water deficit stress during early seedling development. Crown Copyright © 2014. Published by Elsevier Masson SAS. All rights reserved.

  4. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum.

    PubMed

    Ngara, R; Ndimba, B K

    2014-11-01

    More than a decade after the sequencing of its genome, Arabidopsis still stands as the epitome of a model system in plant biology. Arabidopsis proteomics has also taught us great lessons on different aspects of plant growth, development and physiology. Without doubt our understanding of basic principles of plant biology would not have been this advanced if it were not for knowledge gained using Arabidopsis as a model system. However, with the projections of global climate change and rapid population growth, it is high time we evaluate the applicability of this model system in studies aimed at understanding abiotic stress tolerance and adaptation, with a particular emphasis on maintaining yield under hot and dry environmental conditions. Because of the innate nature of sorghum's tolerance to drought and moderate tolerance to salinity stresses, we believe sorghum is the next logical model system in such studies amongst cereals. In this acute view, we highlight the importance of Arabidopsis as a model system, briefly discuss its potential limitations in drought and salt stress studies, and present our views on the potential usefulness of sorghum as a model system for cereals in drought and salinity stress proteomic studies.

  5. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis.

    PubMed

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-09-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.

  6. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Keenan, T. F.; Fisher, J. B.; Baldocchi, D. D.

    2014-12-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from 25 AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  7. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; Baldocchi, Dennis

    2015-04-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  8. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP[OPEN

    PubMed Central

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-01-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis. PMID:26059204

  9. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP.

    PubMed

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-06-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis.

  10. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis

    PubMed Central

    Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-01-01

    A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants. PMID:24868035

  11. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    PubMed

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.

    PubMed

    Yang, Minggui; Yang, Qingyong; Fu, Tingdong; Zhou, Yongming

    2011-03-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high levels of BnLAS were observed in roots, shoot tips, lateral meristems and flower organs based on the analysis of the transcripts by quantitative RT-PCR and promoter-reporter assays. Constitutive overexpression of BnLAS in Arabidopsis resulted in inhibition of growth, and delays in leaf senescence and flowering time. A large portion of transgenic lines had darker leaf color and higher chlorophyll content than in wild type plants. Interestingly, water lose rates in transgenic leaves were reduced, and transgenic plants exhibited enhanced drought tolerance and increased recovery after exposed to dehydration treatment. The stomatal density on leaves of the transgenic plants increased significantly due to the smaller cell size. However, the stomatal aperture on the leaves of the transgenic plants reduced significantly compared with wild type plants. More epidermal wax deposition on transgenic leaves was observed. Furthermore, several genes involved in wax synthesis and regulation, including CER1, CER2, KCS1 and KCS2, were upregulated in the transgenic plants. Our results indicate a potential to utilize BnLAS in the improvement of drought tolerance in plants.

  13. Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2012-10-05

    Mitogen-activated protein kinases (MPKs) have roles in regulating developmental processes and responses to various stimuli in plants. Activations of some MPKs are necessary for proper responses to hyperosmolarity and to a stress-related phytohormone, abscisic acid (ABA). However, there is no direct evidence that MPK activations are regulated by drought and rehydration. Here we show that the activation state of one of the Arabidopsis MPKs, MPK6, is directly regulated by drought and rehydration. An immunoblot analysis using an anti-active MPK antibody detected drought-induced activation and rehydration-induced inactivation of MPK6. MPK6 was activated by drought even in an ABA-deficient mutant, aba2-4. In addition, exogenously added ABA failed to suppress the rehydration-dependent inactivation of MPK6. Under drought conditions, elevated levels of reactive oxygen species (ROS), which are known elicitors of MPK6 activation, were detected in both wild type and an MPK6-deficient mutant, mpk6-4. These results suggest that ROS, but not ABA, induces MPK6 activation as an upstream signal under drought conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in Arabidopsis[W

    PubMed Central

    Seo, Pil Joon; Lee, Saet Buyl; Suh, Mi Chung; Park, Mi-Jeong; Go, Young Sam; Park, Chung-Mo

    2011-01-01

    Drought stress activates several defense responses in plants, such as stomatal closure, maintenance of root water uptake, and synthesis of osmoprotectants. Accumulating evidence suggests that deposition of cuticular waxes is also associated with plant responses to cellular dehydration. Yet, how cuticular wax biosynthesis is regulated in response to drought is unknown. We have recently reported that an Arabidopsis thaliana abscisic acid (ABA)–responsive R2R3-type MYB transcription factor, MYB96, promotes drought resistance. Here, we show that transcriptional activation of cuticular wax biosynthesis by MYB96 contributes to drought resistance. Microarray assays showed that a group of wax biosynthetic genes is upregulated in the activation-tagged myb96-1D mutant but downregulated in the MYB96-deficient myb96-1 mutant. Cuticular wax accumulation was altered accordingly in the mutants. In addition, activation of cuticular wax biosynthesis by drought and ABA requires MYB96. By contrast, biosynthesis of cutin monomers was only marginally affected in the mutants. Notably, the MYB96 protein acts as a transcriptional activator of genes encoding very-long-chain fatty acid–condensing enzymes involved in cuticular wax biosynthesis by directly binding to conserved sequence motifs present in the gene promoters. These results demonstrate that ABA-mediated MYB96 activation of cuticular wax biosynthesis serves as a drought resistance mechanism. PMID:21398568

  15. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis.

    PubMed

    Cheong, Yong Hwa; Sung, Sun Jin; Kim, Beom-Gi; Pandey, Girdhar K; Cho, Ju-Sik; Kim, Kyung-Nam; Luan, Sheng

    2010-02-28

    Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of CBL-interacting protein kinases (CIPKs). In this study, we report the role of Arabidopsis CBL5 gene in high salt or drought tolerance. CBL5 gene is expressed significantly in green tissues, but not in roots. CBL5 was not induced by abiotic stress conditions such as high salt, drought or low temperature. To determine whether the CBL5 gene plays a role in stress response pathways, we ectopically expressed the CBL5 protein in transgenic Arabidopsis plants (35S-CBL5) and examined plant responses to abiotic stresses. CBL5-overexpressing plants displayed enhanced tolerance to high salt or drought stress. CBL5 overexpression also rendered plants more resistant to high salt or hyperosmotic stress during early development (i.e., seed germination) but did not alter their response to abiscisic acid (ABA). Furthermore, overexpression of CBL5 alters the gene expression of stress gene markers, such as RD29A, RD29B and Kin1 etc. These results suggest that CBL5 may function as a positive regulator of salt or drought responses in plants.

  16. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants

    PubMed Central

    Chiappetta, Adriana; Muto, Antonella; Bruno, Leonardo; Woloszynska, Magdalena; Lijsebettens, Mieke Van; Bitonti, Maria B.

    2015-01-01

    Dehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp. europaea, var. sylvestris), the wild form of olive. To elucidate the contribution of OesDHN in the development of drought tolerance, its expression levels were investigated in oleaster plants during development and under drought stress condition. The involvement of OesDHN in plant stress response was also evaluated in Arabidopsis transgenic lines, engineered to overexpress this gene, and exposed to a controlled mild osmotic stress. OesDHN expression was found to be modulated during development and induced under mild drought stress in oleaster plants. In addition, the Arabidopsis transgenic plants showed a better tolerance to osmotic stress than wild-type plants. The results demonstrated that OesDHN expression is induced by drought stress and is able to confer osmotic stress tolerance. We suggest a role for OesDHN, as a putative functional marker of plant stress tolerance. PMID:26175736

  17. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator.

    PubMed

    Ramírez, Vicente; Coego, Alberto; López, Ana; Agorio, Astrid; Flors, Víctor; Vera, Pablo

    2009-05-01

    Water scarcity and corresponding abiotic drought stress is one of the most important factors limiting plant performance and yield. In addition, plant productivity is severely compromised worldwide by infection with microbial pathogens. Two of the most prominent pathways responsible for drought tolerance and disease resistance to fungal pathogens in Arabidopsis are those controlled by the phytohormones abscisic acid (ABA) and the oxylipin methyl jasmonate (MeJA), respectively. Here, we report on the functional characterization of OCP3, a transcriptional regulator from the homeodomain (HD) family. The Arabidopsis loss-of-function ocp3 mutant exhibits both drought resistance and enhanced disease resistance to necrotrophic fungal pathogens. Double-mutant analysis revealed that these two resistance phenotypes have different genetic requirements. Whereas drought tolerance in ocp3 is ABA-dependent but MeJA-independent, the opposite holds true for the enhanced disease resistance characteristics. These observations lead us to propose a regulatory role of OCP3 in the adaptive responses to these two stresses, functioning as a modulator of independent and specific aspects of the ABA- and MeJA-mediated signal transduction pathways.

  18. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    PubMed

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks1[W][OPEN

    PubMed Central

    Prasch, Christian Maximilian; Sonnewald, Uwe

    2013-01-01

    Considering global climate change, the incidence of combined drought and heat stress is likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little has been known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multifactorial test system, allowing simultaneous application of heat, drought, and virus stress, was developed in Arabidopsis (Arabidopsis thaliana). Comparative analysis of single, double, and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multifactorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analyses identified heat as the major stress factor, clearly separating heat-stressed from non-heat-stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically regulated under triple stress. Furthermore, we showed that virus-treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced the expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response, which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered turnip mosaic virus-specific signaling networks, which led to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multifactorial stress and allow identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment. PMID:23753177

  1. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

    PubMed Central

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S. M.; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J.; Bressan, Ray A.; Pardo, Jose M.; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  2. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.

  3. Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana.

    PubMed

    Ahn, Chulhyun; Park, Uhnmee; Park, Phun Bum

    2011-12-02

    The methylation of myo-inositol forms O-methyl inositol (D-ononitol) when plants are under abiotic stress in a reaction catalyzed by myo-inositol methyltransferase (IMT). D-Ononitol can serve as an osmoprotectant that prevents water loss in plants. We isolated the IMT cDNA from Glycine max and found by RT-PCR analysis that GmIMT transcripts are induced by drought and salinity stress treatments in the leaves of soybean seedlings. We confirmed the protein product of GmIMT and its substrate using a recombinant system in E. coli. Transgenic Arabidopsis plants over-expressing GmIMT displayed improved tolerance to dehydration stress treatment and to a lesser extent high salinity stress treatment. These results indicate that GmIMT is functional in heterologous Arabidopsis plants.

  4. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.

    PubMed

    Fu, Minjie; Kang, Hyun Kyung; Son, Seung-Hyun; Kim, Seong-Ki; Nam, Kyoung Hee

    2014-11-01

    Arabidopsis RAV1, RAV1L and RAV2/TEM2 are Related to ABI3/VP1 (RAV) transcription factors that contain both plant-specific B3 and AP2 domains. RAV1 was known to be a negative regulator of growth and its transcript level was repressed by brassinolide (BL). In this study, we found that the expressions of RAV1, and its closest homologs RAV1L and RAV2 were also regulated by other plant hormones, and especially repressed significantly by BL and abscisic acid (ABA), which mediate various abiotic stress responses in plants. Therefore, to further investigate the physiological functions of RAV1, RAV1L and RAV2 in abiotic stress responses, we isolated T-DNA insertional knockout mutants of each gene and produced transgenic plants overexpressing the RAVs. Under normal conditions, each single mutant showed slightly promoted growth patterns only at an early stage of development. In comparison, the RAV1-overexpressing plants exhibited strong growth retardation with semi-dwarfed stature. In drought conditions, RAVs-overexpressing transgenic plants exhibited higher transpirational water loss than the wild type. In salt conditions, seed germination of the RAVs-overexpressing transgenic plants was more inhibited than that of the wild type, while ravs mutants showed promoted seed germination. We also found that RAVs expressions were reduced by dryness and salt. RAV1-overexpressing plants showed the same patterns of increased expression as stress-inducible genes such as RD29A, RD29B and the genes encoding ABA biosynthetic enzymes, as did the wild type and rav1 mutant. However, the RAV1-overexpressing transgenic plants were insensitive to ABA, regardless of the higher accumulation of ABA even in normal conditions. Taken together, these results suggest that RAVs are versatile negative regulators for growth and abiotic stresses, drought and salt, and that negative regulatory effects of RAVs on abiotic stresses are likely to be operated independently of ABA. © The Author 2014. Published

  5. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Kang, Songhwa; Shin, Gilok; Park, Su Jung; Hong, Hyewon; Kim, Chanmin; Kim, Doh Hoon; Lee, Sang Yeol; Kim, Min Chul; Yun, Dae-Jin

    2016-01-01

    MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b. PMID:26674968

  6. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.

    PubMed

    Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I; Huq, Enamul

    2014-01-01

    MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.

  7. Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress.

    PubMed

    Sperdouli, I; Moustakas, M

    2012-01-01

    Using chlorophyll (chl) fluorescence imaging, we studied the effect of mild (MiDS), moderate (MoDS) and severe (SDS) drought stress on photosystem II (PSII) photochemistry of 4-week-old Arabidopsis thaliana. Spatio-temporal heterogeneity in all chl fluorescence parameters was maintained throughout water stress. After exposure to drought stress, maximum quantum yield of PSII photochemistry (F(v)/F(m)) and quantum efficiency of PSII photochemistry (Φ(PSΙΙ)) decreased less in the proximal (base) than in the distal (tip) leaf. The chl fluorescence parameter F(v) /F(m) decreased less after MoDS than MiDS. Under MoDS, the antioxidant mechanism of A. thaliana leaves seemed to be sufficient in scavenging reactive oxygen species, as evident by the decreased lipid peroxidation, the more excitation energy dissipated by non-photochemical quenching (NPQ) and decreased excitation pressure (1-q(p)). Arabidopsis leaves appear to function normally under MoDS, but do not seem to have particular metabolic tolerance mechanisms under MiDS and SDS, as revealed by the level of lipid peroxidation and decreased quantum yield for dissipation after down-regulation in PSII (Φ(NPQ)), indicating that energy dissipation by down-regulation did not function and electron transport (ETR) was depressed. The simultaneous increased quantum yield of non-regulated energy dissipation (Φ(NO)) indicated that both the photochemical energy conversion and protective regulatory mechanism were insufficient. The non-uniform photosynthetic pattern under drought stress may reflect different zones of leaf anatomy and mesophyll development. The data demonstrate that the effect of different degrees of drought stress on A. thaliana leaves show spatio-temporal heterogeneity, implying that common single time point or single point leaf analyses are inadequate. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  9. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  10. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress.

    PubMed

    Chen, Yun; Feng, Li; Wei, Ning; Liu, Zhi-Hao; Hu, Shan; Li, Xue-Bao

    2017-03-30

    PYR/PYL/RCAR proteins are putative abscisic acid (ABA) receptors that play important roles in plant responses to biotic and abiotic stresses. In this study, 27 predicted PYL proteins were identified in cotton (Gossypium hirsutum). Sequence analysis showed they are conserved in structures. Phylogenetic analysis showed that cotton PYL family could be categorized into three groups. Yeast two-hybrid assay revealed that the GhPYL proteins selectively interacted with some GhPP2C proteins. Quantitative RT-PCR analysis indicated that the most of nine GhPYL genes were down-regulated, while the other three were up-regulated in cotton under drought stress. Overexpression of GhPYL10/12/26 in Arabidopsis conferred the transgenic plants increased ABA sensitivity during seed germination and early seedling growth. On the contrary, the transgenic seedlings displayed better growth status and longer primary roots under normal conditions and mannitol stress, compared with wild type. Furthermore, the transgenic plants showed the enhanced drought tolerance, relative to wild type, when they were suffered from drought stress. Expression of some stress-related genes in transgenic plants was significant higher than that in wild type under osmotic stress. Thus, our data suggested that these cotton PYL genes may be involved in plant response and defense to drought/osmotic stress.

  11. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants.

    PubMed

    Brini, Faïçal; Hanin, Moez; Mezghani, Imed; Berkowitz, Gerald A; Masmoudi, Khaled

    2007-01-01

    Transgenic Arabidopsis plants overexpressing the wheat vacuolar Na(+)/H(+) antiporter TNHX1 and H(+)-PPase TVP1 are much more resistant to high concentrations of NaCl and to water deprivation than the wild-type strains. These transgenic plants grow well in the presence of 200 mM NaCl and also under a water-deprivation regime, while wild-type plants exhibit chlorosis and growth inhibition. Leaf area decreased much more in wild-type than in transgenic plants subjected to salt or drought stress. The leaf water potential was less negative for wild-type than for transgenic plants. This could be due to an enhanced osmotic adjustment in the transgenic plants. Moreover, these transgenic plants accumulate more Na(+) and K(+) in their leaf tissue than the wild-type plants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The rate of water loss under drought or salt stress was higher in wild-type than transgenic plants. Increased vacuolar solute accumulation and water retention could confer the phenotype of salt and drought tolerance of the transgenic plants. Overexpression of the isolated genes from wheat in Arabidopsis thaliana plants is worthwhile to elucidate the contribution of these proteins to the tolerance mechanism to salt and drought. Adopting a similar strategy could be one way of developing transgenic staple crops with improved tolerance to these important abiotic stresses.

  12. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.

    PubMed

    Zhan, Ai; Schneider, Hannah; Lynch, Jonathan P

    2015-08-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops.

  13. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    PubMed

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  14. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance.

    PubMed

    Manmathan, Harish; Shaner, Dale; Snelling, Jacob; Tisserat, Ned; Lapitan, Nora

    2013-03-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8'-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting.

  15. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    PubMed Central

    Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8’-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting. PMID:23364940

  16. Overexpression of Cotton RAV1 Gene in Arabidopsis Confers Transgenic Plants High Salinity and Drought Sensitivity

    PubMed Central

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development. PMID:25710493

  17. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana.

    PubMed

    Aubert, Yann; Vile, Denis; Pervent, Marjorie; Aldon, Didier; Ranty, Benoit; Simonneau, Thierry; Vavasseur, Alain; Galaud, Jean-Philippe

    2010-12-01

    Plants overcome water deficit conditions by combining molecular, biochemical and morphological changes. At the molecular level, many stress-responsive genes have been isolated, but knowledge of their physiological functions remains fragmentary. Here, we report data for RD20, a stress-inducible Arabidopsis gene that belongs to the caleosin family. As for other caleosins, we showed that RD20 localized to oil bodies. Although caleosins are thought to play a role in the degradation of lipids during seed germination, induction of RD20 by dehydration, salt stress and ABA suggests that RD20 might be involved in processes other than germination. Using plants carrying the promoter RD20::uidA construct, we show that RD20 is expressed in leaves, guard cells and flowers, but not in root or in mature seeds. Water deficit triggers a transient increase in RD20 expression in leaves that appeared predominantly dependent on ABA signaling. To assess the biological significance of these data, a functional analysis using rd20 knock-out and overexpressing complemented lines cultivated either in standard or in water deficit conditions was performed. The rd20 knock-out plants present a higher transpiration rate that correlates with enhanced stomatal opening and a reduced tolerance to drought as compared with the wild type. These results support a role for RD20 in drought tolerance through stomatal control under water deficit conditions.

  18. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids

    PubMed Central

    Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Urano, Kaoru; Suzuki, Makoto; Yamada, Yutaka; Nishizawa, Tomoko; Matsuda, Fumio; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Michael, Anthony J; Tohge, Takayuki; Yamazaki, Mami; Saito, Kazuki

    2014-01-01

    The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought stress in Arabidopsis thaliana. Metabolome and transcriptome profiling and experiments with oxidative and drought stress in wild-type, single overexpressors of MYB12/PFG1 (PRODUCTION OF FLAVONOL GLYCOSIDES1) or MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), double overexpressors of MYB12 and PAP1, transparent testa4 (tt4) as a flavonoid-deficient mutant, and flavonoid-deficient MYB12 or PAP1 overexpressing lines (obtained by crossing tt4 and the individual MYB overexpressor) demonstrated that flavonoid overaccumulation was key to enhanced tolerance to such stresses. Antioxidative activity assays using 2,2-diphenyl-1-picrylhydrazyl, methyl viologen, and 3,3′-diaminobenzidine clearly showed that anthocyanin overaccumulation with strong in vitro antioxidative activity mitigated the accumulation of reactive oxygen species in vivo under oxidative and drought stress. These data confirm the usefulness of flavonoids for enhancing both biotic and abiotic stress tolerance in crops. PMID:24274116

  19. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses.

  20. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    PubMed

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  1. A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis.

    PubMed

    Efetova, Marina; Zeier, Jürgen; Riederer, Markus; Lee, Chil-Woo; Stingl, Nadja; Mueller, Martin; Hartung, Wolfram; Hedrich, Rainer; Deeken, Rosalia

    2007-11-01

    Crown gall tumors induced by Agrobacterium tumefaciens represent a sink that has to be provided with nutrients and water by the host plant. The lack of an intact epidermis or cuticle results in uncontrolled loss of water. However, neither the tumor nor the host plant displays wilting. This phenomenon points to drought adaptation in both tumors and the crown gall host plant. To understand the underlying molecular mechanisms of protection against desiccation the gene expression pattern of Arabidopsis (Arabidopsis thaliana) tumors was integrated with the profile of stress metabolites: Arabidopsis tumors accumulated high amounts of abscisic acid (ABA), the ethylene precursor aminocyclopropyl carboxylic acid, osmoprotectants, and form a suberized periderm-like protective layer. Suberization of the outer tumor cell layers most likely is mediated by ABA since external application of ABA induced suberization of Arabidopsis roots. However, the expression level of the classical marker genes, known to respond to drought stress and/or ABA, was lower in tumors. Instead another set of drought and/or ABA-inducible genes was more highly transcribed. Elevated transcription of several ABA-dependent aquaporin genes might indicate that ABA controls the water balance of the tumor. The retarded tumor growth on abi and aba mutant plants underlined the importance of a tumor-specific ABA signaling pathway. Taken together, we propose that ABA is an important signal for protection of tumors against desiccation and thus supports tumor development.

  2. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    PubMed

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  3. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    PubMed

    Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  4. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis

    PubMed Central

    Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants. PMID:27992471

  5. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    PubMed

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses.

  6. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis[W

    PubMed Central

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-01-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant–fungus pathosystem has conditionally mutualistic features. PMID:23023171

  7. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling.

    PubMed

    Luo, Xiao; Bai, Xi; Sun, Xiaoli; Zhu, Dan; Liu, Baohui; Ji, Wei; Cai, Hua; Cao, Lei; Wu, Jing; Hu, Mengran; Liu, Xin; Tang, Lili; Zhu, Yanming

    2013-05-01

    The WRKY-type transcription factors are involved in plant development and stress responses, but how the regulation of stress tolerance is related to plant development is largely unknown. GsWRKY20 was initially identified as a stress response gene using large-scale Glycine soja microarrays. Quantitative reverse transcription-PCR (qRT-PCR) showed that the expression of this gene was induced by abscisic acid (ABA), salt, cold, and drought. Overexpression of GsWRKY20 in Arabidopsis resulted in a decreased sensitivity to ABA during seed germination and early seedling growth. However, compared with the wild type, GsWRKY20 overexpression lines were more sensitive to ABA in stomatal closure, and exhibited a greater tolerance to drought stress, a decreased water loss rate, and a decreased stomatal density. Moreover, microarray and qRT-PCR assays showed that GsWRKY20 mediated ABA signalling by promoting the expression of negative regulators of ABA signalling, such as AtWRKY40, ABI1, and ABI2, while repressing the expression of the positive regulators of ABA, for example ABI5, ABI4, and ABF4. Interestingly, GsWRKY20 also positively regulates the expression of a group of wax biosynthetic genes. Further, evidence is provided to support that GsWRKY20 overexpression lines have more epicuticular wax crystals and a much thicker cuticle, which contribute to less chlorophyll leaching compared with the wild type. Taken together, the findings reveal an important role for GsWRKY20 in enhancing drought tolerance and regulating ABA signalling.

  8. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis.

    PubMed

    Bac-Molenaar, Johanna A; Granier, Christine; Keurentjes, Joost J B; Vreugdenhil, Dick

    2016-01-01

    Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory networks of flowering time and drought response or correlated responses of these traits to natural selection. In addition, plant size was negatively correlated with relative water content (RWC) independent of the absolute water content (WC), indicating a prominent role for soluble compounds. Growth in control and drought conditions was determined over time and was modelled by an exponential function. Genome-wide association (GWA) mapping of temporal plant size data and of model parameters resulted in the detection of six time-dependent quantitative trait loci (QTLs) strongly associated with drought. Most QTLs would not have been identified if plant size was determined at a single time point. Analysis of earlier reported gene expression changes upon drought enabled us to identify for each QTL the most likely candidates.

  9. Expression of an Arabidopsis Vacuolar H+-pyrophosphatase Gene (AVP1) in Cotton Improves Drought- and Salt Tolerance and Increases Fibre Yield in the Field Conditions.

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+PPase from Arabido...

  10. Expression of an arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabid...

  11. The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis.

    PubMed

    Ju, Hyun-Woo; Min, Ji-Hee; Chung, Moon-Soo; Kim, Cheol Soo

    2013-04-01

    The covalent attachment of ubiquitin to proteins plays a fundamental role in the regulation of cellular function through biological events involving abiotic or biotic stress responses, immune responses, and apoptosis. Here, we characterize the biological function of the Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) in dehydration response. AtRZF1 was significantly reduced by drought stress. The atrzf1 mutant was less sensitive to osmotic stress than the wild-type during early seedling development, whereas transgenic plants overexpressing AtRZF1 were hypersensitive, indicating that AtRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the AtRZF1 gene was very significantly influential in drought sensitive parameters including proline content, water loss, membrane ion leakage and the expression of dehydration stress-related genes. AtRZF1 is a functional E3 ubiquitin ligase, and its conserved C3H2C3-type RING domain is likely important for the biological function of AtRZF1 in drought response. Together, these results suggest that the E3 ligase AtRZF1 is an important regulator of water deficit stress during early seedling development.

  12. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    SciTech Connect

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  13. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought.

    PubMed

    Marchin, Renée; Zeng, Hainian; Hoffmann, William

    2010-08-01

    Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.

  14. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  15. Two soybean plant introductions display slow leaf wilting and reduced yield loss under drought

    USDA-ARS?s Scientific Manuscript database

    Due to high costs of irrigation, limited availability of irrigation water in many locations genetic improvement for drought tolerance is an effective method to reduce yield loss in soybean. Slow wilting and minimal yield reduction under drought are important traits in evaluating drought tolerance. ...

  16. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong

    2014-08-01

    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis.

  17. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis

    PubMed Central

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis. PMID:24868034

  18. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    PubMed Central

    Rasheed, Sultana; Bashir, Khurram; Matsui, Akihiro; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots vs. shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance. PMID:26941754

  19. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    PubMed

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  20. Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Van Daele, Twiggy; Maleux, Katrien

    2016-01-01

    Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations. PMID:27729396

  1. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis.

    PubMed

    Mao, Hude; Yu, Lijuan; Han, Ran; Li, Zhanjie; Liu, Hui

    2016-08-01

    Abiotic stress has been shown to significantly limit the growth and productivity of crops. NAC transcription factors play essential roles in response to various abiotic stresses. However, only little information regarding stress-related NAC genes is available in maize. Here, we cloned a maize NAC transcription factor ZmNAC55 and identified its function in drought stress. Transient expression and transactivation assay demonstrated that ZmNAC55 was localized in the nucleus and had transactivation activity. Expression analysis of ZmNAC55 in maize showed that this gene was induced by drought, high salinity and cold stresses and by abscisic acid (ABA). Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of ZmNAC55. Overexpression of ZmNAC55 in Arabidopsis led to hypersensitivity to ABA at the germination stage, but enhanced drought resistence compared to wild-type seedlings. Transcriptome analysis identified a number of differentially expressed genes between 35S::ZmNAC55 transgenic and wild-type plants, and many of which are involved in stress response, including twelve qRT-PCR confirmed well-known drought-responsive genes. These results highlight the important role of ZmNAC55 in positive regulates of drought resistence, and may have potential applications in transgenic breeding of drought-tolerant crops.

  2. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress

    PubMed Central

    Gupta, Aarti; Sarkar, Ananda K.; Senthil-Kumar, Muthappa

    2016-01-01

    With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed “tailored” responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly. PMID:27252712

  3. Does globalization of water reduce societal resilience to drought?

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2010-07-01

    Most food production depends, directly or indirectly, on freshwater resources. In the absence of importation of food commodities, population growth is constrained by the availability of local resources—including water—as well as by cultural and health-related factors. The global trade of massive amounts of food makes societies less reliant on locally available water resources, thereby allowing some populations to exceed the limits posed by their local water budget. Thus, international trade implies a virtual transfer of water resources from areas of food production to importing regions. While it is recognized that in the short term this globalization of (virtual) water resources may prevent malnourishment, famine, and conflicts, its long-term effects on the coupled human-natural system remain poorly investigated. Here we develop a minimalist modeling framework to investigate the effect of the uncontrolled trade of food products on the resilience of human societies with respect to drought and famine. Our results suggest that in the long run the globalization of water resources reduces the societal resilience with respect to water limitations in that it leaves fewer options available to cope with exceptional droughts and crop failure.

  4. Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein

    PubMed Central

    Kumari, Archana; Jewaria, Pawan K.; Bergmann, Dominique C.; Kakimoto, Tatsuo

    2014-01-01

    Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK–SPEECHLESS core developmental pathway. PMID:25381317

  5. Transgenic Arabidopsis Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling[W

    PubMed Central

    Perera, Imara Y.; Hung, Chiu-Yueh; Moore, Candace D.; Stevenson-Paulik, Jill; Boss, Wendy F.

    2008-01-01

    The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP3) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca2+ responses to a cold or salt stimulus were reduced by ∼30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP3 is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP3 signal reveals unanticipated interconnections between signaling pathways. PMID:18849493

  6. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty.

    PubMed

    Raineri, Jesica; Ribichich, Karina F; Chan, Raquel L

    2015-12-01

    Arabidopsis transgenic plants expressing the sunflower transcription factor HaWRKY76 exhibit increased yield and tolerance to drought and flood stresses. The genetic construct containing HaWRKY76 is proposed as a potential biotechnological tool to improve crops. Water deficit and water excess are abiotic stress factors that seriously affect crops worldwide. To increase the tolerance to such stresses without causing yield penalty constitutes a major goal for biotechnologists. In this survey, we report that HaWRKY76, a divergent sunflower WRKY transcription factor, is able to confer both dehydration and submergence tolerance to Arabidopsis transgenic plants without yield penalty. The expression pattern of HaWRKY76 was analyzed in plants grown in standard conditions and under different watering regimes indicating a regulation by water availability. The corresponding cDNA was isolated and cloned under the control of a constitutive promoter and Arabidopsis plants were transformed with this construct. These transgenic plants presented higher biomass, seed production and sucrose content than controls in standard growth conditions. Moreover, they exhibited tolerance to mild drought or flood (complete submergence/waterlogging) stresses as well as the same or increased yield, depending on the stress severity and plant developmental stage, compared with controls. Drought tolerance occurred via an ABA-independent mechanism and induction of stomatal closure. Submergence tolerance can be explained by the carbohydrate (sucrose and starch) preservation achieved through the repression of fermentation pathways. Higher cell membrane stability and chlorenchyma maintenance could be the nexus between tolerance responses in front of both stresses. Altogether, the obtained results indicated that HaWRKY76 can be a potential biotechnological tool to improve crops yield as well as drought and flood tolerances.

  7. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    DOE PAGES

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Usingmore » microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  8. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    SciTech Connect

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  9. Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE.

    PubMed

    Liang, Yanchun; Zhang, Fan; Wang, Juexin; Joshi, Trupti; Wang, Yan; Xu, Dong

    2011-01-01

    Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been explored for human diseases, but typically these methods have not been converted into publicly available software tools and cannot be applied to plants for identifying genes with agronomic traits. In this study, we used 22 sets of Arabidopsis thaliana gene expression data from GEO to predict the key genes involved in water tolerance. We applied an SVM-RFE (Support Vector Machine-Recursive Feature Elimination) feature selection method for the prediction. To address small sample sizes, we developed a modified approach for SVM-RFE by using bootstrapping and leave-one-out cross-validation. We also expanded our study to predict genes involved in water susceptibility. We analyzed the top 10 genes predicted to be involved in water tolerance. Seven of them are connected to known biological processes in drought resistance. We also analyzed the top 100 genes in terms of their biological functions. Our study shows that the SVM-RFE method is a highly promising method in analyzing plant microarray data for studying genotype-phenotype relationships. The software is freely available with source code at http://ccst.jlu.edu.cn/JCSB/RFET/.

  10. Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance.

    PubMed

    Ramiro, Daniel Alves; Melotto-Passarin, Danila Montewka; Barbosa, Mariana de Almeida; Santos, Flavio Dos; Gomez, Sergio Gregorio Perez; Massola Júnior, Nelson Sidnei; Lam, Eric; Carrer, Helaine

    2016-09-01

    The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor-1 from Arabidopsis thaliana (AtBI-1), can confer increased tolerance of sugarcane plants to long-term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long-term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.

  11. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses1[OPEN

    PubMed Central

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-01-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. PMID:26903535

  12. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses.

    PubMed

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-04-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed.

  13. Drought causes reduced growth of trembling aspen in western Canada.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  14. Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana

    PubMed Central

    Chen, Zhizhong; Zhang, Hairong; Jablonowski, Daniel; Zhou, Xiaofeng; Ren, Xiaozhi; Hong, Xuhui; Schaffrath, Raffael; Zhu, Jian-Kang; Gong, Zhizhong

    2006-01-01

    The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IκB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Δ yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana. PMID:16943431

  15. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana.

    PubMed

    He, Huan; Yan, Jingwei; Yu, Xiaoyun; Liang, Yan; Fang, Lin; Scheller, Henrik Vibe; Zhang, Aying

    2017-09-23

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana. Copyright © 2017. Published by Elsevier Inc.

  16. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana

    PubMed Central

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-01-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847

  17. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.

    PubMed

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-12-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought.

  18. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants.

    PubMed

    Zuo, Bixiao; Zheng, Xiaodong; He, Pingli; Wang, Lin; Lei, Qiong; Feng, Chao; Zhou, Jingzhe; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2014-11-01

    Melatonin is a potent naturally occurring reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenger in plants. Melatonin protects plants from oxidative stress and, therefore, it improves their tolerance against a variety of environmental abiotic stressors. N-acetylserotonin-O-methyltransferase (ASMT) is a specific enzyme required for melatonin synthesis. In this report, an ASMT gene was cloned from apple rootstock (Malus zumi Mats) and designated as MzASMT1 (KJ123721). The MzASMT1 expression was induced by drought stress in apple leaves. The upregulation of MzASMT1 in the apple leaf positively relates to melatonin production over a 24-hr dark/light cycle. Purified MzASMT1 protein expressed in E. coli converted its substrates to melatonin with an activity of approximately 5.5 pmol/min/mg protein. The transient transformation in tobacco identified that MzASMT1 is located in cytoplasm of the cell. When MzASMT1 gene driven by 35S promoter was transferred to Arabidopsis, melatonin levels in transgenic Arabidopsis plants were 2-4 times higher than those in the wild type. The transgenic Arabidopsis plants had significantly lower intrinsic ROS than the wild type and therefore these plants exhibited greater tolerance to drought stress than that of wild type. This is, at least partially, attributed to the elevated melatonin levels resulting from the overexpression of MzASMT1. The results elucidated the important role that membrane-located melatonin synthase plays in drought tolerance. These findings have significant implications in agriculture.

  19. Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis1[C][W][OPEN

    PubMed Central

    Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I.; Huq, Enamul

    2014-01-01

    MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions. PMID:24198318

  20. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis.

    PubMed

    Scholz, Sandra S; Reichelt, Michael; Vadassery, Jyothilakshmi; Mithöfer, Axel

    2015-01-01

    Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca(2+) concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca(2+) sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.

  1. OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis

    PubMed Central

    Cui, Yanchun; Wang, Manling; Zhou, Huina; Li, Mingjuan; Huang, Lifang; Yin, Xuming; Zhao, Guoqiang; Lin, Fucheng; Xia, Xinjie; Xu, Guoyun

    2016-01-01

    Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. OsSGL was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing OsSGL conferred significantly improved drought tolerance in transgenic rice and Arabidopsis thaliana, respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which OsSGL confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems. PMID:28083013

  2. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    PubMed Central

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses. PMID:26512059

  3. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana.

    PubMed

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses.

  4. Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis

    PubMed Central

    2014-01-01

    Background Drought is a major constraint that leads to extensive losses to agricultural yield worldwide. The potential yield is largely determined during inflorescence development. However, to date, most investigations on plant response to drought have focused on vegetative development. This study describes the morphological changes of reproductive development and the comparison of transcriptomes under various drought conditions. Results The plants grown were studied under two drought conditions: minimum for successful reproduction (45-50% soil water content, moderate drought, MD) and for survival (30-35%, severe drought, SD). MD plants can produce similar number of siliques on the main stem and similar number of seeds per silique comparing with well-water plants. The situation of SD plants was much worse than MD plants. The transcriptomes of inflorescences were further investigated at molecular level using microarrays. Our results showed more than four thousands genes with differential expression under severe drought and less than two thousand changed under moderate drought condition (with 2-fold change and q-value < 0.01). We found a group of genes with increased expression as the drought became more severe, suggesting putative adaptation to the dehydration. Interestingly, we also identified genes with alteration only under the moderate but not the severe drought condition, indicating the existence of distinct sets of genes responsive to different levels of water availability. Further cis-element analyses of the putative regulatory sequences provided more information about the underlying mechanisms for reproductive responses to drought, suggesting possible novel candidate genes that protect those developing flowers under drought stress. Conclusions Different pathways may be activated in response to moderate and severe drought in reproductive tissues, potentially helping plant to maximize its yield and balance the resource consumption between vegetative and

  5. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance.

    PubMed

    Butt, Hamama Islam; Yang, Zhaoen; Gong, Qian; Chen, Eryong; Wang, Xioaqian; Zhao, Ge; Ge, Xiaoyang; Zhang, Xueyan; Li, Fuguang

    2017-08-22

    MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.

  6. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis

    PubMed Central

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  7. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis

    PubMed Central

    Liu, Pei; Xu, Zhao-Shi; Pan-Pan, Lu; Hu, Di; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Phosphoinositides are involved in regulation of recruitment and activity of signalling proteins in cell membranes. Phosphatidylinositol (PI) 4-kinases (PI4Ks) generate PI4-phosphate the precursor of regulatory phosphoinositides. No type II PI4K research on the abiotic stress response has previously been reported in plants. A stress-inducible type II PI4K gene, named TaPI4KIIγ, was obtained by de novo transcriptome sequencing of drought-treated wheat (Triticum aestivum). TaPI4KIIγ, localized on the plasma membrane, underwent threonine autophosphorylation, but had no detectable lipid kinase activity. Interaction of TaPI4KIIγ with wheat ubiquitin fusion degradation protein (TaUDF1) indicated that it might be hydrolysed by the proteinase system. Overexpression of TaPI4KIIγ revealed that it could enhance drought and salt stress tolerance during seed germination and seedling growth. A ubdkγ7 mutant, identified as an orthologue of TaPI4KIIγ in Arabidopsis, was sensitive to salt, polyethylene glycol (PEG), and abscisic acid (ABA), and overexpression of TaPI4KIIγ in the ubdkγ7 mutant compensated stress sensitivity. TaPI4KIIγ promoted root growth in Arabidopsis, suggesting that TaPI4KIIγ might enhance stress resistance by improving root growth. Overexpression of TaPI4KIIγ led to an altered expression level of stress-related genes and changes in several physiological traits that made the plants more tolerant to stress. The results provided evidence that overexpression of TaPI4KIIγ could improve drought and salt tolerance. PMID:23682116

  8. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  9. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis.

    PubMed

    Gao, Fei; Yao, Huipeng; Zhao, Haixia; Zhou, Jing; Luo, Xiaopeng; Huang, Yunji; Li, Chenglei; Chen, Hui; Wu, Qi

    2016-12-01

    Tartary buckwheat is a strongly abiotic, resistant coarse cereal, but its tolerance mechanisms for stress are largely unknown. MYB transcription factors play key roles in various physiological, biochemical and molecular responses, which can both positively and negatively regulate the stress tolerance of plants. In this study, we report that the expression of FtMYB10, a R2R3-MYB gene from Tartary buckwheat, was induced significantly by ABA and drought treatments. A seed germination test under ABA treatment indicated that transgenic lines were less sensitive to ABA. The overexpression of FtMYB10 in Arabidopsis reduced drought and salt tolerance. Further studies showed that the proline contents in the transgenic plants are markedly decreased associated with reduced expression of the P5CS1 gene under both normal and stress conditions. Furthermore, the expression of some stress-responsive genes, including DREB1/CBFs, RD29B, RD22, and several genes of the DRE/CRT class, decreased in response to FtMYB10 overexpression in Arabidopsis. These results suggest that FtMYB10 may play a key role in ABA signaling feedback regulation and act as a novel negative regulator of salt and drought stress tolerance in plants.

  10. Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of natural MPK12 alleles in Arabidopsis.

    PubMed

    Campitelli, Brandon E; Des Marais, David L; Juenger, Thomas E

    2016-04-01

    The presence of substantial genetic variation for water-use efficiency (WUE) suggests that natural selection plays a role in maintaining alleles that affect WUE. Soil water deficit can reduce plant survival, and is likely to impose selection to increase WUE, whereas competition for resources may select for decreased WUE to ensure water acquisition. We tested the fitness consequences of natural allelic variation in a single gene (MPK12) that influences WUE in Arabidopsis, using transgenic lines contrasting in MPK12 alleles, under four treatments; drought/competition, drought/no competition, well-watered/competition, well-watered/no competition. Results revealed an allele × environment interaction: Low WUE plants performed better in competition, resulting from increased resource consumption. Contrastingly, high WUE individuals performed better in no competition, irrespective of water availability, presumably from enhanced water conservation and nitrogen acquisition. Our findings suggest that selection can influence MPK12 evolution, and represents the first assessment of plant fitness resulting from natural allelic variation at a single locus affecting WUE.

  11. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis

    PubMed Central

    Gao, Wei; Liu, Wenwen; Zhao, Meng; Li, Wen-Xue

    2015-01-01

    NFYA5 is an important drought-stress inducible transcription factor gene that is targeted by miR169 in Arabidopsis. We show here that the cis-natural antisense transcript gene of NFYA5, NFYA5 Enhancing RING FINGER (NERF), can produce siRNAs from their overlapping region (OR) and affect NFYA5 transcripts by functioning together with miR169. The NERF protein functions as an E3 ligase for ubiquitination. Overexpression of NERF or OR cDNA leads to siRNANERF accumulation, miR169 repression, and NFYA5 transcript enhancement; knock-down of NERF transcripts by an artificial miRNA enhances miR169 abundance and reduces NFYA5 transcripts. Overexpression of NFYA5 does not affect the NERF mRNA level. Deep sequencing of the small RNA library from 35S::OR plants identifies 960 sequences representing 323 unique siRNAs that originate from OR; the sequences of some siRNANERF are similar/complementary to those of miR169. Overexpression of the 195- to 280-bp OR cDNA-containing siRNAs similar/complementary to miR169 also leads to the accumulation of NFYA5 transcripts. Analysis of NERF knock-down plants and NERF overexpression lines showed that, like NFYA5, NERF is important for controlling stomatal aperture and drought resistance. This regulatory model might apply to other natural antisense transcripts with positively correlated expression patterns. PMID:25514924

  12. Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana.

    PubMed

    Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K

    2015-04-01

    Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. © 2015 American Society of Plant Biologists. All rights reserved.

  13. Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase.

    PubMed

    Bianchi, Michele W; Roux, Camille; Vartanian, Nicole

    2002-09-01

    Glutathione transferases (GST; EC 2.5.1.18) have been involved in many biotic and abiotic interactions of plants with their environment, but very little information is available on their regulation and possible role in drought tolerance. The GST8 gene of Arabidopsis thaliana encodes, as assessed by phylogenetic analysis, the homologue of an extremely conserved subgroup of Tau GSTs. During rapid dehydration of seedlings and progressive drought stress of mature plants, GST8 transcript levels increased following slower kinetics than RNAs for dehydration responsive genes RD29A and B, and strictly paralleled, in a mostly ABA independent manner, expression of oxidative stress marker PRX. GST8 RNA levels were also consistently increased by oxidative stress, high doses of auxin or cytokinin, and to a lesser extent, by wounding. RNA levels of ERD13, a previously described rapid dehydration responsive GST of the Phi class, were not co-regulated with those of GST8. Our results suggest that a drought-associated oxidative stress induces accumulation of GST8, whose function could be to counteract the effect of higher ROS production in stressed plants

  14. Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana

    PubMed Central

    Lovell, John T.; Mullen, Jack L.; Lowry, David B.; Awole, Kedija; Richards, James H.; Sen, Saunak; Verslues, Paul E.; Juenger, Thomas E.; McKay, John K.

    2015-01-01

    Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. PMID:25873386

  15. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis.

    PubMed

    Ding, Z T; Li, C; Shi, H; Wang, H; Wang, Y

    2015-09-22

    CsICE1 is thought to be involved in hardiness resistance of tea plants. Using seedling cuttings of biennial Wuniuzao in this study, the pattern of CsICE1 expression under cold temperature (4°, -5°C), drought [20% polyethylene glycol 6000 (PEG-6000)], and plant hormone [200 mg/L abscisic acid (ABA), 1 mg/L brassinolide (BR)] treatment was studied by real-time quantitative PCR. Additionally, stress resistance, such as the freezing resistance of CsICE1, was studied using Arabidopsis lines transformed with sense or anti-sense CsICE1 via Agrobacterium tumefaciens infection. Our results showed that CsICE1 mRNA could be induced under -5°C, PEG, ABA, or BR treatment, although the pattern of expression differed for all treatments. Compared to wild type (WT) and anti-sense ICE1 transgenic lines, sense lines displayed higher relative germination rates under salt and drought stress. After freezing treatment, the sense transgenic lines over-expressing CsICE1 showed a higher survival rate, increased levels of proline, and decreased levels of malonaldehyde. Conversely, compared with WT, anti-sense ICE1 transgenic lines had lower proline levels and higher malonaldehyde levels under freezing conditions. Our study indicates that CsICE1 is an important anti-freezing gene and that over-expression of CsICE1 can improve cold resistance and enhance salt and drought tolerance of transgenic lines.

  16. Effect of reduced plant height on drought tolerance in rice.

    PubMed

    Ahmadikhah, Asadollah; Marufinia, Amir

    2016-12-01

    Drought stress due to water deficit is a major problem of rice cultivation as a most drought-sensitive crop plant. A rice mutant line (MT58) was developed after mutagenesis of cv. Neda by ethyl methane sulfonate (EMS) and selected for dwarfism (18 cm shorter than Neda). The extent of its molecular changes relative to parental cultivar was assessed by SSR and ISSR markers, and the response of the line along with parental cultivar and another mutant line (MTA) to mild and severe water deficit, was evaluated in a field experiment. A molecular assessment using 41 SSR markers showed that dwarf line MT58 had significant molecular difference with two other lines. ISSR assay also proved the considerable mutational effect of EMS on two mutant lines compared with the original wild line. Field experiments revealed that limited irrigation caused mild-to-severe decrease in all the studied traits, including chlorophyll contents. In mild water-stress mutant line, MT58 showed a low (3 %) yield loss as compared with cultivar Neda with a high (14 %) yield loss. Interestingly, in severe water-stress mutant line, MT58 showed a low (19 %) yield loss as compared with mutant line MTA and cv. Neda with high (33 and 31 %, respectively) yield loss. In severe stress, mutant MT58 had the highest values of panicle length, total kernels per panicle, fertile kernels, and chlorophyll contents, while cv. Neda had the highest values of plant height, tiller number, and plant yield, and reduction in chlorophyll content at drought stress condition was correlated with yield loss (0.64 and 0.697 for chl.a and chl.b, respectively). The results of this research obviously confirm that mutant line MT58 despite of its stunt figure shows a low yield loss due to drought stress and hence is a promising line for cultivation under drought condition.

  17. Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment.

    PubMed

    Tu, Mingxing; Wang, Xianhang; Feng, Tongying; Sun, Xiaomeng; Wang, Yaqiong; Huang, Li; Gao, Min; Wang, Yuejin; Wang, Xiping

    2016-11-01

    Drought is one of the most serious factors that limit agricultural productivity and there is considerable interest in understanding the molecular bases of drought responses and their regulation. While numbers of basic leucine zipper (bZIP) transcription factors (TFs) are known to play key roles in response of plants to various abiotic stresses, only a few group K bZIP TFs have been functionally characterized in the context of stress signaling. In this study, we characterized the expression of the grape (Vitis vinifera) group K bZIP gene, VlbZIP36, and found evidence for its involvement in response to drought and the stress-associated phytohormone abscisic acid (ABA). Transgenic Arabidopsis thaliana lines over-expressing VlbZIP36 under the control of a constitutive promoter showed enhanced dehydration tolerance during the seed germination stage, as well as in the seedling and mature plant stages. The results indicated that VlbZIP36 plays a role in drought tolerance by improving the water status, through limiting water loss, and mitigating cellular damage. The latter was evidenced by reduced cell death, lower electrolyte leakage in the transgenic plants, as well as by increased activities of antioxidant enzymes. We concluded that VlbZIP36 enhances drought tolerance through the transcriptional regulation of ABA-/stress-related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Soil microbiomass vary in their ability to confer drought tolerance to Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Helping plants cope with drought is a major agricultural issue that has been addressed by genetic improvement of crops and recently by using specific soil micro-organisms that confer drought tolerance. Here, we analyzed the effect of using co-adapted and non-co-adapted whole soil microbiomes to help...

  19. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

    PubMed Central

    Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong

    2013-01-01

    Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477

  20. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses.

    PubMed

    Song, Hongmiao; Zhao, Rongmin; Fan, Pengxiang; Wang, Xuchu; Chen, Xianyang; Li, Yinxin

    2009-03-01

    Three AtHsp90 isoforms, cytosolic AtHsp90.2, chloroplast-located AtHsp90.5, and endoplasmic reticulum (ER)-located AtHsp90.7, were characterized by constitutive overexpressing their genes in Arabidopsis thaliana. Both types of the transgenic plants overexpressing cytosolic and organellar AtHsp90s showed reduced tolerance to salt and drought stresses with lower germination rates and fresh weights, but improved tolerance to high concentration of Ca(2+) comparing with the wild type plants. Transcriptional analysis of ABA-responsive genes, RD29A, RD22 and KIN2 under salt and drought stresses, indicated that the induction expression of these genes was delayed by constitutive overexpression of cytosolic AtHsp90.2, but was hardly affected by that of organellar AtHsp90.5 and AtHsp90.7. These results implied that Arabidopsis different cellular compartments-located Hsp90s in Arabidopsis might be involved in abiotic stresses by different functional mechanisms, probably through ABA-dependent or Ca(2+) pathways, and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.

  1. Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis

    PubMed Central

    Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2014-01-01

    Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic

  2. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize.

  3. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  4. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China

    DOE PAGES

    Yuan, Wenping; Cai, Wenwen; Chen, Yang; ...

    2016-01-07

    Increasing heatwave and drought events can potentially alter the carbon cycle. Few studies have investigated the impacts of hundred-year return heatwaves and droughts, as those events are rare. In the summer of 2013, southern China experienced its strongest drought and heatwave on record for the past 113 years. We show that the record-breaking heatwave and drought lasted two months (from July to August), significantly reduced the satellite-based vegetation index and gross primary production, substantially altered the regional carbon cycle, and produced the largest negative crop yield anomaly since 1960. The event resulted in a net reduction of 101.54 Tg Cmore » in carbon sequestration in the region during these two months, which was 39–53% of the annual net carbon sink of China’s terrestrial ecosystems (190–260 Tg C yr-1). Moreover, model experiments showed that heatwaves and droughts consistently decreased ecosystem vegetation primary production but had opposite impacts on ecosystem respiration (TER), with increased TER by 6.78 ± 2.15% and decreased TER by 15.34 ± 3.57% assuming only changed temperature and precipitation, respectively. As a result, in light of increasing frequency and severity of future heatwaves and droughts, our study highlights the importance of accounting for the impacts of heatwaves and droughts in assessing the carbon sequestration in terrestrial ecosystems.« less

  5. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China

    PubMed Central

    Yuan, Wenping; Cai, Wenwen; Chen, Yang; Liu, Shuguang; Dong, Wenjie; Zhang, Haicheng; Yu, Guirui; Chen, Zhuoqi; He, Honglin; Guo, Weidong; Liu, Dan; Liu, Shaoming; Xiang, Wenhua; Xie, Zhenghui; Zhao, Zhonghui; Zhou, Guomo

    2016-01-01

    Increasing heatwave and drought events can potentially alter the carbon cycle. Few studies have investigated the impacts of hundred-year return heatwaves and droughts, as those events are rare. In the summer of 2013, southern China experienced its strongest drought and heatwave on record for the past 113 years. We show that the record-breaking heatwave and drought lasted two months (from July to August), significantly reduced the satellite-based vegetation index and gross primary production, substantially altered the regional carbon cycle, and produced the largest negative crop yield anomaly since 1960. The event resulted in a net reduction of 101.54 Tg C in carbon sequestration in the region during these two months, which was 39–53% of the annual net carbon sink of China’s terrestrial ecosystems (190–260 Tg C yr−1). Moreover, model experiments showed that heatwaves and droughts consistently decreased ecosystem vegetation primary production but had opposite impacts on ecosystem respiration (TER), with increased TER by 6.78 ± 2.15% and decreased TER by 15.34 ± 3.57% assuming only changed temperature and precipitation, respectively. In light of increasing frequency and severity of future heatwaves and droughts, our study highlights the importance of accounting for the impacts of heatwaves and droughts in assessing the carbon sequestration in terrestrial ecosystems. PMID:26739761

  6. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China.

    PubMed

    Yuan, Wenping; Cai, Wenwen; Chen, Yang; Liu, Shuguang; Dong, Wenjie; Zhang, Haicheng; Yu, Guirui; Chen, Zhuoqi; He, Honglin; Guo, Weidong; Liu, Dan; Liu, Shaoming; Xiang, Wenhua; Xie, Zhenghui; Zhao, Zhonghui; Zhou, Guomo

    2016-01-07

    Increasing heatwave and drought events can potentially alter the carbon cycle. Few studies have investigated the impacts of hundred-year return heatwaves and droughts, as those events are rare. In the summer of 2013, southern China experienced its strongest drought and heatwave on record for the past 113 years. We show that the record-breaking heatwave and drought lasted two months (from July to August), significantly reduced the satellite-based vegetation index and gross primary production, substantially altered the regional carbon cycle, and produced the largest negative crop yield anomaly since 1960. The event resulted in a net reduction of 101.54 Tg C in carbon sequestration in the region during these two months, which was 39-53% of the annual net carbon sink of China's terrestrial ecosystems (190-260 Tg C yr(-1)). Moreover, model experiments showed that heatwaves and droughts consistently decreased ecosystem vegetation primary production but had opposite impacts on ecosystem respiration (TER), with increased TER by 6.78 ± 2.15% and decreased TER by 15.34 ± 3.57% assuming only changed temperature and precipitation, respectively. In light of increasing frequency and severity of future heatwaves and droughts, our study highlights the importance of accounting for the impacts of heatwaves and droughts in assessing the carbon sequestration in terrestrial ecosystems.

  7. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China

    SciTech Connect

    Yuan, Wenping; Cai, Wenwen; Chen, Yang; Liu, Shuguang; Dong, Wenjie; Zhang, Haicheng; Yu, Guirui; Chen, Zhuoqi; He, Honglin; Guo, Weidong; Liu, Dan; Liu, Shaoming; Xiang, Wenhua; Xie, Zhenghui; Zhao, Zhonghui; Zhou, Guomo

    2016-01-07

    Increasing heatwave and drought events can potentially alter the carbon cycle. Few studies have investigated the impacts of hundred-year return heatwaves and droughts, as those events are rare. In the summer of 2013, southern China experienced its strongest drought and heatwave on record for the past 113 years. We show that the record-breaking heatwave and drought lasted two months (from July to August), significantly reduced the satellite-based vegetation index and gross primary production, substantially altered the regional carbon cycle, and produced the largest negative crop yield anomaly since 1960. The event resulted in a net reduction of 101.54 Tg C in carbon sequestration in the region during these two months, which was 39–53% of the annual net carbon sink of China’s terrestrial ecosystems (190–260 Tg C yr-1). Moreover, model experiments showed that heatwaves and droughts consistently decreased ecosystem vegetation primary production but had opposite impacts on ecosystem respiration (TER), with increased TER by 6.78 ± 2.15% and decreased TER by 15.34 ± 3.57% assuming only changed temperature and precipitation, respectively. As a result, in light of increasing frequency and severity of future heatwaves and droughts, our study highlights the importance of accounting for the impacts of heatwaves and droughts in assessing the carbon sequestration in terrestrial ecosystems.

  8. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    PubMed Central

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  9. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana.

    PubMed

    Kim, Jong-Myong; To, Taiko Kim; Ishida, Junko; Matsui, Akihiro; Kimura, Hiroshi; Seki, Motoaki

    2012-05-01

    Changes in chromatin status are correlated with gene regulation of biological processes such as development and stress responses in plants. In this study, we focused on the transition of chromatin status toward gene repression during the process of recovery from drought stress of drought-inducible genes (RD20, RD29A and AtGOLS2) and a rehydration-inducible gene (ProDH). In response to drought, RNA polymerase II was recruited on the drought-inducible genes and rapidly disappeared after rehydration, although mRNA levels of these genes were maintained to some degree after rehydration, suggesting that the transcriptional activities of these genes were rapidly inactivated by rehydration treatment. Histone H3K9ac was enriched by drought and rapidly removed from these regions by rehydration. In contrast, histone H3K4me3 was gradually decreased by rehydration but was maintained at low levels after rehydration, suggesting that H3K4me3 functions as an epigenetic mark of stress memory. These results show that the transcriptional activity and chromatin status are rapidly changed from an active to inactive mode during the recovery process. Our results demonstrate that histone modifications are correlated with the inactivation of drought-inducible genes during the recovery process by rehydration.

  10. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana.

    PubMed

    Su, Lian-Tai; Li, Jing-Wen; Liu, De-Quan; Zhai, Ying; Zhang, Hai-Jun; Li, Xiao-Wei; Zhang, Qing-Lin; Wang, Ying; Wang, Qing-Yu

    2014-03-15

    MYB transcription factors play important roles in the regulation of plant growth, developmental metabolism and stress responses. In this study, a new MYB transcription factor gene, GmMYBJ1, was isolated from soybean [Glycine max (L.)]. The GmMYBJ1 cDNA is 1296bp in length with an open reading frame (ORF) of 816 bp encoding for 271 amino acids. The amino acid sequence displays similarities to the typical R2R3 MYB proteins reported in other plants. Transient expression analysis using the GmMYBJ1-GFP fusion gene in onion epidermal cells revealed that the GmMYBJ1 protein is targeted to the nucleus. Quantitative RT-PCR analysis demonstrated that GmMYBJ1 expression was induced by abiotic stresses, such as drought, cold, salt and exogenous abscisic acid (ABA). Compared to wild-type (WT) plants, transgenic Arabidopsis overexpressing GmMYBJ1 exhibited an enhanced tolerance to drought and cold stresses. These results indicate that GmMYBJ1 has the potential to be utilized in transgenic breeding lines to improve abiotic stress tolerance.

  11. Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24.

    PubMed

    Bechtold, Ulrike; Lawson, Tracy; Mejia-Carranza, Jaime; Meyer, Rhonda C; Brown, Ian R; Altmann, Thomas; Ton, Jurriaan; Mullineaux, Philip M

    2010-11-01

    Plants that constitutively express otherwise inducible disease resistance traits often suffer a depressed seed yield in the absence of a challenge by pathogens. This has led to the view that inducible disease resistance is indispensable, ensuring that minimal resources are diverted from growth, reproduction and abiotic stress tolerance. The Arabidopsis genotype C24 has enhanced basal resistance, which was shown to be caused by permanent expression of normally inducible salicylic acid (SA)-regulated defences. However, the seed yield of C24 was greatly enhanced in comparison to disease-resistant mutants that display identical expression of SA defences. Under both water-replete and -limited conditions, C24 showed no difference and increased seed yield, respectively, in comparison with pathogen-susceptible genotypes. C24 was the most drought-tolerant genotype and showed elevated water productivity, defined as seed yield per plant per millilitre water consumed, and achieved this by displaying adjustments to both its development and transpiration efficiency (TE). Therefore, constitutive high levels of disease resistance in C24 do not affect drought tolerance, seed yield and seed viability. This study demonstrates that it will be possible to combine traits that elevate basal disease resistance and improve water productivity in crop species, and such traits need not be mutually exclusive.

  12. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon.

    PubMed

    Himuro, Yasuyo; Ishiyama, Kanako; Mori, Fumie; Gondo, Takahiro; Takahashi, Fuminori; Shinozaki, Kazuo; Kobayashi, Masatomo; Akashi, Ryo

    2014-08-15

    Brachypodium distachyon (purple false brome) is a herbaceous species belonging to the grass subfamily Pooideae, which also includes major crops like wheat, barley, oat and rye. The species has been established as experimental model organism for understanding and improving cereal crops and temperate grasses. The complete genome of Bd21, the community standard line of B. distachyon, has been sequenced and protocols for Agrobacterium-mediated transformation have been published. Further improvements to the experimental platform including better evaluation systems for transgenic plants are still needed. Here we describe the growth conditions for Bd21 plants yielding highly responsive immature embryos that can generate embryogenic calli for transformation. A prolonged 20-h photoperiod produced seeds with superior immature embryos. In addition, osmotic treatment of embryogenic calli enhanced the efficiency of transfection by particle bombardment. We generated transgenic plants expressing Arabidopsis thaliana galactinol synthase 2 (AtGolS2) in these experiments. AtGolS2-expressing transgenics displayed significantly improved drought tolerance, increasing with increased expression of AtGolS2. These results demonstrate that AtGolS2 can confer drought tolerance to monocots and confirm that Brachypodium is a useful model to further explore ways to understand and improve major monocot crop species.

  13. VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis.

    PubMed

    Sadhukhan, Ayan; Kobayashi, Yasufumi; Kobayashi, Yuriko; Tokizawa, Mutsutomo; Yamamoto, Yoshiharu Y; Iuchi, Satoshi; Koyama, Hiroyuki; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2014-09-01

    VuDREB2A exists in cowpea as a canonical DREB2-type transcription factor, having the ability to bind dehydration-responsive elements in vitro and confer enhanced drought resistance in transgenic Arabidopsis. Cowpea (Vigna unguiculata L. Walp) is an important cultivated legume that can survive better in arid conditions than other crops. But the molecular mechanisms involved in the drought tolerance of this species remain elusive with very few reported candidate genes. The Dehydration-Responsive Element-Binding Protein2 (DREB2) group of transcription factors plays key roles in plant responses to drought. However, no DREB2 ortholog has been reported from cowpea so far. In this study, we isolated and characterized a gene from cowpea, namely VuDREB2A, encoding a protein of 377 amino acids exhibiting features of reported DREB2-type proteins. In cowpea, VuDREB2A transcript accumulation was highly induced by desiccation, heat and salt, but slightly by exogenous abscisic acid (ABA) treatment. We also isolated the VuDREB2A promoter and predicted stress-responsive cis-elements in it using Arabidopsis microarray data. The E. coli-expressed VuDREB2A protein showed binding to synthetic oligonucleotides with Dehydration-Responsive Elements (DREs) from Arabidopsis, in electrophoretic mobility shift assays. Heterologous expression of VuDREB2A in Arabidopsis significantly improved plant survival under drought. In addition, overexpression of a truncated version of VuDREB2A, after removal of a putative negative regulatory domain (between amino acids 132-182) led to a dwarf phenotype in the transgenic plants. Microarray and quantitative PCR analyses of VuDREB2A overexpressing Arabidopsis revealed up-regulation of stress-responsive genes having DRE overrepresented in their promoters. In summary, our results indicate that VuDREB2A conserves the basic functionality and mode of regulation of DREB2A in Arabidopsis and could be a potent candidate gene for the genetic improvement of drought

  14. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis.

    PubMed

    Liu, Liang; Wang, Ying; Wang, Nan; Dong, Yuan-Yuan; Fan, Xiu-Duo; Liu, Xiu-Ming; Yang, Jing; Li, Hai-Yan

    2011-09-01

    Salt, saline-alkali conditions, and drought are major environmental factors limiting plant growth and productivity. The vacuolar H(+)-translocating inorganic pyrophosphatase (V-H(+)-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells. Expression of V-H(+)-PPase increases in plants under a number of abiotic stresses, and is thought to have an important role in adaptation to abiotic stress. In this work, we report the isolation and characterization of the gene, ScVP, encoding a vacuolar inorganic pyrophosphatase (V-H(+)-PPase) from the halophyte, Suaeda corniculata. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots, stems and leaves under treatment with salt, saline-alkali and drought. Compared with wild-type (WT) Arabidopsis, transgenic plants overexpressing ScVP accumulated more Na(+) in leaves and roots, and showed increased tolerance to high salinity, saline-alkali and drought stresses. The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses. The root length of transgenic plants under salt stress was longer than that of WT plants. Furthermore, the rate of water loss during drought stress was higher in WT than in transgenic plants. Collectively, these results indicate that ScVP plays an important role in plant tolerance to salt, saline-alkali and drought stress.

  15. Paenibacillus yonginensis DCY84(T) induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress.

    PubMed

    Sukweenadhi, Johan; Kim, Yeon-Ju; Choi, Eul-Su; Koh, Sung-Cheol; Lee, Sang-Won; Kim, Yu-Jin; Yang, Deok Chun

    2015-03-01

    Current agricultural production methods, for example the improper use of chemical fertilizers and pesticides, create many health and environmental problems. Use of plant growth-promoting bacteria (PGPB) for agricultural benefits is increasing worldwide and also appears to be a trend for the future. There is possibility to develop microbial inoculants for use in agricultural biotechnology, based on these beneficial plant-microbe interactions. For this study, ten bacterial strains were isolated from Yongin forest soil for which in vitro plant-growth promoting trait screenings, such as indole acetic acid (IAA) production, a phosphate solubilization test, and a siderophore production test were used to select two PGPB candidates. Arabidopsis thaliana plants were inoculated with Paenibacillus yonginensis DCY84(T) and Micrococcus yunnanensis PGPB7. Salt stress, drought stress and heavy metal (aluminum) stress challenges indicated that P. yonginensis DCY84(T)-inoculated plants were more resistant than control plants. AtRSA1, AtVQ9 and AtWRKY8 were used as the salinity responsive genes. The AtERD15, AtRAB18, and AtLT178 were selected to check A. thaliana responses to drought stress. Aluminum stress response was checked using AtAIP, AtALS3 and AtALMT1. The qRT-PCR results indicated that P. yonginensis DCY84(T) can promote plant tolerance against salt, drought, and aluminum stress. P. yonginensis DCY84(T) also showed positive results during in vitro compatibility testing and virulence assay against X. oryzae pv. oryzae Philippine race 6 (PXO99). Better germination rates and growth parameters were also recorded for the P. yonginensis DCY84(T) Chuchung cultivar rice seed which was grown on coastal soil collected from Suncheon. Based on these results, P. yonginensis DCY84(T) can be used as a promising PGPB isolate for crop improvement.

  16. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    PubMed

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  17. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene.

    PubMed

    Kumar, Tanweer; Uzma; Khan, Muhammad Ramzan; Abbas, Zaheer; Ali, Ghulam Muhammad

    2014-03-01

    Sugarcane plant is a glycophyte, hence its growth and sucrose contents are severely affected by drought and salinity stresses. Bioengineering approaches offer a plausible and rapid solution to mitigate these losses. Therefore for genetic improvement of sugarcane against these stresses, the present study was conceived to transform Arabidopsis Vacuolar Pyrophosphatase (AVP1) gene--confers tolerance against drought and salinity--into sugarcane through Agrobacterium. For this purpose, highly regenerable apical buds of sugarcane variety CP77-400 were used as explants. EHA105 strain of Agrobacterium harboring pGreen0029 vector containing AVP1 gene driven under 35SCaMV promoter was employed for transformation. The key factors studied include application of acetosyringone, cefotaxime, kanamycin, and co-cultivation period for successful transformation. Maximum regeneration frequency of 77.5 % was achieved on MS media containing 1 mg/l BAP, 1 mg/l Kn, 1 mg/l GA₃, 0.25 mg/l NAA, 50 μM acetosyringone, 500 mg/l cefotaxime, and 150 mg/l kanamycin on 3 days of co-cultivation. The results revealed that apical buds are distinctive viable tissues for sugarcane transformation and regeneration to produce a large number of CP77-400 transgenic plants in shorter period of time without intervening mosaics and chimeras. The AVP1 transcripts expression in transgenic lines at various levels was detected by RT-PCR. Longer and profuse root system was observed in transgenic plants in comparison with control plants. Concomitantly, only transgenic plants were able to withstand higher NaCl salt stress as well as scarcity of water thus, showing tolerance against salinity and drought stresses.

  18. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    PubMed

    Khan, Kasim; Agarwal, Pallavi; Shanware, Arti; Sane, Vidhu Aniruddha

    2015-01-01

    Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.

  19. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis[OPEN

    PubMed Central

    Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha

    2016-01-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  20. Activation of ABA Receptors Gene GhPYL9-11A Is Positively Correlated with Cotton Drought Tolerance in Transgenic Arabidopsis

    PubMed Central

    Liang, Chengzhen; Liu, Yan; Li, Yanyan; Meng, Zhigang; Yan, Rong; Zhu, Tao; Wang, Yuan; Kang, Shujing; Ali Abid, Muhammad; Malik, Waqas; Sun, Guoqing; Guo, Sandui; Zhang, Rui

    2017-01-01

    The sensitivity to abscisic acid (ABA) by its receptors, pyrabactin resistance-like proteins (PYLs), is considered a most important factor in activating the ABA signal pathway in response to abiotic stress. However, it is still unknown which PYL is the crucial ABA receptor mediating response to drought stress in cotton (Gossypium hirsutum L.). Here, we reported the identification and characterization of highly induced ABA receptor GhPYL9-11A in response to drought in cotton. It is observed that GhPYL9-11A was highly induced by ABA treatment. GhPYL9-11A binds to protein phosphatase 2Cs (PP2Cs) in an ABA-independent manner. Moreover, the GhPYL-11A-PP2C interactions are partially disrupted by mutations, proline (P84) and histidine (H111), in the gate-latch region. Transgenic Arabidopsis overexpressing GhPYL9-11A plants were hypersensitive to ABA during seed germination and early seedling stage. Further, the increased in root growth and up regulation of drought stress-related genes in transgenic Arabidopsis as compared to wild type confirmed the potential role of GhPYL9-11A in abiotic stress tolerance. Consistently, the expression level of GhPYL9-11A is on average higher in drought-tolerant cotton cultivars than in drought-sensitive cottons under drought treatment. In conclusion, the manipulation of GhPYL9-11A expression could be a useful strategy for developing drought-tolerant cotton cultivars. PMID:28878793

  1. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    PubMed

    Jia, Haihong; Wang, Chen; Wang, Fang; Liu, Shuchang; Li, Guilin; Guo, Xingqi

    2015-01-01

    The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA) and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS), reduced enzyme activities, elevated malondialdehyde (MDA) content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  2. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-09-01

    Two cysteine proteinase inhibitors (cystatins) from Arabidopsis thaliana, designated AtCYSa and AtCYSb, were characterized. Recombinant GST-AtCYSa and GST-AtCYSb were expressed in Escherichia coli and purified. They inhibit the catalytic activity of papain, which is generally taken as evidence for cysteine proteinase inhibitor function. Northern blot analyses showed that the expressions of AtCYSa and AtCYSb gene in Arabidopsis cells and seedlings were strongly induced by multiple abiotic stresses from high salt, drought, oxidant, and cold. Interestingly, the promoter region of AtCYSa gene contains a dehydration-responsive element (DRE) and an abscisic acid (ABA)-responsive element (ABRE), which identifies it as a DREB1A and AREB target gene. Under normal conditions, AtCYSa was expressed in 35S: DREB1A and 35S: AREB1 plants at a higher level than in WT plants, while AtCYSa gene was expressed in 35S: DREB2A plants at the same level as in WT plants. Under stress conditions (salt, drought and cold), AtCYSa was expressed more in all three transgenic plants than in WT plants. Over-expression of AtCYSa and AtCYSb in transgenic yeast and Arabidopsis plants increased the resistance to high salt, drought, oxidative, and cold stresses. Taken together, these data raise the possibility of using AtCYSa and AtCYSb to genetically improve environmental stresses tolerance in plants.

  3. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    PubMed Central

    Kohan-Baghkheirati, Eisa; Geisler-Lee, Jane

    2015-01-01

    Silver nanoparticles (AgNPs) have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575) in the Arabidopsis genome, followed by Ag+ (1010), heat (1374), drought (1435), salt (4133) and cold (6536). More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively) while cold down-regulated the most genes (4022). Responses to AgNPs were more similar to those of Ag+ (464 shared genes), cold (202), and salt (163) than to drought (50) or heat (30); the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis. PMID:28347022

  4. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity.

    PubMed

    Swann, Abigail L S; Hoffman, Forrest M; Koven, Charles D; Randerson, James T

    2016-09-06

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  5. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    PubMed Central

    Koven, Charles D.; Randerson, James T.

    2016-01-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment. PMID:27573831

  6. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    DOE PAGES

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; ...

    2016-08-29

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area dropsmore » to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.« less

  7. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    NASA Astrophysics Data System (ADS)

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; Randerson, James T.

    2016-09-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  8. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    PubMed

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  9. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158

  10. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    PubMed

    Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  11. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress.

    PubMed

    Lai, Shu-Jung; Lai, Mei-Chin; Lee, Ren-Jye; Chen, Yu-Hsuan; Yen, Hungchen Emilie

    2014-07-01

    Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.

  12. Overexpression of the Trehalase Gene AtTRE1 Leads to Increased Drought Stress Tolerance in Arabidopsis and Is Involved in Abscisic Acid-Induced Stomatal Closure1[W][OA

    PubMed Central

    Van Houtte, Hilde; Vandesteene, Lies; López-Galvis, Lorena; Lemmens, Liesbeth; Kissel, Ewaut; Carpentier, Sebastien; Feil, Regina; Avonce, Nelson; Beeckman, Tom; Lunn, John E.; Van Dijck, Patrick

    2013-01-01

    Introduction of microbial trehalose biosynthesis enzymes has been reported to enhance abiotic stress resistance in plants but also resulted in undesirable traits. Here, we present an approach for engineering drought stress tolerance by modifying the endogenous trehalase activity in Arabidopsis (Arabidopsis thaliana). AtTRE1 encodes the Arabidopsis trehalase, the only enzyme known in this species to specifically hydrolyze trehalose into glucose. AtTRE1-overexpressing and Attre1 mutant lines were constructed and tested for their performance in drought stress assays. AtTRE1-overexpressing plants had decreased trehalose levels and recovered better after drought stress, whereas Attre1 mutants had elevated trehalose contents and exhibited a drought-susceptible phenotype. Leaf detachment assays showed that Attre1 mutants lose water faster than wild-type plants, whereas AtTRE1-overexpressing plants have a better water-retaining capacity. In vitro studies revealed that abscisic acid-mediated closure of stomata is impaired in Attre1 lines, whereas the AtTRE1 overexpressors are more sensitive toward abscisic acid-dependent stomatal closure. This observation is further supported by the altered leaf temperatures seen in trehalase-modified plantlets during in vivo drought stress studies. Our results show that overexpression of plant trehalase improves drought stress tolerance in Arabidopsis and that trehalase plays a role in the regulation of stomatal closure in the plant drought stress response. PMID:23341362

  13. The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1[W][OA

    PubMed Central

    Yoo, Chan Yul; Pence, Heather E.; Jin, Jing Bo; Miura, Kenji; Gosney, Michael J.; Hasegawa, Paul M.; Mickelbart, Michael V.

    2010-01-01

    A goal of modern agriculture is to improve plant drought tolerance and production per amount of water used, referred to as water use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms have yet to be determined. Arabidopsis thaliana GT-2 LIKE 1 (GTL1) loss-of-function mutations result in increased water deficit tolerance and higher integrated WUE by reducing daytime transpiration without a demonstrable reduction in biomass accumulation. gtl1 plants had higher instantaneous WUE that was attributable to ~25% lower transpiration and stomatal conductance but equivalent CO2 assimilation. Lower transpiration was associated with higher STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) expression and an ~25% reduction in abaxial stomatal density. GTL1 expression occurred in abaxial epidermal cells where the protein was localized to the nucleus, and its expression was downregulated by water stress. Chromatin immunoprecipitation analysis indicated that GTL1 interacts with a region of the SDD1 promoter that contains a GT3 box. An electrophoretic mobility shift assay was used to determine that the GT3 box is necessary for the interaction between GTL1 and the SDD1 promoter. These results establish that GTL1 negatively regulates WUE by modulating stomatal density via transrepression of SDD1. PMID:21169508

  14. The Glycosyltransferase QUA1 Regulates Chloroplast-Associated Calcium Signaling During Salt and Drought Stress in Arabidopsis.

    PubMed

    Zheng, Yuan; Liao, Chancan; Zhao, Shuangshuang; Wang, Chongwu; Guo, Yan

    2017-02-01

    Cytoplasmic Ca2+ ([Ca2+]cyt) elevation induced by various signals is responsible for appropriate downstream responses. Through a genetic screen of Arabidopsis thaliana mutants defective in stress-induced [Ca2+]cyt elevation, the glycosyltransferase QUASIMODO1 (QUA1) was identified as a regulator of [Ca2+]cyt in response to salt stress. Compared with the wild type, the qua1-4 mutant exhibited a dramatically greater increase in [Ca2+]cyt under NaCl treatment. Functional analysis showed that QUA1 is a novel chloroplast protein that regulates cytoplasmic Ca2+ signaling. QUA1 was detected in chloroplast thylakoids, and the qua1-4 mutant exhibited irregularly stacked grana. The observed greater increase in [Ca2+]cyt was inhibited upon recovery of chloroplast function in the qua1-4 mutant. Further analysis showed that CAS, a thylakoid-localized calcium sensor, also displayed irregularly stacked grana, and the chloroplasts of the qua1-4 cas-1 double mutant were similar to those of cas-1 plants. In QUA1-overexpressing plants, the protein level of CAS was decreased, and CAS was readily degraded under osmotic stress. When CAS was silenced in the qua1-4 mutant, the large [Ca2+]cyt increase was blocked, and the higher expression of PLC3 and PLC4 was suppressed. Under osmotic stress, the qua1-4 mutant showed an even greater elevation in [Ca2+]cyt and was hypersensitive to drought stress. However, this sensitivity was inhibited when the increase in [Ca2+]cyt was repressed in the qua1-4 mutant. Collectively, our data indicate that QUA1 may function in chloroplast-dependent calcium signaling under salt and drought stresses. Additionally, CAS may function downstream of QUA1 to mediate these processes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Modulation of auxin content in Arabidopsis confers improved drought stress resistance.

    PubMed

    Shi, Haitao; Chen, Li; Ye, Tiantian; Liu, Xiaodong; Ding, Kejian; Chan, Zhulong

    2014-09-01

    Auxin is a well-known plant phytohormone that is involved in multiple plant growth processes and stress responses. In this study, auxin response was significantly modulated under drought stress condition. The iaaM-OX transgenic lines with higher endogenous indole-3-acetic acid (IAA) level and IAA pre-treated wild type (WT) plants exhibited enhanced drought stress resistance, while the yuc1yuc2yuc6 triple mutants with lower endogenous IAA level showed decreased stress resistance in comparison to non-treated WT plants. Additionally, endogenous and exogenous auxin positively modulated the expression levels of multiple abiotic stress-related genes (RAB18, RD22, RD29A, RD29B, DREB2A, and DREB2B), and positively affected reactive oxygen species (ROS) metabolism and underlying antioxidant enzyme activities. Moreover, auxin significantly modulated some carbon metabolites including amino acids, organic acids, sugars, sugar alcohols and aromatic amines. Notably, endogenous and exogenous auxin positively modulated root architecture especially the lateral root number. Taken together, this study demonstrated that auxin might participate in the positive regulation of drought stress resistance, through regulation of root architecture, ABA-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  17. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE PAGES

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; ...

    2016-04-25

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  18. Warm spring reduced carbon cycle impact of the 2012 US summer drought.

    PubMed

    Wolf, Sebastian; Keenan, Trevor F; Fisher, Joshua B; Baldocchi, Dennis D; Desai, Ankur R; Richardson, Andrew D; Scott, Russell L; Law, Beverly E; Litvak, Marcy E; Brunsell, Nathaniel A; Peters, Wouter; van der Laan-Luijkx, Ingrid T

    2016-05-24

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

  19. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    PubMed Central

    Keenan, Trevor F.; Fisher, Joshua B.; Richardson, Andrew D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter

    2016-01-01

    The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks. PMID:27114518

  20. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis.

    PubMed

    Zhang, Haiwen; Zhu, Huifen; Pan, Yajun; Yu, Yuexuan; Luan, Sheng; Li, Legong

    2014-10-01

    Abscisic acid (ABA) regulates numerous physiological and developmental processes in plants. Recent studies identify intracellular ABA receptors, implicating the transport of ABA across cell membranes as crucial for ABA sensing and response. Here, we report that a DTX/Multidrug and Toxic Compound Extrusion (MATE) family member in Arabidopsis thaliana, AtDTX50, functions as an ABA efflux transporter. When expressed heterologously in both an Escherichia coli strain and Xenopus oocyte cells, AtDTX50 was found to facilitate ABA efflux. Furthermore, dtx50 mutant mesophyll cells preloaded with ABA released less ABA compared with the wild-type (WT). The AtDTX50 gene was expressed mainly in the vascular tissues and guard cells and its expression was strongly up-regulated by exogenous ABA. The AtDTX50::GFP fusion protein was localized predominantly to the plasma membrane. The dtx50 mutant plants were observed to be more sensitive to ABA in growth inhibition. In addition, compared with the WT, dtx50 mutant plants were more tolerant to drought with lower stomatal conductance, consistent with its function as an ABA efflux carrier in guard cells. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  1. Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ18O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25355868

  2. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    PubMed Central

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; Harding, Scott A.

    2016-01-01

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability. PMID:27641356

  3. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.

    PubMed

    Xue, Liang-Jiao; Frost, Christopher J; Tsai, Chung-Jui; Harding, Scott A

    2016-09-19

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.

  4. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.

    PubMed

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.

  5. F-Box Protein DOR Functions As a Novel Inhibitory Factor for Abscisic Acid-Induced Stomatal Closure under Drought Stress in Arabidopsis1[C][W

    PubMed Central

    Zhang, Yu'e; Xu, Wenying; Li, Zhonghui; Deng, Xing Wang; Wu, Weihua; Xue, Yongbiao

    2008-01-01

    Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S2 and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dα1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dα1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress. PMID:18835996

  6. A novel zinc-finger HIT protein with an additional PAPA-1-like region from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought and salt stresses tolerance.

    PubMed

    Li, Xiao-Lan; Hu, Yu-Xin; Yang, Xing; Yu, Xiao-Dong; Li, Qiu-Li

    2014-12-01

    Zinc-finger HIT belongs to the cross-brace zinc finger protein family and is involved in the regulation of plant defense and stress responses. In this study, we cloned a full-length zinc-finger HIT gene (1,377 bp) named SlPAPA1 using polymerase chain reaction from Suaeda liaotungensis K. and investigated its function by overexpression in transgenic Arabidopsis. SlPAPA1 contains a zinc-finger HIT domain and a Pim-1-associated protein-1 (PAP-1)-associated protein-1-like (PAPA-1-like) conserved region. Its expression in S. liaotungensis was induced by drought, high-salt, and cold (4 °C) stresses and by abscisic acid (ABA). Subcellular localization experiments in onion epidermal cells indicated that SlPAPA1 is localized in the nucleus. Yeast-one hybrid assays showed that SlPAPA1 functions as a transcriptional activator. SlPAPA1 transgenic Arabidopsis displayed a higher survival ratio and lower rate of water loss under drought stress; a higher germination ratio, higher survival ratio, and lower root inhibition rate under salt stress; and a lower germination ratio and root inhibition rate under ABA treatment, compared with wild-type Arabidopsis. These results suggested that SlPAPA1 functions as a stress-responsive zinc-finger HIT protein involved in the ABA-dependent signaling pathway and may have potential applications in transgenic breeding to enhance crops abiotic stress tolerances.

  7. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple

    PubMed Central

    Tan, Yanxiao; Li, Mingjun; Yang, Yingli; Sun, Xun; Wang, Na; Liang, Bowen; Ma, Fengwang

    2017-01-01

    Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress. PMID:28174579

  8. Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance

    PubMed Central

    Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang

    2014-01-01

    The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623

  9. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees.

    PubMed

    Adams, Henry D; Collins, Adam D; Briggs, Samuel P; Vennetier, Michel; Dickman, L Turin; Sevanto, Sanna A; Garcia-Forner, Núria; Powers, Heath H; McDowell, Nate G

    2015-11-01

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. © 2015 John Wiley & Sons Ltd.

  10. Reduced transpiration response to precipitation pulses precedes mortality in a piñon-juniper woodland subject to prolonged drought.

    PubMed

    Plaut, Jennifer A; Wadsworth, W Duncan; Pangle, Robert; Yepez, Enrico A; McDowell, Nate G; Pockman, William T

    2013-10-01

    Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress.

    PubMed

    Yin, Mingzhu; Wang, Yanping; Zhang, Lihua; Li, Jinzhu; Quan, Wenli; Yang, Li; Wang, Qingfeng; Chan, Zhulong

    2017-05-17

    Environmental stress poses a global threat to plant growth and reproduction, especially drought stress. Zinc finger proteins comprise a family of transcription factors that play essential roles in response to various abiotic stresses. Here, we found that ZAT18 (At3g53600), a nuclear C2H2 zinc finger protein, was transcriptionally induced by dehydration stress. Overexpression (OE) of ZAT18 in Arabidopsis improved drought tolerance while mutation of ZAT18 resulted in decreased plant tolerance to drought stress. ZAT18 was preferentially expressed in stems, siliques, and vegetative rosette leaves. Subcellular location results revealed that ZAT18 protein was predominantly localized in the nucleus. ZAT18 OE plants exhibited less leaf water loss, lower content of reactive oxygen species (ROS), higher leaf water content, and higher antioxidant enzyme activities after drought treatment when compared with the wild type (WT). RNA sequencing analysis showed that 423 and 561 genes were transcriptionally modulated by the ZAT18 transgene before and after drought treatment, respectively. Pathway enrichment analysis indicated that hormone metabolism, stress, and signaling were over-represented in ZAT18 OE lines. Several stress-responsive genes including COR47, ERD7, LEA6, and RAS1, and hormone signaling transduction-related genes including JAZ7 and PYL5 were identified as putative target genes of ZAT18. Taken together, ZAT18 functions as a positive regulator and plays a crucial role in the plant response to drought stress. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.

    PubMed

    Lee, Sang Sook; Park, Hyun Ji; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Luan, Sheng; Cho, Hye Sun

    2015-10-01

    Cyclophilin 18-2 (CYP18-2) genes, homologues of human peptidyl-prolyl isomerase-like 1 (PPiL1), are conserved across multicellular organisms and Schizosaccharomyces pombe. Although PPiL1 is known to interact with ski-interacting protein (SKIP), a transcriptional co-regulator and spliceosomal component, there have been no functional analyses of PPiL1 homologues in plants. Rice cyclophilin 18-2 (OsCYP18-2) bound directly to amino acids 56-95 of OsSKIP and its binding was independent of cyclosporin A, a cyclophilin-binding drug. Moreover, OsCYP18-2 exhibited PPIase activity regardless of its interaction with OsSKIP. Therefore, the binding site for OsCYP18-2's interaction with SKIP was distinct from the PPIase active site. OsCYP18-2's interaction with SKIP full-length protein enabled OsCYP18-2's translocation from the cytoplasm into the nucleus and AtSKIP interacted in planta with both AtCYP18-2 and OsCYP18-2. Drought and salt stress induced similar expression of OsCYP18-2 and OsSKIP. Overexpression of OsCYP18-2 in transgenic rice and Arabidopsis thaliana plants enhanced drought tolerance and altered expression and pre-mRNA splicing patterns of stress-related genes in Arabidopsis under drought conditions. Furthermore, OsCYP18-2 caused transcriptional activation with/without OsSKIP in the GAL4 system of yeast; thus the OsSKIP-OsCYP18-2 interaction has an important role in the transcriptional and post-transcriptional regulation of stress-related genes and increases tolerance to drought stress. © 2015 John Wiley & Sons Ltd.

  13. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Chen, Honglin; Liu, Liping; Wang, Lixia; Wang, Suhua; Cheng, Xuzhen

    2016-03-01

    Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant.

  14. The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis.

    PubMed

    Meng, Lai-Sheng; Wang, Zhi-Bo; Yao, Shun-Qiao; Liu, Aizhong

    2015-11-01

    Seedlings of large-seeded plants are considered to be able to withstand abiotic stresses efficiently. The molecular mechanisms that underlie the involved signaling crosstalk between the large-seeded trait and abiotic tolerance are, however, largely unknown. Here, we demonstrate the molecular link that integrates plant abscisic acid (ABA) responses to drought stress into the regulation of seed mass. Both loss-of-function mutants of the Auxin Response Factor 2 (ARF2 encoding a transcription factor) and lines overexpressing AINTEGUMENTA (ANT; a transcription factor) under the 35S promoter exhibited large seed and drought-tolerant phenotypes as a result of abnormal ABA-auxin crosstalk signaling pathways in Arabidopsis. The target gene COLD-REGULATED15A (COR15a) was identified as participating in the regulation of seed development with ABA signaling through a negative regulation mechanism that is mediated by ANT. The molecular and genetic evidence presented indicate that ARF2, ANT and COR15A form an ABA-mediated signaling pathway to link modulation of seed mass with drought tolerance. These observations indicate that the ARF2 transcription factor serves as a molecular link that integrates plant ABA responses to drought stress into the regulation of seed mass. © 2015. Published by The Company of Biologists Ltd.

  15. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    SciTech Connect

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; Vennetier, Michel; Dickman, L. Turin; Sevanto, Sanna A.; Garcia-Forner, Núria; Powers, Heath H.; McDowell, Nate G.

    2015-09-22

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination of both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.

  16. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    DOE PAGES

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; ...

    2015-09-22

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination ofmore » both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.« less

  17. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection

    PubMed Central

    Richard, François; Bowden, Laura; Morison, James I.L.; Mullineaux, Philip M.

    2013-01-01

    Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H2O2 signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx. PMID:23828547

  18. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana

    PubMed Central

    Riboni, Matteo; Robustelli Test, Alice; Galbiati, Massimo; Tonelli, Chiara; Conti, Lucio

    2016-01-01

    One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regulation of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS (CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that allows plants to co-ordinate the onset of the reproductive phase according to the available water resources. PMID:27733440

  19. Genetic Analysis of Ca2+ Priming in Arabidopsis Guard Cell Stomatal Closure in Response to the Drought Hormone Abscisic Acid

    SciTech Connect

    Stephan, Aaron B.

    2014-11-01

    A primary objective of modern agriculture and biofuel production is to utilize arable land to its fullest potential. However, sub-optimal growing conditions—arising from abiotic stresses such as drought, soil salinity, low humidity, cold, and heat—reduce crop yield and quality. Optimal yield under both stressed and non-stressed conditions requires the plant to activate coping mechanisms at a level commensurate with the severity of the drought stress. The osmotic sensors and associated regulatory mechanisms that initiate drought- and salt-tolerance responses in plants are largely unknown. This research aimed to identify and characterize these initial sensory components.

  20. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis.

    PubMed

    Ren, Xiaozhi; Chen, Zhizhong; Liu, Yue; Zhang, Hairong; Zhang, Min; Liu, Qian; Hong, Xuhui; Zhu, Jian-Kang; Gong, Zhizhong

    2010-08-01

    The biological functions of WRKY transcription factors in plants have been widely studied, but their roles in abiotic stress are still not well understood. We isolated an ABA overly sensitive mutant, abo3, which is disrupted by a T-DNA insertion in At1g66600 encoding a WRKY transcription factor AtWRKY63. The mutant was hypersensitive to ABA in both seedling establishment and seedling growth. However, stomatal closure was less sensitive to ABA, and the abo3 mutant was less drought tolerant than the wild type. Northern blot analysis indicated that the expression of the ABA-responsive transcription factor ABF2/AREB1 was markedly lower in the abo3 mutant than in the wild type. The abo3 mutation also reduced the expression of stress-inducible genes RD29A and COR47, especially early during ABA treatment. ABO3 is able to bind the W-box in the promoter of ABF2in vitro. These results uncover an important role for a WRKY transcription factor in plant responses to ABA and drought stress. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  1. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis

    PubMed Central

    Ren, Xiaozhi; Chen, Zhizhong; Liu, Yue; Zhang, Hairong; Zhang, Min; Liu, Qian; Hong, Xuhui; Zhu, Jian-Kang; Gong, Zhizhong

    2011-01-01

    SUMMARY The biological functions of WRKY transcription factors in plants have been widely studied, but their roles in abiotic stress are still not well understood. We isolated an ABA overly sensitive mutant, abo3, which is disrupted by a T-DNA insertion in At1g66600 encoding a WRKY transcription factor AtWRKY63. The mutant was hypersensitive to ABA in both seedling establishment and seedling growth. However, stomatal closure was less sensitive to ABA, and the abo3 mutant was less drought tolerant than the wild type. Northern blot analysis indicated that the expression of the ABA-responsive transcription factor ABF2/AREB1 was markedly lower in the abo3 mutant than in the wild type. The abo3 mutation also reduced the expression of stress-inducible genes RD29A and COR47, especially early during ABA treatment. ABO3 is able to bind the W-box in the promoter of ABF2 in vitro. These results uncover an important role for a WRKY transcription factor in plant responses to ABA and drought stress. PMID:20487379

  2. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses.

    PubMed

    Li, Weiqiang; Nguyen, Kien Huu; Watanabe, Yasuko; Yamaguchi, Shinjiro; Tran, Lam-Son Phan

    2016-09-16

    Previous studies in Arabidopsis reported that the MAX2 (more axillary growth 2) gene is a component of the strigolactone (SL) signaling pathway, which regulates a wide range of biological processes, from plant growth and development to environmental stress responses. Orobanche aegyptiaca is a harmful parasitic plant for many economically important crops. Seed germination of O. aegyptiaca is very sensitive to SLs, suggesting that O. aegyptiaca may contain components of the SL signaling pathway. To investigate this hypothesis, we identified and cloned a MAX2 ortholog from O. aegyptiaca for complementation analyses using the Arabidopsis Atmax2 mutant. The so-called OaMAX2 gene could rescue phenotypes of the Atmax2 mutant in various tested developmental aspects, including seed germination, shoot branching, leaf senescence and growth and development of hypocotyl, root hair, primary root and lateral root. More importantly, OaMAX2 could enhance the drought tolerance of Atmax2 mutant, suggesting its ability to restore the drought-tolerant phenotype of mutant plants defected in AtMAX2 function. Thus, this study provides genetic evidence that the functions of the MAX2 orthologs, and perhaps the MAX2 signaling pathways, are conserved in parasitic and non-parasitic plants. Furthermore, the results of our study enable us to develop a strategy to fight against parasitic plants by suppressing the MAX signaling, which ultimately leads to enhanced productivity of crop plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica.

    PubMed

    Zhou, Mei-Liang; Ma, Jiang-Tao; Zhao, Yang-Min; Wei, Ya-Hui; Tang, Yi-Xiong; Wu, Yan-Min

    2012-09-10

    A novel DREB (dehydration-responsive element binding) gene, designated PeDREB2a, was isolated from the desert-grown tree, Populus euphratica Oliv. PeDREB2a is classified into the A-5 group of DREB subfamily based on multiple sequence alignment and phylogenetic characterization. Using semi-quantitative RT-PCR, we found that the PeDREB2a was greatly induced by drought, NaCl, low temperature, 1-naphthaleneacetic acid (NAA), 6-benzyl aminopurine (6-BA) and gibberellic acid (GA3) treatments in P. euphratica seedling. Yeast transactivity assay demonstrated that PeDREB2a gene encodes a transcription activator. Overexpression of PeDREB2a under the stress-inducible rd29A promotor in transgenic Arabidopsis and Lotus corniculatus forage plants resulted in enhanced tolerance to salt and drought stresses. The PeDREB2a overexpressing Arabidopsis lines showed higher root length and plant height and had elevated levels of soluble sugars and lower levels of malondialdehyde under stress conditions compared to control plants. The results revealed that PeDREB2a play an essential role as a DREB transcription factor in regulation of stress-responsive signaling in P. euphratica.

  4. Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.

    PubMed

    Guo, Shanli; Yin, Haibo; Zhang, Xia; Zhao, Fengyun; Li, Pinghua; Chen, Shihua; Zhao, Yanxiu; Zhang, Hui

    2006-01-01

    The chenopodiaceae Suaeda salsa L. is a leaf succulent euhalophyte. Shoots of the S. salsa are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. S. salsa does not have salt glands or salt bladders on its leaves. Thus, this plant must compartmentalize the toxic Na(+) in the vacuoles. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole. In this work, we isolated the cDNA of the vacuolar membrane proton-translocating inorganic pyrophosphatase (H(+) -PPase) from S. salsa. The SsVP cDNA contains an uninterrupted open reading frame of 2292 bp, coding for a polypeptide of 764 amino acids. Northern blotting analysis showed that SsVP was induced in salinity treated leaves. The activities of both the V-ATPase and the V-PPase in Arabidopsis overexpressing SsVP-2 is higher markedly than in wild-type plant under 200 mM NaCl and drought stresses. The Overexpression of SsVP can increase salt and drought tolerance of transgenic Arabidopsis.

  5. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    PubMed Central

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  6. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress[OPEN

    PubMed Central

    Wang, Cun; Zhang, Wen-Zheng

    2015-01-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca2+-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca2+ inhibition of inward K+ currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  7. Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis

    PubMed Central

    Cheng, Han; Chen, Xiang; Zhu, Jianshun; Huang, Huasun

    2016-01-01

    Rubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genome sequencing and RNA-seq projects produced huge amount of sequence data, which greatly facilitated the functional genomics study. However, the characterization of individual functional gene is in urgent demands, especially for those involved in stress resistance. Here we identified and characterized the rubber tree gene ErbB-3 binding protein 1, which undergoes changes in expression in response to cold, drought stress and ABA treatment. HbEBP1 overexpression (OE) in Arabidopsis increased organ size, facilitated root growth and increased adult leaf number by delaying the vegetative-to-reproductive transition. In addition, HbEBP1 OE enhanced the resistance of the Arabidopsis plants to freezing and drought stress, demonstrating that this gene participates in the regulation of abiotic stress resistance. RD29a, RD22 and CYCD3;1 expression was also greatly enhanced by HbEBP1 OE, which explains its regulatory roles in organ size and stress resistance. The regulation of drought stress resistance is a novel function identified in plant EBP1 genes, which expands our understanding of the roles of EBP1 gene in response to the environment. Our results provide information that may lead to the use of HbEBP1 in genetically engineered crops to increase both biomass and abiotic stress resistance. PMID:27895658

  8. Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis.

    PubMed

    Cheng, Han; Chen, Xiang; Zhu, Jianshun; Huang, Huasun

    2016-01-01

    Rubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genome sequencing and RNA-seq projects produced huge amount of sequence data, which greatly facilitated the functional genomics study. However, the characterization of individual functional gene is in urgent demands, especially for those involved in stress resistance. Here we identified and characterized the rubber tree gene ErbB-3 binding protein 1, which undergoes changes in expression in response to cold, drought stress and ABA treatment. HbEBP1 overexpression (OE) in Arabidopsis increased organ size, facilitated root growth and increased adult leaf number by delaying the vegetative-to-reproductive transition. In addition, HbEBP1 OE enhanced the resistance of the Arabidopsis plants to freezing and drought stress, demonstrating that this gene participates in the regulation of abiotic stress resistance. RD29a, RD22 and CYCD3;1 expression was also greatly enhanced by HbEBP1 OE, which explains its regulatory roles in organ size and stress resistance. The regulation of drought stress resistance is a novel function identified in plant EBP1 genes, which expands our understanding of the roles of EBP1 gene in response to the environment. Our results provide information that may lead to the use of HbEBP1 in genetically engineered crops to increase both biomass and abiotic stress resistance.

  9. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  10. Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in Arabidopsis[C][W][OA

    PubMed Central

    Estavillo, Gonzalo M.; Crisp, Peter A.; Pornsiriwong, Wannarat; Wirtz, Markus; Collinge, Derek; Carrie, Chris; Giraud, Estelle; Whelan, James; David, Pascale; Javot, Hélène; Brearley, Charles; Hell, Rüdiger; Marin, Elena; Pogson, Barry J.

    2011-01-01

    Compartmentation of the eukaryotic cell requires a complex set of subcellular messages, including multiple retrograde signals from the chloroplast and mitochondria to the nucleus, to regulate gene expression. Here, we propose that one such signal is a phosphonucleotide (3′-phosphoadenosine 5′-phosphate [PAP]), which accumulates in Arabidopsis thaliana in response to drought and high light (HL) stress and that the enzyme SAL1 regulates its levels by dephosphorylating PAP to AMP. SAL1 accumulates in chloroplasts and mitochondria but not in the cytosol. sal1 mutants accumulate 20-fold more PAP without a marked change in inositol phosphate levels, demonstrating that PAP is a primary in vivo substrate. Significantly, transgenic targeting of SAL1 to either the nucleus or chloroplast of sal1 mutants lowers the total PAP levels and expression of the HL-inducible ASCORBATE PEROXIDASE2 gene. This indicates that PAP must be able to move between cellular compartments. The mode of action for PAP could be inhibition of 5′ to 3′ exoribonucleases (XRNs), as SAL1 and the nuclear XRNs modulate the expression of a similar subset of HL and drought-inducible genes, sal1 mutants accumulate XRN substrates, and PAP can inhibit yeast (Saccharomyces cerevisiae) XRNs. We propose a SAL1-PAP retrograde pathway that can alter nuclear gene expression during HL and drought stress. PMID:22128124

  11. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis.

    PubMed

    Wang, Wen-Hua; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Han, Ai-Dong; Simon, Martin; Dong, Xue-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2014-01-01

    Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.

  12. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism.

    PubMed

    Liu, Wenwen; Tai, Huanhuan; Li, Songsong; Gao, Wei; Zhao, Meng; Xie, Chuanxiao; Li, Wen-Xue

    2014-03-01

    • Although proteins in the basic helix-loop-helix (bHLH) family are universal transcription factors in eukaryotes, the biological roles of most bHLH family members are not well understood in plants. • The Arabidopsis thaliana bHLH122 transcripts were strongly induced by drought, NaCl and osmotic stresses, but not by ABA treatment. Promoter::GUS analysis showed that bHLH122 was highly expressed in vascular tissues and guard cells. Compared with wild-type (WT) plants, transgenic plants overexpressing bHLH122 displayed greater resistance to drought, NaCl and osmotic stresses. In contrast, the bhlh122 loss-of-function mutant was more sensitive to NaCl and osmotic stresses than were WT plants. • Microarray analysis indicated that bHLH122 was important for the expression of a number of abiotic stress-responsive genes. In electrophoretic mobility shift assay and chromatin immunoprecipitation assays, bHLH122 could bind directly to the G-box/E-box cis-elements in the CYP707A3 promoter, and repress its expression. Further, up-regulation of bHLH122 substantially increased cellular ABA levels. • These results suggest that bHLH122 functions as a positive regulator of drought, NaCl and osmotic signaling. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Constitutive expression of CaSRP1, a hot pepper small rubber particle protein homolog, resulted in fast growth and improved drought tolerance in transgenic Arabidopsis plants.

    PubMed

    Kim, Eun Yu; Seo, Young Sam; Lee, Hanna; Kim, Woo Taek

    2010-06-01

    Transient and long-term shortages of fresh water are major adverse environmental factors that cause dramatic reductions in crop production and distribution globally. In this study, we isolated a full-length CaSRP1 (Capsicum annuum stress-related protein 1) cDNA, which was rapidly induced by dehydration in hot pepper plants. The predicted CaSRP1 protein sequence exhibited significant amino acid identity to putative stress-related proteins and the small rubber particle protein (SRPP) found in rubber trees (Hevea brasiliensis). To study the cellular functions of CaSRP1, transgenic Arabidopsis plants (35S:CaSRP1) that constitutively expressed the CaSRP1 gene were constructed. Overexpression of CaSRP1 resulted in enhanced root and shoot growth and earlier bolting in the transgenic plants relative to wild-type plants. In addition, 35S:CaSRP1 overexpressors exhibited enhanced tolerance to drought stress as compared to the control plants. These results suggest that CaSRP1 plays dual functions as a positive factor for tissue growth and development and for drought-defensive responses. A possible cellular function of SRPP homologs in non-rubber-producing plants in relation to drought stress tolerance is discussed.

  14. A drought prediction and monitoring system to reduce drought vulnerability and improve water management in Washington State

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Steinemann, A.; Lettenmaier, D. P.

    2009-12-01

    Water resources in Washington State are mostly derived from spring and summer melting of mountain snowpacks that accumulate in the previous winter. As the climate warms, the natural reservoir that is provided by mountain snowpacks is likely to decline, and recent studies have shown that the state’s water resources are particularly vulnerable to climate variability and climate change for this reason. Better use of weather and climate forecasts in the decision-making processes is one strategy for adapting to these ongoing changes in the physical climate. Major strides have been made toward improving climate forecasts, particularly in the Pacific Northwest where the ENSO signal is strong. The NOAA Climate Prediction Center (CPC) provides seasonal climate outlooks over the United States. We examine the potential of these forecasts to provide useful information for Washington State under drought conditions by using CPC forecasts to force the Variable Infiltration Capacity (VIC) land surface model (LSM) based on a Drought Monitoring and Prediction System (DMPS) developed at the University of Washington. This system uses the VIC model to generate the initial hydrologic state, and the CPC seasonal climate ensembles to provide hydrologic assessments of drought conditions up to a lead -time of 6 months. The hydrologic initial state is generated by forcing the model with observed precipitation and temperature forcings. The system uses the Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Soil Moisture Percentile (SMP) based on LSM derived soil moisture (SM), runoff over the state as indices for drought characterization. We describe the implementation of DMPS and its evaluation in terms of drought prediction skill over the period 1995-2007 for which CPC forecast archives are available.

  15. Market Anatomy of a Drought: Modeling Barge and Corn Market Adaptation to Reduced Rainfall and Low Mississippi River Water Levels During the 2012 Midwestern U.S. Drought

    NASA Astrophysics Data System (ADS)

    Foster, B.; Characklis, G. W.; Thurman, W. N.

    2015-12-01

    In mid 2012, a severe drought swept across the Midwest, the heartland of corn production in the U.S. When the drought persisted into late Fall, corn markets were affected in two distinct ways: (1) reduced rainfall led to projected and actual corn yields that were lower than expected and (2) navigation restrictions, a result of low water levels on the Mississippi River, disrupted barge transportation, the most common and inexpensive mode for moving corn to many markets. Both (1) and (2) led to significant financial losses, but due to the complexity of the economic system and the coincidence of two different market impacts, the size of the role that low water levels played wass unclear. This is important, as losses related to low water levels are used to justify substantial investments in dredging activities on the Mississippi River. An "engineering" model of the system, suggests that low water levels should drive large increases in barge and corn prices, while some econometric models suggest that water levels explain very little of the changes in barge rates and corn prices. Employing a model that integrates both the engineering and economic elements of the system indicates that corn prices and barge rates during the drought display spatial and temporal behavior that is difficult to explain using either the engineering or econometric models alone. This integrated model accounts for geographic and temporal variations in drought impacts and identifies unique market responses to four different sets of conditions over the drought's length. Results illustrate that corn and barge price responses during the drought were a product of comingled, but distinct, reactions to both supply changes and navigation disruptions. Results also provide a more structured description of how the economic system that governs corn allocation interacts with the Mississippi River system during drought. As both public and private parties discuss potential managerial or infrastructural methods

  16. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates.

    PubMed

    Caldeira, Maria C; Lecomte, Xavier; David, Teresa S; Pinto, Joaquim G; Bugalho, Miguel N; Werner, Christiane

    2015-10-13

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  17. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    PubMed Central

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-01-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs. PMID:26461978

  18. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  19. Extreme Drought Event and Shrub Invasion Reduce Oak Trees Functioning and Resilience on Water-Limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Caldeira, M. C.; Lobo-do-Vale, R.; Lecomte, X.; David, T. S.; Pinto, J. G.; Bugalho, M. N.; Werner, C.

    2016-12-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event in a Mediterranean oak woodland, we show that the combination of native shrub invasion and extreme drought reduced ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during four years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined more sharply (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year (2011). Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species coupled with the projected recurrent extreme droughts will cause critical drought tolerance thresholds of trees to be overcome, thus increasing the probability of tree mortality.

  20. Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions

    PubMed Central

    Mishra, Neelam; Sun, Li; Zhu, Xunlu; Smith, Jennifer; Prakash Srivastava, Anurag; Yang, Xiaojie; Pehlivan, Necla; Esmaeili, Nardana; Luo, Hong; Shen, Guoxin; Jones, Don; Auld, Dick; Burke, John

    2017-01-01

    The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems. PMID:28340002

  1. Summer drought leads to reduced net CO2 uptake and CH4 fluxes in a New Zealand peatland

    NASA Astrophysics Data System (ADS)

    Goodrich, J. P.; Campbell, D.; Schipper, L. A.; Clearwater, M.

    2013-12-01

    Global climate change is likely to influence the frequency and severity of drought events in many regions. This has implications for changing carbon (C) storage in peatland ecosystems, which provide an important global sink for atmospheric C. However, the relative impacts on ecosystem respiration (ER), gross primary productivity (GPP), and CH4 efflux are not well understood and may alter the C balance differently depending on peatland type, vegetation, and timing of drought. We measured CO2 and CH4 fluxes using eddy covariance in a New Zealand peatland during two contrasting years capturing the impact of an historically extreme drought on these two major components of the net ecosystem C balance. Kopuatai bog is a 96 km2 ombrotrophic raised bog dominated by the endemic peat-forming rush species, Empodisma robustum. The drought impacted the growing season period from January to May, 2013. Net ecosystem exchange of CO2 (NEE) during the drought was approximately half that of the previous relatively wet summer. From January 1 to May 1, cumulative NEE was -133.3 gC m-2 in 2012 and -66.7 gC m-2 in 2013. Increases in ER during the drought were responsible for up to 88% of the difference in NEE, while differences in GPP were comparatively small. For April, mean daily CH4 fluxes during the drought (25 mgCH4 m-2 day-1) reduced to approximately one third of the mean flux measured in April 2012 (80 mgCH4 m-2 day-1). CH4 fluxes remained low for several months following water table recharge, suggesting a substantial lag in the recovery of the methanogenic population. Despite the magnitude of respiration enhancement, the relatively consistent GPP and reduced CH4 flux led to net storage of C during drought, albeit significantly smaller than the previous wet year.

  2. Extreme drought event and shrub invasion combine to reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria; Lecomte, Xavier; David, Teresa; Pinto, Joaquim; Bugalho, Miguel; Werner, Christiane

    2016-04-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience to extreme droughts. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that the native shrub invasion and extreme drought combined to reduce ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during three years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined much stronger (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year. Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species can combine with projected recurrent extreme droughts causing critical drought tolerance thresholds of trees to be overcome increasing the probability of tree mortality (Caldeira et.al. 2015

  3. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    DOE PAGES

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; ...

    2016-02-09

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria andmore » chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. Finally, we conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.« less

  4. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    PubMed Central

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; Stavoe, Andrea K.; Sinkler, Christopher A.; Brandizzi, Federica; Malmstrom, Carolyn M.; Osteryoung, Katherine W.

    2016-01-01

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1. PMID:26862170

  5. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment.

    PubMed

    Larkin, Robert M; Stefano, Giovanni; Ruckle, Michael E; Stavoe, Andrea K; Sinkler, Christopher A; Brandizzi, Federica; Malmstrom, Carolyn M; Osteryoung, Katherine W

    2016-02-23

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.

  6. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure.

    PubMed

    Kim, Yong-Min; Han, Yun-Jeong; Hwang, Ok-Jin; Lee, Si-Seok; Shin, Ah-Young; Kim, Soo Young; Kim, Jeong-Il

    2012-06-01

    Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.

  7. Elevated CO2 Reduced Floret Death in Wheat Under Warmer Average Temperatures and Terminal Drought

    PubMed Central

    Dias de Oliveira, Eduardo; Palta, Jairo A.; Bramley, Helen; Stefanova, Katia; Siddique, Kadambot H. M.

    2015-01-01

    Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables. PMID:26635837

  8. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought.

    PubMed

    Liu, Lixia; Hu, Xiaoli; Song, Jian; Zong, Xiaojuan; Li, Dapeng; Li, Dequan

    2009-03-15

    ZmPP2C (AY621066) is a protein phosphatase type-2c previously isolated from roots of Zea mays (LD9002). In this study, constitutive expression of ZmPP2C in Arabidopsis thaliana under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter decreased plant tolerance to salt and drought during seed germination and vegetative growth. When growing on media with NaCl or mannitol, the ZmPP2C-overexpressed plants displayed more severe damages, with weaker growth phenotypes corresponding to a series of physiological changes: lower net photosynthesis rate (Pn) and free proline content, higher malondialdehyde (MDA) level, higher relative membrane permeability (RMP), and water loss. Under these stress conditions, they also showed decreased transcription of the stress-related genes RD29A, RD29B, P5CS1, and P5CS2, and ABA-related genes ABI1 and ABI2. Further, the transgenic plants became less sensitive to abscisic acid (ABA). ZmPP2C over-expression significantly attenuated ABA inhibition on seed germination and root growth of the transgenic plants. These results demonstrate that ZmPP2C is involved in plant stress signal transduction, and ZmPP2C gene over-expression in Arabidopsis thaliana may be exploited to study its potential roles in stress-induced signaling pathway.

  9. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.

    PubMed

    Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi

    2016-05-01

    Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana.

    PubMed

    Urao, T; Katagiri, T; Mizoguchi, T; Yamaguchi-Shinozaki, K; Hayashida, N; Shinozaki, K

    1994-08-15

    Two cDNA clones, cATCDPK1 and cATCDPK2, encoding Ca(2+)-dependent, calmodulin-independent protein kinases (CDPK) were cloned from Arabidopsis thaliana and their nucleotide sequences were determined. Northern blot analysis indicated that the mRNAs corresponding to the ATCDPK1 and ATCDPK2 genes are rapidly induced by drought and high-salt stress but not by low-temperature stress or heat stress. Treatment of Arabidopsis plants with exogenous abscisic acid (ABA) had no effect on the induction of ATCDPK1 or ATCDPK2. These findings suggest that a change in the osmotic potential of the environment can serve as a trigger for the induction of ATCDPK1 and ATCDPK2. Putative proteins encoded by ATCDPK1 and ATCDPK2 which contain open reading frames of 1479 and 1488 bp, respectively, are designated ATCDPK1 and ATCDPK2 and show 52% identity at the amino acid sequence level. ATCDPK1 and ATCDPK2 exhibit significant similarity to a soybean CDPK (51% and 73%, respectively). Both proteins contain a catalytic domain that is typical of serine/threonine protein kinases and a regulatory domain that is homologous to the Ca(2+)-binding sites of calmodulin. Genomic Southern blot analysis suggests the existence of a few additional genes that are related to ATCDPK1 and ATCDPK2 in the Arabidopsis genome. The ATCDPK2 protein expressed in Escherichia coli was found to phosphorylate casein and myelin basic protein preferentially, relative to a histone substrate, and required Ca2+ for activation.

  11. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    PubMed Central

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  12. Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco[C][W][OA

    PubMed Central

    Werner, Tomáš; Nehnevajova, Erika; Köllmer, Ireen; Novák, Ondřej; Strnad, Miroslav; Krämer, Ute; Schmülling, Thomas

    2010-01-01

    Optimizing root system architecture can overcome yield limitations in crop plants caused by water or nutrient shortages. Classic breeding approaches are difficult because the trait is governed by many genes and is difficult to score. We generated transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants with enhanced root-specific degradation of the hormone cytokinin, a negative regulator of root growth. These transgenic plants form a larger root system, whereas growth and development of the shoot are similar. Elongation of the primary root, root branching, and root biomass formation were increased by up to 60% in transgenic lines, increasing the root-to-shoot ratio. We thus demonstrated that a single dominant gene could regulate a complex trait, root growth. Moreover, we showed that cytokinin regulates root growth in a largely organ-autonomous fashion that is consistent with its dual role as a hormone with both paracrine and long-distance activities. Transgenic plants had a higher survival rate after severe drought treatment. The accumulation of several elements, including S, P, Mn, Mg, Zn, as well as Cd from a contaminated soil, was significantly increased in shoots. Under conditions of sulfur or magnesium deficiency, leaf chlorophyll content was less affected in transgenic plants, demonstrating the physiological relevance of shoot element accumulation. Our approach might contribute to improve drought tolerance, nutrient efficiency, and nutrient content of crop plants. PMID:21148816

  13. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress.

    PubMed

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin; Cho, Seok Keun; Yang, Seong Wook; Kim, Woo Taek

    2016-01-01

    Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress.

  14. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    SciTech Connect

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; Randerson, James T.

    2016-08-29

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  15. Reduced Carbohydrate Availability Enhances the Susceptibility of Arabidopsis toward Colletotrichum higginsianum1[W][OA

    PubMed Central

    Engelsdorf, Timo; Horst, Robin J.; Pröls, Reinhard; Pröschel, Marlene; Dietz, Franziska; Hückelhoven, Ralph; Voll, Lars M.

    2013-01-01

    Colletotrichum higginsianum is a hemibiotrophic ascomycete fungus that is adapted to Arabidopsis (Arabidopsis thaliana). After breaching the host surface, the fungus establishes an initial biotrophic phase in the penetrated epidermis cell, before necrotrophic growth is initiated upon further host colonization. We observed that partitioning of major leaf carbohydrates was shifted in favor of sucrose and at the expense of starch during necrotrophic fungal growth. Arabidopsis mutants with impaired starch turnover were more susceptible toward C. higginsianum infection, exhibiting a strong negative correlation between diurnal carbohydrate accumulation and fungal proliferation for the tested genotypes. By altering the length of the light phase and employing additional genotypes impaired in nocturnal carbon mobilization, we revealed that reduced availability of carbon enhances susceptibility in the investigated pathosystem. Systematic starvation experiments resulted in two important findings. First, we showed that carbohydrate supply by the host is dispensable during biotrophic growth of C. higginsianum, while carbon deficiency was most harmful to the host during the necrotrophic colonization phase. Compared with the wild type, the increases in the total salicylic acid pool and camalexin accumulation were reduced in starch-free mutants at late interaction stages, while an increased ratio of free to total salicylic acid did not convey elevated pathogenesis-related gene expression in starch-free mutants. These observations suggest that reduced carbon availability dampens induced defense responses. In contrast, starch-free mutants were more resistant toward the fungal biotroph Erysiphe cruciferarum, indicating that reduced carbohydrate availability influences susceptibility differently in the interaction with the investigated hemibiotrophic and biotrophic fungal pathogens. PMID:23487433

  16. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE PAGES

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; ...

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductionsmore » in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  17. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  18. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake

    PubMed Central

    Sharma, Parbodh C.; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C.T.; Yadav, Rattan S.

    2014-01-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na+ was recorded in roots. Further, the Na+ concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m−1 within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na+ ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na+ concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage affected the

  19. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake.

    PubMed

    Sharma, Parbodh C; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C T; Yadav, Rattan S

    2014-06-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na(+) was recorded in roots. Further, the Na(+) concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m(-1) within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na(+) ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na(+) concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage

  20. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Severe Droughts Reduce Estuarine Primary Productivity with Cascading Effects on Higher Trophic Levels

    EPA Science Inventory

    Using a 10 year time-series dataset, we analyzed the effects of two severe droughts on water quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 4...

  2. Severe Droughts Reduce Estuarine Primary Productivity with Cascading Effects on Higher Trophic Levels

    EPA Science Inventory

    Using a 10 year time-series dataset, we analyzed the effects of two severe droughts on water quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 4...

  3. Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex.

    PubMed

    Noriega, Arturo; Tocino, Angel; Cervantes, Emilio

    2009-03-15

    Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.

  4. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    PubMed

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.

  5. Reduced drought tolerance during domestication and the evolution of weediness results from tolerance-growth trade-offs

    PubMed Central

    Koziol, E. K.; Rieseberg, L.H.; Kane, Nolan; Bever, J.D.

    2012-01-01

    The increased reproductive potential, size, shoot allocation, and growth rate of weedy plants may result from reduced resource allocation to other aspects of plant growth and defense. To investigate whether changes in resource allocation occurred during domestication or the evolution of weediness, we compared the mycorrhizal responsiveness, growth, and drought tolerance of nine native ruderal, nine agriculturally weedy (four US weedy and five Australian weedy), and fourteen domesticated populations (eight ancient landraces and six improved cultivars) of the common sunflower (Helianthus annuus). Domesticated sunflower cultivars were less drought tolerant, but had higher plant growth and fecundity and coarser roots than wild populations. There were no changes in level of drought tolerance between improved cultivars and ancient landraces plants, but there was an increase in allocation to flowers with recent selection. Weedy populations were intermediate between domesticated cultivars and native ruderal populations for plant growth rate, root architecture and drought tolerance. Weedy populations benefited most from mycorrhizal inoculation by having fewer wilted leaves and wetter soil. Overall, we found that trade-offs between drought tolerance and several aspects of plant growth, including growth rate, allocation to flowering and root architecture, govern evolution during sunflower domestication and the invasion of disturbed habitat. PMID:23206138

  6. Reduced drought tolerance during domestication and the evolution of weediness results from tolerance-growth trade-offs.

    PubMed

    Koziol, Liz; Rieseberg, Loren H; Kane, Nolan; Bever, James D

    2012-12-01

    The increased reproductive potential, size, shoot allocation, and growth rate of weedy plants may result from reduced resource allocation to other aspects of plant growth and defense. To investigate whether changes in resource allocation occurred during domestication or the evolution of weediness, we compared the mycorrhizal responsiveness, growth, and drought tolerance of nine native ruderal, nine agriculturally weedy (four U.S. weedy and five Australian weedy), and 14 domesticated populations (eight ancient landraces and six improved cultivars) of the common sunflower (Helianthus annuus). Domesticated sunflower cultivars were less drought tolerant, but had higher plant growth and fecundity and coarser roots than wild populations. There were no changes in level of drought tolerance between improved cultivars and ancient landrace plants, but there was an increase in allocation to flowers with recent selection. Weedy populations were intermediate between domesticated cultivars and native ruderal populations for plant growth rate, root architecture, and drought tolerance. Weedy populations benefited most from mycorrhizal inoculation by having fewer wilted leaves and wetter soil. Overall, we found that trade-offs between drought tolerance and several aspects of plant growth, including growth rate, allocation to flowering, and root architecture, govern evolution during sunflower domestication and the invasion of disturbed habitat. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  7. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis

    PubMed Central

    Yang, Shuhua

    2013-01-01

    Several lipid-transfer proteins were reported to modulate the plant response to biotic stress; however, whether lipid-transfer proteins are also involved in abiotic stress remains unknown. This study characterized the function of a lipid-transfer protein, LTP3, during freezing and drought stress. LTP3 was expressed ubiquitously and the LTP3 protein was localized to the cytoplasm. A biochemical study showed that LTP3 was able to bind to lipids. Overexpression of LTP3 resulted in constitutively enhanced freezing tolerance without affecting the expression of CBFs and their target COR genes. Further analyses showed that LTP3 was positively regulated by MYB96 via the direct binding to the LTP3 promoter; consistently, transgenic plants overexpressing MYB96 exhibited enhanced freezing tolerance. This study also found that the loss-of-function mutant ltp3 was sensitive to drought stress, whereas overexpressing plants were drought tolerant, phenotypes reminiscent of myb96 mutant plants and MYB96-overexpressing plants. Taken together, these results demonstrate that LTP3 acts as a target of MYB96 to be involved in plant tolerance to freezing and drought stress. PMID:23404903

  8. Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1

    PubMed Central

    2014-01-01

    Background The pepper fruit is the second most consumed vegetable worldwide. However, low temperature affects the vegetative development and reproduction of the pepper, resulting in economic losses. To identify cold-related genes regulated by abscisic acid (ABA) in pepper seedlings, cDNA representational difference analysis was previously performed using a suppression subtractive hybridization method. One of the genes cloned from the subtraction was homologous to Solanum tuberosum MBF1 (StMBF1) encoding the coactivator multiprotein bridging factor 1. Here, we have characterized this StMBF1 homolog (named CaMBF1) from Capsicum annuum and investigated its role in abiotic stress tolerance. Results Tissue expression profile analysis using quantitative RT-PCR showed that CaMBF1 was expressed in all tested tissues, and high-level expression was detected in the flowers and seeds. The expression of CaMBF1 in pepper seedlings was dramatically suppressed by exogenously supplied salicylic acid, high salt, osmotic and heavy metal stresses. Constitutive overexpression of CaMBF1 in Arabidopsis aggravated the visible symptoms of leaf damage and the electrolyte leakage of cell damage caused by cold stress in seedlings. Furthermore, the expression of RD29A, ERD15, KIN1, and RD22 in the transgenic plants was lower than that in the wild-type plants. On the other hand, seed germination, cotyledon greening and lateral root formation were more severely influenced by salt stress in transgenic lines compared with wild-type plants, indicating that CaMBF1-overexpressing Arabidopsis plants were hypersensitive to salt stress. Conclusions Overexpression of CaMBF1 in Arabidopsis displayed reduced tolerance to cold and high salt stress during seed germination and post-germination stages. CaMBF1 transgenic Arabidopsis may reduce stress tolerance by downregulating stress-responsive genes to aggravate the leaf damage caused by cold stress. CaMBF1 may be useful for genetic engineering of novel

  9. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  10. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  11. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis.

    PubMed

    Kiss, J Z; Guisinger, M M; Miller, A J; Stackhouse, K S

    1997-05-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  12. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.

    PubMed

    Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han

    2014-12-01

    Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect. © 2014 John Wiley & Sons Ltd.

  13. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    PubMed Central

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth. PMID:17572910

  14. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance.

    PubMed

    Yue, Yuesen; Zhang, Mingcai; Zhang, Jiachang; Duan, Liusheng; Li, Zhaohu

    2011-10-01

    Drought is a major environmental stress factor that affects growth and development of plants. Abscisic acid (ABA), osmotically active compounds, and synthesis of specific proteins, such as proteins that scavenge oxygen radicals, are crucial for plants to adapt to water deficit. LOS5/ABA3 (LOS5) encodes molybdenum-cofactor sulfurase, which is a key regulator of ABA biosynthesis. We overexpressed LOS5 in tobacco using Agrobacterium-mediated transformation. Detached leaves of LOS5-overexpressing seedlings showed lower transpirational water loss than that of nontransgenic seedlings in the same period under normal conditions. When subjected to water-deficit stress, transgenic plants showed less wilting, maintained higher water content and better cellular membrane integrity, accumulated higher quantities of ABA and proline, and exhibited higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, as compared with control plants. Furthermore, LOS5-overexpressing plants treated with 30% polyethylene glycol showed similar performance in cellular membrane protection, ABA and proline accumulation, and activities of catalase and peroxidase to those under drought stress. Thus, overexpression of LOS5 in transgenic tobacco can enhance drought tolerance.

  15. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration

    PubMed Central

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species. PMID:26734024

  16. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  17. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

    PubMed Central

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response. PMID:25333723

  18. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

    PubMed

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.

  19. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  20. Overexpression of AtERF019 delays plant growth and senescence and improves drought tolerance in Arabidopsis.

    PubMed

    Scarpeci, Telma E; Frea, Vanesa S; Zanor, María I; Valle, Estela M

    2016-12-10

    The transcription factor superfamily, APETALA2/ethylene response factor, is involved in plant growth and development, as well as in environmental stress responses. Here, an uncharacterized gene of this family, AtERF019, was studied in Arabidopsis thaliana under abiotic stress situations. Arabidopsis plants overexpressing AtERF019 showed a delay in flowering time of 7 days and a delay in senescence of 2 weeks when comparison with wild type plants. These plants also showed increased tolerance to water deficiency that could be explained by a lower transpiration rate, owing to their smaller stomata aperture and lower cuticle and cell wall permeability. Furthermore, using a bottom-up proteomic approach, proteins produced in response to stress, namely branched-chain-amino-acid aminotransferase 3 (BCAT3) and the zinc finger transcription factor oxidative stress 2, were only identified in plants overexpressing AtERF019 Additionally, a BCAT3 mutant was more sensitive to water-deficit stress than wild type plants. Predicted gene targets of AtERF019 were oxidative stress 2 and genes related to cell wall metabolism. These data suggest that AtERF019 could play a primary role in plant growth and development that causes an increased tolerance to water deprivation, so strengthening their chances of reproductive success.

  1. Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants.

    PubMed

    Ryan, Annette C; Hewitt, C Nicholas; Possell, Malcolm; Vickers, Claudia E; Purnell, Anna; Mullineaux, Philip M; Davies, William J; Dodd, Ian C

    2014-01-01

    Isoprene protects the photosynthetic apparatus of isoprene-emitting plants from oxidative stress. The role of isoprene in the response of plants to drought is less clear. Water was withheld from transgenic isoprene-emitting and non-emitting tobacco (Nicotiana tabacum) plants, to examine: the response of isoprene emission to plant water deficit; a possible relationship between concentrations of the drought-induced phytohormone abscisic acid (ABA) and isoprene; and whether isoprene affected foliar reactive oxygen species (ROS) and lipid peroxidation levels. Isoprene emission did not affect whole-plant water use, foliar ABA concentration or leaf water potential under water deficit. Compared with well-watered controls, droughted non-emitting plants significantly increased ROS content (31-46%) and lipid peroxidation (30-47%), concomitant with decreased operating and maximum efficiencies of photosystem II photochemistry and lower leaf and whole-plant water use efficiency (WUE). Droughted isoprene-emitting plants showed no increase in ROS content or lipid peroxidation relative to well-watered controls, despite isoprene emission decreasing before leaf wilting. Although isoprene emission protected the photosynthetic apparatus and enhanced leaf and whole-plant WUE, non-emitting plants had 8-24% more biomass under drought, implying that isoprene emission incurred a yield penalty. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis.

    PubMed

    Cavatte, Paulo C; Oliveira, Alvaro A G; Morais, Leandro E; Martins, Samuel C V; Sanglard, Lílian M V P; DaMatta, Fábio M

    2012-02-01

    Based on indirect evidence, it was previously suggested that shading could attenuate the negative impacts of drought on coffee (Coffea arabica), a tropical crop species native to shady environments. A variety (47) of morphological and physiological traits were examined in plants grown in 30-l pots in either full sunlight or 85% shade for 8 months, after which a 4-month water shortage was implemented. Overall, the traits showed weak or negligible responses to the light × water interaction, explaining less than 10% of the total data variation. Only slight variations in biomass allocation were observed in the combined shade and drought treatment. Differences in relative growth rates were mainly associated with physiological and not with morphological adjustments. In high light, drought constrained the photosynthetic rate through stomatal limitations with no sign of apparent photoinhibition; in low light, such constraints were apparently linked to biochemical factors. Sun-grown plants displayed osmotic adjustments, decreased tissue elasticities and improved long-term water use efficiencies, especially under drought. Regardless of the water availability, higher concentrations of lipids, total phenols, total soluble sugars and lignin were found in high light compared to shade conditions, in contrast to the effects on cellulose and hemicellulose concentrations. Proline concentrations increased in water-deprived plants, particularly those grown under full sun. Phenotypic plasticity was much higher in response to the light than to the water supply. Overall, shading did not alleviate the negative impacts of drought on the coffee tree.

  3. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis.

    PubMed

    Mao, Qian Qian; Guan, Mei Yan; Lu, Kai Xing; Du, Shao Ting; Fan, Shi Kai; Ye, Yi-Quan; Lin, Xian Yong; Jin, Chong Wei

    2014-10-01

    Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3 (-)) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3 (-) homeostasis in roots. In NO3 (-)-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3 (-)-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3 (-) uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3 (-) and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3 (-) and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3 (-) uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. Pre-conditioning the epigenetic response to high vapor pressure deficit increases the drought tolerance of Arabidopsis thaliana.

    PubMed

    Tricker, Penny; Rodríguez López, Carlos; Hadley, Paul; Wagstaff, Carol; Wilkinson, Mike

    2013-10-01

    Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to "pre-condition" them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at 2 gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency. (1) Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that 3 generations of high vpd-grown plants were better able to withstand periodic drought stress over 2 generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant's inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.

  5. Drought and Salt Stress Tolerance of an Arabidopsis Glutathione S-Transferase U17 Knockout Mutant Are Attributed to the Combined Effect of Glutathione and Abscisic Acid1[C][W][OA

    PubMed Central

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways. PMID:22095046

  6. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.

    PubMed

    Hectors, Kathleen; Jacques, Eveline; Prinsen, Els; Guisez, Yves; Verbelen, Jean-Pierre; Jansen, Marcel A K; Vissenberg, Kris

    2010-10-01

    Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.

  7. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    PubMed Central

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  8. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  9. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea

    PubMed Central

    Daumann, Manuel; Fischer, Marietta; Niopek-Witz, Sandra; Girke, Christopher; Möhlmann, Torsten

    2015-01-01

    Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed. PMID:26779190

  10. Identification of drought-responsive genes in a drought-tolerant cotton (Gossypium hirsutum L.) cultivar under reduced irrigation field conditions and development of candidate gene markers for drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Cotton productivity is affected by water deficit, and little is known about the molecular basis of drought tolerance in cotton. In this study, microarray analysis was conducted to identify drought-responsive genes in the third topmost leaves of the field-grown drought-tolerant cotton (Gossypium hirs...

  11. Drought reduces chytrid fungus (Batrachochytrium dendrobatidis) infection intensity and mortality but not prevalence in adult crawfish frogs (Lithobates areolatus).

    PubMed

    Terrell, Vanessa C K; Engbrecht, Nathan J; Pessier, Allan P; Lannoo, Michael J

    2014-01-01

    To fully understand the impacts of the chytrid fungus Batrachochytrium dendrobatidis (Bd) on amphibians it is necessary to examine the interactions between populations and their environment. Ecologic variables can exacerbate or ameliorate Bd prevalence and infection intensity, factors that are positively related when Bd is acting on naive amphibian populations as an epidemic disease. In crawfish frogs (Lithobates areolatus), a North American species with a complex life history, we have shown that Bd acts as an endemic disease with impacts that vary seasonally; the highest infection prevalences and intensities and highest frog mortality occurred during late spring in postbreeding individuals. In this study, conducted between 28 February and 23 August 2011 in southwestern Indiana on the same population, we report an uncoupling of the previously observed relationship between Bd prevalence and intensity following an extreme drought. Specifically, there was a postdrought reduction in Bd infection intensity and mortality, but not in infection prevalence. This result suggests that the relationship between prevalence and intensity observed in Bd epidemics can be uncoupled in populations harboring endemic infections. Further, constant prevalence rates suggest either that crawfish frogs are being exposed to Bd sources independent of ambient moisture or that low-level infections below detection thresholds persist from year to year. Drought has several ecologically beneficial effects for amphibians with complex life histories, including eliminating fish and invertebrate populations that feed on larvae. To these ecologic benefits we suggest another, that drought can reduce the incidence of the severe skin disease (chytridiomycosis) due to Bd infection.

  12. Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    PubMed Central

    Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-01

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas. PMID:28139649

  13. Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-01

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

  14. Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    NASA Astrophysics Data System (ADS)

    Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-01

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

  15. Climate change reduces extent of temperate drylands and intensifies drought in deep soils.

    PubMed

    Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Munson, Seth M; Tietjen, Britta; Hall, Sonia A; Wilson, Scott D; Duniway, Michael C; Jia, Gensuo; Pyke, David A; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-31

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

  16. Site-adapted admixed tree species reduce drought susceptibility of mature European beech.

    PubMed

    Metz, Jérôme; Annighöfer, Peter; Schall, Peter; Zimmermann, Jorma; Kahl, Tiemo; Schulze, Ernst-Detlef; Ammer, Christian

    2016-02-01

    Some forest-related studies on possible effects of climate change conclude that growth potential of European beech (Fagus sylvatica L.) might be impaired by the predicted increase in future serious drought events during the growing season. Other recent research suggests that not only multiyear increment rates but also growth resistance and recovery of beech during, respectively, after dry years may differ between pure and mixed stands. Thus, we combined dendrochronological investigations and wood stable isotope measurements to further investigate the impact of neighborhood diversity on long-term performance, short-term drought response and soil water availability of European beech in three major geographic regions of Germany. During the last four decades, target trees whose competitive neighborhood consisted of co-occurring species exhibited a superior growth performance compared to beeches in pure stands of the same investigation area. This general pattern was also found in exceptional dry years. Although the summer droughts of 1976 and 2003 predominantly caused stronger relative growth declines if target trees were exposed to interspecific competition, with few exceptions they still formed wider annual rings than beeches growing in close-by monocultures. Within the same study region, recovery of standardized beech target tree radial growth was consistently slower in monospecific stands than in the neighborhood of other competitor species. These findings suggest an improved water availability of beech in mixtures what is in line with the results of the stable isotope analysis. Apparently, the magnitude of competitive complementarity determines the growth response of target beech trees in mixtures. Our investigation strongly suggest that the sensitivity of European beech to environmental constrains depends on neighborhood identity. Therefore, the systematic formation of mixed stands tends to be an appropriate silvicultural measure to mitigate the effects of global

  17. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress

    NASA Astrophysics Data System (ADS)

    Barber, Valerie A.; Juday, Glenn Patrick; Finney, Bruce P.

    2000-06-01

    The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations. From these observations, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes and for the boreal forest system as a whole. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.

  18. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin 1

    PubMed Central

    Shellhammer, Joe; Meinke, David

    1990-01-01

    The bio1 auxotroph of Arabidopsis thaliana is a recessive embryonic lethal that forms normal plants in the presence of biotin. The purpose of this study was to determine whether aborted seeds produced by heterozygous plants grown without vitamin supplements contained reduced levels of biotin. Two methods were used to determine the biotin content of mutant and wild-type tissues: streptavidin binding in microtiter plates and growth of the biotin-requiring bacterium Lactobacillus plantarum. Total biotin was measured in extracts prepared from immature seeds prior to desiccation. Aborted seeds produced by heterozygous (bio1/BIO1) plants contained some biotin in the maternal seed coat but virtually no detectable biotin in the arrested embryo. This lack of biotin was not observed in arrested embryos from other mutants with similar patterns of abnormal development. These results are consistent with the model that bio1 tissues are defective in biotin synthesis. The alternative model of increased degradation is inconsistent with the recessive nature of the mutation and the ability of rescued plants to continue growing for several weeks following removal of supplemental biotin. PMID:16667573

  19. Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis.

    PubMed

    Okegawa, Yuki; Kobayashi, Yoshichika; Shikanai, Toshiharu

    2010-08-01

    In addition to linear electron transport from water to NADP(+) , alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport-dependent PQ reduction and PTOX-dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2-2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2-2 pgr5 double mutant. This was accompanied by partial suppression of stromal over-reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  20. Phenotypic Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced Hsp90 Levels

    PubMed Central

    Sangster, Todd A.; Bahrami, Adam; Wilczek, Amity; Watanabe, Etsuko; Schellenberg, Kurt; McLellan, Catherine; Kelley, Alicia; Kong, Sek Won; Queitsch, Christine; Lindquist, Susan

    2007-01-01

    The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a

  1. The evolution of drought escape and avoidance in natural herbaceous populations.

    PubMed

    Kooyers, Nicholas J

    2015-05-01

    While the functional genetics and physiological mechanisms controlling drought resistance in crop plants have been intensely studied, less research has examined the genetic basis of adaptation to drought stress in natural populations. Drought resistance adaptations in nature reflect natural rather than human-mediated selection and may identify novel mechanisms for stress tolerance. Adaptations conferring drought resistance have historically been divided into alternative strategies including drought escape (rapid development to complete a life cycle before drought) and drought avoidance (reducing water loss to prevent dehydration). Recent studies in genetic model systems such as Arabidopsis, Mimulus, and Panicum have begun to elucidate the genes, expression profiles, and physiological changes responsible for ecologically important variation in drought resistance. Similar to most crop plants, variation in drought escape and avoidance is complex, underlain by many QTL of small effect, and pervasive gene by environment interactions. Recently identified major-effect alleles point to a significant role for genetic constraints in limiting the concurrent evolution of both drought escape and avoidance strategies, although these constraints are not universally found. This progress suggests that understanding the mechanistic basic and fitness consequences of gene by environment interactions will be critical for crop improvement and forecasting population persistence in unpredictable environments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The Arabidopsis RING E3 Ubiquitin Ligase AtAIRP3/LOG2 Participates in Positive Regulation of High-Salt and Drought Stress Responses1[C][W][OA

    PubMed Central

    Kim, Jong Hum; Kim, Woo Taek

    2013-01-01

    Really Interesting New Gene (RING) E3 ubiquitin ligases have been implicated in cellular responses to the stress hormone abscisic acid (ABA) as well as to environmental stresses in higher plants. Here, an ABA-insensitive RING protein3 (atairp3) loss-of-function mutant line in Arabidopsis (Arabidopsis thaliana) was isolated due to its hyposensitivity to ABA during its germination stage as compared with wild-type plants. AtAIRP3 contains a single C3HC4-type RING motif, a putative myristoylation site, and a domain associated with RING2 (DAR2) domain. Unexpectedly, AtAIRP3 was identified as LOSS OF GDU2 (LOG2), which was recently shown to participate in an amino acid export system via interaction with GLUTAMINE DUMPER1. Thus, AtAIRP3 was renamed as AtAIRP3/LOG2. Transcript levels of AtAIRP3/LOG2 were up-regulated by drought, high salinity, and ABA, suggesting a role for this factor in abiotic stress responses. The atairp3/log2-2 knockout mutant and 35S:AtAIRP3-RNAi knockdown transgenic plants displayed impaired ABA-mediated seed germination and stomata closure. Cosuppression and complementation studies further supported a positive role for AtAIRP3/LOG2 in ABA responses. Suppression of AtAIRP3/LOG2 resulted in marked hypersensitive phenotypes toward high salinity and water deficit relative to wild-type plants. These results suggest that Arabidopsis RING E3 AtAIRP3/LOG2 is a positive regulator of the ABA-mediated drought and salt stress tolerance mechanism. Using yeast (Saccharomyces cerevisiae) two-hybrid, in vitro, and in vivo immunoprecipitation, cell-free protein degradation, and in vitro ubiquitination assays, RESPONSIVE TO DEHYDRATION21 was identified as a substrate protein of AtAIRP3/LOG2. Collectively, our data suggest that AtAIRP3/LOG2 plays dual functions in ABA-mediated drought stress responses and in an amino acid export pathway in Arabidopsis. PMID:23696092

  3. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels.

    PubMed

    Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph

    2008-05-01

    Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.

  4. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley.

    PubMed

    Ferdous, Jannatul; Whitford, Ryan; Nguyen, Martin; Brien, Chris; Langridge, Peter; Tricker, Penny J

    2017-05-01

    Drought is one of the major abiotic stresses reducing crop yield. Since the discovery of plant microRNAs (miRNAs), considerable progress has been made in clarifying their role in plant responses to abiotic stresses, including drought. miR827 was previously reported to confer drought tolerance in transgenic Arabidopsis. We examined barley (Hordeum vulgare L. 'Golden Promise') plants over-expressing miR827 for plant performance under drought. Transgenic plants constitutively expressing CaMV-35S::Ath-miR827 and drought-inducible Zm-Rab17::Hv-miR827 were phenotyped by non-destructive imaging for growth and whole plant water use efficiency (WUEwp). We observed that the growth, WUEwp, time to anthesis and grain weight of transgenic barley plants expressing CaMV-35S::Ath-miR827 were negatively affected in both well-watered and drought-treated growing conditions compared with the wild-type plants. In contrast, transgenic plants over-expressing Zm-Rab17::Hv-miR827 showed improved WUEwp with no growth or reproductive timing change compared with the wild-type plants. The recovery of Zm-Rab17::Hv-miR827 over-expressing plants also improved following severe drought stress. Our results suggest that Hv-miR827 has the potential to improve the performance of barley under drought and that the choice of promoter to control the timing and specificity of miRNA expression is critical.

  5. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene.

    PubMed

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-12-12

    Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd(2+) uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  6. Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean.

    PubMed

    Ladrera, Rubén; Marino, Daniel; Larrainzar, Estíbaliz; González, Esther M; Arrese-Igor, Cesar

    2007-10-01

    Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar ('Biloxi'), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar ('Jackson'). The carbon flux to bacteroids was also more affected in 'Biloxi' than in 'Jackson', due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in 'Biloxi'. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought.

  7. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    SciTech Connect

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  8. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis.

    PubMed

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D; Browse, John

    2015-05-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.

  9. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses

    PubMed Central

    2014-01-01

    Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771

  10. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis.

    PubMed

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei; Lu, Ying-Tang

    2015-05-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor N(ω)-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Reduced Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis.

    PubMed

    Xiang, Yong; Nakabayashi, Kazumi; Ding, Jia; He, Fei; Bentsink, Leónie; Soppe, Wim J J

    2014-11-01

    Seed dormancy determines germination timing and contributes to crop production and the adaptation of natural populations to their environment. Our knowledge about its regulation is limited. In a mutagenesis screen of a highly dormant Arabidopsis thaliana line, the reduced dormancy5 (rdo5) mutant was isolated based on its strongly reduced seed dormancy. Cloning of RDO5 showed that it encodes a PP2C phosphatase. Several PP2C phosphatases belonging to clade A are involved in abscisic acid signaling and control seed dormancy. However, RDO5 does not cluster with clade A phosphatases, and abscisic acid levels and sensitivity are unaltered in the rdo5 mutant. RDO5 transcript could only be detected in seeds and was most abundant in dry seeds. RDO5 was found in cells throughout the embryo and is located in the nucleus. A transcriptome analysis revealed that several genes belonging to the conserved PUF family of RNA binding proteins, in particular Arabidopsis PUMILIO9 (APUM9) and APUM11, showed strongly enhanced transcript levels in rdo5 during seed imbibition. Further transgenic analyses indicated that APUM9 reduces seed dormancy. Interestingly, reduction of APUM transcripts by RNA interference complemented the reduced dormancy phenotype of rdo5, indicating that RDO5 functions by suppressing APUM transcript levels. © 2014 American Society of Plant Biologists. All rights reserved.

  12. The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis1[C][W][OA

    PubMed Central

    Haruta, Miyoshi; Sussman, Michael R.

    2012-01-01

    The plasma membrane proton gradient is an essential feature of plant cells. In Arabidopsis (Arabidopsis thaliana), this gradient is generated by the plasma membrane proton pump encoded by a family of 11 genes (abbreviated as AHA, for Arabidopsis H+-ATPase), of which AHA1 and AHA2 are the two most predominantly expressed in seedlings and adult plants. Although double knockdown mutant plants containing T-DNA insertions in both genes are embryonic lethal, under ideal laboratory growth conditions, single knockdown mutant plants with a 50% reduction in proton pump concentration complete their life cycle without any observable growth alteration. However, when grown under conditions that induce stress on the plasma membrane protonmotive force (PMF), such as high external potassium to reduce the electrical gradient or high external pH to reduce the proton chemical gradient, aha2 mutant plants show a growth retardation compared with wild-type plants. In this report, we describe the results of studies that examine in greater detail AHA2’s specific role in maintaining the PMF during seedling growth. By comparing the wild type and aha2 mutants, we have measured the effects of a reduced PMF on root and hypocotyl growth, ATP-induced skewed root growth, and rapid cytoplasmic calcium spiking. In addition, genome-wide gene expression profiling revealed the up-regulation of potassium transporters in aha2 mutants, indicating, as predicted, a close link between the PMF and potassium uptake at the plasma membrane. Overall, this characterization of aha2 mutants provides an experimental and theoretical framework for investigating growth and signaling processes that are mediated by PMF-coupled energetics at the cell membrane. PMID:22214817

  13. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase.

    PubMed

    Fahy, Deirdre; Scheer, Barbara; Wallis, James G; Browse, John

    2013-05-01

    Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.

  14. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle.

    PubMed

    Elena López-Calcagno, Patricia; Omar Abuzaid, Amani; Lawson, Tracy; Anne Raines, Christine

    2017-04-01

    CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin-Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle

    PubMed Central

    Elena López-Calcagno, Patricia; Omar Abuzaid, Amani; Lawson, Tracy

    2017-01-01

    Abstract CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin–Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity. PMID:28430985

  16. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests.

    PubMed

    Espelta, Josep Maria; Cortés, Pilar; Molowny-Horas, Roberto; Sánchez-Humanes, Belén; Retana, Javier

    2008-03-01

    species mediated by an environmental cue (summer drought) may contribute to the reduction of the impact of seed predation at a within-species level. Future research should be aimed at addressing whether this process could be a factor assisting in the coexistence of Q. ilex and Q. humilis.

  17. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence

    PubMed Central

    Woo, Nick S; Badger, Murray R; Pogson, Barry J

    2008-01-01

    Background Analysis of survival is commonly used as a means of comparing the performance of plant lines under drought. However, the assessment of plant water status during such studies typically involves detachment to estimate water shock, imprecise methods of estimation or invasive measurements such as osmotic adjustment that influence or annul further evaluation of a specimen's response to drought. Results This article presents a procedure for rapid, inexpensive and non-invasive assessment of the survival of soil-grown plants during drought treatment. The changes in major photosynthetic parameters during increasing water deficit were monitored via chlorophyll fluorescence imaging and the selection of the maximum efficiency of photosystem II (Fv/Fm) parameter as the most straightforward and practical means of monitoring survival is described. The veracity of this technique is validated through application to a variety of Arabidopsis thaliana ecotypes and mutant lines with altered tolerance to drought or reduced photosynthetic efficiencies. Conclusion The method presented here allows the acquisition of quantitative numerical estimates of Arabidopsis drought survival times that are amenable to statistical analysis. Furthermore, the required measurements can be obtained quickly and non-invasively using inexpensive equipment and with minimal expertise in chlorophyll fluorometry. This technique enables the rapid assessment and comparison of the relative viability of germplasm during drought, and may complement detailed physiological and water relations studies. PMID:19014425

  18. Spectral phasor analysis reveals altered membrane order and function of root hair cells in Arabidopsis dry2/sqe1-5 drought hypersensitive mutant.

    PubMed

    Sena, Florencia; Sotelo-Silveira, Mariana; Astrada, Soledad; Botella, Miguel A; Malacrida, Leonel; Borsani, Omar

    2017-10-01

    Biological membranes allow the regulation of numerous cellular processes, which are affected when unfavorable environmental factors are perceived. Lipids and proteins are the principal components of biological membranes. Each lipid has unique biophysical properties, and, therefore the lipid composition of the membrane is critical to maintaining the bilayer structure and functionality. Membrane composition and integrity are becoming the focus of studies aiming to understand how plants adapt to its environment. In this study, using a combination of di-4-ANEPPDHQ fluorescence and spectral phasor analysis, we report that the drought hypersensitive/squalene epoxidase (dry2/sqe1-5) mutant with reduced major sterols such as sitosterol and stigmasterol in roots presented higher membrane fluidity than the wild type. Moreover, analysis of endomembrane dynamics showed that vesicle formation was affected in dry2/sqe1-5. Further analysis of proteins associated with sterol rich micro domains showed that dry2/sqe1-5 presented micro domains function altered. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton.

    PubMed

    Liu, Guanze; Li, Xuelin; Jin, Shuangxia; Liu, Xuyan; Zhu, Longfu; Nie, Yichun; Zhang, Xianlong

    2014-01-01

    The SNAC1 gene belongs to the stress-related NAC superfamily of transcription factors. It was identified from rice and overexpressed in cotton cultivar YZ1 by Agrobacterium tumefaciens-mediated transformation. SNAC1-overexpressing cotton plants showed more vigorous growth, especially in terms of root development, than the wild-type plants in the presence of 250 mM NaCl under hydroponic growth conditions. The content of proline was enhanced but the MDA content was decreased in the transgenic cotton seedlings under drought and salt treatments compared to the wild-type. Furthermore, SNAC1-overexpressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in the greenhouse. The performances of the SNAC1-overexpressing lines under drought and salt stress were significantly better than those of the wild-type in terms of the boll number. During the drought and salt treatments, the transpiration rate of transgenic plants significantly decreased in comparison to the wild-type, but the photosynthesis rate maintained the same at the flowering stage in the transgenic plants. These results suggested that overexpression of SNAC1 improve more tolerance to drought and salt in cotton through enhanced root development and reduced transpiration rates.

  20. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  1. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

    PubMed

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung

    2014-01-01

    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.

  2. Reduced Expression of the SHORT-ROOT Gene Increases the Rates of Growth and Development in Hybrid Poplar and Arabidopsis

    PubMed Central

    Wang, Jiehua; Andersson-Gunnerås, Sara; Gaboreanu, Ioana; Hertzberg, Magnus; Tucker, Matthew R.; Zheng, Bo; Leśniewska, Joanna; Mellerowicz, Ewa J.; Laux, Thomas; Sandberg, Göran; Jones, Brian

    2011-01-01

    SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species. PMID:22194939

  3. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.

    PubMed

    Wang, Jiehua; Andersson-Gunnerås, Sara; Gaboreanu, Ioana; Hertzberg, Magnus; Tucker, Matthew R; Zheng, Bo; Leśniewska, Joanna; Mellerowicz, Ewa J; Laux, Thomas; Sandberg, Göran; Jones, Brian

    2011-01-01

    SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.

  4. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought.

    PubMed

    Savchenko, Tatyana; Kolla, Venkat A; Wang, Chang-Quan; Nasafi, Zainab; Hicks, Derrick R; Phadungchob, Bpantamars; Chehab, Wassim E; Brandizzi, Federica; Froehlich, John; Dehesh, Katayoon

    2014-03-01

    Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.

  5. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants.

    PubMed

    Wang, Liu; Chen, Lin; Li, Rui; Zhao, Ruirui; Yang, Meijing; Sheng, Jiping; Shen, Lin

    2017-10-04

    Drought stress is one of the most destructive environmental factors that affect tomato plants adversely. Mitogen-activated protein kinases (MAPKs) are important signaling molecules that respond to drought stress. In this study, SlMAPK3 was induced by drought stress, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized to generate slmapk3 mutants. Two independent T1 transgenic lines and wild-type (WT) tomato plants were used for analysis of drought tolerance. Compared with WT plants, slmapk3 mutants exhibited more severe wilting symptom, higher hydrogen peroxide content, lower antioxidant enzymes activities, and suffered more membrane damage under drought stress. Furthermore, knockout of SlMAPK3 led to up- or down-regulated expressions of drought stress-responsive genes including SlLOX, SlGST, and SlDREB. The results suggest that SlMAPK3 is involved in drought response in tomato plants by protecting cell membranes from oxidative damage and modulating transcription of stress-related genes.

  6. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana.

    PubMed

    Koo, Yeon Jong; Kim, Myeong Ae; Kim, Eun Hye; Song, Jong Tae; Jung, Choonkyun; Moon, Joon-Kwan; Kim, Jeong-Han; Seo, Hak Soo; Song, Sang Ik; Kim, Ju-Kon; Lee, Jong Seob; Cheong, Jong-Joo; Choi, Yang Do

    2007-05-01

    We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.

  7. Effect of reducing the topographical altitude of the Tibetan Plateau on a severe winter drought in eastern China as determined using RAMS

    NASA Astrophysics Data System (ADS)

    Meng, Chunchun; Ma, Yaoming; Han, Cunbo; Gou, Peng

    2017-08-01

    Regional Atmospheric Modeling System (RAMS) was applied to the study of the effect of the topographical altitude of the Tibetan Plateau (TP) on a severe drought event which took place in eastern China from November 2008 to January 2009. Two simulations of this drought event were conducted: a control simulation (CNTRL run) using original model settings and a sensitive simulation (TOPO run), where no change other than to reduce the TP topography by 50 %. The results show that the CNTRL simulation validates RAMS by reproducing this drought event fairly accurately. However, as part of the TOPO simulation, the total heat flux showed a decrease over most parts of the TP, latent heat flux underwent a significant increase over the southeastern TP, contrary to sensible heat, and a universal decrease over eastern China; this led to an increase in precipitation over the southeastern TP and a decrease in precipitation over eastern China. The decrease of total heat flux over the TP is collocated with an anomalous anticyclonic circulation from the TP to the coasts of southeastern China. Changes in atmospheric circulation and low-level water vapor transport pathways were consistent with changes in precipitation. In general, reducing the topographical altitude of the TP worsens drought in eastern China and moreover causes a significant decrease in precipitation over southern China.

  8. Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis

    PubMed Central

    Xu, Min; Cho, Euna; Burch-Smith, Tessa M.; Zambryski, Patricia C.

    2012-01-01

    In plants, plasmodesmata (PD) serve as channels for micromolecular and macromolecular cell-to-cell transport. Based on structure, PD in immature tissues are classified into two types, simple and branched (X- and Y-shaped) or twinned. The maximum size of molecules capable of PD transport defines PD aperture, known as the PD size exclusion limit. Here we report an Arabidopsis mutation, decreased size exclusion limit1 (dse1), that exhibits reduced cell-to-cell transport of the small (524 Da) fluorescent tracer 8-hydroxypyrene-1,3,6-trisulfonic acid at the midtorpedo stage of embryogenesis. Correspondingly, the fraction of X- and Y-shaped and twinned PD was reduced in dse1 embryos compared with WT embryos at this stage, suggesting that the frequency of PD is related to transport capability. dse1 is caused by a point mutation in At4g29860 (previously termed TANMEI) at the last donor splice site of its transcript, resulting in alternative splicing in both the first intron and the last intron. AtDSE1 is a conserved eukaryotic 386-aa WD-repeat protein critical for Arabidopsis morphogenesis and reproduction. Similar to its homologs in mouse, null mutants are embryo-lethal. The weak loss-of-function mutant dse1 exhibits pleiotropic phenotypes, including retarded vegetative growth, delayed flowering time, dysfunctional male and female organs, and delayed senescence. Finally, silencing of DSE1 in Nicotiana benthamiana leaves leads to reduced movement of GFP fused to tobacco mosaic virus movement protein. Thus, DSE1 is important for regulating PD transport between plant cells. PMID:22411811

  9. Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis.

    PubMed

    Xu, Min; Cho, Euna; Burch-Smith, Tessa M; Zambryski, Patricia C

    2012-03-27

    In plants, plasmodesmata (PD) serve as channels for micromolecular and macromolecular cell-to-cell transport. Based on structure, PD in immature tissues are classified into two types, simple and branched (X- and Y-shaped) or twinned. The maximum size of molecules capable of PD transport defines PD aperture, known as the PD size exclusion limit. Here we report an Arabidopsis mutation, decreased size exclusion limit1 (dse1), that exhibits reduced cell-to-cell transport of the small (524 Da) fluorescent tracer 8-hydroxypyrene-1,3,6-trisulfonic acid at the midtorpedo stage of embryogenesis. Correspondingly, the fraction of X- and Y-shaped and twinned PD was reduced in dse1 embryos compared with WT embryos at this stage, suggesting that the frequency of PD is related to transport capability. dse1 is caused by a point mutation in At4g29860 (previously termed TANMEI) at the last donor splice site of its transcript, resulting in alternative splicing in both the first intron and the last intron. AtDSE1 is a conserved eukaryotic 386-aa WD-repeat protein critical for Arabidopsis morphogenesis and reproduction. Similar to its homologs in mouse, null mutants are embryo-lethal. The weak loss-of-function mutant dse1 exhibits pleiotropic phenotypes, including retarded vegetative growth, delayed flowering time, dysfunctional male and female organs, and delayed senescence. Finally, silencing of DSE1 in Nicotiana benthamiana leaves leads to reduced movement of GFP fused to tobacco mosaic virus movement protein. Thus, DSE1 is important for regulating PD transport between plant cells.

  10. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development.

    PubMed

    van der Honing, Hannie S; van Bezouwen, Laura S; Emons, Anne Mie C; Ketelaar, Tijs

    2011-10-01

    Lifeact is a novel probe that labels actin filaments in a wide range of organisms. We compared the localization and reorganization of Lifeact:Venus-labeled actin filaments in Arabidopsis root hairs and root epidermal cells of lines that express different levels of Lifeact: Venus with that of actin filaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, Lifeact:Venus labeled the highly dynamic fine F-actin in the subapical region of tip-growing root hairs. Lifeact:Venus expression at varying levels was not observed to affect plant development. However, at expression levels comparable to those of GFP:FABD2 in a well-characterized marker line, Lifeact:Venus reduced reorganization rates of bundles of actin filaments in root epidermal cells. Reorganization rates of cytoplasmic strands, which reflect the reorganization of the actin cytoskeleton, were also reduced in these lines. Moreover, in the same line, Lifeact:Venus-decorated actin filaments were more resistant to depolymerization by latrunculin B than those in an equivalent GFP:FABD2-expressing line. In lines where Lifeact: Venus is expressed at lower levels, these effects are less prominent or even absent. We conclude that Lifeact: Venus reduces remodeling of the actin cytoskeleton in Arabidopsis in a concentration-dependent manner. Since this reduction occurs at expression levels that do not cause defects in plant development, selection of normally growing plants is not sufficient to determine optimal Lifeact expression levels. When correct expression levels of Lifeact have been determined, it is a valuable probe that labels dynamic populations of actin filaments such as fine F-actin, better than FABD2 does.

  11. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis.

    PubMed

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Luo, Qin; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng; Yang, Yi

    2015-04-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Drought: A comprehensive R package for drought monitoring, prediction and analysis

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Cheng, Hongguang

    2015-04-01

    Drought may impose serious challenges to human societies and ecosystems. Due to complicated causing effects and wide impacts, a universally accepted definition of drought does not exist. The drought indicator is commonly used to characterize drought properties such as duration or severity. Various drought indicators have been developed in the past few decades for the monitoring of a certain aspect of drought condition along with the development of multivariate drought indices for drought characterizations from multiple sources or hydro-climatic variables. Reliable drought prediction with suitable drought indicators is critical to the drought preparedness plan to reduce potential drought impacts. In addition, drought analysis to quantify the risk of drought properties would provide useful information for operation drought managements. The drought monitoring, prediction and risk analysis are important components in drought modeling and assessments. In this study, a comprehensive R package "drought" is developed to aid the drought monitoring, prediction and risk analysis (available from R-Forge and CRAN soon). The computation of a suite of univariate and multivariate drought indices that integrate drought information from various sources such as precipitation, temperature, soil moisture, and runoff is available in the drought monitoring component in the package. The drought prediction/forecasting component consists of statistical drought predictions to enhance the drought early warning for decision makings. Analysis of drought properties such as duration and severity is also provided in this package for drought risk assessments. Based on this package, a drought monitoring and prediction/forecasting system is under development as a decision supporting tool. The package will be provided freely to the public to aid the drought modeling and assessment for researchers and practitioners.

  13. Complexation of Arsenite with Phytochelatins Reduces Arsenite Efflux and Translocation from Roots to Shoots in Arabidopsis1[W

    PubMed Central

    Liu, Wen-Ju; Wood, B. Alan; Raab, Andrea; McGrath, Steve P.; Zhao, Fang-Jie; Feldmann, Jörg

    2010-01-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops. PMID:20130102

  14. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.

    PubMed

    Fornara, Fabio; Panigrahi, Kishore C S; Gissot, Lionel; Sauerbrunn, Nicolas; Rühl, Mark; Jarillo, José A; Coupland, George

    2009-07-01

    Flowering of Arabidopsis is induced by long summer days (LDs). The transcriptional regulator CONSTANS (CO) promotes flowering, and its transcription is increased under LDs. We systematically misexpressed transcription factors in companion cells and identified several DOF proteins that delay flowering by repressing CO transcription. Combining mutations in four of these, including CYCLING DOF FACTOR 2 (CDF2), caused photoperiod-insensitive early flowering by increasing CO mRNA levels. CO transcription is promoted to differing extents by GIGANTEA (GI) and the F-box protein FKF1. We show that GI stabilizes FKF1, thereby reducing CDF2 abundance and allowing transcription of CO. Despite the crucial function of GI in wild-type plants, introducing mutations in the four DOF-encoding genes into gi mutants restored the diurnal rhythm and light inducibility of CO. Thus, antagonism between GI and DOF transcription factors contributes to photoperiodic flowering by modulating an underlying diurnal rhythm in CO transcript levels.

  15. Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIδ in Arabidopsis thaliana

    PubMed Central

    Zheng, Yong; Li, Maoyin; Wang, Xuemin

    2014-01-01

    Patatin-containing phospholipase A (pPLA) hydrolyzes membrane glycerolipids, producing free fatty acids and lysoglycerolipids. Ten pPLAs in the Arabidopsis thaliana genome are grouped into 3 subfamilies, and pPLAIIIs differ from pPLAI and IIs in their catalytic motifs and overexpression (OE) of pPLAIIIs reduces cell elongation and cellulose content. To probe the question of how pPLAIII overexpression results in the changes, comparative proteomic analyses were conducted between pPLAIIIδ-OE and WT seedlings. The data indicate a change in the microtubule-associated protein, MAP18. MAP18 is involved in destabilizing cortical microtubules and modulating directional cell growth. The result suggests that pPLAIII and their derived products may regulate cytoskeletal dynamics leading to retardation in anisotropic growth. PMID:24705037

  16. Inhibition of Nitrate Transporter 1.1-Controlled Nitrate Uptake Reduces Cadmium Uptake in Arabidopsis1[C][W

    PubMed Central

    Mao, Qian Qian; Guan, Mei Yan; Lu, Kai Xing; Du, Shao Ting; Fan, Shi Kai; Ye, Yi-Quan; Lin, Xian Yong; Jin, Chong Wei

    2014-01-01

    Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3−) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3− homeostasis in roots. In NO3−-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3−-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3− uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3− and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3− and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3− uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism. PMID:25106820

  17. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    PubMed Central

    Li, Cui; Yan, Jian-Min; Li, Yun-Zhou; Zhang, Zhen-Cai; Wang, Qiao-Li; Liang, Yan

    2013-01-01

    Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs) play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS) method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA)-induced and hydrogen peroxide (H2O2)-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway. PMID:24201128

  18. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis

    SciTech Connect

    Fang, Lin; Ishikawa, Toshiki; Rennie, Emilie A.; Murawska, Gosia M.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E. K.; Xu, Jun; Keasling, Jay D.; Demura, Taku; Kawai-Yamada, Maki; Scheller, Henrik V.; Mortimer, Jenny C.

    2016-11-28

    Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ~25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.

  19. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis.

    PubMed

    Fang, Lin; Ishikawa, Toshiki; Rennie, Emilie A; Murawska, Gosia M; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E K; Xu, Jun; Keasling, Jay D; Demura, Taku; Kawai-Yamada, Maki; Scheller, Henrik V; Mortimer, Jenny C

    2016-12-01

    Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ∼25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis

    DOE PAGES

    Fang, Lin; Ishikawa, Toshiki; Rennie, Emilie A.; ...

    2016-11-28

    Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ~25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologousmore » expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.« less

  1. Reduced efficacy of natural selection on codon usage bias in selfing Arabidopsis and Capsella species.

    PubMed

    Qiu, Suo; Zeng, Kai; Slotte, Tanja; Wright, Stephen; Charlesworth, Deborah

    2011-01-01

    Population genetic theory predicts that the efficacy of natural selection in a self-fertilizing species should be lower than its outcrossing relatives because of the reduction in the effective population size (N(e)) in the former brought about by inbreeding. However, previous analyses comparing Arabidopsis thaliana (selfer) with A. lyrata (outcrosser) have not found conclusive support for this prediction. In this study, we addressed this issue by examining silent site polymorphisms (synonymous and intronic), which are expected to be informative about changes in N(e). Two comparisons were made: A. thaliana versus A. lyrata and Capsella rubella (selfer) versus C. grandiflora (outcrosser). Extensive polymorphism data sets were obtained by compiling published data from the literature and by sequencing 354 exon loci in C. rubella and 89 additional loci in C. grandiflora. To extract information from the data effectively for studying these questions, we extended two recently developed models in order to investigate detailed selective differences between synonymous codons, mutational biases, and biased gene conversion (BGC), taking into account the effects of recent changes in population size. We found evidence that selection on synonymous codons is significantly weaker in the selfers compared with the outcrossers and that this difference cannot be fully accounted for by mutational biases or BGC.

  2. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana

    PubMed Central

    Yan, Yan; Jia, Haihong; Wang, Fang; Wang, Chen; Liu, Shuchang; Guo, Xingqi

    2015-01-01

    WRKY proteins constitute transcriptional regulators involved in various biological processes, especially in coping with diverse biotic and abiotic stresses. However, in contrast to other well-characterized WRKY groups, the functions of group III WRKY transcription factors are poorly understood in the economically important crop cotton (Gossypium hirsutum). In this study, a group III WRKY gene from cotton, GhWRKY27a, was isolated and characterized. Our data indicated that GhWRKY27a localized to the nucleus and that GhWRKY27a expression could be strongly induced by abiotic stresses, pathogen infection, and multiple defense-related signaling molecules. Virus-induced gene silencing (VIGS) of GhWRKY27a enhanced tolerance to drought stress in cotton. In contrast, GhWRKY27a overexpression in Nicotiana benthamiana markedly reduced plant tolerance to drought stress, as determined through physiological analyses of leaf water loss, survival rates, and the stomatal aperture. This susceptibility was coupled with reduced stomatal closure in response to abscisic acid and decreased expression of stress-related genes. In addition, GhWRKY27a-overexpressing plants exhibited reduced resistance to Rhizoctonia solani infection, mainly demonstrated by the transgenic lines exhibiting more severe disease symptoms, accompanied by attenuated expression of defense-related genes in N. benthamiana. Taken together, these findings indicated that GhWRKY27a functions in negative responses to drought tolerance and in resistance to R. solani infection. PMID:26483697

  3. Overexpressing the Multiple-Stress Responsive Gene At1g74450 Reduces Plant Height and Male Fertility in Arabidopsis thaliana

    PubMed Central

    Visscher, Anne M.; Belfield, Eric J.; Vlad, Daniela; Irani, Niloufer; Moore, Ian; Harberd, Nicholas P.

    2015-01-01

    A subset of genes in Arabidopsis thaliana is known to be up-regulated in response to a wide range of different environmental stress factors. However, not all of these genes are characterized as yet with respect to their functions. In this study, we used transgenic knockout, overexpression and reporter gene approaches to try to elucidate the biological roles of five unknown multiple-stress responsive genes in Arabidopsis. The selected genes have the following locus identifiers: At1g18740, At1g74450, At4g27652, At4g29780 and At5g12010. Firstly, T-DNA insertion knockout lines were identified for each locus and screened for altered phenotypes. None of the lines were found to be visually different from wildtype Col-0. Secondly, 35S-driven overexpression lines were generated for each open reading frame. Analysis of these transgenic lines showed altered phenotypes for lines overexpressing the At1g74450 ORF. Plants overexpressing the multiple-stress responsive gene At1g74450 are stunted in height and have reduced male fertility. Alexander staining of anthers from flowers at developmental stage 12–13 showed either an absence or a reduction in viable pollen compared to wildtype Col-0 and At1g74450 knockout lines. Interestingly, the effects of stress on crop productivity are most severe at developmental stages such as male gametophyte development. However, the molecular factors and regulatory networks underlying environmental stress-induced male gametophytic alterations are still largely unknown. Our results indicate that the At1g74450 gene provides a potential link between multiple environmental stresses, plant height and pollen development. In addition, ruthenium red staining analysis showed that At1g74450 may affect the composition of the inner seed coat mucilage layer. Finally, C-terminal GFP fusion proteins for At1g74450 were shown to localise to the cytosol. PMID:26485022

  4. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses

    PubMed Central

    Kalamaki, Mary S.; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J.; Kanellis, Angelos K.

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  5. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.

  6. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient.

    PubMed

    Knutzen, Florian; Meier, Ina Christin; Leuschner, Christoph

    2015-09-01

    Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech (Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816-544 mm year(-1)), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ∼30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity ϵ reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root

  7. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    PubMed

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  8. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.

    PubMed

    Veiga, Rita S L; Faccio, Antonella; Genre, Andrea; Pieterse, Corné M J; Bonfante, Paola; van der Heijden, Marcel G A

    2013-11-01

    The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non-mycorrhizal plants. The interaction of such non-host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non-mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual-compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non-host/AMF interactions and the biological basis of AM incompatibility. © 2013 John Wiley & Sons Ltd.

  9. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow.

    PubMed

    Rajsekhar, Deepthi; Gorelick, Steven M

    2017-08-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.

  10. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow

    PubMed Central

    Rajsekhar, Deepthi; Gorelick, Steven M.

    2017-01-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan’s surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981–2010) is compared to the future (2011–2100), divided into three 30-year periods. Comparing the baseline period to 2070–2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability. PMID:28875164

  11. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis.

    PubMed

    Lim, Sung Don; Lee, Chanhui; Jang, Cheol Seong

    2014-05-01

    Plant growth under low water availability adversely affects many key processes with morphological, physiological, biochemical and molecular consequences. Here, we found that a rice gene, OsCTR1, encoding the RING Ub E3 ligase plays an important role in drought tolerance. OsCTR1 was highly expressed in response to dehydration treatment and defense-related phytohormones, and its encoded protein was localized in both the chloroplasts and the cytosol. Intriguingly, the OsCTR1 protein was found predominantly targeted to the cytosol when rice protoplasts transfected with OsCTR1 were treated with abscisic acid (ABA). Several interacting partners were identified, which were mainly targeted to the chloroplasts, and interactions with OsCTR1 were confirmed by using biomolecular fluorescence complementation (BiFC). Interestingly, two chloroplast-localized proteins (OsCP12 and OsRP1) interacted with OsCTR1 in the cytosol, and ubiquitination by OsCTR1 led to protein degradation via the Ub 26S proteasome. Heterogeneous overexpression of OsCTR1 in Arabidopsis exhibited hypersensitive phenotypes with respect to ABA-responsive seed germination, seedling growth and stomatal closure. The ABA-sensitive transgenic plants also showed improvement in their tolerance against severe water deficits. Taken together, our findings lend support to the hypothesis that the molecular functions of OsCTR1 are related to tolerance to water-deficit stress via ABA-dependent regulation and related systems. © 2013 John Wiley & Sons Ltd.

  13. USGS integrated drought science

    USGS Publications Warehouse

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  14. Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes.

    PubMed

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-07-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.

  15. Drought impact functions as intermediate step towards drought damage assessment

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or

  16. Use of the wetting method on cassava flour in three konzo villages in Mozambique reduces cyanide intake and may prevent konzo in future droughts.

    PubMed

    Nhassico, Dulce; Bradbury, James Howard; Cliff, Julie; Majonda, Rita; Cuambe, Constantino; Denton, Ian C; Foster, Matthew P; Martins, Arlinda; Cumbane, Adelaide; Sitoe, Luis; Pedro, Joao; Muquingue, Humberto

    2016-07-01

    Konzo is an irreversible paralysis of the legs that occurs mainly in children and young women associated with large cyanide intake from bitter cassava coupled with malnutrition. In East Africa outbreaks occur during drought, when cassava plants produce much more cyanogens than normal. A wetting method that removes cyanogens from cassava flour was taught to the women of three konzo villages in Mozambique, to prevent sporadic konzo and konzo outbreaks in the next drought. The intervention was in three villages with 72 konzo cases and mean konzo prevalence of 1.2%. The percentage of children with high (>350 μmol/L) urinary thiocyanate content and at risk of contracting konzo in Cava, Acordos de Lusaka, and Mujocojo reduced from 52, 10, and 6 at baseline to 17, 0, and 4 at conclusion of the intervention. Cassava flour showed large reductions in total cyanide over the intervention. The percentage of households using the wetting method was 30-40% in Acordos de Lusaka and Mujocojo and less in Cava. If the wetting method is used extensively by households during drought it should prevent konzo outbreaks and chronic cyanide intoxication. We recommend that the wetting method be taught in all konzo areas in East Africa.

  17. UDP-Glucosyltransferase71C5, a Major Glucosyltransferase, Mediates Abscisic Acid Homeostasis in Arabidopsis1[OPEN

    PubMed Central

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng

    2015-01-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid-glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis. PMID:25713337

  18. Resistance of Arabidopsis thaliana L. photosynthetic apparatus to UV-B is reduced by deficit of phytochromes B and A.

    PubMed

    Khudyakova, Aleksandra Yu; Kreslavski, Vladimir D; Shirshikova, Galina N; Zharmukhamedov, Sergey K; Kosobryukhov, Anatoly A; Allakhverdiev, Suleyman I

    2017-04-01

    The photosynthetic responses of 25-day-old Arabidopsis phyA phyB double mutant (DM) compared with the wild type (WT) to UV-B radiation (1Wm(-2), 30min) were investigated. UV-B irradiation led to reduction of photosystem 2 (PS-2) activity and the photosynthetic rate. In plants grown under both white and red light (λm - 660nm) the reduction was greater in DM plants compared to the WT. Without UV-B irradiation a decrease in PS-2 activity was observed in DM grown under RL only. It is assumed that the lower content of UV-absorbing pigments and carotenoids observed in DM may be one of the reasons of reduced PS-2 resistance to UV-B. Higher decrease in activities under UV in DM plants grown under RL compared to DM plants grown under white light is likely due to the lack of activity of cryptochromes in plants grown under red light. Rates of post-stress recovery of photosynthetic activity of DM compared with WT plants under white and red light of low intensity were studied. Almost complete recovery of the activity was found which was not observed under dark conditions and in the presence of a protein synthesis inhibitor, chloramphenicol. It is assumed that phytochrome system participates in stress-protective mechanisms of the photosynthetic apparatus to UV-radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  20. The German drought monitor

    NASA Astrophysics Data System (ADS)

    Zink, Matthias; Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Mai, Juliane; Schäfer, David; Marx, Andreas

    2016-07-01

    The 2003 drought event in Europe had major implications on many societal sectors, including energy production, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone. Furthermore, soil droughts have considerable impacts on ecosystems, forest fires and water management. Monitoring soil water availability in near real-time and at high-resolution, i.e., 4 × 4 km2, enables water managers to mitigate the impact of these extreme events. The German drought monitor was established in 2014 as an online platform. It uses an operational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture using the mesoscale hydrological model; (3) calculation of a quantile-based soil moisture index (SMI) based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally dry to exceptional drought. Finally, an easy to understand map is produced and published on a daily basis on www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event, which garnered broad media attention, shows that 75% of the German territory underwent drought conditions in July 2015. Regions such as Northern Bavaria and Eastern Saxony, however, have been particularly prone to drought conditions since autumn 2014. Comparisons with historical droughts show that the 2015 event is amongst the ten most severe drought events observed in Germany since 1954 in terms of its spatial extent, magnitude and duration.

  1. NFXL2 modifies cuticle properties in Arabidopsis.

    PubMed

    Lisso, Janina; Schröder, Florian; Schippers, Jos H M; Müssig, Carsten

    2012-05-01

    Loss of the Arabidopsis NFX1-LIKE2 (NFXL2) gene (At5g05660) results in elevated ABA levels, elevated hydrogen peroxide levels, reduced stomatal aperture, and enhanced drought stress tolerance. Introduction of the NFXL2-78 isoform into the nfxl2-1 mutant is largely sufficient for complementation of the phenotype. We show here that cuticular properties are altered in the nfxl2-1 mutant. The NFXL2-78 protein binds to the SHINE1 (SHN1), SHN2, SHN3, and BODYGUARD1 (BDG1) promoters and mediates weaker expression of these genes. The SHN AP2 domain transcription factors influence cuticle properties. Stronger SHN1, SHN2, and SHN3 expression in the nfxl2-1 mutant may cause altered cuticle properties including reduced stomatal density, and partly explain the enhanced drought stress tolerance. The BDG1 protein also controls cuticle development and is essential for osmotic stress regulation of ABA biosynthesis. Stronger BDG1 expression in nfxl2-1 plants may allow elevated ABA accumulation under drought stress. We conclude that the NFXL2-78 protein is part of a regulatory network that integrates the biosynthesis and action of ABA, ROS, and cuticle components.

  2. Expression of AtGRXS17 in tomato (Solanum lycopersicum) enhances tolerance to drought stress

    USDA-ARS?s Scientific Manuscript database

    The monothiol glutaredoxin AtGRXS17 from "Arabidopsis" provides thermotolerance in yeast, "Arabidopsis", and tomato. Here we report its crucial role in drought response as well as its ortholog SlGRXS17’s ability to complement a T-DNA insertional AtGRXS17 "Arabidopsis" mutant under heat stress, there...

  3. Cotton GhERF38 gene is involved in plant response to salt/drought and ABA.

    PubMed

    Ma, Liufeng; Hu, Longxing; Fan, Jibiao; Amombo, Erick; Khaldun, A B M; Zheng, Yong; Chen, Liang

    2017-08-01

    ERF (ethylene-responsive factor) transcription factors play important roles in plant stress signaling transduction pathways. However, their specific roles during diverse abiotic stresses tolerance in Gossypium hirsutum are largely unknown. Here, a novel ERF transcription factor, designated GhERF38, homologous to AtERF38 in Arabidopsis, was isolated from cotton (Gossypium hirsutum L). GhERF38 expression was up-regulated by salt, drought and ABA treatments. Subcellular localization results indicated that GhERF38 was localized in the cell nucleus. Over-expression of GhERF38 in Arabidopsis reduced plant tolerance to salt and drought stress as indicated by a decline of seed germination, plant greenness frequency, primary roots length and the survival rate in transgenic plants compared to those of wild type plants under salt or drought treatment. Besides, stress tolerance related physiological parameters such as proline content, relative water content, soluble sugar and chlorophyll content were all significantly lower in transgenic plants than those of wild type plants under salt or drought treatment. Furthermore, over-expression of GhERF38 in Arabidopsis resulted in ABA sensitivity in transgenic plants during both seed germination and seedling growth. Interestingly, the stomatal aperture of guard cells in the transgenic plants was larger than that in transgenic plant after ABA treatment, suggesting that GhERF38-overexpressing plants were insensitive to ABA in terms of stomatal closure. Furthermore, expressions of the stress-related genes were altered in the GhERF38 transgenic plants under high salinity, drought or ABA treatment. Together, our results revealed that GhERF38 functions as a novel regulator that is involved in response to salt/drought stress and ABA signaling during plant development.

  4. ABA receptor PYL9 promotes drought resistance and leaf senescence

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A.; Zhu, Jian-Kang

    2016-01-01

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  5. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  6. The Competitiveness of Pseudomonas chlororaphis Carrying pJP4 Is Reduced in the Arabidopsis thaliana Rhizosphere

    PubMed Central

    Schmidt-Eisenlohr, Heike; Baron, Christian

    2003-01-01

    The effect of the large catabolic IncP plasmid pJP4 on the competitiveness of Pseudomonas chlororaphis SPR044 and on its derivatives SPR244 (GacS deficient), SPR344 (phenazine-1-carboxamide overproducer), and SPR644 (phenazine-1-carboxamide deficient) in the Arabidopsis thaliana rhizosphere was assessed. Solitary rhizosphere colonization by the wild type, SPR244, and SPR644 was not affected by the plasmid. The size of the population of SPR344 carrying pJP4, however, was significantly reduced compared to the size of the population of the plasmid-free derivative. The abiotic stress caused by phenazine-1-carboxamide overproduction probably resulted in a selective disadvantage for cells carrying pJP4. Next, the effect of biotic stress caused by coinoculation of other bacteria was analyzed. Cells carrying pJP4 had a selective disadvantage compared to plasmid-free cells in the presence of the efficient colonizer Pseudomonas fluorescens WCS417r. This effect was not observed after coinoculation with a variety of other bacteria, and it was independent of quorum sensing and phenazine-1-carboxamide production. Thus, the presence of large catabolic plasmids imposes a detectable metabolic burden in the presence of biotic stress. Plasmid transfer in the A. thaliana rhizosphere from P. chlororaphis and its derivatives to Ralstonia eutropha was determined by using culture-dependent and culture-independent techniques. With the cultivation-independent technique we detected a significantly higher portion of exconjugants, but pJP4 transfer was independent of the quorum-sensing system and of phenazine-1-carboxamide production. PMID:12620876

  7. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Zhu-Salzman, Keyan; Ge, Feng

    2013-09-01

    Rising atmospheric CO2 concentrations can affect the induced defense of plants against herbivory by chewing insects, but little is known about whether elevated CO2 can change the inducible defense of plants against herbivory by aphids, which are phloem-sucking rather than tissue-chewing insects. Interactions between the green peach aphid Myzus persicae and four isogenic Arabidopsis thaliana genotypes including wild type and three induced defense pathway deficient mutants were examined under ambient and elevated CO2. Our data showed that elevated CO2 increased the population abundance of peach aphid when reared on wild type and SA-deficient mutant plants. Regardless of aphid infestation, elevated CO2 decreased the jasmonic acid (JA) but increased the salicylic acid (SA) level in wild-type plants. In addition, elevated CO2 increased SA level in SA-deficient mutant while did not change the JA level in JA-deficient mutant. Pathway enrichment analysis based on high-throughput transcriptome sequencing suggested that CO2 level, aphid infestation, and their interactions (respectively) altered plant defense pathways. Furthermore, qPCR results showed that elevated CO2 up-regulated the expression of SA-dependent defense genes but down-regulated the expression of JA/ethylene-dependent defense genes in wild-type plants infested by aphids. The current study indicated that elevated CO2 tended to enhance the ineffective defense-SA signaling pathway and to reduce the effective defense-JA signaling pathway against aphids, which resulted in increased aphid numbers. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana

    PubMed Central

    Zhang, Liang; Li, Yuzhen; Lu, Wenjing; Meng, Fei; Wu, Chang-ai; Guo, Xingqi

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants’ resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants’ sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H2O2. Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants. PMID:22442420

  9. Reducing regional drought vulnerabilities and multi-city robustness conflicts using many-objective optimization under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.; Herman, J. D.; Zeff, H. B.; Characklis, G. W.

    2017-06-01

    Emerging water scarcity concerns in many urban regions are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify coordinated, scarcity-mitigating strategies that trigger the appropriate actions needed to avoid water shortages and financial instabilities. This research focuses on the Research Triangle area of North Carolina, seeking to engage the water utilities within Raleigh, Durham, Cary and Chapel Hill in cooperative and robust regional water portfolio planning. Prior analysis of this region through the year 2025 has identified significant regional vulnerabilities to volumetric shortfalls and financial losses. Moreover, efforts to maximize the individual robustness of any of the mentioned utilities also have the potential to strongly degrade the robustness of the others. This research advances a multi-stakeholder Many-Objective Robust Decision Making (MORDM) framework to better account for deeply uncertain factors when identifying cooperative drought management strategies. Our results show that appropriately designing adaptive risk-of-failure action triggers required stressing them with a comprehensive sample of deeply uncertain factors in the computational search phase of MORDM. Search under the new ensemble of states-of-the-world is shown to fundamentally change perceived performance tradeoffs and substantially improve the robustness of individual utilities as well as the overall region to water scarcity. Search under deep uncertainty enhanced the discovery of how cooperative water transfers, financial risk mitigation tools, and coordinated regional demand management must be employed jointly to improve regional robustness and decrease robustness conflicts between the utilities. Insights from this work have general merit for regions where

  10. Quantifying and Reducing the Uncertainties in Future Projections of Droughts and Heat Waves for North America that Result from the Diversity of Models in CMIP5

    NASA Astrophysics Data System (ADS)

    Herrera-Estrada, J. E.; Sheffield, J.

    2014-12-01

    There are many sources of uncertainty regarding the future projections of our climate, including the multiple possible Representative Concentration Pathways (RCPs), the variety of climate models used, and the initial and boundary conditions with which they are run. Moreover, it has been shown that the internal variability of the climate system can sometimes be of the same order of magnitude as the climate change signal or even larger for some variables. Nonetheless, in order to help inform stakeholders in water resources and agriculture in North America when developing adaptation strategies, particularly for extreme events such as droughts and heat waves, it is necessary to study the plausible range of changes that the region might experience during the 21st century. We aim to understand and reduce the uncertainties associated with this range of possible scenarios by focusing on the diversity of climate models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Data output from various CMIP5 models is compared against near surface climate and land-surface hydrological data from the North American Land Data Assimilation System (NLDAS)-2 to evaluate how well each climate model represents the land-surface processes associated with droughts and heat waves during the overlapping historical period (1979-2005). These processes include the representation of precipitation and radiation and their partitioning at the land surface, land-atmosphere interactions, and the propagation of signals of these extreme events through the land surface. The ability of the CMIP5 models to reproduce these important physical processes for regions of North America is used to inform a multi-model ensemble in which models that represent the processes relevant to droughts and heat waves better are given more importance. Furthermore, the future projections are clustered to identify possible dependencies in behavior across models. The results indicate a wide range in performance

  11. A mutant of the Arabidopsis thaliana Toc159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that a null mutant of Arabidopsis that lacks Toc159 receptor is impaired in chloroplast biogenesis and incapable of importing photosynthetic proteins. The mutant is referred to as plastid protein import 2 or ppi2, and has an albino phenotype. In this study, we measured ...

  12. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured...

  13. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission.

    PubMed

    Mishra, Kumud Bandhu; Iannacone, Rina; Petrozza, Angelo; Mishra, Anamika; Armentano, Nadia; La Vecchia, Giovanna; Trtílek, Martin; Cellini, Francesco; Nedbal, Ladislav

    2012-01-01

    Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative regulator of growth. We compared the performance of wild type and transgenic tomato line DTL-20, carrying ATHB-7 gene, under well-irrigated and water limited conditions. We found that transgenic plants had reduced stomatal density and stomatal pore size and exhibited an enhanced resistance to soil water deficit. We used the transgenic plants to investigate the potential of chlorophyll fluorescence to report drought tolerance in a simulated high-throughput screening procedure. Wild type and transgenic tomato plants were exposed to drought stress lasting 18 days. The stress was then terminated by rehydration after which recovery was studied for another 2 days. Plant growth, leaf water potential, and chlorophyll fluorescence were measured during the entire experimental period. We found that water potential in wild type and drought tolerant transgenic plants diverged around day 11 of induced drought stress. The chlorophyll fluorescence parameters: the non-photochemical quenching, effective quantum efficiency of PSII, and the maximum quantum yield of PSII photochemistry yielded a good contrast between wild type and transgenic plants from day 7, day 12, and day 14 of induced stress, respectively. We propose that chlorophyll fluorescence emission reports well on the level of water stress and, thus, can be used to identify elevated drought tolerance in high-throughput screens for selection of resistant genotypes.

  14. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco.

    PubMed

    Zhang, Song; Zhuang, Kunyang; Wang, Shiju; Lv, Jinlian; Ma, Na'na; Meng, Qingwei

    2017-02-01

    SUMOylation is an important post-translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS-type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up-regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2 O2 ) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1-2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress. © 2016 Institute of Botany, Chinese Academy of Sciences.

  15. REDUCED DORMANCY5 Encodes a Protein Phosphatase 2C That Is Required for Seed Dormancy in Arabidopsis[C][W][OPEN

    PubMed Central

    Xiang, Yong; Nakabayashi, Kazumi; Ding, Jia; He, Fei; Bentsink, Leónie; Soppe, Wim J.J.

    2014-01-01

    Seed dormancy determines germination timing and contributes to crop production and the adaptation of natural populations to their environment. Our knowledge about its regulation is limited. In a mutagenesis screen of a highly dormant Arabidopsis thaliana line, the reduced dormancy5 (rdo5) mutant was isolated based on its strongly reduced seed dormancy. Cloning of RDO5 showed that it encodes a PP2C phosphatase. Several PP2C phosphatases belonging to clade A are involved in abscisic acid signaling and control seed dormancy. However, RDO5 does not cluster with clade A phosphatases, and abscisic acid levels and sensitivity are unaltered in the rdo5 mutant. RDO5 transcript could only be detected in seeds and was most abundant in dry seeds. RDO5 was found in cells throughout the embryo and is located in the nucleus. A transcriptome analysis revealed that several genes belonging to the conserved PUF family of RNA binding proteins, in particular Arabidopsis PUMILIO9 (APUM9) and APUM11, showed strongly enhanced transcript levels in rdo5 during seed imbibition. Further transgenic analyses indicated that APUM9 reduces seed dormancy. Interestingly, reduction of APUM transcripts by RNA interference complemented the reduced dormancy phenotype of rdo5, indicating that RDO5 functions by suppressing APUM transcript levels. PMID:25415980

  16. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis1[OPEN

    PubMed Central

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei

    2015-01-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. PMID:25818700

  17. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage.

    PubMed

    Kumar, Deepak; Singh, Preeti; Yusuf, Mohd Aslam; Upadhyaya, Chandrama Prakash; Roy, Suchandra Deb; Hohn, Thomas; Sarin, Neera Bhalla

    2013-06-01

    We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant's survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

  18. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  19. Probabilistic drought characterization in the categorical form using ordinal regression

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Hong, Yang; Xia, Youlong; Singh, Vijay P.; Hao, Fanghua; Cheng, Hongguang

    2016-04-01

    Drought is an insidious natural hazard that may cause tremendous losses to different sectors, including agriculture and ecosystems. Reliable drought monitoring and early warning are of critical importance for drought preparedness planning and mitigation to reduce potential impacts. Traditional drought monitoring is generally based on drought indices, such as Standardized Precipitation Index (SPI), that are computed from hydro-climatic variables. The U.S. Drought Monitor (USDM) classifies drought conditions into different drought categories to provide composite drought information by integrating multiple drought indices, which has been commonly used to aid decision making at the federal, state, and local levels. Characterizing drought in categories similar to USDM would be important for decision making for both research and operational purposes. However, drought monitoring, based on a variety of drought indices, is challenged by the classification of drought into categories used by USDM. In this study, an ordinal regression model is proposed to characterize droughts in USDM drought categories based on several drought indices, in which the probability of each drought category can be estimated. The proposed method is assessed by comparing with USDM in Texas and a satisfactory performance for estimating drought categories is revealed.

  20. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice.

    PubMed

    Galbiati, Francesca; Chiozzotto, Remo; Locatelli, Franca; Spada, Alberto; Genga, Annamaria; Fornara, Fabio

    2016-09-01

    Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species. © 2016 John Wiley & Sons Ltd.

  1. Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis.

    PubMed

    Geisler, Daniela A; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L; Fernie, Alisdair R; Persson, Staffan

    2012-07-01

    The mitochondrial ATP synthase (F(1)F(o) complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded F(o) part to the matrix-facing central stalk of F(1). We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development.

  2. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  3. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana

    PubMed Central

    Gao, Ruimin; Liu, Peng; Yong, Yuhan; Wong, Sek-Man

    2016-01-01

    Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection, and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways. PMID:27086702

  4. Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in Arabidopsis[W][OA

    PubMed Central

    Geisler, Daniela A.; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L.; Fernie, Alisdair R.; Persson, Staffan

    2012-01-01

    The mitochondrial ATP synthase (F1Fo complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded Fo part to the matrix-facing central stalk of F1. We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development. PMID:22805435

  5. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought

    PubMed Central

    Fang, Xiangwen; Turner, Neil C.; Yan, Guijun; Li, Fengmin; Siddique, Kadambot H. M.

    2010-01-01

    Terminal drought during the reproductive stage is a major constraint to yield of chickpea in many regions of the world. Termination of watering (WS) during podding in a small-seeded desi chickpea (Cicer arietinum L.) cultivar, Rupali, and a large-seeded kabuli chickpea cultivar, Almaz, induced a decrease in predawn leaf water potential (LWP), in the rate of photosynthesis, and in stomatal conductance. Compared to well-watered (WW) controls, the WS treatment reduced flower production by about two-thirds. In the WW treatment, about 15% of the flowers aborted and 42% (Rupali) and 67% (Almaz) of the pods aborted, whereas in the WS treatment 37% and 56% of the flowers aborted and 54% and 73% of the pods aborted, resulting in seed yields of 33% and 15% of the yields in WW plants in Rupali and Almaz, respectively. In vitro pollen viability and germination in Rupali decreased by 50% and 89% in the WS treatment, and pollen germination decreased by 80% in vivo when pollen from a WS plant was placed on a stigma of a WW plant. While about 37% of the germinated pollen tubes from WW plants and 22% from the WS plants reached the ovary in the WW plants, less than 3% of pollen grains reached the ovary when pollen from either WS or WW plants was placed on a stigma of a WS plant. It is concluded that, in addition to pod abortion, flower abortion is an important factor limiting yield in chickpea exposed to terminal drought and that water deficit impaired the function of the pistil/style more than the pollen. PMID:19854801

  6. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought.

    PubMed

    Fang, Xiangwen; Turner, Neil C; Yan, Guijun; Li, Fengmin; Siddique, Kadambot H M

    2010-01-01

    Terminal drought during the reproductive stage is a major constraint to yield of chickpea in many regions of the world. Termination of watering (WS) during podding in a small-seeded desi chickpea (Cicer arietinum L.) cultivar, Rupali, and a large-seeded kabuli chickpea cultivar, Almaz, induced a decrease in predawn leaf water potential (LWP), in the rate of photosynthesis, and in stomatal conductance. Compared to well-watered (WW) controls, the WS treatment reduced flower production by about two-thirds. In the WW treatment, about 15% of the flowers aborted and 42% (Rupali) and 67% (Almaz) of the pods aborted, whereas in the WS treatment 37% and 56% of the flowers aborted and 54% and 73% of the pods aborted, resulting in seed yields of 33% and 15% of the yields in WW plants in Rupali and Almaz, respectively. In vitro pollen viability and germination in Rupali decreased by 50% and 89% in the WS treatment, and pollen germination decreased by 80% in vivo when pollen from a WS plant was placed on a stigma of a WW plant. While about 37% of the germinated pollen tubes from WW plants and 22% from the WS plants reached the ovary in the WW plants, less than 3% of pollen grains reached the ovary when pollen from either WS or WW plants was placed on a stigma of a WS plant. It is concluded that, in addition to pod abortion, flower abortion is an important factor limiting yield in chickpea exposed to terminal drought and that water deficit impaired the function of the pistil/style more than the pollen.

  7. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.

    PubMed

    Zhang, Tianyi; Lin, Xiaomao; Sassenrath, Gretchen F

    2015-03-01

    In this study, we assessed the adaptive effects of irrigation on climatic risks for three crops (maize, soybean, and wheat) at the regional scale from 1981 to 2012 in the Central US. Based on yields of 183 counties for maize, 121 for soybean and 101 for wheat, statistical models were developed for irrigated, rainfed and county-level yields. Results show that irrigation has a statistically significant effect on abating detrimental climate impacts, specifically drought and extreme heat, in maize and soybean but not in wheat. On average, irrigation reduces the negative influences of extreme heat by around 7.2% for maize and 5.0% for soybean yields for each additional 10 degree-days above the optimal temperature for each crop. This is approximately two-thirds of the negative effects of extreme heat under rainfed management. The remaining third of the yield reduction is caused by heat damage that cannot be alleviated by irrigation. No significant differences were detected between county yields and irrigated yields for maize and soybean, suggesting that the existing irrigation practices were reasonably efficient. Efforts to mitigate future climate risks for these two crops should focus on improving the heat sensitivity contributing to the yield losses from heat damage. In contrast, the existing irrigation does not improve the resilience of wheat to climate risks. Both increased temperature and drought were critical to wheat production, which was potentially caused by relatively poor irrigation supplies for wheat. Further enhancement of wheat yield may be possible through improved irrigation management. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress.

    PubMed

    Wang, Lin; Feng, Chao; Zheng, Xiaodong; Guo, Yan; Zhou, Fangfang; Shan, Dongqian; Liu, Xuan; Kong, Jin

    2017-10-01

    Synthesis of melatonin in mitochondria was reported in animals. However, there is no report on whether plant mitochondria also produce melatonin. Herein, we show that plant mitochondria are a major site for melatonin synthesis. In an in vitro study, isolated apple mitochondria had the capacity to generate melatonin. Subcellular localization analysis documented that an apple SNAT isoform, MzSNAT5, was localized in the mitochondria of both Arabidopsis protoplasts and apple callus cells. The kinetic analysis revealed that the recombinant MzSNAT5 protein exhibited high enzymatic activity to catalyze serotonin to N-acetylserotonin with the Km and Vmax of 55 μmol/L and 0.909 pmol/min/mg protein at 35°C, respectively; this pathway functioned over a wide range of temperatures from 5 to 75°C. In an in vivo study, MzSNAT5 was drought inducible. The transgenic Arabidopsis ectopically expressing MzSNAT5 elevated the melatonin level and, hence, enhanced drought tolerance. The mechanistic study indicated that the ectopically expressing MzSNAT5 allows plant mitochondria to increase melatonin synthesis. As a potent free radical scavenger, melatonin reduces the oxidative stress caused by the elevated reactive oxygen species which are generated under drought stress in plants. Our findings provide evidence that engineered melatonin-enriched plants exhibit enhanced oxidative tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Virus-Induced Gene Silencing of Plastidial Soluble Inorganic Pyrophosphatase Impairs Essential Leaf Anabolic Pathways and Reduces Drought Stress Tolerance in Nicotiana benthamiana1[W][OA

    PubMed Central

    George, Gavin M.; van der Merwe, Margaretha J.; Nunes-Nesi, Adriano; Bauer, Rolene; Fernie, Alisdair R.; Kossmann, Jens; Lloyd, James R.

    2010-01-01

    The role of pyrophosphate in primary metabolism is poorly understood. Here, we report on the transient down-regulation of plastid-targeted soluble inorganic pyrophosphatase in Nicotiana benthamiana source leaves. Physiological and metabolic perturbations were particularly evident in chloroplastic central metabolism, which is reliant on fast and efficient pyrophosphate dissipation. Plants lacking plastidial soluble inorganic pyrophosphatase (psPPase) were characterized by increased pyrophosphate levels, decreased starch content, and alterations in chlorophyll and carotenoid biosynthesis, while constituents like amino acids (except for histidine, serine, and tryptophan) and soluble sugars and organic acids (except for malate and citrate) remained invariable from the control. Furthermore, translation of Rubisco was significantly affected, as observed for the amounts of the respective subunits as well as total soluble protein content. These changes were concurrent with the fact that plants with reduced psPPase were unable to assimilate carbon to the same extent as the controls. Furthermore, plants with lowered psPPase exposed to mild drought stress showed a moderate wilting phenotype and reduced vitality, which could be correlated to reduced abscisic acid levels limiting stomatal closure. Taken together, the results suggest that plastidial pyrophosphate dissipation through psPPase is indispensable for vital plant processes. PMID:20605913

  10. Virus-induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in Nicotiana benthamiana.

    PubMed

    George, Gavin M; van der Merwe, Margaretha J; Nunes-Nesi, Adriano; Bauer, Rolene; Fernie, Alisdair R; Kossmann, Jens; Lloyd, James R

    2010-09-01

    The role of pyrophosphate in primary metabolism is poorly understood. Here, we report on the transient down-regulation of plastid-targeted soluble inorganic pyrophosphatase in Nicotiana benthamiana source leaves. Physiological and metabolic perturbations were particularly evident in chloroplastic central metabolism, which is reliant on fast and efficient pyrophosphate dissipation. Plants lacking plastidial soluble inorganic pyrophosphatase (psPPase) were characterized by increased pyrophosphate levels, decreased starch content, and alterations in chlorophyll and carotenoid biosynthesis, while constituents like amino acids (except for histidine, serine, and tryptophan) and soluble sugars and organic acids (except for malate and citrate) remained invariable from the control. Furthermore, translation of Rubisco was significantly affected, as observed for the amounts of the respective subunits as well as total soluble protein content. These changes were concurrent with the fact that plants with reduced psPPase were unable to assimilate carbon to the same extent as the controls. Furthermore, plants with lowered psPPase exposed to mild drought stress showed a moderate wilting phenotype and reduced vitality, which could be correlated to reduced abscisic acid levels limiting stomatal closure. Taken together, the results suggest that plastidial pyrophosphate dissipation through psPPase is indispensable for vital plant processes.

  11. Drought in the Anthropocene

    NASA Astrophysics Data System (ADS)

    van Loon, Anne F.; Gleeson, Tom; Clark, Julian; van Dijk, Albert I. J. M.; Stahl, Kerstin; Hannaford, Jamie; di Baldassarre, Giuliano; Teuling, Adriaan J.; Tallaksen, Lena M.; Uijlenhoet, Remko; Hannah, David M.; Sheffield, Justin; Svoboda, Mark; Verbeiren, Boud; Wagener, Thorsten; Rangecroft, Sally; Wanders, Niko; van Lanen, Henny A. J.

    2016-02-01

    Drought management is inefficient because feedbacks between drought and people are not fully understood. In this human-influenced era, we need to rethink the concept of drought to include the human role in mitigating and enhancing drought.

  12. Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage.

    PubMed

    Kim, H S; Park, Y H; Nam, H; Lee, Y M; Song, K; Choi, C; Ahn, I; Park, S R; Lee, Y H; Hwang, D J

    2014-09-01

    Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important vegetable crop, can succumb to diseases such as bacterial soft rot, resulting in significant loss of crop productivity and quality. Pectobacterium carotovorum ssp. carotovorum (Pcc) causes soft rot disease in various plants, including Chinese cabbage. To overcome crop loss caused by bacterial soft rot, a gene from Chinese cabbage was isolated and characterised in this study. We isolated the BrWRKY12 gene from Chinese cabbage, which is a group II member of the WRKY transcription factor superfamily. The 645-bp coding sequence of BrWRKY12 translates to a protein with a molecular mass of approximately 24.4 kDa, and BrWRKY12 was exclusively localised in the nucleus. Transcripts of BrWRKY12 were induced by Pcc infection in Brassica. Heterologous expression of BrWRKY12 resulted in reduced susceptibility to Pcc but not to Pseudomonas syringae pv. tomato in Arabidopsis. Defence-associated genes, such as AtPDF1.2 and AtPGIP2, were constitutively expressed in transgenic lines overexpressing BrWRKY12. The expression of AtWKRY12, which is the closest orthologue of BrWRKY12, was down-regulated by Pcc in Arabidopsis. However, the Atwrky12-2 mutants did not show any difference in response to Pcc, pointing to a difference in function of WRKY12 in Brassica and Arabidopsis. Furthermore, BrWRKY12 in Chinese cabbage also exhibited enhanced resistance to bacterial soft rot and increased the expression of defence-associated genes. In summary, BrWRKY12 confers enhanced resistance to Pcc through transcriptional activation of defence-related genes.

  13. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect

    Yin, Hengfu; Chen, Rick; Yang, Jun; Weston, David; Chen, Jay; Muchero, Wellington; Ye, Ning; Tschaplinski, Timothy J; Wullschleger, Stan D; Cheng, Zong-Ming; Tuskan, Gerald A; Yang, Xiaohan

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  14. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    PubMed Central

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  15. Mapping drought conditions using multi-year windows

    Treesearch

    Frank H. Koch; John W. Coulston; William D. Smith

    2012-01-01

    Drought, especially persistent drought, may impact forests in direct and indirect ways. Low to moderate drought stress directly reduces plant growth processes at the cellular level, while more severe stress also substantially diminishes photosynthesis (Kareiva and others 1993, Mattson and Haack 1987). Indirectly, forest communities subjected to drought stress may be...

  16. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China.

    PubMed

    Li, Li; Manning, William J; Tong, Lei; Wang, Xiaoke

    2015-06-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012-2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 - induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3.

  17. Does drought legacy alter the recovery of grassland carbon dynamics from drought?

    NASA Astrophysics Data System (ADS)

    Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger

    2017-04-01

    Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing

  18. Does drought legacy alter the recovery of grassland carbon dynamics from drought?

    NASA Astrophysics Data System (ADS)

    Bahn, M.; Hasibeder, R.; Fuchslueger, L.; Ingrisch, J.; Ladreiter-Knauss, T.; Lair, G.; Reinthaler, D.; Richter, A.; Kaufmann, R.

    2016-12-01

    Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with

  19. Reducing the Genetic Redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 Transporters to Study Phosphate Uptake and Signaling1[OPEN

    PubMed Central

    Ayadi, Amal; David, Pascale; Arrighi, Jean-François; Chiarenza, Serge; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) absorbs inorganic phosphate (Pi) from the soil through an active transport process mediated by the nine members of the PHOSPHATE TRANSPORTER1 (PHT1) family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2, and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80%–96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity, suggesting that systemic Pi sensing is most probably acting downstream of PHT1. PMID:25670816

  20. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne F.; Stahl, Kerstin; Di Baldassarre, Giuliano; Clark, Julian; Rangecroft, Sally; Wanders, Niko; Gleeson, Tom; Van Dijk, Albert I. J. M.; Tallaksen, Lena M.; Hannaford, Jamie; Uijlenhoet, Remko; Teuling, Adriaan J.; Hannah, David M.; Sheffield, Justin; Svoboda, Mark; Verbeiren, Boud; Wagener, Thorsten; Van Lanen, Henny A. J.

    2016-09-01

    accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time?

  21. Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future.

  1. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools.

    PubMed

    Kim, Jeong Im; Ciesielski, Peter N; Donohoe, Bryon S; Chapple, Clint; Li, Xu

    2014-02-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.

  2. Analysis of Arabidopsis with Highly Reduced Levels of Malate and Fumarate Sheds Light on the Role of These Organic Acids as Storage Carbon Molecules1[W

    PubMed Central

    Zell, Martina B.; Fahnenstich, Holger; Maier, Alexandra; Saigo, Mariana; Voznesenskaya, Elena V.; Edwards, Gerald E.; Andreo, Carlos; Schleifenbaum, Frank; Zell, Christiane; Drincovich, María F.; Maurino, Verónica G.

    2010-01-01

    While malate and fumarate participate in a multiplicity of pathways in plant metabolism, the function of these organic acids as carbon stores in C3 plants has not been deeply addressed. Here, Arabidopsis (Arabidopsis thaliana) plants overexpressing a maize (Zea mays) plastidic NADP-malic enzyme (MEm plants) were used to analyze the consequences of sustained low malate and fumarate levels on the physiology of this C3 plant. When grown in short days (sd), MEm plants developed a pale-green phenotype with decreased biomass and increased specific leaf area, with thin leaves having lower photosynthetic performance. These features were absent in plants growing in long days. The analysis of metabolite levels of rosettes from transgenic plants indicated similar disturbances in both sd and long days, with very low levels of malate and fumarate. Determinations of the respiratory quotient by the end of the night indicated a shift from carbohydrates to organic acids as the main substrates for respiration in the wild type, while MEm plants use more reduced compounds, like fatty acids and proteins, to fuel respiration. It is concluded that the alterations observed in sd MEm plants are a consequence of impairment in the supply of carbon skeletons during a long dark period. This carbon starvation phenotype observed at the end of the night demonstrates a physiological role of the C4 acids, which may be a constitutive function in plants. PMID:20107023

  3. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.

    PubMed

    Kitamura, Satoshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.

  4. A Role for Barley Calcium-Dependent Protein Kinase CPK2a in the Response to Drought

    PubMed Central

    Cieśla, Agata; Mituła, Filip; Misztal, Lucyna; Fedorowicz-Strońska, Olga; Janicka, Sabina; Tajdel-Zielińska, Małgorzata; Marczak, Małgorzata; Janicki, Maciej; Ludwików, Agnieszka; Sadowski, Jan

    2016-01-01

    Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L.), one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index (NBI), an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley. PMID:27826303

  5. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition

    PubMed Central

    Hao, Zhangying; Avci, Utku; Tan, Li; Zhu, Xiang; Glushka, John; Pattathil, Sivakumar; Eberhard, Stefan; Sholes, Tipton; Rothstein, Grace E.; Lukowitz, Wolfgang; Orlando, Ron; Hahn, Michael G.; Mohnen, Debra

    2014-01-01

    GAlactUronosylTransferase12 (GAUT12)/IRregular Xylem8 (IRX8) is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8) mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG). We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS) and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D 13C-1H Heteronuclear Single-Quantum Correlation (HSQC) NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation. PMID:25120548

  6. Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids

    PubMed Central

    Shrestha, Pushkar; Callahan, Damien L.; Singh, Surinder P.; Petrie, James R.; Zhou, Xue-Rong

    2016-01-01

    There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development. PMID:27725822

  7. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon.

    PubMed

    Feng, Ying; Yin, Yanhai; Fei, Shuizhang

    2015-05-01

    Brassinosteroids (BRs) play important roles in plant growth, development and responses to a range of environmental cues. Although the mechanism of how BRs regulate growth and development is well-understood in Arabidopsis, the effect of BRs on stress tolerance, particularly drought tolerance remains unknown. We isolated a BRI1 (BRASSINOSTEROID INSENSITIVE 1) homologous gene, BdBRI1 from Brachypodium distachyon, a model for temperate grasses and cereals, created and characterized RNA interference (RNAi) knockdown mutants for BdBRI1 in Brachypodium. The loss-of-function BdBRI1-RNAi mutants exhibited reduced plant height, shortened internodes, narrow and short leaf, and reduced expression of BR signaling genes, BdBES1, BdBZR1, BdBLE2, and enhanced expression of BR biosynthesis genes BdD2, BdCPD and BdDWF4. More importantly, BdBRI1 RNAi mutants exhibited enhanced drought tolerance, accompanied by highly elevated expression of drought-responsive genes, BdP5CS, BdCOR47/BdRD17, together with BdERD1 and BdRD26, two putative targets of the transcription factors BES1 and BZR1 that are key components of the BR signaling pathway. Our results suggest that BR signaling and biosynthesis are largely conserved among Arabidopsis, rice and Brachypodium, and that BR signaling plays an important role in drought tolerance by directly regulating expression of key drought-responsive genes. The effect of BR biosynthesis or crosstalks between BR and other hormones or components of stress signaling pathways on drought tolerance is discussed.

  8. Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene

    USDA-ARS?s Scientific Manuscript database

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...

  9. Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)

    PubMed Central

    Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921

  10. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana.

    PubMed

    Sakuraba, Yasuhito; Yokono, Makio; Akimoto, Seiji; Tanaka, Ryouichi; Tanaka, Ayumi

    2010-06-01

    Chl b is one of the major light-harvesting pigments in land plants. The synthesis of Chl b is strictly regulated in response to light conditions in order to control the antenna size of photosystems. Regulation of Chl b also affects its distribution as it occurs preferentially in the peripheral antenna complexes. However, it has not been experimentally shown how plants respond to environmental conditions when they accumulate excess Chl b. Previously, we produced an Arabidopsis transgenic plant (referred to as the BC plant) in which Chl b biosynthesis was enhanced. In this study, we analyzed the photosynthetic properties and genome-wide gene expression in this plant under high light conditions in order to understand the effects of deregulated Chl b biosynthesis. The energy transfer rates between Chl a molecules in PSII decreased and H(2)O(2) accumulated extensively in the BC plant. Microarray analysis revealed that a group of genes involved in anthocyanin biosynthesis was down-regulated and that another group of genes, reported to be sensitive to H(2)O(2), was up-regulated in the BC plant. We also found that anthocyanin levels were low, which was consistent with the results of the microarray analysis. These results indicate that deregulation of Chl b caused severe photodamage and altered gene expression profiles under strong illumination. The importance of the regulation of Chl b synthesis is discussed in relation to the correct localization of Chl b and gene expression.

  11. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis[OPEN

    PubMed Central

    Ishikawa, Toshiki; Rennie, Emilie A.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E.K.; Demura, Taku; Kawai-Yamada, Maki

    2016-01-01

    Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ∼25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged. PMID:27895225

  12. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.

    PubMed

    López-Cruz, Jaime; Óscar, Crespo-Salvador; Emma, Fernández-Crespo; Pilar, García-Agustín; Carmen, González-Bosch

    2017-01-01

    Plants activate responses against pathogens, including the oxidative burst. Necrotrophic pathogens can produce reactive oxygen species (ROS) that benefit the colonization process. Previously, we have demonstrated that tomato plants challenged with Botrytis cinerea accumulate ROS and callose, together with the induction of genes involved in defence, signalling and oxidative metabolism. Here, we studied the infection phenotype of the Δbcsod1 strain in both tomato and Arabidopsis plants. This mutant lacks bcsod1, which encodes Cu-Zn superoxide dismutase (SOD). This enzyme catalyses the conversion of superoxide ion ( O2-) into hydrogen peroxide (H2 O2 ). ROS play a protective role and act as signals in plants. Δbcsod1 displayed reduced virulence compared with wild-type B05.10 in both species. Plants infected with Δbcsod1 accumulated less H2 O2 and more O2- than those infected with B05.10, which is associated with an increase in the defensive polymer callose. This supports a major role of fungal SOD in H2 O2 production during the plant-pathogen interaction. The early induction of the callose synthase gene PMR4 suggested that changes in ROS altered plant defensive responses at the transcriptional level. The metabolites and genes involved in signalling and in response to oxidative stress were differentially expressed on Δbcsod1 infection, supporting the notion that plants perceive changes in ROS balance and activate defence responses. A higher O2(-) /H2 O2 ratio seems to be beneficial for plant protection against this necrotroph. Our results highlight the relevance of callose and the oxylipin 12-oxo-phytodienoic acid (OPDA) in the response to changes in the oxidative environment, and clarify the mechanisms that underlie the responses to Botrytis in Arabidopsis and tomato plants. © 2016 BSPP and John Wiley & Sons Ltd.

  13. Drought-Tolerance of Wheat Improved by Rhizosphere Bacteria from Harsh Environments: Enhanced Biomass Production and Reduced Emissions of Stress Volatiles

    PubMed Central

    Timmusk, Salme; Abd El-Daim, Islam A.; Copolovici, Lucian; Tanilas, Triin; Kännaste, Astrid; Behers, Lawrence; Nevo, Eviatar; Seisenbaeva, Gulaim; Stenström, Elna; Niinemets, Ülo

    2014-01-01

    Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates. PMID:24811199

  14. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles.

    PubMed

    Timmusk, Salme; Abd El-Daim, Islam A; Copolovici, Lucian; Tanilas, Triin; Kännaste, Astrid; Behers, Lawrence; Nevo, Eviatar; Seisenbaeva, Gulaim; Stenström, Elna; Niinemets, Ülo

    2014-01-01

    Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates.

  15. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The Drought Task Force and Research on Understanding, Predicting, and Monitoring Drought

    NASA Astrophysics Data System (ADS)

    Barrie, D.; Mariotti, A.; Archambault, H. M.; Hoerling, M. P.; Wood, E. F.; Koster, R. D.; Svoboda, M.

    2016-12-01

    Drought has caused serious social and economic impacts throughout the history of the United States. All Americans are susceptible to the direct and indirect threats drought poses to the Nation. Drought challenges agricultural productivity and reduces the quantity and quality of drinking water supplies upon which communities and industries depend. Drought jeopardizes the integrity of critical infrastructure, causes extensive economic and health impacts, harms ecosystems, and increases energy costs. Ensuring the availability of clean, sufficient, and reliable water resources is a top national and NOAA priority. The Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) program, in partnership with the NOAA-led National Integrated Drought Information System (NIDIS), is focused on improving our understanding of drought causes, evolution, amelioration, and impacts as well as improving our capability to monitor and predict drought. These capabilities and knowledge are critical to providing communities with actionable, reliable information to increase drought preparedness and resilience. This poster will present information on the MAPP-organized Drought Task Force, a consortium of investigators funded by the MAPP program in partnership with NIDIS to advance drought understanding, monitoring, and prediction. Information on Task Force activities, products, and MAPP drought initiatives will be described in the poster, including the Task Force's ongoing focus on the California drought, its predictability, and its causes.

  17. Water stress reduces evaporative cooling in hybrid poplars during hot drought: genotype influences degree of coupling between thermal stress and atmosphere

    NASA Astrophysics Data System (ADS)

    Fojtik, A. C.; Barnes, M.; Breshears, D. D.; Law, D.; Moore, D. J.

    2016-12-01

    Climate change is projected to increase global temperatures as well as the frequency and severity of drought in many regions worldwide. Potential consequences of hotter drought include widespread forest mortality and ecosystem reorganization. Of concern is the response of woody plants, especially commercially significant species, to drought exacerbated by higher temperatures. Quantifying the physiological effects of hot drought on woody plants can improve understanding of their limitations and ability to adapt to projected conditions. Here we test an association between water stress and thermal stress in two genotypes of hybrid poplar trees during a naturally occurring hot drought in Southern Arizona. Genotype 57-276 had small, diamond-shaped leaves, while genotype R-270 had large, rounded leaves. We hypothesized that the degree of coupling between the atmosphere and leaf temperature would vary with genotype due to the effects of leaf size on boundary layer. We compared pre-dawn water potential (Ψ) to the difference between leaf and air temperature (ΔT; a proxy for thermal stress), and meteorological variables including vapor pressure deficit (VPD), photosynthetically active radiation (PAR), and wind speed as the drought progressed. In both genotypes, Ψ was negatively related to ΔT when leaf temperature was higher than air temperature; this relationship was stronger in the large leaf genotype than the small leaf genotype. Leaves from highly stressed plants were the hottest compared to ambient air temperature. This suggests that water stress results in a reduction in leaf transpiration and associated evaporative cooling. Each genotype also had unique factors affecting ΔT. The small leaf genotype was more tightly coupled to the atmosphere, with ΔT influenced by PAR, and wind speed. This is consistent with smaller, diamond-shaped leaves, which result in a smaller leaf boundary layer that is more sensitive to atmospheric conditions. For the large leaf genotype,

  18. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    PubMed Central

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  19. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    PubMed

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  20. Drought and Winter Drying (Pest Alert)

    Treesearch

    USDA Forest Service

    Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...

  1. Unexpected Drought Legacy Effects in Six North American Grasslands

    NASA Astrophysics Data System (ADS)

    Griffin-Nolan, R. J.; Collins, S. L.; Knapp, A.; Luo, Y.; Pockman, W.; Smith, M. D.

    2016-12-01

    Global climate models predict increases in the frequency and severity of drought in grasslands worldwide, yet grassland sensitivity to drought can vary widely at a regional scale. Legacy effects of drought (drought-induced alterations in ecosystems that affect function post-drought) have been widely reported from desert to forest ecosystems. Drought legacies are usually negative and reduce ecosystem function, particularly after extended drought. Ecosystems with low resistance to drought (high sensitivity) might be expected to exhibit the largest legacy effects the next year, but the relationship between ecosystem sensitivity to drought and subsequent legacy effects is unknown. We quantified legacy effects of a severe drought in 2012 on post-drought (2013) aboveground net primary productivity (ANPP) in six central US grasslands. These ecosystems, spanning arid desert grasslands to mesic tallgrass prairie, varied by two-fold in their sensitivity to the natural drought in 2012. We predicted that (1) the magnitude of drought legacy effects measured in 2013 would be positively related to drought sensitivity in 2012, and (2) drought legacy effects would be negative (reducing 2013 ANPP relative to that expected given normal precipitation amounts). The magnitude of legacy effects measured in 2013 was strongly related (r2 = 0.96) to 2012 drought sensitivity across these six grasslands. However, contrary to expectations, positive legacy effects (greater than expected ANPP) were measured in most sites. Thus, while drought sensitivity may a useful predictor of the magnitude of legacy effects, short term (1-year) severe droughts may cause legacy effects that differ substantially from those observed after multi-year droughts.

  2. Identification of the influencing factors on groundwater drought in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Huysmans, Marijke

    2015-04-01

    Groundwater drought is a specific type of drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of response different climatic and manmade factors on groundwater drought provides essential information for sustainable planning and management of water resources. The aim of this study is to identify the influencing factors on groundwater drought in a drought prone region in Bangladesh to understand the forcing mechanisms. The Standardised Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere. The influence of land use patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land use. The result shows that drought intensity is more severe during the dry season (November to April) compared to the rainy season (May to October). The evapotranspiration and rainfall deficit has a significant effect on meteorological drought which has a direct relation with groundwater drought. Urbanization results in a decrease of groundwater recharge which increases groundwater drought severity. Overexploitation of groundwater for irrigation and recurrent meteorological droughts are the main causes of groundwater drought in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management. More detailed studies on climate change and land use change effects on groundwater drought are recommended. Keywords: Groundwater drought, SPI & RDI, Spatially distributed groundwater recharge, Irrigation, Bangladesh

  3. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2

    PubMed Central

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T.

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  4. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism.

  5. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis[OPEN

    PubMed Central

    Chen, Lih-Jen; Herrfurth, Cornelia

    2016-01-01

    DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA. PMID:26721860

  6. Loss of the Arabidopsis thaliana P4-ATPase ALA3 Reduces Adaptability to Temperature Stresses and Impairs Vegetative, Pollen, and Ovule Development

    PubMed Central

    McDowell, Stephen C.; López-Marqués, Rosa L.; Poulsen, Lisbeth R.; Palmgren, Michael G.; Harper, Jeffrey F.

    2013-01-01

    Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3) was previously reported to be important for vegetative growth and reproductive success. Here we show that multiple phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions. We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ∼2 h slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ∼18% transmission efficiency (unstressed) to less than 0.2% (stressed). Together, these results support a model in which ALA3 functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are critical in plants for normal development and adaptation to varied growth environments. PMID:23667493

  7. Droughts threaten Bornean rainforests

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    At 130 million years old, the rainforests of Southeast Asia are the oldest in the world and home to thousands of species of plants and animals, some endemic to these forests. The rainforests also play important roles in modulating regional rainfall and in the global carbon cycle. However, since the 1960s, increased warming in the Indian Ocean and frequent El Niño events have reduced rainfall in the region by approximately 1.0% per decade. Furthermore, the Intergovernmental Panel for Climate Change predicts that over the 21st century, Southeast Asia will experience higher land temperatures, more droughts, and increased seasonality; that is, wet seasons during the fall will get wetter, and dry seasons during the spring will get drier. However, few studies in the past have investigated how trees in the southeastern Asian rainforests respond to droughts and climate change.

  8. Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis.

    PubMed

    Perales, Mariano; Eubel, Holger; Heinemeyer, Jesco; Colaneri, Alejandro; Zabaleta, Eduardo; Braun, Hans-Peter

    2005-07-08

    Mitochondrial NADH dehydrogenase (complex I) of plants includes quite a number of plant-specific subunits, some of which exhibit sequence similarity to bacterial gamma-carbonic anhydrases. A homozygous Arabidopsis knockout mutant carrying a T-DNA insertion in a gene encoding one of these subunits (At1g47260) was generated to investigate its physiological role. Isolation of mitochondria and separation of mitochondrial protein complexes by Blue-native polyacrylamide gel electrophoresis or sucrose gradient ultracentrifugation revealed drastically reduced complex I levels. Furthermore, the mitochondrial I + III2 supercomplex was very much reduced in mutant plants. Remaining complex I had normal molecular mass, suggesting substitution of the At1g47260 protein by one or several of the structurally related subunits of this respiratory protein complex. Immune-blotting experiments using polyclonal antibodies directed against the At1g47260 protein indicated its presence within complex I, the I + III2 supercomplex and smaller protein complexes, which possibly represent subcomplexes of complex I. Changes within the mitochondrial proteome of mutant cells were systematically monitored by fluorescence difference gel electrophoresis using 2D Blue-native/SDS and 2D isoelectric focussing/SDS polyacrylamide gel electrophoresis. Complex I subunits are largely absent within the mitochondrial proteome. Further mitochondrial proteins are reduced in mutant plants, like mitochondrial ferredoxin, others are increased, like formate dehydrogenase. Development of mutant plants was normal under standard growth conditions. However, a suspension cell culture generated from mutant plants exhibited clearly reduced growth rates and respiration. In summary, At1g47260 is important for complex I assembly in plant mitochondria and respiration. A role of At1g47260 in mitochondrial one-carbon metabolism is supported by micro-array analyses.

  9. Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants

    PubMed Central

    Cheol Park, Hyeong; Cha, Joon-Yung; Yun, Dae-Jin

    2013-01-01

    Auxin, a plant hormone, plays crucial roles in diverse aspects of plant growth and development reacting to and integrating environmental stimuli. Indole-3-acetic acid (IAA) is the major plant auxin that is synthesized by members of the YUCCA (YUC) family of flavin monooxygenases that catalyse a rate-limiting step. Although the paths to IAA biosynthesis are characterized in Arabidopsis, little is known about the corresponding components in potato. Recently, we isolated eight putative StYUC (Solanum tuberosum YUCCA) genes and five putative tryptophan aminotransferase genes in comparison to those found in Arabidopsis.1 The specific domains of YUC proteins were well conserved in all StYUC amino acid sequences. Transgenic potato (Solanum tuberosum cv. Jowon) overexpressing AtYUC6 showed high-auxin and enhanced drought tolerance phenotypes. The transgenic potatoes also exhibited reduced levels of ROS (reactive oxygen species) compared to control plants. We therefore propose that YUCCA and TAA families in potato would function in the auxin biosynthesis. The overexpression of AtYUC6 in potato establishes enhanced drought tolerance through regulated ROS homeostasis. PMID:23603963

  10. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA).

    PubMed

    Meng, Lai-Sheng; Yao, Shun-Qiao

    2015-09-01

    One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. The German Drought Monitor

    NASA Astrophysics Data System (ADS)

    Marx, Andreas; Zink, Matthias; Pommerencke, Julia; Kumar, Rohini; Thober, Stephan; Samaniego, Luis

    2015-04-01

    Soil moisture droughts reduce the amount of water available to plant growth potentially leading e.g. to crop failure or increased forest fire risk. The threat of human livelihoods in developing countries and large economic losses in developed ones are severe consequences of these events. Monitoring the current state of soil water content allows to improve water management to mitigate the associated damages. Since summer 2014, the German Drought Monitor (GDM, available at: www.ufz.de/droughtmonitor) has been established using an operational hydrological modeling system, which consists of 3 steps: (1) the daily download of meteorological forcing data, consistency check and interpolation of this data, (2) running the mesoscale Hydrologic Model (mHM; Samaniego et al. 2010) and saving the state variables at the end of the model run as restart-file for the next days run, and (3) calculation of the soil moisture index (SMI, Samaniego et al. 2013, JHM) and visualization of the drought data. The hydrological model mHM was used to generate daily soil moisture fields for the period 1954-2013 over the entire area of Germany at a high spatial resolution of 4 x 4 km². The model requires daily precipitation, temperature, and potential evapotranspiration as forcing. A three-layer soil scheme was used to model the soil moisture dynamics over the entire root zone depth. Based on the 60 year simulation of soil moisture, the frequency distributions have been calculated for each grid cell to derive the soil moisture index. In this beta version, we do a monthly online update of the SMI. Furthermore, a trend analysis of drought events for 69 German subregions since 1954 was conducted. It showed that for most parts of Germany, the frequency of abnormally dry conditions increased while the stronger drought situations with SMI<0.2 decreased at the same time. For the coming year, a stakeholder consultation is planned. The aim is to clarify for whom a drought monitor would be useful, what

  12. Seasonal Drought Prediction in India

    NASA Astrophysics Data System (ADS)

    Shah, R.; Mishra, V.

    2015-12-01

    Drought is among the most costly natural disasters in India. Seasonal prediction of drought can assist planners to manage agriculture and water resources. Such information can be valuable for a country like India where 60% of agriculture is rain-fed. Here we evaluate precipitation and temperature forecast from the NCEP's CFSV2 for seasonal drought prediction in India. We demonstrate the utility of the seasonal prediction of precipitation and temperature for drought forecast at 1-2 months lead time at a high spatial resolution. Precipitation from CFSv2 showed moderate correlations with observed up to two months lead. For one month lead, we found a significant correlation between CFSv2 and observed precipitation during winter season. Air temperature from the CFSv2 showed a good correlation with observed temperature during the winter. We forced the Variable Infiltration Capacity (VIC) model with the CFSv2 forecast of precipitation and air temperature to generate forecast of hydrologic variables such as soil moisture and total runoff. We find that errors of the prediction reduce for the two month lead time in the majority of the study domain except the northern India. Skills of Initial Hydrologic Conditions combined with moderate skills of forcings based on the CFSv2 showed ability of drought prediction in India. The developed system was able to successfully predict observed top layer soil moisture and observed drought based on satellite remote sensing in India.

  13. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems

    USGS Publications Warehouse

    Hoover, David L.; Duniway, Michael C.; Belnap, Jayne

    2015-01-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  14. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems.

    PubMed

    Hoover, David L; Duniway, Michael C; Belnap, Jayne

    2015-12-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3 shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  15. Categorical Drought Monitoring and Prediction in the United States Based on NLDAS-2

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Xia, Y.; Hao, F.; Singh, V. P.

    2015-12-01

    Drought is a pervasive natural hazard and is a billion-dollar disaster in the United States, which is comparable to hurricanes and tropical storms with greater economic impacts than extratropical storms, wildfires, blizzards, and ice storms combined. Drought early warning is of critical importance for drought preparedness planning and mitigation efforts to reduce potential impacts of drought, for which drought monitoring and prediction are the essential components. The U.S. Drought Monitor (USDM) has been widely used to track droughts and their impacts. USDM is a composite product that blends quantitative drought indicators and qualitative drought information from multiple sources and classifies drought conditions into different drought categories. Due to the wide application of USDM products, drought monitoring and prediction in the categorical form would be of great importance to aid decision makers to take appropriate measures for drought managements. Based on drought indices from North American Land Data Assimilation System Phase 2 (NLDAS-2), this study proposes a statistical method for the categorical drought monitoring and prediction in the United States. The probabilities of drought conditions falling into different USDM drought categories can be estimated from the proposed method. The method is found to satisfactorily reconstruct historical USDM drought categories and predict future USDM drought categories, and has considerable potential to aid early drought warning in the United States.

  16. Development and evaluation of a comprehensive drought index.

    PubMed

    Esfahanian, Elaheh; Nejadhashemi, A Pouyan; Abouali, Mohammad; Adhikari, Umesh; Zhang, Zhen; Daneshvar, Fariborz; Herman, Matthew R

    2016-10-28

    Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories. Additionally, predictive drought models are developed to capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought. In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a universal drought index named MASH. The thirteen drought indices consist of four drought indices from each meteorological, hydrological, and agricultural categories, and one from the stream health category. Cluster analysis was performed to find the three closest indices in each category. Then the closest drought indices were averaged in each category to create the categorical drought score. Finally, the categorical drought scores were simply averaged to develop the MASH drought index. In order to develop predictive drought models for each category and MASH, the ReliefF algorithm was used to rank 90 variables and select the best variable set. Using the best variable set, the adaptive neuro-fuzzy inference system (ANFIS) was used to develop drought predictive models and their accuracy was examined using the 10-fold cross validation technique. The models' predictabilities ranged from R(2) = 0.75 for MASH to R(2) = 0.98 for the hydrological drought model. The results of this study can help managers to better position resources to cope with drought by reducing drought impacts on different sectors.

  17. Enhancing Drought Risk Management: Tools and Services for Decision Support

    NASA Astrophysics Data System (ADS)

    Svoboda, M. D.; Hayes, M. J.

    2011-12-01

    The National Drought Mitigation Center (NDMC) (http://drought.unl.edu) has been working with the National Integrated Drought Information System (NIDIS) (http://drought.gov) and other partners with a goal of developing tools, products, services and outreach with a goal of contributing to a U.S. drought early warning system (DEWS) as well as contributing to efforts underway toward building a virtual and collaborative global drought early warning system (GDEWS). The NDMC's mission is to work to reduce societal vulnerability to drought by helping decision makers at all levels to: develop and implement DEWS, understand and prevent drought impacts and increase long-term resilience to drought through proactive risk management planning. The NDMC is a national center founded in 1995 and located at the University of Nebraska-Lincoln. The NDMC conducts basic and applied research, services and decision support applications, along with the maintaining of a number of operational drought-related tools, products and outreach activities, including the U.S. Drought Monitor (USDM), Drought Impact Reporter (DIR), Vegetation Drought Response Index (VegDRI) along with the newly developed and enhanced National Drought Atlas, Drought Ready Communities Guide to Community Drought Preparedness and our Managing Drought Risk on the Ranch planning section on our newly revamped web site at http://drought.unl.edu. This presentation will describe in more detail the various drought resources, tools, research efforts, services and collaborations already being provided by the NDMC and its partners toward developing a collaborative DEWS in the U.S. and around the world.

  18. Light Deprivation-Induced Inhibition of Chloroplast Biogenesis Does Not Arrest Embryo Morphogenesis But Strongly Reduces the Accumulation of Storage Reserves during Embryo Maturation in Arabidopsis.

    PubMed

    Liu, Huichao; Wang, Xiaoxia; Ren, Kaixuan; Li, Kai; Wei, Mengmeng; Wang, Wenjie; Sheng, Xianyong

    2017-01-01

    The chloroplast is one of the most important organelles found exclusively in plant and algal cells. Previous reports indicated that the chloroplast is involved in plant embryogenesis, but the role of the organelle during embryo morphogenesis and maturation is still a controversial question demanding further research. In the present study, siliques of Arabidopsis at the early globular stage were enwrapped using tinfoil, and light deprivation-induced inhibition of the chloroplast biogenesis were validated by stereomicroscope, laser scanning confocal microscope and transmission electron microscope. Besides, the effects of inhibited chloroplast differentiation on embryogenesis, especially on the reserve deposition were analyzed using periodic acid-Schiff reaction, Nile red labeling, and Coomassie brilliant blue staining. Our results indicated that tinfoil enwrapping strongly inhibited the formation of chloroplasts, which did not arrest embryo morphogenesis, but markedly influenced embryo maturation, mainly through reducing the accumulation o